| /* |
| * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it would be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_types.h" |
| #include "xfs_bit.h" |
| #include "xfs_log.h" |
| #include "xfs_inum.h" |
| #include "xfs_trans.h" |
| #include "xfs_sb.h" |
| #include "xfs_ag.h" |
| #include "xfs_dir2.h" |
| #include "xfs_dmapi.h" |
| #include "xfs_mount.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_alloc_btree.h" |
| #include "xfs_ialloc_btree.h" |
| #include "xfs_dir2_sf.h" |
| #include "xfs_attr_sf.h" |
| #include "xfs_dinode.h" |
| #include "xfs_inode.h" |
| #include "xfs_btree.h" |
| #include "xfs_ialloc.h" |
| #include "xfs_alloc.h" |
| #include "xfs_error.h" |
| |
| /* |
| * Prototypes for internal functions. |
| */ |
| |
| STATIC void xfs_alloc_log_block(xfs_trans_t *, xfs_buf_t *, int); |
| STATIC void xfs_alloc_log_keys(xfs_btree_cur_t *, xfs_buf_t *, int, int); |
| STATIC void xfs_alloc_log_ptrs(xfs_btree_cur_t *, xfs_buf_t *, int, int); |
| STATIC void xfs_alloc_log_recs(xfs_btree_cur_t *, xfs_buf_t *, int, int); |
| STATIC int xfs_alloc_lshift(xfs_btree_cur_t *, int, int *); |
| STATIC int xfs_alloc_newroot(xfs_btree_cur_t *, int *); |
| STATIC int xfs_alloc_rshift(xfs_btree_cur_t *, int, int *); |
| STATIC int xfs_alloc_split(xfs_btree_cur_t *, int, xfs_agblock_t *, |
| xfs_alloc_key_t *, xfs_btree_cur_t **, int *); |
| STATIC int xfs_alloc_updkey(xfs_btree_cur_t *, xfs_alloc_key_t *, int); |
| |
| /* |
| * Internal functions. |
| */ |
| |
| /* |
| * Single level of the xfs_alloc_delete record deletion routine. |
| * Delete record pointed to by cur/level. |
| * Remove the record from its block then rebalance the tree. |
| * Return 0 for error, 1 for done, 2 to go on to the next level. |
| */ |
| STATIC int /* error */ |
| xfs_alloc_delrec( |
| xfs_btree_cur_t *cur, /* btree cursor */ |
| int level, /* level removing record from */ |
| int *stat) /* fail/done/go-on */ |
| { |
| xfs_agf_t *agf; /* allocation group freelist header */ |
| xfs_alloc_block_t *block; /* btree block record/key lives in */ |
| xfs_agblock_t bno; /* btree block number */ |
| xfs_buf_t *bp; /* buffer for block */ |
| int error; /* error return value */ |
| int i; /* loop index */ |
| xfs_alloc_key_t key; /* kp points here if block is level 0 */ |
| xfs_agblock_t lbno; /* left block's block number */ |
| xfs_buf_t *lbp; /* left block's buffer pointer */ |
| xfs_alloc_block_t *left; /* left btree block */ |
| xfs_alloc_key_t *lkp=NULL; /* left block key pointer */ |
| xfs_alloc_ptr_t *lpp=NULL; /* left block address pointer */ |
| int lrecs=0; /* number of records in left block */ |
| xfs_alloc_rec_t *lrp; /* left block record pointer */ |
| xfs_mount_t *mp; /* mount structure */ |
| int ptr; /* index in btree block for this rec */ |
| xfs_agblock_t rbno; /* right block's block number */ |
| xfs_buf_t *rbp; /* right block's buffer pointer */ |
| xfs_alloc_block_t *right; /* right btree block */ |
| xfs_alloc_key_t *rkp; /* right block key pointer */ |
| xfs_alloc_ptr_t *rpp; /* right block address pointer */ |
| int rrecs=0; /* number of records in right block */ |
| xfs_alloc_rec_t *rrp; /* right block record pointer */ |
| xfs_btree_cur_t *tcur; /* temporary btree cursor */ |
| |
| /* |
| * Get the index of the entry being deleted, check for nothing there. |
| */ |
| ptr = cur->bc_ptrs[level]; |
| if (ptr == 0) { |
| *stat = 0; |
| return 0; |
| } |
| /* |
| * Get the buffer & block containing the record or key/ptr. |
| */ |
| bp = cur->bc_bufs[level]; |
| block = XFS_BUF_TO_ALLOC_BLOCK(bp); |
| #ifdef DEBUG |
| if ((error = xfs_btree_check_sblock(cur, block, level, bp))) |
| return error; |
| #endif |
| /* |
| * Fail if we're off the end of the block. |
| */ |
| if (ptr > be16_to_cpu(block->bb_numrecs)) { |
| *stat = 0; |
| return 0; |
| } |
| XFS_STATS_INC(xs_abt_delrec); |
| /* |
| * It's a nonleaf. Excise the key and ptr being deleted, by |
| * sliding the entries past them down one. |
| * Log the changed areas of the block. |
| */ |
| if (level > 0) { |
| lkp = XFS_ALLOC_KEY_ADDR(block, 1, cur); |
| lpp = XFS_ALLOC_PTR_ADDR(block, 1, cur); |
| #ifdef DEBUG |
| for (i = ptr; i < be16_to_cpu(block->bb_numrecs); i++) { |
| if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(lpp[i]), level))) |
| return error; |
| } |
| #endif |
| if (ptr < be16_to_cpu(block->bb_numrecs)) { |
| memmove(&lkp[ptr - 1], &lkp[ptr], |
| (be16_to_cpu(block->bb_numrecs) - ptr) * sizeof(*lkp)); |
| memmove(&lpp[ptr - 1], &lpp[ptr], |
| (be16_to_cpu(block->bb_numrecs) - ptr) * sizeof(*lpp)); |
| xfs_alloc_log_ptrs(cur, bp, ptr, be16_to_cpu(block->bb_numrecs) - 1); |
| xfs_alloc_log_keys(cur, bp, ptr, be16_to_cpu(block->bb_numrecs) - 1); |
| } |
| } |
| /* |
| * It's a leaf. Excise the record being deleted, by sliding the |
| * entries past it down one. Log the changed areas of the block. |
| */ |
| else { |
| lrp = XFS_ALLOC_REC_ADDR(block, 1, cur); |
| if (ptr < be16_to_cpu(block->bb_numrecs)) { |
| memmove(&lrp[ptr - 1], &lrp[ptr], |
| (be16_to_cpu(block->bb_numrecs) - ptr) * sizeof(*lrp)); |
| xfs_alloc_log_recs(cur, bp, ptr, be16_to_cpu(block->bb_numrecs) - 1); |
| } |
| /* |
| * If it's the first record in the block, we'll need a key |
| * structure to pass up to the next level (updkey). |
| */ |
| if (ptr == 1) { |
| key.ar_startblock = lrp->ar_startblock; |
| key.ar_blockcount = lrp->ar_blockcount; |
| lkp = &key; |
| } |
| } |
| /* |
| * Decrement and log the number of entries in the block. |
| */ |
| be16_add(&block->bb_numrecs, -1); |
| xfs_alloc_log_block(cur->bc_tp, bp, XFS_BB_NUMRECS); |
| /* |
| * See if the longest free extent in the allocation group was |
| * changed by this operation. True if it's the by-size btree, and |
| * this is the leaf level, and there is no right sibling block, |
| * and this was the last record. |
| */ |
| agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp); |
| mp = cur->bc_mp; |
| |
| if (level == 0 && |
| cur->bc_btnum == XFS_BTNUM_CNT && |
| be32_to_cpu(block->bb_rightsib) == NULLAGBLOCK && |
| ptr > be16_to_cpu(block->bb_numrecs)) { |
| ASSERT(ptr == be16_to_cpu(block->bb_numrecs) + 1); |
| /* |
| * There are still records in the block. Grab the size |
| * from the last one. |
| */ |
| if (be16_to_cpu(block->bb_numrecs)) { |
| rrp = XFS_ALLOC_REC_ADDR(block, be16_to_cpu(block->bb_numrecs), cur); |
| agf->agf_longest = rrp->ar_blockcount; |
| } |
| /* |
| * No free extents left. |
| */ |
| else |
| agf->agf_longest = 0; |
| mp->m_perag[be32_to_cpu(agf->agf_seqno)].pagf_longest = |
| be32_to_cpu(agf->agf_longest); |
| xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp, |
| XFS_AGF_LONGEST); |
| } |
| /* |
| * Is this the root level? If so, we're almost done. |
| */ |
| if (level == cur->bc_nlevels - 1) { |
| /* |
| * If this is the root level, |
| * and there's only one entry left, |
| * and it's NOT the leaf level, |
| * then we can get rid of this level. |
| */ |
| if (be16_to_cpu(block->bb_numrecs) == 1 && level > 0) { |
| /* |
| * lpp is still set to the first pointer in the block. |
| * Make it the new root of the btree. |
| */ |
| bno = be32_to_cpu(agf->agf_roots[cur->bc_btnum]); |
| agf->agf_roots[cur->bc_btnum] = *lpp; |
| be32_add(&agf->agf_levels[cur->bc_btnum], -1); |
| mp->m_perag[be32_to_cpu(agf->agf_seqno)].pagf_levels[cur->bc_btnum]--; |
| /* |
| * Put this buffer/block on the ag's freelist. |
| */ |
| if ((error = xfs_alloc_put_freelist(cur->bc_tp, |
| cur->bc_private.a.agbp, NULL, bno))) |
| return error; |
| /* |
| * Since blocks move to the free list without the |
| * coordination used in xfs_bmap_finish, we can't allow |
| * block to be available for reallocation and |
| * non-transaction writing (user data) until we know |
| * that the transaction that moved it to the free list |
| * is permanently on disk. We track the blocks by |
| * declaring these blocks as "busy"; the busy list is |
| * maintained on a per-ag basis and each transaction |
| * records which entries should be removed when the |
| * iclog commits to disk. If a busy block is |
| * allocated, the iclog is pushed up to the LSN |
| * that freed the block. |
| */ |
| xfs_alloc_mark_busy(cur->bc_tp, |
| be32_to_cpu(agf->agf_seqno), bno, 1); |
| |
| xfs_trans_agbtree_delta(cur->bc_tp, -1); |
| xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp, |
| XFS_AGF_ROOTS | XFS_AGF_LEVELS); |
| /* |
| * Update the cursor so there's one fewer level. |
| */ |
| xfs_btree_setbuf(cur, level, NULL); |
| cur->bc_nlevels--; |
| } else if (level > 0 && |
| (error = xfs_alloc_decrement(cur, level, &i))) |
| return error; |
| *stat = 1; |
| return 0; |
| } |
| /* |
| * If we deleted the leftmost entry in the block, update the |
| * key values above us in the tree. |
| */ |
| if (ptr == 1 && (error = xfs_alloc_updkey(cur, lkp, level + 1))) |
| return error; |
| /* |
| * If the number of records remaining in the block is at least |
| * the minimum, we're done. |
| */ |
| if (be16_to_cpu(block->bb_numrecs) >= XFS_ALLOC_BLOCK_MINRECS(level, cur)) { |
| if (level > 0 && (error = xfs_alloc_decrement(cur, level, &i))) |
| return error; |
| *stat = 1; |
| return 0; |
| } |
| /* |
| * Otherwise, we have to move some records around to keep the |
| * tree balanced. Look at the left and right sibling blocks to |
| * see if we can re-balance by moving only one record. |
| */ |
| rbno = be32_to_cpu(block->bb_rightsib); |
| lbno = be32_to_cpu(block->bb_leftsib); |
| bno = NULLAGBLOCK; |
| ASSERT(rbno != NULLAGBLOCK || lbno != NULLAGBLOCK); |
| /* |
| * Duplicate the cursor so our btree manipulations here won't |
| * disrupt the next level up. |
| */ |
| if ((error = xfs_btree_dup_cursor(cur, &tcur))) |
| return error; |
| /* |
| * If there's a right sibling, see if it's ok to shift an entry |
| * out of it. |
| */ |
| if (rbno != NULLAGBLOCK) { |
| /* |
| * Move the temp cursor to the last entry in the next block. |
| * Actually any entry but the first would suffice. |
| */ |
| i = xfs_btree_lastrec(tcur, level); |
| XFS_WANT_CORRUPTED_GOTO(i == 1, error0); |
| if ((error = xfs_alloc_increment(tcur, level, &i))) |
| goto error0; |
| XFS_WANT_CORRUPTED_GOTO(i == 1, error0); |
| i = xfs_btree_lastrec(tcur, level); |
| XFS_WANT_CORRUPTED_GOTO(i == 1, error0); |
| /* |
| * Grab a pointer to the block. |
| */ |
| rbp = tcur->bc_bufs[level]; |
| right = XFS_BUF_TO_ALLOC_BLOCK(rbp); |
| #ifdef DEBUG |
| if ((error = xfs_btree_check_sblock(cur, right, level, rbp))) |
| goto error0; |
| #endif |
| /* |
| * Grab the current block number, for future use. |
| */ |
| bno = be32_to_cpu(right->bb_leftsib); |
| /* |
| * If right block is full enough so that removing one entry |
| * won't make it too empty, and left-shifting an entry out |
| * of right to us works, we're done. |
| */ |
| if (be16_to_cpu(right->bb_numrecs) - 1 >= |
| XFS_ALLOC_BLOCK_MINRECS(level, cur)) { |
| if ((error = xfs_alloc_lshift(tcur, level, &i))) |
| goto error0; |
| if (i) { |
| ASSERT(be16_to_cpu(block->bb_numrecs) >= |
| XFS_ALLOC_BLOCK_MINRECS(level, cur)); |
| xfs_btree_del_cursor(tcur, |
| XFS_BTREE_NOERROR); |
| if (level > 0 && |
| (error = xfs_alloc_decrement(cur, level, |
| &i))) |
| return error; |
| *stat = 1; |
| return 0; |
| } |
| } |
| /* |
| * Otherwise, grab the number of records in right for |
| * future reference, and fix up the temp cursor to point |
| * to our block again (last record). |
| */ |
| rrecs = be16_to_cpu(right->bb_numrecs); |
| if (lbno != NULLAGBLOCK) { |
| i = xfs_btree_firstrec(tcur, level); |
| XFS_WANT_CORRUPTED_GOTO(i == 1, error0); |
| if ((error = xfs_alloc_decrement(tcur, level, &i))) |
| goto error0; |
| XFS_WANT_CORRUPTED_GOTO(i == 1, error0); |
| } |
| } |
| /* |
| * If there's a left sibling, see if it's ok to shift an entry |
| * out of it. |
| */ |
| if (lbno != NULLAGBLOCK) { |
| /* |
| * Move the temp cursor to the first entry in the |
| * previous block. |
| */ |
| i = xfs_btree_firstrec(tcur, level); |
| XFS_WANT_CORRUPTED_GOTO(i == 1, error0); |
| if ((error = xfs_alloc_decrement(tcur, level, &i))) |
| goto error0; |
| XFS_WANT_CORRUPTED_GOTO(i == 1, error0); |
| xfs_btree_firstrec(tcur, level); |
| /* |
| * Grab a pointer to the block. |
| */ |
| lbp = tcur->bc_bufs[level]; |
| left = XFS_BUF_TO_ALLOC_BLOCK(lbp); |
| #ifdef DEBUG |
| if ((error = xfs_btree_check_sblock(cur, left, level, lbp))) |
| goto error0; |
| #endif |
| /* |
| * Grab the current block number, for future use. |
| */ |
| bno = be32_to_cpu(left->bb_rightsib); |
| /* |
| * If left block is full enough so that removing one entry |
| * won't make it too empty, and right-shifting an entry out |
| * of left to us works, we're done. |
| */ |
| if (be16_to_cpu(left->bb_numrecs) - 1 >= |
| XFS_ALLOC_BLOCK_MINRECS(level, cur)) { |
| if ((error = xfs_alloc_rshift(tcur, level, &i))) |
| goto error0; |
| if (i) { |
| ASSERT(be16_to_cpu(block->bb_numrecs) >= |
| XFS_ALLOC_BLOCK_MINRECS(level, cur)); |
| xfs_btree_del_cursor(tcur, |
| XFS_BTREE_NOERROR); |
| if (level == 0) |
| cur->bc_ptrs[0]++; |
| *stat = 1; |
| return 0; |
| } |
| } |
| /* |
| * Otherwise, grab the number of records in right for |
| * future reference. |
| */ |
| lrecs = be16_to_cpu(left->bb_numrecs); |
| } |
| /* |
| * Delete the temp cursor, we're done with it. |
| */ |
| xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); |
| /* |
| * If here, we need to do a join to keep the tree balanced. |
| */ |
| ASSERT(bno != NULLAGBLOCK); |
| /* |
| * See if we can join with the left neighbor block. |
| */ |
| if (lbno != NULLAGBLOCK && |
| lrecs + be16_to_cpu(block->bb_numrecs) <= XFS_ALLOC_BLOCK_MAXRECS(level, cur)) { |
| /* |
| * Set "right" to be the starting block, |
| * "left" to be the left neighbor. |
| */ |
| rbno = bno; |
| right = block; |
| rbp = bp; |
| if ((error = xfs_btree_read_bufs(mp, cur->bc_tp, |
| cur->bc_private.a.agno, lbno, 0, &lbp, |
| XFS_ALLOC_BTREE_REF))) |
| return error; |
| left = XFS_BUF_TO_ALLOC_BLOCK(lbp); |
| if ((error = xfs_btree_check_sblock(cur, left, level, lbp))) |
| return error; |
| } |
| /* |
| * If that won't work, see if we can join with the right neighbor block. |
| */ |
| else if (rbno != NULLAGBLOCK && |
| rrecs + be16_to_cpu(block->bb_numrecs) <= |
| XFS_ALLOC_BLOCK_MAXRECS(level, cur)) { |
| /* |
| * Set "left" to be the starting block, |
| * "right" to be the right neighbor. |
| */ |
| lbno = bno; |
| left = block; |
| lbp = bp; |
| if ((error = xfs_btree_read_bufs(mp, cur->bc_tp, |
| cur->bc_private.a.agno, rbno, 0, &rbp, |
| XFS_ALLOC_BTREE_REF))) |
| return error; |
| right = XFS_BUF_TO_ALLOC_BLOCK(rbp); |
| if ((error = xfs_btree_check_sblock(cur, right, level, rbp))) |
| return error; |
| } |
| /* |
| * Otherwise, we can't fix the imbalance. |
| * Just return. This is probably a logic error, but it's not fatal. |
| */ |
| else { |
| if (level > 0 && (error = xfs_alloc_decrement(cur, level, &i))) |
| return error; |
| *stat = 1; |
| return 0; |
| } |
| /* |
| * We're now going to join "left" and "right" by moving all the stuff |
| * in "right" to "left" and deleting "right". |
| */ |
| if (level > 0) { |
| /* |
| * It's a non-leaf. Move keys and pointers. |
| */ |
| lkp = XFS_ALLOC_KEY_ADDR(left, be16_to_cpu(left->bb_numrecs) + 1, cur); |
| lpp = XFS_ALLOC_PTR_ADDR(left, be16_to_cpu(left->bb_numrecs) + 1, cur); |
| rkp = XFS_ALLOC_KEY_ADDR(right, 1, cur); |
| rpp = XFS_ALLOC_PTR_ADDR(right, 1, cur); |
| #ifdef DEBUG |
| for (i = 0; i < be16_to_cpu(right->bb_numrecs); i++) { |
| if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(rpp[i]), level))) |
| return error; |
| } |
| #endif |
| memcpy(lkp, rkp, be16_to_cpu(right->bb_numrecs) * sizeof(*lkp)); |
| memcpy(lpp, rpp, be16_to_cpu(right->bb_numrecs) * sizeof(*lpp)); |
| xfs_alloc_log_keys(cur, lbp, be16_to_cpu(left->bb_numrecs) + 1, |
| be16_to_cpu(left->bb_numrecs) + |
| be16_to_cpu(right->bb_numrecs)); |
| xfs_alloc_log_ptrs(cur, lbp, be16_to_cpu(left->bb_numrecs) + 1, |
| be16_to_cpu(left->bb_numrecs) + |
| be16_to_cpu(right->bb_numrecs)); |
| } else { |
| /* |
| * It's a leaf. Move records. |
| */ |
| lrp = XFS_ALLOC_REC_ADDR(left, be16_to_cpu(left->bb_numrecs) + 1, cur); |
| rrp = XFS_ALLOC_REC_ADDR(right, 1, cur); |
| memcpy(lrp, rrp, be16_to_cpu(right->bb_numrecs) * sizeof(*lrp)); |
| xfs_alloc_log_recs(cur, lbp, be16_to_cpu(left->bb_numrecs) + 1, |
| be16_to_cpu(left->bb_numrecs) + |
| be16_to_cpu(right->bb_numrecs)); |
| } |
| /* |
| * If we joined with the left neighbor, set the buffer in the |
| * cursor to the left block, and fix up the index. |
| */ |
| if (bp != lbp) { |
| xfs_btree_setbuf(cur, level, lbp); |
| cur->bc_ptrs[level] += be16_to_cpu(left->bb_numrecs); |
| } |
| /* |
| * If we joined with the right neighbor and there's a level above |
| * us, increment the cursor at that level. |
| */ |
| else if (level + 1 < cur->bc_nlevels && |
| (error = xfs_alloc_increment(cur, level + 1, &i))) |
| return error; |
| /* |
| * Fix up the number of records in the surviving block. |
| */ |
| be16_add(&left->bb_numrecs, be16_to_cpu(right->bb_numrecs)); |
| /* |
| * Fix up the right block pointer in the surviving block, and log it. |
| */ |
| left->bb_rightsib = right->bb_rightsib; |
| xfs_alloc_log_block(cur->bc_tp, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB); |
| /* |
| * If there is a right sibling now, make it point to the |
| * remaining block. |
| */ |
| if (be32_to_cpu(left->bb_rightsib) != NULLAGBLOCK) { |
| xfs_alloc_block_t *rrblock; |
| xfs_buf_t *rrbp; |
| |
| if ((error = xfs_btree_read_bufs(mp, cur->bc_tp, |
| cur->bc_private.a.agno, be32_to_cpu(left->bb_rightsib), 0, |
| &rrbp, XFS_ALLOC_BTREE_REF))) |
| return error; |
| rrblock = XFS_BUF_TO_ALLOC_BLOCK(rrbp); |
| if ((error = xfs_btree_check_sblock(cur, rrblock, level, rrbp))) |
| return error; |
| rrblock->bb_leftsib = cpu_to_be32(lbno); |
| xfs_alloc_log_block(cur->bc_tp, rrbp, XFS_BB_LEFTSIB); |
| } |
| /* |
| * Free the deleting block by putting it on the freelist. |
| */ |
| if ((error = xfs_alloc_put_freelist(cur->bc_tp, cur->bc_private.a.agbp, |
| NULL, rbno))) |
| return error; |
| /* |
| * Since blocks move to the free list without the coordination |
| * used in xfs_bmap_finish, we can't allow block to be available |
| * for reallocation and non-transaction writing (user data) |
| * until we know that the transaction that moved it to the free |
| * list is permanently on disk. We track the blocks by declaring |
| * these blocks as "busy"; the busy list is maintained on a |
| * per-ag basis and each transaction records which entries |
| * should be removed when the iclog commits to disk. If a |
| * busy block is allocated, the iclog is pushed up to the |
| * LSN that freed the block. |
| */ |
| xfs_alloc_mark_busy(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1); |
| xfs_trans_agbtree_delta(cur->bc_tp, -1); |
| |
| /* |
| * Adjust the current level's cursor so that we're left referring |
| * to the right node, after we're done. |
| * If this leaves the ptr value 0 our caller will fix it up. |
| */ |
| if (level > 0) |
| cur->bc_ptrs[level]--; |
| /* |
| * Return value means the next level up has something to do. |
| */ |
| *stat = 2; |
| return 0; |
| |
| error0: |
| xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); |
| return error; |
| } |
| |
| /* |
| * Insert one record/level. Return information to the caller |
| * allowing the next level up to proceed if necessary. |
| */ |
| STATIC int /* error */ |
| xfs_alloc_insrec( |
| xfs_btree_cur_t *cur, /* btree cursor */ |
| int level, /* level to insert record at */ |
| xfs_agblock_t *bnop, /* i/o: block number inserted */ |
| xfs_alloc_rec_t *recp, /* i/o: record data inserted */ |
| xfs_btree_cur_t **curp, /* output: new cursor replacing cur */ |
| int *stat) /* output: success/failure */ |
| { |
| xfs_agf_t *agf; /* allocation group freelist header */ |
| xfs_alloc_block_t *block; /* btree block record/key lives in */ |
| xfs_buf_t *bp; /* buffer for block */ |
| int error; /* error return value */ |
| int i; /* loop index */ |
| xfs_alloc_key_t key; /* key value being inserted */ |
| xfs_alloc_key_t *kp; /* pointer to btree keys */ |
| xfs_agblock_t nbno; /* block number of allocated block */ |
| xfs_btree_cur_t *ncur; /* new cursor to be used at next lvl */ |
| xfs_alloc_key_t nkey; /* new key value, from split */ |
| xfs_alloc_rec_t nrec; /* new record value, for caller */ |
| int optr; /* old ptr value */ |
| xfs_alloc_ptr_t *pp; /* pointer to btree addresses */ |
| int ptr; /* index in btree block for this rec */ |
| xfs_alloc_rec_t *rp; /* pointer to btree records */ |
| |
| ASSERT(be32_to_cpu(recp->ar_blockcount) > 0); |
| |
| /* |
| * GCC doesn't understand the (arguably complex) control flow in |
| * this function and complains about uninitialized structure fields |
| * without this. |
| */ |
| memset(&nrec, 0, sizeof(nrec)); |
| |
| /* |
| * If we made it to the root level, allocate a new root block |
| * and we're done. |
| */ |
| if (level >= cur->bc_nlevels) { |
| XFS_STATS_INC(xs_abt_insrec); |
| if ((error = xfs_alloc_newroot(cur, &i))) |
| return error; |
| *bnop = NULLAGBLOCK; |
| *stat = i; |
| return 0; |
| } |
| /* |
| * Make a key out of the record data to be inserted, and save it. |
| */ |
| key.ar_startblock = recp->ar_startblock; |
| key.ar_blockcount = recp->ar_blockcount; |
| optr = ptr = cur->bc_ptrs[level]; |
| /* |
| * If we're off the left edge, return failure. |
| */ |
| if (ptr == 0) { |
| *stat = 0; |
| return 0; |
| } |
| XFS_STATS_INC(xs_abt_insrec); |
| /* |
| * Get pointers to the btree buffer and block. |
| */ |
| bp = cur->bc_bufs[level]; |
| block = XFS_BUF_TO_ALLOC_BLOCK(bp); |
| #ifdef DEBUG |
| if ((error = xfs_btree_check_sblock(cur, block, level, bp))) |
| return error; |
| /* |
| * Check that the new entry is being inserted in the right place. |
| */ |
| if (ptr <= be16_to_cpu(block->bb_numrecs)) { |
| if (level == 0) { |
| rp = XFS_ALLOC_REC_ADDR(block, ptr, cur); |
| xfs_btree_check_rec(cur->bc_btnum, recp, rp); |
| } else { |
| kp = XFS_ALLOC_KEY_ADDR(block, ptr, cur); |
| xfs_btree_check_key(cur->bc_btnum, &key, kp); |
| } |
| } |
| #endif |
| nbno = NULLAGBLOCK; |
| ncur = NULL; |
| /* |
| * If the block is full, we can't insert the new entry until we |
| * make the block un-full. |
| */ |
| if (be16_to_cpu(block->bb_numrecs) == XFS_ALLOC_BLOCK_MAXRECS(level, cur)) { |
| /* |
| * First, try shifting an entry to the right neighbor. |
| */ |
| if ((error = xfs_alloc_rshift(cur, level, &i))) |
| return error; |
| if (i) { |
| /* nothing */ |
| } |
| /* |
| * Next, try shifting an entry to the left neighbor. |
| */ |
| else { |
| if ((error = xfs_alloc_lshift(cur, level, &i))) |
| return error; |
| if (i) |
| optr = ptr = cur->bc_ptrs[level]; |
| else { |
| /* |
| * Next, try splitting the current block in |
| * half. If this works we have to re-set our |
| * variables because we could be in a |
| * different block now. |
| */ |
| if ((error = xfs_alloc_split(cur, level, &nbno, |
| &nkey, &ncur, &i))) |
| return error; |
| if (i) { |
| bp = cur->bc_bufs[level]; |
| block = XFS_BUF_TO_ALLOC_BLOCK(bp); |
| #ifdef DEBUG |
| if ((error = |
| xfs_btree_check_sblock(cur, |
| block, level, bp))) |
| return error; |
| #endif |
| ptr = cur->bc_ptrs[level]; |
| nrec.ar_startblock = nkey.ar_startblock; |
| nrec.ar_blockcount = nkey.ar_blockcount; |
| } |
| /* |
| * Otherwise the insert fails. |
| */ |
| else { |
| *stat = 0; |
| return 0; |
| } |
| } |
| } |
| } |
| /* |
| * At this point we know there's room for our new entry in the block |
| * we're pointing at. |
| */ |
| if (level > 0) { |
| /* |
| * It's a non-leaf entry. Make a hole for the new data |
| * in the key and ptr regions of the block. |
| */ |
| kp = XFS_ALLOC_KEY_ADDR(block, 1, cur); |
| pp = XFS_ALLOC_PTR_ADDR(block, 1, cur); |
| #ifdef DEBUG |
| for (i = be16_to_cpu(block->bb_numrecs); i >= ptr; i--) { |
| if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(pp[i - 1]), level))) |
| return error; |
| } |
| #endif |
| memmove(&kp[ptr], &kp[ptr - 1], |
| (be16_to_cpu(block->bb_numrecs) - ptr + 1) * sizeof(*kp)); |
| memmove(&pp[ptr], &pp[ptr - 1], |
| (be16_to_cpu(block->bb_numrecs) - ptr + 1) * sizeof(*pp)); |
| #ifdef DEBUG |
| if ((error = xfs_btree_check_sptr(cur, *bnop, level))) |
| return error; |
| #endif |
| /* |
| * Now stuff the new data in, bump numrecs and log the new data. |
| */ |
| kp[ptr - 1] = key; |
| pp[ptr - 1] = cpu_to_be32(*bnop); |
| be16_add(&block->bb_numrecs, 1); |
| xfs_alloc_log_keys(cur, bp, ptr, be16_to_cpu(block->bb_numrecs)); |
| xfs_alloc_log_ptrs(cur, bp, ptr, be16_to_cpu(block->bb_numrecs)); |
| #ifdef DEBUG |
| if (ptr < be16_to_cpu(block->bb_numrecs)) |
| xfs_btree_check_key(cur->bc_btnum, kp + ptr - 1, |
| kp + ptr); |
| #endif |
| } else { |
| /* |
| * It's a leaf entry. Make a hole for the new record. |
| */ |
| rp = XFS_ALLOC_REC_ADDR(block, 1, cur); |
| memmove(&rp[ptr], &rp[ptr - 1], |
| (be16_to_cpu(block->bb_numrecs) - ptr + 1) * sizeof(*rp)); |
| /* |
| * Now stuff the new record in, bump numrecs |
| * and log the new data. |
| */ |
| rp[ptr - 1] = *recp; |
| be16_add(&block->bb_numrecs, 1); |
| xfs_alloc_log_recs(cur, bp, ptr, be16_to_cpu(block->bb_numrecs)); |
| #ifdef DEBUG |
| if (ptr < be16_to_cpu(block->bb_numrecs)) |
| xfs_btree_check_rec(cur->bc_btnum, rp + ptr - 1, |
| rp + ptr); |
| #endif |
| } |
| /* |
| * Log the new number of records in the btree header. |
| */ |
| xfs_alloc_log_block(cur->bc_tp, bp, XFS_BB_NUMRECS); |
| /* |
| * If we inserted at the start of a block, update the parents' keys. |
| */ |
| if (optr == 1 && (error = xfs_alloc_updkey(cur, &key, level + 1))) |
| return error; |
| /* |
| * Look to see if the longest extent in the allocation group |
| * needs to be updated. |
| */ |
| |
| agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp); |
| if (level == 0 && |
| cur->bc_btnum == XFS_BTNUM_CNT && |
| be32_to_cpu(block->bb_rightsib) == NULLAGBLOCK && |
| be32_to_cpu(recp->ar_blockcount) > be32_to_cpu(agf->agf_longest)) { |
| /* |
| * If this is a leaf in the by-size btree and there |
| * is no right sibling block and this block is bigger |
| * than the previous longest block, update it. |
| */ |
| agf->agf_longest = recp->ar_blockcount; |
| cur->bc_mp->m_perag[be32_to_cpu(agf->agf_seqno)].pagf_longest |
| = be32_to_cpu(recp->ar_blockcount); |
| xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp, |
| XFS_AGF_LONGEST); |
| } |
| /* |
| * Return the new block number, if any. |
| * If there is one, give back a record value and a cursor too. |
| */ |
| *bnop = nbno; |
| if (nbno != NULLAGBLOCK) { |
| *recp = nrec; |
| *curp = ncur; |
| } |
| *stat = 1; |
| return 0; |
| } |
| |
| /* |
| * Log header fields from a btree block. |
| */ |
| STATIC void |
| xfs_alloc_log_block( |
| xfs_trans_t *tp, /* transaction pointer */ |
| xfs_buf_t *bp, /* buffer containing btree block */ |
| int fields) /* mask of fields: XFS_BB_... */ |
| { |
| int first; /* first byte offset logged */ |
| int last; /* last byte offset logged */ |
| static const short offsets[] = { /* table of offsets */ |
| offsetof(xfs_alloc_block_t, bb_magic), |
| offsetof(xfs_alloc_block_t, bb_level), |
| offsetof(xfs_alloc_block_t, bb_numrecs), |
| offsetof(xfs_alloc_block_t, bb_leftsib), |
| offsetof(xfs_alloc_block_t, bb_rightsib), |
| sizeof(xfs_alloc_block_t) |
| }; |
| |
| xfs_btree_offsets(fields, offsets, XFS_BB_NUM_BITS, &first, &last); |
| xfs_trans_log_buf(tp, bp, first, last); |
| } |
| |
| /* |
| * Log keys from a btree block (nonleaf). |
| */ |
| STATIC void |
| xfs_alloc_log_keys( |
| xfs_btree_cur_t *cur, /* btree cursor */ |
| xfs_buf_t *bp, /* buffer containing btree block */ |
| int kfirst, /* index of first key to log */ |
| int klast) /* index of last key to log */ |
| { |
| xfs_alloc_block_t *block; /* btree block to log from */ |
| int first; /* first byte offset logged */ |
| xfs_alloc_key_t *kp; /* key pointer in btree block */ |
| int last; /* last byte offset logged */ |
| |
| block = XFS_BUF_TO_ALLOC_BLOCK(bp); |
| kp = XFS_ALLOC_KEY_ADDR(block, 1, cur); |
| first = (int)((xfs_caddr_t)&kp[kfirst - 1] - (xfs_caddr_t)block); |
| last = (int)(((xfs_caddr_t)&kp[klast] - 1) - (xfs_caddr_t)block); |
| xfs_trans_log_buf(cur->bc_tp, bp, first, last); |
| } |
| |
| /* |
| * Log block pointer fields from a btree block (nonleaf). |
| */ |
| STATIC void |
| xfs_alloc_log_ptrs( |
| xfs_btree_cur_t *cur, /* btree cursor */ |
| xfs_buf_t *bp, /* buffer containing btree block */ |
| int pfirst, /* index of first pointer to log */ |
| int plast) /* index of last pointer to log */ |
| { |
| xfs_alloc_block_t *block; /* btree block to log from */ |
| int first; /* first byte offset logged */ |
| int last; /* last byte offset logged */ |
| xfs_alloc_ptr_t *pp; /* block-pointer pointer in btree blk */ |
| |
| block = XFS_BUF_TO_ALLOC_BLOCK(bp); |
| pp = XFS_ALLOC_PTR_ADDR(block, 1, cur); |
| first = (int)((xfs_caddr_t)&pp[pfirst - 1] - (xfs_caddr_t)block); |
| last = (int)(((xfs_caddr_t)&pp[plast] - 1) - (xfs_caddr_t)block); |
| xfs_trans_log_buf(cur->bc_tp, bp, first, last); |
| } |
| |
| /* |
| * Log records from a btree block (leaf). |
| */ |
| STATIC void |
| xfs_alloc_log_recs( |
| xfs_btree_cur_t *cur, /* btree cursor */ |
| xfs_buf_t *bp, /* buffer containing btree block */ |
| int rfirst, /* index of first record to log */ |
| int rlast) /* index of last record to log */ |
| { |
| xfs_alloc_block_t *block; /* btree block to log from */ |
| int first; /* first byte offset logged */ |
| int last; /* last byte offset logged */ |
| xfs_alloc_rec_t *rp; /* record pointer for btree block */ |
| |
| |
| block = XFS_BUF_TO_ALLOC_BLOCK(bp); |
| rp = XFS_ALLOC_REC_ADDR(block, 1, cur); |
| #ifdef DEBUG |
| { |
| xfs_agf_t *agf; |
| xfs_alloc_rec_t *p; |
| |
| agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp); |
| for (p = &rp[rfirst - 1]; p <= &rp[rlast - 1]; p++) |
| ASSERT(be32_to_cpu(p->ar_startblock) + |
| be32_to_cpu(p->ar_blockcount) <= |
| be32_to_cpu(agf->agf_length)); |
| } |
| #endif |
| first = (int)((xfs_caddr_t)&rp[rfirst - 1] - (xfs_caddr_t)block); |
| last = (int)(((xfs_caddr_t)&rp[rlast] - 1) - (xfs_caddr_t)block); |
| xfs_trans_log_buf(cur->bc_tp, bp, first, last); |
| } |
| |
| /* |
| * Lookup the record. The cursor is made to point to it, based on dir. |
| * Return 0 if can't find any such record, 1 for success. |
| */ |
| STATIC int /* error */ |
| xfs_alloc_lookup( |
| xfs_btree_cur_t *cur, /* btree cursor */ |
| xfs_lookup_t dir, /* <=, ==, or >= */ |
| int *stat) /* success/failure */ |
| { |
| xfs_agblock_t agbno; /* a.g. relative btree block number */ |
| xfs_agnumber_t agno; /* allocation group number */ |
| xfs_alloc_block_t *block=NULL; /* current btree block */ |
| int diff; /* difference for the current key */ |
| int error; /* error return value */ |
| int keyno=0; /* current key number */ |
| int level; /* level in the btree */ |
| xfs_mount_t *mp; /* file system mount point */ |
| |
| XFS_STATS_INC(xs_abt_lookup); |
| /* |
| * Get the allocation group header, and the root block number. |
| */ |
| mp = cur->bc_mp; |
| |
| { |
| xfs_agf_t *agf; /* a.g. freespace header */ |
| |
| agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp); |
| agno = be32_to_cpu(agf->agf_seqno); |
| agbno = be32_to_cpu(agf->agf_roots[cur->bc_btnum]); |
| } |
| /* |
| * Iterate over each level in the btree, starting at the root. |
| * For each level above the leaves, find the key we need, based |
| * on the lookup record, then follow the corresponding block |
| * pointer down to the next level. |
| */ |
| for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) { |
| xfs_buf_t *bp; /* buffer pointer for btree block */ |
| xfs_daddr_t d; /* disk address of btree block */ |
| |
| /* |
| * Get the disk address we're looking for. |
| */ |
| d = XFS_AGB_TO_DADDR(mp, agno, agbno); |
| /* |
| * If the old buffer at this level is for a different block, |
| * throw it away, otherwise just use it. |
| */ |
| bp = cur->bc_bufs[level]; |
| if (bp && XFS_BUF_ADDR(bp) != d) |
| bp = NULL; |
| if (!bp) { |
| /* |
| * Need to get a new buffer. Read it, then |
| * set it in the cursor, releasing the old one. |
| */ |
| if ((error = xfs_btree_read_bufs(mp, cur->bc_tp, agno, |
| agbno, 0, &bp, XFS_ALLOC_BTREE_REF))) |
| return error; |
| xfs_btree_setbuf(cur, level, bp); |
| /* |
| * Point to the btree block, now that we have the buffer |
| */ |
| block = XFS_BUF_TO_ALLOC_BLOCK(bp); |
| if ((error = xfs_btree_check_sblock(cur, block, level, |
| bp))) |
| return error; |
| } else |
| block = XFS_BUF_TO_ALLOC_BLOCK(bp); |
| /* |
| * If we already had a key match at a higher level, we know |
| * we need to use the first entry in this block. |
| */ |
| if (diff == 0) |
| keyno = 1; |
| /* |
| * Otherwise we need to search this block. Do a binary search. |
| */ |
| else { |
| int high; /* high entry number */ |
| xfs_alloc_key_t *kkbase=NULL;/* base of keys in block */ |
| xfs_alloc_rec_t *krbase=NULL;/* base of records in block */ |
| int low; /* low entry number */ |
| |
| /* |
| * Get a pointer to keys or records. |
| */ |
| if (level > 0) |
| kkbase = XFS_ALLOC_KEY_ADDR(block, 1, cur); |
| else |
| krbase = XFS_ALLOC_REC_ADDR(block, 1, cur); |
| /* |
| * Set low and high entry numbers, 1-based. |
| */ |
| low = 1; |
| if (!(high = be16_to_cpu(block->bb_numrecs))) { |
| /* |
| * If the block is empty, the tree must |
| * be an empty leaf. |
| */ |
| ASSERT(level == 0 && cur->bc_nlevels == 1); |
| cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE; |
| *stat = 0; |
| return 0; |
| } |
| /* |
| * Binary search the block. |
| */ |
| while (low <= high) { |
| xfs_extlen_t blockcount; /* key value */ |
| xfs_agblock_t startblock; /* key value */ |
| |
| XFS_STATS_INC(xs_abt_compare); |
| /* |
| * keyno is average of low and high. |
| */ |
| keyno = (low + high) >> 1; |
| /* |
| * Get startblock & blockcount. |
| */ |
| if (level > 0) { |
| xfs_alloc_key_t *kkp; |
| |
| kkp = kkbase + keyno - 1; |
| startblock = be32_to_cpu(kkp->ar_startblock); |
| blockcount = be32_to_cpu(kkp->ar_blockcount); |
| } else { |
| xfs_alloc_rec_t *krp; |
| |
| krp = krbase + keyno - 1; |
| startblock = be32_to_cpu(krp->ar_startblock); |
| blockcount = be32_to_cpu(krp->ar_blockcount); |
| } |
| /* |
| * Compute difference to get next direction. |
| */ |
| if (cur->bc_btnum == XFS_BTNUM_BNO) |
| diff = (int)startblock - |
| (int)cur->bc_rec.a.ar_startblock; |
| else if (!(diff = (int)blockcount - |
| (int)cur->bc_rec.a.ar_blockcount)) |
| diff = (int)startblock - |
| (int)cur->bc_rec.a.ar_startblock; |
| /* |
| * Less than, move right. |
| */ |
| if (diff < 0) |
| low = keyno + 1; |
| /* |
| * Greater than, move left. |
| */ |
| else if (diff > 0) |
| high = keyno - 1; |
| /* |
| * Equal, we're done. |
| */ |
| else |
| break; |
| } |
| } |
| /* |
| * If there are more levels, set up for the next level |
| * by getting the block number and filling in the cursor. |
| */ |
| if (level > 0) { |
| /* |
| * If we moved left, need the previous key number, |
| * unless there isn't one. |
| */ |
| if (diff > 0 && --keyno < 1) |
| keyno = 1; |
| agbno = be32_to_cpu(*XFS_ALLOC_PTR_ADDR(block, keyno, cur)); |
| #ifdef DEBUG |
| if ((error = xfs_btree_check_sptr(cur, agbno, level))) |
| return error; |
| #endif |
| cur->bc_ptrs[level] = keyno; |
| } |
| } |
| /* |
| * Done with the search. |
| * See if we need to adjust the results. |
| */ |
| if (dir != XFS_LOOKUP_LE && diff < 0) { |
| keyno++; |
| /* |
| * If ge search and we went off the end of the block, but it's |
| * not the last block, we're in the wrong block. |
| */ |
| if (dir == XFS_LOOKUP_GE && |
| keyno > be16_to_cpu(block->bb_numrecs) && |
| be32_to_cpu(block->bb_rightsib) != NULLAGBLOCK) { |
| int i; |
| |
| cur->bc_ptrs[0] = keyno; |
| if ((error = xfs_alloc_increment(cur, 0, &i))) |
| return error; |
| XFS_WANT_CORRUPTED_RETURN(i == 1); |
| *stat = 1; |
| return 0; |
| } |
| } |
| else if (dir == XFS_LOOKUP_LE && diff > 0) |
| keyno--; |
| cur->bc_ptrs[0] = keyno; |
| /* |
| * Return if we succeeded or not. |
| */ |
| if (keyno == 0 || keyno > be16_to_cpu(block->bb_numrecs)) |
| *stat = 0; |
| else |
| *stat = ((dir != XFS_LOOKUP_EQ) || (diff == 0)); |
| return 0; |
| } |
| |
| /* |
| * Move 1 record left from cur/level if possible. |
| * Update cur to reflect the new path. |
| */ |
| STATIC int /* error */ |
| xfs_alloc_lshift( |
| xfs_btree_cur_t *cur, /* btree cursor */ |
| int level, /* level to shift record on */ |
| int *stat) /* success/failure */ |
| { |
| int error; /* error return value */ |
| #ifdef DEBUG |
| int i; /* loop index */ |
| #endif |
| xfs_alloc_key_t key; /* key value for leaf level upward */ |
| xfs_buf_t *lbp; /* buffer for left neighbor block */ |
| xfs_alloc_block_t *left; /* left neighbor btree block */ |
| int nrec; /* new number of left block entries */ |
| xfs_buf_t *rbp; /* buffer for right (current) block */ |
| xfs_alloc_block_t *right; /* right (current) btree block */ |
| xfs_alloc_key_t *rkp=NULL; /* key pointer for right block */ |
| xfs_alloc_ptr_t *rpp=NULL; /* address pointer for right block */ |
| xfs_alloc_rec_t *rrp=NULL; /* record pointer for right block */ |
| |
| /* |
| * Set up variables for this block as "right". |
| */ |
| rbp = cur->bc_bufs[level]; |
| right = XFS_BUF_TO_ALLOC_BLOCK(rbp); |
| #ifdef DEBUG |
| if ((error = xfs_btree_check_sblock(cur, right, level, rbp))) |
| return error; |
| #endif |
| /* |
| * If we've got no left sibling then we can't shift an entry left. |
| */ |
| if (be32_to_cpu(right->bb_leftsib) == NULLAGBLOCK) { |
| *stat = 0; |
| return 0; |
| } |
| /* |
| * If the cursor entry is the one that would be moved, don't |
| * do it... it's too complicated. |
| */ |
| if (cur->bc_ptrs[level] <= 1) { |
| *stat = 0; |
| return 0; |
| } |
| /* |
| * Set up the left neighbor as "left". |
| */ |
| if ((error = xfs_btree_read_bufs(cur->bc_mp, cur->bc_tp, |
| cur->bc_private.a.agno, be32_to_cpu(right->bb_leftsib), |
| 0, &lbp, XFS_ALLOC_BTREE_REF))) |
| return error; |
| left = XFS_BUF_TO_ALLOC_BLOCK(lbp); |
| if ((error = xfs_btree_check_sblock(cur, left, level, lbp))) |
| return error; |
| /* |
| * If it's full, it can't take another entry. |
| */ |
| if (be16_to_cpu(left->bb_numrecs) == XFS_ALLOC_BLOCK_MAXRECS(level, cur)) { |
| *stat = 0; |
| return 0; |
| } |
| nrec = be16_to_cpu(left->bb_numrecs) + 1; |
| /* |
| * If non-leaf, copy a key and a ptr to the left block. |
| */ |
| if (level > 0) { |
| xfs_alloc_key_t *lkp; /* key pointer for left block */ |
| xfs_alloc_ptr_t *lpp; /* address pointer for left block */ |
| |
| lkp = XFS_ALLOC_KEY_ADDR(left, nrec, cur); |
| rkp = XFS_ALLOC_KEY_ADDR(right, 1, cur); |
| *lkp = *rkp; |
| xfs_alloc_log_keys(cur, lbp, nrec, nrec); |
| lpp = XFS_ALLOC_PTR_ADDR(left, nrec, cur); |
| rpp = XFS_ALLOC_PTR_ADDR(right, 1, cur); |
| #ifdef DEBUG |
| if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(*rpp), level))) |
| return error; |
| #endif |
| *lpp = *rpp; |
| xfs_alloc_log_ptrs(cur, lbp, nrec, nrec); |
| xfs_btree_check_key(cur->bc_btnum, lkp - 1, lkp); |
| } |
| /* |
| * If leaf, copy a record to the left block. |
| */ |
| else { |
| xfs_alloc_rec_t *lrp; /* record pointer for left block */ |
| |
| lrp = XFS_ALLOC_REC_ADDR(left, nrec, cur); |
| rrp = XFS_ALLOC_REC_ADDR(right, 1, cur); |
| *lrp = *rrp; |
| xfs_alloc_log_recs(cur, lbp, nrec, nrec); |
| xfs_btree_check_rec(cur->bc_btnum, lrp - 1, lrp); |
| } |
| /* |
| * Bump and log left's numrecs, decrement and log right's numrecs. |
| */ |
| be16_add(&left->bb_numrecs, 1); |
| xfs_alloc_log_block(cur->bc_tp, lbp, XFS_BB_NUMRECS); |
| be16_add(&right->bb_numrecs, -1); |
| xfs_alloc_log_block(cur->bc_tp, rbp, XFS_BB_NUMRECS); |
| /* |
| * Slide the contents of right down one entry. |
| */ |
| if (level > 0) { |
| #ifdef DEBUG |
| for (i = 0; i < be16_to_cpu(right->bb_numrecs); i++) { |
| if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(rpp[i + 1]), |
| level))) |
| return error; |
| } |
| #endif |
| memmove(rkp, rkp + 1, be16_to_cpu(right->bb_numrecs) * sizeof(*rkp)); |
| memmove(rpp, rpp + 1, be16_to_cpu(right->bb_numrecs) * sizeof(*rpp)); |
| xfs_alloc_log_keys(cur, rbp, 1, be16_to_cpu(right->bb_numrecs)); |
| xfs_alloc_log_ptrs(cur, rbp, 1, be16_to_cpu(right->bb_numrecs)); |
| } else { |
| memmove(rrp, rrp + 1, be16_to_cpu(right->bb_numrecs) * sizeof(*rrp)); |
| xfs_alloc_log_recs(cur, rbp, 1, be16_to_cpu(right->bb_numrecs)); |
| key.ar_startblock = rrp->ar_startblock; |
| key.ar_blockcount = rrp->ar_blockcount; |
| rkp = &key; |
| } |
| /* |
| * Update the parent key values of right. |
| */ |
| if ((error = xfs_alloc_updkey(cur, rkp, level + 1))) |
| return error; |
| /* |
| * Slide the cursor value left one. |
| */ |
| cur->bc_ptrs[level]--; |
| *stat = 1; |
| return 0; |
| } |
| |
| /* |
| * Allocate a new root block, fill it in. |
| */ |
| STATIC int /* error */ |
| xfs_alloc_newroot( |
| xfs_btree_cur_t *cur, /* btree cursor */ |
| int *stat) /* success/failure */ |
| { |
| int error; /* error return value */ |
| xfs_agblock_t lbno; /* left block number */ |
| xfs_buf_t *lbp; /* left btree buffer */ |
| xfs_alloc_block_t *left; /* left btree block */ |
| xfs_mount_t *mp; /* mount structure */ |
| xfs_agblock_t nbno; /* new block number */ |
| xfs_buf_t *nbp; /* new (root) buffer */ |
| xfs_alloc_block_t *new; /* new (root) btree block */ |
| int nptr; /* new value for key index, 1 or 2 */ |
| xfs_agblock_t rbno; /* right block number */ |
| xfs_buf_t *rbp; /* right btree buffer */ |
| xfs_alloc_block_t *right; /* right btree block */ |
| |
| mp = cur->bc_mp; |
| |
| ASSERT(cur->bc_nlevels < XFS_AG_MAXLEVELS(mp)); |
| /* |
| * Get a buffer from the freelist blocks, for the new root. |
| */ |
| if ((error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp, |
| &nbno))) |
| return error; |
| /* |
| * None available, we fail. |
| */ |
| if (nbno == NULLAGBLOCK) { |
| *stat = 0; |
| return 0; |
| } |
| xfs_trans_agbtree_delta(cur->bc_tp, 1); |
| nbp = xfs_btree_get_bufs(mp, cur->bc_tp, cur->bc_private.a.agno, nbno, |
| 0); |
| new = XFS_BUF_TO_ALLOC_BLOCK(nbp); |
| /* |
| * Set the root data in the a.g. freespace structure. |
| */ |
| { |
| xfs_agf_t *agf; /* a.g. freespace header */ |
| xfs_agnumber_t seqno; |
| |
| agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp); |
| agf->agf_roots[cur->bc_btnum] = cpu_to_be32(nbno); |
| be32_add(&agf->agf_levels[cur->bc_btnum], 1); |
| seqno = be32_to_cpu(agf->agf_seqno); |
| mp->m_perag[seqno].pagf_levels[cur->bc_btnum]++; |
| xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp, |
| XFS_AGF_ROOTS | XFS_AGF_LEVELS); |
| } |
| /* |
| * At the previous root level there are now two blocks: the old |
| * root, and the new block generated when it was split. |
| * We don't know which one the cursor is pointing at, so we |
| * set up variables "left" and "right" for each case. |
| */ |
| lbp = cur->bc_bufs[cur->bc_nlevels - 1]; |
| left = XFS_BUF_TO_ALLOC_BLOCK(lbp); |
| #ifdef DEBUG |
| if ((error = xfs_btree_check_sblock(cur, left, cur->bc_nlevels - 1, lbp))) |
| return error; |
| #endif |
| if (be32_to_cpu(left->bb_rightsib) != NULLAGBLOCK) { |
| /* |
| * Our block is left, pick up the right block. |
| */ |
| lbno = XFS_DADDR_TO_AGBNO(mp, XFS_BUF_ADDR(lbp)); |
| rbno = be32_to_cpu(left->bb_rightsib); |
| if ((error = xfs_btree_read_bufs(mp, cur->bc_tp, |
| cur->bc_private.a.agno, rbno, 0, &rbp, |
| XFS_ALLOC_BTREE_REF))) |
| return error; |
| right = XFS_BUF_TO_ALLOC_BLOCK(rbp); |
| if ((error = xfs_btree_check_sblock(cur, right, |
| cur->bc_nlevels - 1, rbp))) |
| return error; |
| nptr = 1; |
| } else { |
| /* |
| * Our block is right, pick up the left block. |
| */ |
| rbp = lbp; |
| right = left; |
| rbno = XFS_DADDR_TO_AGBNO(mp, XFS_BUF_ADDR(rbp)); |
| lbno = be32_to_cpu(right->bb_leftsib); |
| if ((error = xfs_btree_read_bufs(mp, cur->bc_tp, |
| cur->bc_private.a.agno, lbno, 0, &lbp, |
| XFS_ALLOC_BTREE_REF))) |
| return error; |
| left = XFS_BUF_TO_ALLOC_BLOCK(lbp); |
| if ((error = xfs_btree_check_sblock(cur, left, |
| cur->bc_nlevels - 1, lbp))) |
| return error; |
| nptr = 2; |
| } |
| /* |
| * Fill in the new block's btree header and log it. |
| */ |
| new->bb_magic = cpu_to_be32(xfs_magics[cur->bc_btnum]); |
| new->bb_level = cpu_to_be16(cur->bc_nlevels); |
| new->bb_numrecs = cpu_to_be16(2); |
| new->bb_leftsib = cpu_to_be32(NULLAGBLOCK); |
| new->bb_rightsib = cpu_to_be32(NULLAGBLOCK); |
| xfs_alloc_log_block(cur->bc_tp, nbp, XFS_BB_ALL_BITS); |
| ASSERT(lbno != NULLAGBLOCK && rbno != NULLAGBLOCK); |
| /* |
| * Fill in the key data in the new root. |
| */ |
| { |
| xfs_alloc_key_t *kp; /* btree key pointer */ |
| |
| kp = XFS_ALLOC_KEY_ADDR(new, 1, cur); |
| if (be16_to_cpu(left->bb_level) > 0) { |
| kp[0] = *XFS_ALLOC_KEY_ADDR(left, 1, cur); |
| kp[1] = *XFS_ALLOC_KEY_ADDR(right, 1, cur); |
| } else { |
| xfs_alloc_rec_t *rp; /* btree record pointer */ |
| |
| rp = XFS_ALLOC_REC_ADDR(left, 1, cur); |
| kp[0].ar_startblock = rp->ar_startblock; |
| kp[0].ar_blockcount = rp->ar_blockcount; |
| rp = XFS_ALLOC_REC_ADDR(right, 1, cur); |
| kp[1].ar_startblock = rp->ar_startblock; |
| kp[1].ar_blockcount = rp->ar_blockcount; |
| } |
| } |
| xfs_alloc_log_keys(cur, nbp, 1, 2); |
| /* |
| * Fill in the pointer data in the new root. |
| */ |
| { |
| xfs_alloc_ptr_t *pp; /* btree address pointer */ |
| |
| pp = XFS_ALLOC_PTR_ADDR(new, 1, cur); |
| pp[0] = cpu_to_be32(lbno); |
| pp[1] = cpu_to_be32(rbno); |
| } |
| xfs_alloc_log_ptrs(cur, nbp, 1, 2); |
| /* |
| * Fix up the cursor. |
| */ |
| xfs_btree_setbuf(cur, cur->bc_nlevels, nbp); |
| cur->bc_ptrs[cur->bc_nlevels] = nptr; |
| cur->bc_nlevels++; |
| *stat = 1; |
| return 0; |
| } |
| |
| /* |
| * Move 1 record right from cur/level if possible. |
| * Update cur to reflect the new path. |
| */ |
| STATIC int /* error */ |
| xfs_alloc_rshift( |
| xfs_btree_cur_t *cur, /* btree cursor */ |
| int level, /* level to shift record on */ |
| int *stat) /* success/failure */ |
| { |
| int error; /* error return value */ |
| int i; /* loop index */ |
| xfs_alloc_key_t key; /* key value for leaf level upward */ |
| xfs_buf_t *lbp; /* buffer for left (current) block */ |
| xfs_alloc_block_t *left; /* left (current) btree block */ |
| xfs_buf_t *rbp; /* buffer for right neighbor block */ |
| xfs_alloc_block_t *right; /* right neighbor btree block */ |
| xfs_alloc_key_t *rkp; /* key pointer for right block */ |
| xfs_btree_cur_t *tcur; /* temporary cursor */ |
| |
| /* |
| * Set up variables for this block as "left". |
| */ |
| lbp = cur->bc_bufs[level]; |
| left = XFS_BUF_TO_ALLOC_BLOCK(lbp); |
| #ifdef DEBUG |
| if ((error = xfs_btree_check_sblock(cur, left, level, lbp))) |
| return error; |
| #endif |
| /* |
| * If we've got no right sibling then we can't shift an entry right. |
| */ |
| if (be32_to_cpu(left->bb_rightsib) == NULLAGBLOCK) { |
| *stat = 0; |
| return 0; |
| } |
| /* |
| * If the cursor entry is the one that would be moved, don't |
| * do it... it's too complicated. |
| */ |
| if (cur->bc_ptrs[level] >= be16_to_cpu(left->bb_numrecs)) { |
| *stat = 0; |
| return 0; |
| } |
| /* |
| * Set up the right neighbor as "right". |
| */ |
| if ((error = xfs_btree_read_bufs(cur->bc_mp, cur->bc_tp, |
| cur->bc_private.a.agno, be32_to_cpu(left->bb_rightsib), |
| 0, &rbp, XFS_ALLOC_BTREE_REF))) |
| return error; |
| right = XFS_BUF_TO_ALLOC_BLOCK(rbp); |
| if ((error = xfs_btree_check_sblock(cur, right, level, rbp))) |
| return error; |
| /* |
| * If it's full, it can't take another entry. |
| */ |
| if (be16_to_cpu(right->bb_numrecs) == XFS_ALLOC_BLOCK_MAXRECS(level, cur)) { |
| *stat = 0; |
| return 0; |
| } |
| /* |
| * Make a hole at the start of the right neighbor block, then |
| * copy the last left block entry to the hole. |
| */ |
| if (level > 0) { |
| xfs_alloc_key_t *lkp; /* key pointer for left block */ |
| xfs_alloc_ptr_t *lpp; /* address pointer for left block */ |
| xfs_alloc_ptr_t *rpp; /* address pointer for right block */ |
| |
| lkp = XFS_ALLOC_KEY_ADDR(left, be16_to_cpu(left->bb_numrecs), cur); |
| lpp = XFS_ALLOC_PTR_ADDR(left, be16_to_cpu(left->bb_numrecs), cur); |
| rkp = XFS_ALLOC_KEY_ADDR(right, 1, cur); |
| rpp = XFS_ALLOC_PTR_ADDR(right, 1, cur); |
| #ifdef DEBUG |
| for (i = be16_to_cpu(right->bb_numrecs) - 1; i >= 0; i--) { |
| if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(rpp[i]), level))) |
| return error; |
| } |
| #endif |
| memmove(rkp + 1, rkp, be16_to_cpu(right->bb_numrecs) * sizeof(*rkp)); |
| memmove(rpp + 1, rpp, be16_to_cpu(right->bb_numrecs) * sizeof(*rpp)); |
| #ifdef DEBUG |
| if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(*lpp), level))) |
| return error; |
| #endif |
| *rkp = *lkp; |
| *rpp = *lpp; |
| xfs_alloc_log_keys(cur, rbp, 1, be16_to_cpu(right->bb_numrecs) + 1); |
| xfs_alloc_log_ptrs(cur, rbp, 1, be16_to_cpu(right->bb_numrecs) + 1); |
| xfs_btree_check_key(cur->bc_btnum, rkp, rkp + 1); |
| } else { |
| xfs_alloc_rec_t *lrp; /* record pointer for left block */ |
| xfs_alloc_rec_t *rrp; /* record pointer for right block */ |
| |
| lrp = XFS_ALLOC_REC_ADDR(left, be16_to_cpu(left->bb_numrecs), cur); |
| rrp = XFS_ALLOC_REC_ADDR(right, 1, cur); |
| memmove(rrp + 1, rrp, be16_to_cpu(right->bb_numrecs) * sizeof(*rrp)); |
| *rrp = *lrp; |
| xfs_alloc_log_recs(cur, rbp, 1, be16_to_cpu(right->bb_numrecs) + 1); |
| key.ar_startblock = rrp->ar_startblock; |
| key.ar_blockcount = rrp->ar_blockcount; |
| rkp = &key; |
| xfs_btree_check_rec(cur->bc_btnum, rrp, rrp + 1); |
| } |
| /* |
| * Decrement and log left's numrecs, bump and log right's numrecs. |
| */ |
| be16_add(&left->bb_numrecs, -1); |
| xfs_alloc_log_block(cur->bc_tp, lbp, XFS_BB_NUMRECS); |
| be16_add(&right->bb_numrecs, 1); |
| xfs_alloc_log_block(cur->bc_tp, rbp, XFS_BB_NUMRECS); |
| /* |
| * Using a temporary cursor, update the parent key values of the |
| * block on the right. |
| */ |
| if ((error = xfs_btree_dup_cursor(cur, &tcur))) |
| return error; |
| i = xfs_btree_lastrec(tcur, level); |
| XFS_WANT_CORRUPTED_GOTO(i == 1, error0); |
| if ((error = xfs_alloc_increment(tcur, level, &i)) || |
| (error = xfs_alloc_updkey(tcur, rkp, level + 1))) |
| goto error0; |
| xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); |
| *stat = 1; |
| return 0; |
| error0: |
| xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); |
| return error; |
| } |
| |
| /* |
| * Split cur/level block in half. |
| * Return new block number and its first record (to be inserted into parent). |
| */ |
| STATIC int /* error */ |
| xfs_alloc_split( |
| xfs_btree_cur_t *cur, /* btree cursor */ |
| int level, /* level to split */ |
| xfs_agblock_t *bnop, /* output: block number allocated */ |
| xfs_alloc_key_t *keyp, /* output: first key of new block */ |
| xfs_btree_cur_t **curp, /* output: new cursor */ |
| int *stat) /* success/failure */ |
| { |
| int error; /* error return value */ |
| int i; /* loop index/record number */ |
| xfs_agblock_t lbno; /* left (current) block number */ |
| xfs_buf_t *lbp; /* buffer for left block */ |
| xfs_alloc_block_t *left; /* left (current) btree block */ |
| xfs_agblock_t rbno; /* right (new) block number */ |
| xfs_buf_t *rbp; /* buffer for right block */ |
| xfs_alloc_block_t *right; /* right (new) btree block */ |
| |
| /* |
| * Allocate the new block from the freelist. |
| * If we can't do it, we're toast. Give up. |
| */ |
| if ((error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp, |
| &rbno))) |
| return error; |
| if (rbno == NULLAGBLOCK) { |
| *stat = 0; |
| return 0; |
| } |
| xfs_trans_agbtree_delta(cur->bc_tp, 1); |
| rbp = xfs_btree_get_bufs(cur->bc_mp, cur->bc_tp, cur->bc_private.a.agno, |
| rbno, 0); |
| /* |
| * Set up the new block as "right". |
| */ |
| right = XFS_BUF_TO_ALLOC_BLOCK(rbp); |
| /* |
| * "Left" is the current (according to the cursor) block. |
| */ |
| lbp = cur->bc_bufs[level]; |
| left = XFS_BUF_TO_ALLOC_BLOCK(lbp); |
| #ifdef DEBUG |
| if ((error = xfs_btree_check_sblock(cur, left, level, lbp))) |
| return error; |
| #endif |
| /* |
| * Fill in the btree header for the new block. |
| */ |
| right->bb_magic = cpu_to_be32(xfs_magics[cur->bc_btnum]); |
| right->bb_level = left->bb_level; |
| right->bb_numrecs = cpu_to_be16(be16_to_cpu(left->bb_numrecs) / 2); |
| /* |
| * Make sure that if there's an odd number of entries now, that |
| * each new block will have the same number of entries. |
| */ |
| if ((be16_to_cpu(left->bb_numrecs) & 1) && |
| cur->bc_ptrs[level] <= be16_to_cpu(right->bb_numrecs) + 1) |
| be16_add(&right->bb_numrecs, 1); |
| i = be16_to_cpu(left->bb_numrecs) - be16_to_cpu(right->bb_numrecs) + 1; |
| /* |
| * For non-leaf blocks, copy keys and addresses over to the new block. |
| */ |
| if (level > 0) { |
| xfs_alloc_key_t *lkp; /* left btree key pointer */ |
| xfs_alloc_ptr_t *lpp; /* left btree address pointer */ |
| xfs_alloc_key_t *rkp; /* right btree key pointer */ |
| xfs_alloc_ptr_t *rpp; /* right btree address pointer */ |
| |
| lkp = XFS_ALLOC_KEY_ADDR(left, i, cur); |
| lpp = XFS_ALLOC_PTR_ADDR(left, i, cur); |
| rkp = XFS_ALLOC_KEY_ADDR(right, 1, cur); |
| rpp = XFS_ALLOC_PTR_ADDR(right, 1, cur); |
| #ifdef DEBUG |
| for (i = 0; i < be16_to_cpu(right->bb_numrecs); i++) { |
| if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(lpp[i]), level))) |
| return error; |
| } |
| #endif |
| memcpy(rkp, lkp, be16_to_cpu(right->bb_numrecs) * sizeof(*rkp)); |
| memcpy(rpp, lpp, be16_to_cpu(right->bb_numrecs) * sizeof(*rpp)); |
| xfs_alloc_log_keys(cur, rbp, 1, be16_to_cpu(right->bb_numrecs)); |
| xfs_alloc_log_ptrs(cur, rbp, 1, be16_to_cpu(right->bb_numrecs)); |
| *keyp = *rkp; |
| } |
| /* |
| * For leaf blocks, copy records over to the new block. |
| */ |
| else { |
| xfs_alloc_rec_t *lrp; /* left btree record pointer */ |
| xfs_alloc_rec_t *rrp; /* right btree record pointer */ |
| |
| lrp = XFS_ALLOC_REC_ADDR(left, i, cur); |
| rrp = XFS_ALLOC_REC_ADDR(right, 1, cur); |
| memcpy(rrp, lrp, be16_to_cpu(right->bb_numrecs) * sizeof(*rrp)); |
| xfs_alloc_log_recs(cur, rbp, 1, be16_to_cpu(right->bb_numrecs)); |
| keyp->ar_startblock = rrp->ar_startblock; |
| keyp->ar_blockcount = rrp->ar_blockcount; |
| } |
| /* |
| * Find the left block number by looking in the buffer. |
| * Adjust numrecs, sibling pointers. |
| */ |
| lbno = XFS_DADDR_TO_AGBNO(cur->bc_mp, XFS_BUF_ADDR(lbp)); |
| be16_add(&left->bb_numrecs, -(be16_to_cpu(right->bb_numrecs))); |
| right->bb_rightsib = left->bb_rightsib; |
| left->bb_rightsib = cpu_to_be32(rbno); |
| right->bb_leftsib = cpu_to_be32(lbno); |
| xfs_alloc_log_block(cur->bc_tp, rbp, XFS_BB_ALL_BITS); |
| xfs_alloc_log_block(cur->bc_tp, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB); |
| /* |
| * If there's a block to the new block's right, make that block |
| * point back to right instead of to left. |
| */ |
| if (be32_to_cpu(right->bb_rightsib) != NULLAGBLOCK) { |
| xfs_alloc_block_t *rrblock; /* rr btree block */ |
| xfs_buf_t *rrbp; /* buffer for rrblock */ |
| |
| if ((error = xfs_btree_read_bufs(cur->bc_mp, cur->bc_tp, |
| cur->bc_private.a.agno, be32_to_cpu(right->bb_rightsib), 0, |
| &rrbp, XFS_ALLOC_BTREE_REF))) |
| return error; |
| rrblock = XFS_BUF_TO_ALLOC_BLOCK(rrbp); |
| if ((error = xfs_btree_check_sblock(cur, rrblock, level, rrbp))) |
| return error; |
| rrblock->bb_leftsib = cpu_to_be32(rbno); |
| xfs_alloc_log_block(cur->bc_tp, rrbp, XFS_BB_LEFTSIB); |
| } |
| /* |
| * If the cursor is really in the right block, move it there. |
| * If it's just pointing past the last entry in left, then we'll |
| * insert there, so don't change anything in that case. |
| */ |
| if (cur->bc_ptrs[level] > be16_to_cpu(left->bb_numrecs) + 1) { |
| xfs_btree_setbuf(cur, level, rbp); |
| cur->bc_ptrs[level] -= be16_to_cpu(left->bb_numrecs); |
| } |
| /* |
| * If there are more levels, we'll need another cursor which refers to |
| * the right block, no matter where this cursor was. |
| */ |
| if (level + 1 < cur->bc_nlevels) { |
| if ((error = xfs_btree_dup_cursor(cur, curp))) |
| return error; |
| (*curp)->bc_ptrs[level + 1]++; |
| } |
| *bnop = rbno; |
| *stat = 1; |
| return 0; |
| } |
| |
| /* |
| * Update keys at all levels from here to the root along the cursor's path. |
| */ |
| STATIC int /* error */ |
| xfs_alloc_updkey( |
| xfs_btree_cur_t *cur, /* btree cursor */ |
| xfs_alloc_key_t *keyp, /* new key value to update to */ |
| int level) /* starting level for update */ |
| { |
| int ptr; /* index of key in block */ |
| |
| /* |
| * Go up the tree from this level toward the root. |
| * At each level, update the key value to the value input. |
| * Stop when we reach a level where the cursor isn't pointing |
| * at the first entry in the block. |
| */ |
| for (ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) { |
| xfs_alloc_block_t *block; /* btree block */ |
| xfs_buf_t *bp; /* buffer for block */ |
| #ifdef DEBUG |
| int error; /* error return value */ |
| #endif |
| xfs_alloc_key_t *kp; /* ptr to btree block keys */ |
| |
| bp = cur->bc_bufs[level]; |
| block = XFS_BUF_TO_ALLOC_BLOCK(bp); |
| #ifdef DEBUG |
| if ((error = xfs_btree_check_sblock(cur, block, level, bp))) |
| return error; |
| #endif |
| ptr = cur->bc_ptrs[level]; |
| kp = XFS_ALLOC_KEY_ADDR(block, ptr, cur); |
| *kp = *keyp; |
| xfs_alloc_log_keys(cur, bp, ptr, ptr); |
| } |
| return 0; |
| } |
| |
| /* |
| * Externally visible routines. |
| */ |
| |
| /* |
| * Decrement cursor by one record at the level. |
| * For nonzero levels the leaf-ward information is untouched. |
| */ |
| int /* error */ |
| xfs_alloc_decrement( |
| xfs_btree_cur_t *cur, /* btree cursor */ |
| int level, /* level in btree, 0 is leaf */ |
| int *stat) /* success/failure */ |
| { |
| xfs_alloc_block_t *block; /* btree block */ |
| int error; /* error return value */ |
| int lev; /* btree level */ |
| |
| ASSERT(level < cur->bc_nlevels); |
| /* |
| * Read-ahead to the left at this level. |
| */ |
| xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA); |
| /* |
| * Decrement the ptr at this level. If we're still in the block |
| * then we're done. |
| */ |
| if (--cur->bc_ptrs[level] > 0) { |
| *stat = 1; |
| return 0; |
| } |
| /* |
| * Get a pointer to the btree block. |
| */ |
| block = XFS_BUF_TO_ALLOC_BLOCK(cur->bc_bufs[level]); |
| #ifdef DEBUG |
| if ((error = xfs_btree_check_sblock(cur, block, level, |
| cur->bc_bufs[level]))) |
| return error; |
| #endif |
| /* |
| * If we just went off the left edge of the tree, return failure. |
| */ |
| if (be32_to_cpu(block->bb_leftsib) == NULLAGBLOCK) { |
| *stat = 0; |
| return 0; |
| } |
| /* |
| * March up the tree decrementing pointers. |
| * Stop when we don't go off the left edge of a block. |
| */ |
| for (lev = level + 1; lev < cur->bc_nlevels; lev++) { |
| if (--cur->bc_ptrs[lev] > 0) |
| break; |
| /* |
| * Read-ahead the left block, we're going to read it |
| * in the next loop. |
| */ |
| xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA); |
| } |
| /* |
| * If we went off the root then we are seriously confused. |
| */ |
| ASSERT(lev < cur->bc_nlevels); |
| /* |
| * Now walk back down the tree, fixing up the cursor's buffer |
| * pointers and key numbers. |
| */ |
| for (block = XFS_BUF_TO_ALLOC_BLOCK(cur->bc_bufs[lev]); lev > level; ) { |
| xfs_agblock_t agbno; /* block number of btree block */ |
| xfs_buf_t *bp; /* buffer pointer for block */ |
| |
| agbno = be32_to_cpu(*XFS_ALLOC_PTR_ADDR(block, cur->bc_ptrs[lev], cur)); |
| if ((error = xfs_btree_read_bufs(cur->bc_mp, cur->bc_tp, |
| cur->bc_private.a.agno, agbno, 0, &bp, |
| XFS_ALLOC_BTREE_REF))) |
| return error; |
| lev--; |
| xfs_btree_setbuf(cur, lev, bp); |
| block = XFS_BUF_TO_ALLOC_BLOCK(bp); |
| if ((error = xfs_btree_check_sblock(cur, block, lev, bp))) |
| return error; |
| cur->bc_ptrs[lev] = be16_to_cpu(block->bb_numrecs); |
| } |
| *stat = 1; |
| return 0; |
| } |
| |
| /* |
| * Delete the record pointed to by cur. |
| * The cursor refers to the place where the record was (could be inserted) |
| * when the operation returns. |
| */ |
| int /* error */ |
| xfs_alloc_delete( |
| xfs_btree_cur_t *cur, /* btree cursor */ |
| int *stat) /* success/failure */ |
| { |
| int error; /* error return value */ |
| int i; /* result code */ |
| int level; /* btree level */ |
| |
| /* |
| * Go up the tree, starting at leaf level. |
| * If 2 is returned then a join was done; go to the next level. |
| * Otherwise we are done. |
| */ |
| for (level = 0, i = 2; i == 2; level++) { |
| if ((error = xfs_alloc_delrec(cur, level, &i))) |
| return error; |
| } |
| if (i == 0) { |
| for (level = 1; level < cur->bc_nlevels; level++) { |
| if (cur->bc_ptrs[level] == 0) { |
| if ((error = xfs_alloc_decrement(cur, level, &i))) |
| return error; |
| break; |
| } |
| } |
| } |
| *stat = i; |
| return 0; |
| } |
| |
| /* |
| * Get the data from the pointed-to record. |
| */ |
| int /* error */ |
| xfs_alloc_get_rec( |
| xfs_btree_cur_t *cur, /* btree cursor */ |
| xfs_agblock_t *bno, /* output: starting block of extent */ |
| xfs_extlen_t *len, /* output: length of extent */ |
| int *stat) /* output: success/failure */ |
| { |
| xfs_alloc_block_t *block; /* btree block */ |
| #ifdef DEBUG |
| int error; /* error return value */ |
| #endif |
| int ptr; /* record number */ |
| |
| ptr = cur->bc_ptrs[0]; |
| block = XFS_BUF_TO_ALLOC_BLOCK(cur->bc_bufs[0]); |
| #ifdef DEBUG |
| if ((error = xfs_btree_check_sblock(cur, block, 0, cur->bc_bufs[0]))) |
| return error; |
| #endif |
| /* |
| * Off the right end or left end, return failure. |
| */ |
| if (ptr > be16_to_cpu(block->bb_numrecs) || ptr <= 0) { |
| *stat = 0; |
| return 0; |
| } |
| /* |
| * Point to the record and extract its data. |
| */ |
| { |
| xfs_alloc_rec_t *rec; /* record data */ |
| |
| rec = XFS_ALLOC_REC_ADDR(block, ptr, cur); |
| *bno = be32_to_cpu(rec->ar_startblock); |
| *len = be32_to_cpu(rec->ar_blockcount); |
| } |
| *stat = 1; |
| return 0; |
| } |
| |
| /* |
| * Increment cursor by one record at the level. |
| * For nonzero levels the leaf-ward information is untouched. |
| */ |
| int /* error */ |
| xfs_alloc_increment( |
| xfs_btree_cur_t *cur, /* btree cursor */ |
| int level, /* level in btree, 0 is leaf */ |
| int *stat) /* success/failure */ |
| { |
| xfs_alloc_block_t *block; /* btree block */ |
| xfs_buf_t *bp; /* tree block buffer */ |
| int error; /* error return value */ |
| int lev; /* btree level */ |
| |
| ASSERT(level < cur->bc_nlevels); |
| /* |
| * Read-ahead to the right at this level. |
| */ |
| xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA); |
| /* |
| * Get a pointer to the btree block. |
| */ |
| bp = cur->bc_bufs[level]; |
| block = XFS_BUF_TO_ALLOC_BLOCK(bp); |
| #ifdef DEBUG |
| if ((error = xfs_btree_check_sblock(cur, block, level, bp))) |
| return error; |
| #endif |
| /* |
| * Increment the ptr at this level. If we're still in the block |
| * then we're done. |
| */ |
| if (++cur->bc_ptrs[level] <= be16_to_cpu(block->bb_numrecs)) { |
| *stat = 1; |
| return 0; |
| } |
| /* |
| * If we just went off the right edge of the tree, return failure. |
| */ |
| if (be32_to_cpu(block->bb_rightsib) == NULLAGBLOCK) { |
| *stat = 0; |
| return 0; |
| } |
| /* |
| * March up the tree incrementing pointers. |
| * Stop when we don't go off the right edge of a block. |
| */ |
| for (lev = level + 1; lev < cur->bc_nlevels; lev++) { |
| bp = cur->bc_bufs[lev]; |
| block = XFS_BUF_TO_ALLOC_BLOCK(bp); |
| #ifdef DEBUG |
| if ((error = xfs_btree_check_sblock(cur, block, lev, bp))) |
| return error; |
| #endif |
| if (++cur->bc_ptrs[lev] <= be16_to_cpu(block->bb_numrecs)) |
| break; |
| /* |
| * Read-ahead the right block, we're going to read it |
| * in the next loop. |
| */ |
| xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA); |
| } |
| /* |
| * If we went off the root then we are seriously confused. |
| */ |
| ASSERT(lev < cur->bc_nlevels); |
| /* |
| * Now walk back down the tree, fixing up the cursor's buffer |
| * pointers and key numbers. |
| */ |
| for (bp = cur->bc_bufs[lev], block = XFS_BUF_TO_ALLOC_BLOCK(bp); |
| lev > level; ) { |
| xfs_agblock_t agbno; /* block number of btree block */ |
| |
| agbno = be32_to_cpu(*XFS_ALLOC_PTR_ADDR(block, cur->bc_ptrs[lev], cur)); |
| if ((error = xfs_btree_read_bufs(cur->bc_mp, cur->bc_tp, |
| cur->bc_private.a.agno, agbno, 0, &bp, |
| XFS_ALLOC_BTREE_REF))) |
| return error; |
| lev--; |
| xfs_btree_setbuf(cur, lev, bp); |
| block = XFS_BUF_TO_ALLOC_BLOCK(bp); |
| if ((error = xfs_btree_check_sblock(cur, block, lev, bp))) |
| return error; |
| cur->bc_ptrs[lev] = 1; |
| } |
| *stat = 1; |
| return 0; |
| } |
| |
| /* |
| * Insert the current record at the point referenced by cur. |
| * The cursor may be inconsistent on return if splits have been done. |
| */ |
| int /* error */ |
| xfs_alloc_insert( |
| xfs_btree_cur_t *cur, /* btree cursor */ |
| int *stat) /* success/failure */ |
| { |
| int error; /* error return value */ |
| int i; /* result value, 0 for failure */ |
| int level; /* current level number in btree */ |
| xfs_agblock_t nbno; /* new block number (split result) */ |
| xfs_btree_cur_t *ncur; /* new cursor (split result) */ |
| xfs_alloc_rec_t nrec; /* record being inserted this level */ |
| xfs_btree_cur_t *pcur; /* previous level's cursor */ |
| |
| level = 0; |
| nbno = NULLAGBLOCK; |
| nrec.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock); |
| nrec.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount); |
| ncur = NULL; |
| pcur = cur; |
| /* |
| * Loop going up the tree, starting at the leaf level. |
| * Stop when we don't get a split block, that must mean that |
| * the insert is finished with this level. |
| */ |
| do { |
| /* |
| * Insert nrec/nbno into this level of the tree. |
| * Note if we fail, nbno will be null. |
| */ |
| if ((error = xfs_alloc_insrec(pcur, level++, &nbno, &nrec, &ncur, |
| &i))) { |
| if (pcur != cur) |
| xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR); |
| return error; |
| } |
| /* |
| * See if the cursor we just used is trash. |
| * Can't trash the caller's cursor, but otherwise we should |
| * if ncur is a new cursor or we're about to be done. |
| */ |
| if (pcur != cur && (ncur || nbno == NULLAGBLOCK)) { |
| cur->bc_nlevels = pcur->bc_nlevels; |
| xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR); |
| } |
| /* |
| * If we got a new cursor, switch to it. |
| */ |
| if (ncur) { |
| pcur = ncur; |
| ncur = NULL; |
| } |
| } while (nbno != NULLAGBLOCK); |
| *stat = i; |
| return 0; |
| } |
| |
| /* |
| * Lookup the record equal to [bno, len] in the btree given by cur. |
| */ |
| int /* error */ |
| xfs_alloc_lookup_eq( |
| xfs_btree_cur_t *cur, /* btree cursor */ |
| xfs_agblock_t bno, /* starting block of extent */ |
| xfs_extlen_t len, /* length of extent */ |
| int *stat) /* success/failure */ |
| { |
| cur->bc_rec.a.ar_startblock = bno; |
| cur->bc_rec.a.ar_blockcount = len; |
| return xfs_alloc_lookup(cur, XFS_LOOKUP_EQ, stat); |
| } |
| |
| /* |
| * Lookup the first record greater than or equal to [bno, len] |
| * in the btree given by cur. |
| */ |
| int /* error */ |
| xfs_alloc_lookup_ge( |
| xfs_btree_cur_t *cur, /* btree cursor */ |
| xfs_agblock_t bno, /* starting block of extent */ |
| xfs_extlen_t len, /* length of extent */ |
| int *stat) /* success/failure */ |
| { |
| cur->bc_rec.a.ar_startblock = bno; |
| cur->bc_rec.a.ar_blockcount = len; |
| return xfs_alloc_lookup(cur, XFS_LOOKUP_GE, stat); |
| } |
| |
| /* |
| * Lookup the first record less than or equal to [bno, len] |
| * in the btree given by cur. |
| */ |
| int /* error */ |
| xfs_alloc_lookup_le( |
| xfs_btree_cur_t *cur, /* btree cursor */ |
| xfs_agblock_t bno, /* starting block of extent */ |
| xfs_extlen_t len, /* length of extent */ |
| int *stat) /* success/failure */ |
| { |
| cur->bc_rec.a.ar_startblock = bno; |
| cur->bc_rec.a.ar_blockcount = len; |
| return xfs_alloc_lookup(cur, XFS_LOOKUP_LE, stat); |
| } |
| |
| /* |
| * Update the record referred to by cur, to the value given by [bno, len]. |
| * This either works (return 0) or gets an EFSCORRUPTED error. |
| */ |
| int /* error */ |
| xfs_alloc_update( |
| xfs_btree_cur_t *cur, /* btree cursor */ |
| xfs_agblock_t bno, /* starting block of extent */ |
| xfs_extlen_t len) /* length of extent */ |
| { |
| xfs_alloc_block_t *block; /* btree block to update */ |
| int error; /* error return value */ |
| int ptr; /* current record number (updating) */ |
| |
| ASSERT(len > 0); |
| /* |
| * Pick up the a.g. freelist struct and the current block. |
| */ |
| block = XFS_BUF_TO_ALLOC_BLOCK(cur->bc_bufs[0]); |
| #ifdef DEBUG |
| if ((error = xfs_btree_check_sblock(cur, block, 0, cur->bc_bufs[0]))) |
| return error; |
| #endif |
| /* |
| * Get the address of the rec to be updated. |
| */ |
| ptr = cur->bc_ptrs[0]; |
| { |
| xfs_alloc_rec_t *rp; /* pointer to updated record */ |
| |
| rp = XFS_ALLOC_REC_ADDR(block, ptr, cur); |
| /* |
| * Fill in the new contents and log them. |
| */ |
| rp->ar_startblock = cpu_to_be32(bno); |
| rp->ar_blockcount = cpu_to_be32(len); |
| xfs_alloc_log_recs(cur, cur->bc_bufs[0], ptr, ptr); |
| } |
| /* |
| * If it's the by-size btree and it's the last leaf block and |
| * it's the last record... then update the size of the longest |
| * extent in the a.g., which we cache in the a.g. freelist header. |
| */ |
| if (cur->bc_btnum == XFS_BTNUM_CNT && |
| be32_to_cpu(block->bb_rightsib) == NULLAGBLOCK && |
| ptr == be16_to_cpu(block->bb_numrecs)) { |
| xfs_agf_t *agf; /* a.g. freespace header */ |
| xfs_agnumber_t seqno; |
| |
| agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp); |
| seqno = be32_to_cpu(agf->agf_seqno); |
| cur->bc_mp->m_perag[seqno].pagf_longest = len; |
| agf->agf_longest = cpu_to_be32(len); |
| xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp, |
| XFS_AGF_LONGEST); |
| } |
| /* |
| * Updating first record in leaf. Pass new key value up to our parent. |
| */ |
| if (ptr == 1) { |
| xfs_alloc_key_t key; /* key containing [bno, len] */ |
| |
| key.ar_startblock = cpu_to_be32(bno); |
| key.ar_blockcount = cpu_to_be32(len); |
| if ((error = xfs_alloc_updkey(cur, &key, 1))) |
| return error; |
| } |
| return 0; |
| } |