| /* |
| Asm versions of Xen pv-ops, suitable for either direct use or inlining. |
| The inline versions are the same as the direct-use versions, with the |
| pre- and post-amble chopped off. |
| |
| This code is encoded for size rather than absolute efficiency, |
| with a view to being able to inline as much as possible. |
| |
| We only bother with direct forms (ie, vcpu in pda) of the operations |
| here; the indirect forms are better handled in C, since they're |
| generally too large to inline anyway. |
| */ |
| |
| #include <linux/linkage.h> |
| #include <asm/asm-offsets.h> |
| #include <asm/thread_info.h> |
| #include <asm/percpu.h> |
| #include <asm/asm-offsets.h> |
| #include <asm/processor-flags.h> |
| |
| #define RELOC(x, v) .globl x##_reloc; x##_reloc=v |
| #define ENDPATCH(x) .globl x##_end; x##_end=. |
| |
| /* |
| Enable events. This clears the event mask and tests the pending |
| event status with one and operation. If there are pending |
| events, then enter the hypervisor to get them handled. |
| */ |
| ENTRY(xen_irq_enable_direct) |
| /* Clear mask and test pending */ |
| andw $0x00ff, PER_CPU_VAR(xen_vcpu_info)+XEN_vcpu_info_pending |
| /* Preempt here doesn't matter because that will deal with |
| any pending interrupts. The pending check may end up being |
| run on the wrong CPU, but that doesn't hurt. */ |
| jz 1f |
| 2: call check_events |
| 1: |
| ENDPATCH(xen_irq_enable_direct) |
| ret |
| ENDPROC(xen_irq_enable_direct) |
| RELOC(xen_irq_enable_direct, 2b+1) |
| |
| |
| /* |
| Disabling events is simply a matter of making the event mask |
| non-zero. |
| */ |
| ENTRY(xen_irq_disable_direct) |
| movb $1, PER_CPU_VAR(xen_vcpu_info)+XEN_vcpu_info_mask |
| ENDPATCH(xen_irq_disable_direct) |
| ret |
| ENDPROC(xen_irq_disable_direct) |
| RELOC(xen_irq_disable_direct, 0) |
| |
| /* |
| (xen_)save_fl is used to get the current interrupt enable status. |
| Callers expect the status to be in X86_EFLAGS_IF, and other bits |
| may be set in the return value. We take advantage of this by |
| making sure that X86_EFLAGS_IF has the right value (and other bits |
| in that byte are 0), but other bits in the return value are |
| undefined. We need to toggle the state of the bit, because |
| Xen and x86 use opposite senses (mask vs enable). |
| */ |
| ENTRY(xen_save_fl_direct) |
| testb $0xff, PER_CPU_VAR(xen_vcpu_info)+XEN_vcpu_info_mask |
| setz %ah |
| addb %ah,%ah |
| ENDPATCH(xen_save_fl_direct) |
| ret |
| ENDPROC(xen_save_fl_direct) |
| RELOC(xen_save_fl_direct, 0) |
| |
| |
| /* |
| In principle the caller should be passing us a value return |
| from xen_save_fl_direct, but for robustness sake we test only |
| the X86_EFLAGS_IF flag rather than the whole byte. After |
| setting the interrupt mask state, it checks for unmasked |
| pending events and enters the hypervisor to get them delivered |
| if so. |
| */ |
| ENTRY(xen_restore_fl_direct) |
| testb $X86_EFLAGS_IF>>8, %ah |
| setz %al |
| movb %al, PER_CPU_VAR(xen_vcpu_info)+XEN_vcpu_info_mask |
| /* Preempt here doesn't matter because that will deal with |
| any pending interrupts. The pending check may end up being |
| run on the wrong CPU, but that doesn't hurt. */ |
| |
| /* check for pending but unmasked */ |
| cmpw $0x0001, PER_CPU_VAR(xen_vcpu_info)+XEN_vcpu_info_pending |
| jz 1f |
| 2: call check_events |
| 1: |
| ENDPATCH(xen_restore_fl_direct) |
| ret |
| ENDPROC(xen_restore_fl_direct) |
| RELOC(xen_restore_fl_direct, 2b+1) |
| |
| |
| |
| /* |
| Force an event check by making a hypercall, |
| but preserve regs before making the call. |
| */ |
| check_events: |
| push %eax |
| push %ecx |
| push %edx |
| call force_evtchn_callback |
| pop %edx |
| pop %ecx |
| pop %eax |
| ret |