| /* |
| * AMD Cryptographic Coprocessor (CCP) driver |
| * |
| * Copyright (C) 2013,2016 Advanced Micro Devices, Inc. |
| * |
| * Author: Tom Lendacky <thomas.lendacky@amd.com> |
| * Author: Gary R Hook <gary.hook@amd.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/kthread.h> |
| #include <linux/sched.h> |
| #include <linux/interrupt.h> |
| #include <linux/spinlock.h> |
| #include <linux/spinlock_types.h> |
| #include <linux/types.h> |
| #include <linux/mutex.h> |
| #include <linux/delay.h> |
| #include <linux/hw_random.h> |
| #include <linux/cpu.h> |
| #ifdef CONFIG_X86 |
| #include <asm/cpu_device_id.h> |
| #endif |
| #include <linux/ccp.h> |
| |
| #include "ccp-dev.h" |
| |
| MODULE_AUTHOR("Tom Lendacky <thomas.lendacky@amd.com>"); |
| MODULE_AUTHOR("Gary R Hook <gary.hook@amd.com>"); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION("1.1.0"); |
| MODULE_DESCRIPTION("AMD Cryptographic Coprocessor driver"); |
| |
| struct ccp_tasklet_data { |
| struct completion completion; |
| struct ccp_cmd *cmd; |
| }; |
| |
| /* Human-readable error strings */ |
| static char *ccp_error_codes[] = { |
| "", |
| "ERR 01: ILLEGAL_ENGINE", |
| "ERR 02: ILLEGAL_KEY_ID", |
| "ERR 03: ILLEGAL_FUNCTION_TYPE", |
| "ERR 04: ILLEGAL_FUNCTION_MODE", |
| "ERR 05: ILLEGAL_FUNCTION_ENCRYPT", |
| "ERR 06: ILLEGAL_FUNCTION_SIZE", |
| "ERR 07: Zlib_MISSING_INIT_EOM", |
| "ERR 08: ILLEGAL_FUNCTION_RSVD", |
| "ERR 09: ILLEGAL_BUFFER_LENGTH", |
| "ERR 10: VLSB_FAULT", |
| "ERR 11: ILLEGAL_MEM_ADDR", |
| "ERR 12: ILLEGAL_MEM_SEL", |
| "ERR 13: ILLEGAL_CONTEXT_ID", |
| "ERR 14: ILLEGAL_KEY_ADDR", |
| "ERR 15: 0xF Reserved", |
| "ERR 16: Zlib_ILLEGAL_MULTI_QUEUE", |
| "ERR 17: Zlib_ILLEGAL_JOBID_CHANGE", |
| "ERR 18: CMD_TIMEOUT", |
| "ERR 19: IDMA0_AXI_SLVERR", |
| "ERR 20: IDMA0_AXI_DECERR", |
| "ERR 21: 0x15 Reserved", |
| "ERR 22: IDMA1_AXI_SLAVE_FAULT", |
| "ERR 23: IDMA1_AIXI_DECERR", |
| "ERR 24: 0x18 Reserved", |
| "ERR 25: ZLIBVHB_AXI_SLVERR", |
| "ERR 26: ZLIBVHB_AXI_DECERR", |
| "ERR 27: 0x1B Reserved", |
| "ERR 27: ZLIB_UNEXPECTED_EOM", |
| "ERR 27: ZLIB_EXTRA_DATA", |
| "ERR 30: ZLIB_BTYPE", |
| "ERR 31: ZLIB_UNDEFINED_SYMBOL", |
| "ERR 32: ZLIB_UNDEFINED_DISTANCE_S", |
| "ERR 33: ZLIB_CODE_LENGTH_SYMBOL", |
| "ERR 34: ZLIB _VHB_ILLEGAL_FETCH", |
| "ERR 35: ZLIB_UNCOMPRESSED_LEN", |
| "ERR 36: ZLIB_LIMIT_REACHED", |
| "ERR 37: ZLIB_CHECKSUM_MISMATCH0", |
| "ERR 38: ODMA0_AXI_SLVERR", |
| "ERR 39: ODMA0_AXI_DECERR", |
| "ERR 40: 0x28 Reserved", |
| "ERR 41: ODMA1_AXI_SLVERR", |
| "ERR 42: ODMA1_AXI_DECERR", |
| "ERR 43: LSB_PARITY_ERR", |
| }; |
| |
| void ccp_log_error(struct ccp_device *d, int e) |
| { |
| dev_err(d->dev, "CCP error: %s (0x%x)\n", ccp_error_codes[e], e); |
| } |
| |
| /* List of CCPs, CCP count, read-write access lock, and access functions |
| * |
| * Lock structure: get ccp_unit_lock for reading whenever we need to |
| * examine the CCP list. While holding it for reading we can acquire |
| * the RR lock to update the round-robin next-CCP pointer. The unit lock |
| * must be acquired before the RR lock. |
| * |
| * If the unit-lock is acquired for writing, we have total control over |
| * the list, so there's no value in getting the RR lock. |
| */ |
| static DEFINE_RWLOCK(ccp_unit_lock); |
| static LIST_HEAD(ccp_units); |
| |
| /* Round-robin counter */ |
| static DEFINE_SPINLOCK(ccp_rr_lock); |
| static struct ccp_device *ccp_rr; |
| |
| /* Ever-increasing value to produce unique unit numbers */ |
| static atomic_t ccp_unit_ordinal; |
| static unsigned int ccp_increment_unit_ordinal(void) |
| { |
| return atomic_inc_return(&ccp_unit_ordinal); |
| } |
| |
| /** |
| * ccp_add_device - add a CCP device to the list |
| * |
| * @ccp: ccp_device struct pointer |
| * |
| * Put this CCP on the unit list, which makes it available |
| * for use. |
| * |
| * Returns zero if a CCP device is present, -ENODEV otherwise. |
| */ |
| void ccp_add_device(struct ccp_device *ccp) |
| { |
| unsigned long flags; |
| |
| write_lock_irqsave(&ccp_unit_lock, flags); |
| list_add_tail(&ccp->entry, &ccp_units); |
| if (!ccp_rr) |
| /* We already have the list lock (we're first) so this |
| * pointer can't change on us. Set its initial value. |
| */ |
| ccp_rr = ccp; |
| write_unlock_irqrestore(&ccp_unit_lock, flags); |
| } |
| |
| /** |
| * ccp_del_device - remove a CCP device from the list |
| * |
| * @ccp: ccp_device struct pointer |
| * |
| * Remove this unit from the list of devices. If the next device |
| * up for use is this one, adjust the pointer. If this is the last |
| * device, NULL the pointer. |
| */ |
| void ccp_del_device(struct ccp_device *ccp) |
| { |
| unsigned long flags; |
| |
| write_lock_irqsave(&ccp_unit_lock, flags); |
| if (ccp_rr == ccp) { |
| /* ccp_unit_lock is read/write; any read access |
| * will be suspended while we make changes to the |
| * list and RR pointer. |
| */ |
| if (list_is_last(&ccp_rr->entry, &ccp_units)) |
| ccp_rr = list_first_entry(&ccp_units, struct ccp_device, |
| entry); |
| else |
| ccp_rr = list_next_entry(ccp_rr, entry); |
| } |
| list_del(&ccp->entry); |
| if (list_empty(&ccp_units)) |
| ccp_rr = NULL; |
| write_unlock_irqrestore(&ccp_unit_lock, flags); |
| } |
| |
| |
| |
| int ccp_register_rng(struct ccp_device *ccp) |
| { |
| int ret = 0; |
| |
| dev_dbg(ccp->dev, "Registering RNG...\n"); |
| /* Register an RNG */ |
| ccp->hwrng.name = ccp->rngname; |
| ccp->hwrng.read = ccp_trng_read; |
| ret = hwrng_register(&ccp->hwrng); |
| if (ret) |
| dev_err(ccp->dev, "error registering hwrng (%d)\n", ret); |
| |
| return ret; |
| } |
| |
| void ccp_unregister_rng(struct ccp_device *ccp) |
| { |
| if (ccp->hwrng.name) |
| hwrng_unregister(&ccp->hwrng); |
| } |
| |
| static struct ccp_device *ccp_get_device(void) |
| { |
| unsigned long flags; |
| struct ccp_device *dp = NULL; |
| |
| /* We round-robin through the unit list. |
| * The (ccp_rr) pointer refers to the next unit to use. |
| */ |
| read_lock_irqsave(&ccp_unit_lock, flags); |
| if (!list_empty(&ccp_units)) { |
| spin_lock(&ccp_rr_lock); |
| dp = ccp_rr; |
| if (list_is_last(&ccp_rr->entry, &ccp_units)) |
| ccp_rr = list_first_entry(&ccp_units, struct ccp_device, |
| entry); |
| else |
| ccp_rr = list_next_entry(ccp_rr, entry); |
| spin_unlock(&ccp_rr_lock); |
| } |
| read_unlock_irqrestore(&ccp_unit_lock, flags); |
| |
| return dp; |
| } |
| |
| /** |
| * ccp_present - check if a CCP device is present |
| * |
| * Returns zero if a CCP device is present, -ENODEV otherwise. |
| */ |
| int ccp_present(void) |
| { |
| unsigned long flags; |
| int ret; |
| |
| read_lock_irqsave(&ccp_unit_lock, flags); |
| ret = list_empty(&ccp_units); |
| read_unlock_irqrestore(&ccp_unit_lock, flags); |
| |
| return ret ? -ENODEV : 0; |
| } |
| EXPORT_SYMBOL_GPL(ccp_present); |
| |
| /** |
| * ccp_version - get the version of the CCP device |
| * |
| * Returns the version from the first unit on the list; |
| * otherwise a zero if no CCP device is present |
| */ |
| unsigned int ccp_version(void) |
| { |
| struct ccp_device *dp; |
| unsigned long flags; |
| int ret = 0; |
| |
| read_lock_irqsave(&ccp_unit_lock, flags); |
| if (!list_empty(&ccp_units)) { |
| dp = list_first_entry(&ccp_units, struct ccp_device, entry); |
| ret = dp->vdata->version; |
| } |
| read_unlock_irqrestore(&ccp_unit_lock, flags); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(ccp_version); |
| |
| /** |
| * ccp_enqueue_cmd - queue an operation for processing by the CCP |
| * |
| * @cmd: ccp_cmd struct to be processed |
| * |
| * Queue a cmd to be processed by the CCP. If queueing the cmd |
| * would exceed the defined length of the cmd queue the cmd will |
| * only be queued if the CCP_CMD_MAY_BACKLOG flag is set and will |
| * result in a return code of -EBUSY. |
| * |
| * The callback routine specified in the ccp_cmd struct will be |
| * called to notify the caller of completion (if the cmd was not |
| * backlogged) or advancement out of the backlog. If the cmd has |
| * advanced out of the backlog the "err" value of the callback |
| * will be -EINPROGRESS. Any other "err" value during callback is |
| * the result of the operation. |
| * |
| * The cmd has been successfully queued if: |
| * the return code is -EINPROGRESS or |
| * the return code is -EBUSY and CCP_CMD_MAY_BACKLOG flag is set |
| */ |
| int ccp_enqueue_cmd(struct ccp_cmd *cmd) |
| { |
| struct ccp_device *ccp; |
| unsigned long flags; |
| unsigned int i; |
| int ret; |
| |
| /* Some commands might need to be sent to a specific device */ |
| ccp = cmd->ccp ? cmd->ccp : ccp_get_device(); |
| |
| if (!ccp) |
| return -ENODEV; |
| |
| /* Caller must supply a callback routine */ |
| if (!cmd->callback) |
| return -EINVAL; |
| |
| cmd->ccp = ccp; |
| |
| spin_lock_irqsave(&ccp->cmd_lock, flags); |
| |
| i = ccp->cmd_q_count; |
| |
| if (ccp->cmd_count >= MAX_CMD_QLEN) { |
| ret = -EBUSY; |
| if (cmd->flags & CCP_CMD_MAY_BACKLOG) |
| list_add_tail(&cmd->entry, &ccp->backlog); |
| } else { |
| ret = -EINPROGRESS; |
| ccp->cmd_count++; |
| list_add_tail(&cmd->entry, &ccp->cmd); |
| |
| /* Find an idle queue */ |
| if (!ccp->suspending) { |
| for (i = 0; i < ccp->cmd_q_count; i++) { |
| if (ccp->cmd_q[i].active) |
| continue; |
| |
| break; |
| } |
| } |
| } |
| |
| spin_unlock_irqrestore(&ccp->cmd_lock, flags); |
| |
| /* If we found an idle queue, wake it up */ |
| if (i < ccp->cmd_q_count) |
| wake_up_process(ccp->cmd_q[i].kthread); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(ccp_enqueue_cmd); |
| |
| static void ccp_do_cmd_backlog(struct work_struct *work) |
| { |
| struct ccp_cmd *cmd = container_of(work, struct ccp_cmd, work); |
| struct ccp_device *ccp = cmd->ccp; |
| unsigned long flags; |
| unsigned int i; |
| |
| cmd->callback(cmd->data, -EINPROGRESS); |
| |
| spin_lock_irqsave(&ccp->cmd_lock, flags); |
| |
| ccp->cmd_count++; |
| list_add_tail(&cmd->entry, &ccp->cmd); |
| |
| /* Find an idle queue */ |
| for (i = 0; i < ccp->cmd_q_count; i++) { |
| if (ccp->cmd_q[i].active) |
| continue; |
| |
| break; |
| } |
| |
| spin_unlock_irqrestore(&ccp->cmd_lock, flags); |
| |
| /* If we found an idle queue, wake it up */ |
| if (i < ccp->cmd_q_count) |
| wake_up_process(ccp->cmd_q[i].kthread); |
| } |
| |
| static struct ccp_cmd *ccp_dequeue_cmd(struct ccp_cmd_queue *cmd_q) |
| { |
| struct ccp_device *ccp = cmd_q->ccp; |
| struct ccp_cmd *cmd = NULL; |
| struct ccp_cmd *backlog = NULL; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ccp->cmd_lock, flags); |
| |
| cmd_q->active = 0; |
| |
| if (ccp->suspending) { |
| cmd_q->suspended = 1; |
| |
| spin_unlock_irqrestore(&ccp->cmd_lock, flags); |
| wake_up_interruptible(&ccp->suspend_queue); |
| |
| return NULL; |
| } |
| |
| if (ccp->cmd_count) { |
| cmd_q->active = 1; |
| |
| cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry); |
| list_del(&cmd->entry); |
| |
| ccp->cmd_count--; |
| } |
| |
| if (!list_empty(&ccp->backlog)) { |
| backlog = list_first_entry(&ccp->backlog, struct ccp_cmd, |
| entry); |
| list_del(&backlog->entry); |
| } |
| |
| spin_unlock_irqrestore(&ccp->cmd_lock, flags); |
| |
| if (backlog) { |
| INIT_WORK(&backlog->work, ccp_do_cmd_backlog); |
| schedule_work(&backlog->work); |
| } |
| |
| return cmd; |
| } |
| |
| static void ccp_do_cmd_complete(unsigned long data) |
| { |
| struct ccp_tasklet_data *tdata = (struct ccp_tasklet_data *)data; |
| struct ccp_cmd *cmd = tdata->cmd; |
| |
| cmd->callback(cmd->data, cmd->ret); |
| complete(&tdata->completion); |
| } |
| |
| /** |
| * ccp_cmd_queue_thread - create a kernel thread to manage a CCP queue |
| * |
| * @data: thread-specific data |
| */ |
| int ccp_cmd_queue_thread(void *data) |
| { |
| struct ccp_cmd_queue *cmd_q = (struct ccp_cmd_queue *)data; |
| struct ccp_cmd *cmd; |
| struct ccp_tasklet_data tdata; |
| struct tasklet_struct tasklet; |
| |
| tasklet_init(&tasklet, ccp_do_cmd_complete, (unsigned long)&tdata); |
| |
| set_current_state(TASK_INTERRUPTIBLE); |
| while (!kthread_should_stop()) { |
| schedule(); |
| |
| set_current_state(TASK_INTERRUPTIBLE); |
| |
| cmd = ccp_dequeue_cmd(cmd_q); |
| if (!cmd) |
| continue; |
| |
| __set_current_state(TASK_RUNNING); |
| |
| /* Execute the command */ |
| cmd->ret = ccp_run_cmd(cmd_q, cmd); |
| |
| /* Schedule the completion callback */ |
| tdata.cmd = cmd; |
| init_completion(&tdata.completion); |
| tasklet_schedule(&tasklet); |
| wait_for_completion(&tdata.completion); |
| } |
| |
| __set_current_state(TASK_RUNNING); |
| |
| return 0; |
| } |
| |
| /** |
| * ccp_alloc_struct - allocate and initialize the ccp_device struct |
| * |
| * @dev: device struct of the CCP |
| */ |
| struct ccp_device *ccp_alloc_struct(struct device *dev) |
| { |
| struct ccp_device *ccp; |
| |
| ccp = devm_kzalloc(dev, sizeof(*ccp), GFP_KERNEL); |
| if (!ccp) |
| return NULL; |
| ccp->dev = dev; |
| |
| INIT_LIST_HEAD(&ccp->cmd); |
| INIT_LIST_HEAD(&ccp->backlog); |
| |
| spin_lock_init(&ccp->cmd_lock); |
| mutex_init(&ccp->req_mutex); |
| mutex_init(&ccp->sb_mutex); |
| ccp->sb_count = KSB_COUNT; |
| ccp->sb_start = 0; |
| |
| /* Initialize the wait queues */ |
| init_waitqueue_head(&ccp->sb_queue); |
| init_waitqueue_head(&ccp->suspend_queue); |
| |
| ccp->ord = ccp_increment_unit_ordinal(); |
| snprintf(ccp->name, MAX_CCP_NAME_LEN, "ccp-%u", ccp->ord); |
| snprintf(ccp->rngname, MAX_CCP_NAME_LEN, "ccp-%u-rng", ccp->ord); |
| |
| return ccp; |
| } |
| |
| int ccp_trng_read(struct hwrng *rng, void *data, size_t max, bool wait) |
| { |
| struct ccp_device *ccp = container_of(rng, struct ccp_device, hwrng); |
| u32 trng_value; |
| int len = min_t(int, sizeof(trng_value), max); |
| |
| /* Locking is provided by the caller so we can update device |
| * hwrng-related fields safely |
| */ |
| trng_value = ioread32(ccp->io_regs + TRNG_OUT_REG); |
| if (!trng_value) { |
| /* Zero is returned if not data is available or if a |
| * bad-entropy error is present. Assume an error if |
| * we exceed TRNG_RETRIES reads of zero. |
| */ |
| if (ccp->hwrng_retries++ > TRNG_RETRIES) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| /* Reset the counter and save the rng value */ |
| ccp->hwrng_retries = 0; |
| memcpy(data, &trng_value, len); |
| |
| return len; |
| } |
| |
| #ifdef CONFIG_PM |
| bool ccp_queues_suspended(struct ccp_device *ccp) |
| { |
| unsigned int suspended = 0; |
| unsigned long flags; |
| unsigned int i; |
| |
| spin_lock_irqsave(&ccp->cmd_lock, flags); |
| |
| for (i = 0; i < ccp->cmd_q_count; i++) |
| if (ccp->cmd_q[i].suspended) |
| suspended++; |
| |
| spin_unlock_irqrestore(&ccp->cmd_lock, flags); |
| |
| return ccp->cmd_q_count == suspended; |
| } |
| #endif |
| |
| static int __init ccp_mod_init(void) |
| { |
| #ifdef CONFIG_X86 |
| int ret; |
| |
| ret = ccp_pci_init(); |
| if (ret) |
| return ret; |
| |
| /* Don't leave the driver loaded if init failed */ |
| if (ccp_present() != 0) { |
| ccp_pci_exit(); |
| return -ENODEV; |
| } |
| |
| return 0; |
| #endif |
| |
| #ifdef CONFIG_ARM64 |
| int ret; |
| |
| ret = ccp_platform_init(); |
| if (ret) |
| return ret; |
| |
| /* Don't leave the driver loaded if init failed */ |
| if (ccp_present() != 0) { |
| ccp_platform_exit(); |
| return -ENODEV; |
| } |
| |
| return 0; |
| #endif |
| |
| return -ENODEV; |
| } |
| |
| static void __exit ccp_mod_exit(void) |
| { |
| #ifdef CONFIG_X86 |
| ccp_pci_exit(); |
| #endif |
| |
| #ifdef CONFIG_ARM64 |
| ccp_platform_exit(); |
| #endif |
| } |
| |
| module_init(ccp_mod_init); |
| module_exit(ccp_mod_exit); |