crypto: ccp - CCP device driver and interface support

These routines provide the device driver support for the AMD
Cryptographic Coprocessor (CCP).

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
diff --git a/drivers/crypto/ccp/ccp-ops.c b/drivers/crypto/ccp/ccp-ops.c
new file mode 100644
index 0000000..4be0910
--- /dev/null
+++ b/drivers/crypto/ccp/ccp-ops.c
@@ -0,0 +1,2020 @@
+/*
+ * AMD Cryptographic Coprocessor (CCP) driver
+ *
+ * Copyright (C) 2013 Advanced Micro Devices, Inc.
+ *
+ * Author: Tom Lendacky <thomas.lendacky@amd.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/pci.h>
+#include <linux/pci_ids.h>
+#include <linux/kthread.h>
+#include <linux/sched.h>
+#include <linux/interrupt.h>
+#include <linux/spinlock.h>
+#include <linux/mutex.h>
+#include <linux/delay.h>
+#include <linux/ccp.h>
+#include <linux/scatterlist.h>
+#include <crypto/scatterwalk.h>
+
+#include "ccp-dev.h"
+
+
+enum ccp_memtype {
+	CCP_MEMTYPE_SYSTEM = 0,
+	CCP_MEMTYPE_KSB,
+	CCP_MEMTYPE_LOCAL,
+	CCP_MEMTYPE__LAST,
+};
+
+struct ccp_dma_info {
+	dma_addr_t address;
+	unsigned int offset;
+	unsigned int length;
+	enum dma_data_direction dir;
+};
+
+struct ccp_dm_workarea {
+	struct device *dev;
+	struct dma_pool *dma_pool;
+	unsigned int length;
+
+	u8 *address;
+	struct ccp_dma_info dma;
+};
+
+struct ccp_sg_workarea {
+	struct scatterlist *sg;
+	unsigned int nents;
+	unsigned int length;
+
+	struct scatterlist *dma_sg;
+	struct device *dma_dev;
+	unsigned int dma_count;
+	enum dma_data_direction dma_dir;
+
+	u32 sg_used;
+
+	u32 bytes_left;
+};
+
+struct ccp_data {
+	struct ccp_sg_workarea sg_wa;
+	struct ccp_dm_workarea dm_wa;
+};
+
+struct ccp_mem {
+	enum ccp_memtype type;
+	union {
+		struct ccp_dma_info dma;
+		u32 ksb;
+	} u;
+};
+
+struct ccp_aes_op {
+	enum ccp_aes_type type;
+	enum ccp_aes_mode mode;
+	enum ccp_aes_action action;
+};
+
+struct ccp_xts_aes_op {
+	enum ccp_aes_action action;
+	enum ccp_xts_aes_unit_size unit_size;
+};
+
+struct ccp_sha_op {
+	enum ccp_sha_type type;
+	u64 msg_bits;
+};
+
+struct ccp_rsa_op {
+	u32 mod_size;
+	u32 input_len;
+};
+
+struct ccp_passthru_op {
+	enum ccp_passthru_bitwise bit_mod;
+	enum ccp_passthru_byteswap byte_swap;
+};
+
+struct ccp_ecc_op {
+	enum ccp_ecc_function function;
+};
+
+struct ccp_op {
+	struct ccp_cmd_queue *cmd_q;
+
+	u32 jobid;
+	u32 ioc;
+	u32 soc;
+	u32 ksb_key;
+	u32 ksb_ctx;
+	u32 init;
+	u32 eom;
+
+	struct ccp_mem src;
+	struct ccp_mem dst;
+
+	union {
+		struct ccp_aes_op aes;
+		struct ccp_xts_aes_op xts;
+		struct ccp_sha_op sha;
+		struct ccp_rsa_op rsa;
+		struct ccp_passthru_op passthru;
+		struct ccp_ecc_op ecc;
+	} u;
+};
+
+/* The CCP cannot perform zero-length sha operations so the caller
+ * is required to buffer data for the final operation.  However, a
+ * sha operation for a message with a total length of zero is valid
+ * so known values are required to supply the result.
+ */
+static const u8 ccp_sha1_zero[CCP_SHA_CTXSIZE] = {
+	0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d,
+	0x32, 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90,
+	0xaf, 0xd8, 0x07, 0x09, 0x00, 0x00, 0x00, 0x00,
+	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+};
+
+static const u8 ccp_sha224_zero[CCP_SHA_CTXSIZE] = {
+	0xd1, 0x4a, 0x02, 0x8c, 0x2a, 0x3a, 0x2b, 0xc9,
+	0x47, 0x61, 0x02, 0xbb, 0x28, 0x82, 0x34, 0xc4,
+	0x15, 0xa2, 0xb0, 0x1f, 0x82, 0x8e, 0xa6, 0x2a,
+	0xc5, 0xb3, 0xe4, 0x2f, 0x00, 0x00, 0x00, 0x00,
+};
+
+static const u8 ccp_sha256_zero[CCP_SHA_CTXSIZE] = {
+	0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14,
+	0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24,
+	0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c,
+	0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55,
+};
+
+static u32 ccp_addr_lo(struct ccp_dma_info *info)
+{
+	return lower_32_bits(info->address + info->offset);
+}
+
+static u32 ccp_addr_hi(struct ccp_dma_info *info)
+{
+	return upper_32_bits(info->address + info->offset) & 0x0000ffff;
+}
+
+static int ccp_do_cmd(struct ccp_op *op, u32 *cr, unsigned int cr_count)
+{
+	struct ccp_cmd_queue *cmd_q = op->cmd_q;
+	struct ccp_device *ccp = cmd_q->ccp;
+	void __iomem *cr_addr;
+	u32 cr0, cmd;
+	unsigned int i;
+	int ret = 0;
+
+	/* We could read a status register to see how many free slots
+	 * are actually available, but reading that register resets it
+	 * and you could lose some error information.
+	 */
+	cmd_q->free_slots--;
+
+	cr0 = (cmd_q->id << REQ0_CMD_Q_SHIFT)
+	      | (op->jobid << REQ0_JOBID_SHIFT)
+	      | REQ0_WAIT_FOR_WRITE;
+
+	if (op->soc)
+		cr0 |= REQ0_STOP_ON_COMPLETE
+		       | REQ0_INT_ON_COMPLETE;
+
+	if (op->ioc || !cmd_q->free_slots)
+		cr0 |= REQ0_INT_ON_COMPLETE;
+
+	/* Start at CMD_REQ1 */
+	cr_addr = ccp->io_regs + CMD_REQ0 + CMD_REQ_INCR;
+
+	mutex_lock(&ccp->req_mutex);
+
+	/* Write CMD_REQ1 through CMD_REQx first */
+	for (i = 0; i < cr_count; i++, cr_addr += CMD_REQ_INCR)
+		iowrite32(*(cr + i), cr_addr);
+
+	/* Tell the CCP to start */
+	wmb();
+	iowrite32(cr0, ccp->io_regs + CMD_REQ0);
+
+	mutex_unlock(&ccp->req_mutex);
+
+	if (cr0 & REQ0_INT_ON_COMPLETE) {
+		/* Wait for the job to complete */
+		ret = wait_event_interruptible(cmd_q->int_queue,
+					       cmd_q->int_rcvd);
+		if (ret || cmd_q->cmd_error) {
+			/* On error delete all related jobs from the queue */
+			cmd = (cmd_q->id << DEL_Q_ID_SHIFT)
+			      | op->jobid;
+
+			iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB);
+
+			if (!ret)
+				ret = -EIO;
+		} else if (op->soc) {
+			/* Delete just head job from the queue on SoC */
+			cmd = DEL_Q_ACTIVE
+			      | (cmd_q->id << DEL_Q_ID_SHIFT)
+			      | op->jobid;
+
+			iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB);
+		}
+
+		cmd_q->free_slots = CMD_Q_DEPTH(cmd_q->q_status);
+
+		cmd_q->int_rcvd = 0;
+	}
+
+	return ret;
+}
+
+static int ccp_perform_aes(struct ccp_op *op)
+{
+	u32 cr[6];
+
+	/* Fill out the register contents for REQ1 through REQ6 */
+	cr[0] = (CCP_ENGINE_AES << REQ1_ENGINE_SHIFT)
+		| (op->u.aes.type << REQ1_AES_TYPE_SHIFT)
+		| (op->u.aes.mode << REQ1_AES_MODE_SHIFT)
+		| (op->u.aes.action << REQ1_AES_ACTION_SHIFT)
+		| (op->ksb_key << REQ1_KEY_KSB_SHIFT);
+	cr[1] = op->src.u.dma.length - 1;
+	cr[2] = ccp_addr_lo(&op->src.u.dma);
+	cr[3] = (op->ksb_ctx << REQ4_KSB_SHIFT)
+		| (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
+		| ccp_addr_hi(&op->src.u.dma);
+	cr[4] = ccp_addr_lo(&op->dst.u.dma);
+	cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
+		| ccp_addr_hi(&op->dst.u.dma);
+
+	if (op->u.aes.mode == CCP_AES_MODE_CFB)
+		cr[0] |= ((0x7f) << REQ1_AES_CFB_SIZE_SHIFT);
+
+	if (op->eom)
+		cr[0] |= REQ1_EOM;
+
+	if (op->init)
+		cr[0] |= REQ1_INIT;
+
+	return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
+}
+
+static int ccp_perform_xts_aes(struct ccp_op *op)
+{
+	u32 cr[6];
+
+	/* Fill out the register contents for REQ1 through REQ6 */
+	cr[0] = (CCP_ENGINE_XTS_AES_128 << REQ1_ENGINE_SHIFT)
+		| (op->u.xts.action << REQ1_AES_ACTION_SHIFT)
+		| (op->u.xts.unit_size << REQ1_XTS_AES_SIZE_SHIFT)
+		| (op->ksb_key << REQ1_KEY_KSB_SHIFT);
+	cr[1] = op->src.u.dma.length - 1;
+	cr[2] = ccp_addr_lo(&op->src.u.dma);
+	cr[3] = (op->ksb_ctx << REQ4_KSB_SHIFT)
+		| (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
+		| ccp_addr_hi(&op->src.u.dma);
+	cr[4] = ccp_addr_lo(&op->dst.u.dma);
+	cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
+		| ccp_addr_hi(&op->dst.u.dma);
+
+	if (op->eom)
+		cr[0] |= REQ1_EOM;
+
+	if (op->init)
+		cr[0] |= REQ1_INIT;
+
+	return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
+}
+
+static int ccp_perform_sha(struct ccp_op *op)
+{
+	u32 cr[6];
+
+	/* Fill out the register contents for REQ1 through REQ6 */
+	cr[0] = (CCP_ENGINE_SHA << REQ1_ENGINE_SHIFT)
+		| (op->u.sha.type << REQ1_SHA_TYPE_SHIFT)
+		| REQ1_INIT;
+	cr[1] = op->src.u.dma.length - 1;
+	cr[2] = ccp_addr_lo(&op->src.u.dma);
+	cr[3] = (op->ksb_ctx << REQ4_KSB_SHIFT)
+		| (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
+		| ccp_addr_hi(&op->src.u.dma);
+
+	if (op->eom) {
+		cr[0] |= REQ1_EOM;
+		cr[4] = lower_32_bits(op->u.sha.msg_bits);
+		cr[5] = upper_32_bits(op->u.sha.msg_bits);
+	} else {
+		cr[4] = 0;
+		cr[5] = 0;
+	}
+
+	return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
+}
+
+static int ccp_perform_rsa(struct ccp_op *op)
+{
+	u32 cr[6];
+
+	/* Fill out the register contents for REQ1 through REQ6 */
+	cr[0] = (CCP_ENGINE_RSA << REQ1_ENGINE_SHIFT)
+		| (op->u.rsa.mod_size << REQ1_RSA_MOD_SIZE_SHIFT)
+		| (op->ksb_key << REQ1_KEY_KSB_SHIFT)
+		| REQ1_EOM;
+	cr[1] = op->u.rsa.input_len - 1;
+	cr[2] = ccp_addr_lo(&op->src.u.dma);
+	cr[3] = (op->ksb_ctx << REQ4_KSB_SHIFT)
+		| (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
+		| ccp_addr_hi(&op->src.u.dma);
+	cr[4] = ccp_addr_lo(&op->dst.u.dma);
+	cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
+		| ccp_addr_hi(&op->dst.u.dma);
+
+	return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
+}
+
+static int ccp_perform_passthru(struct ccp_op *op)
+{
+	u32 cr[6];
+
+	/* Fill out the register contents for REQ1 through REQ6 */
+	cr[0] = (CCP_ENGINE_PASSTHRU << REQ1_ENGINE_SHIFT)
+		| (op->u.passthru.bit_mod << REQ1_PT_BW_SHIFT)
+		| (op->u.passthru.byte_swap << REQ1_PT_BS_SHIFT);
+
+	if (op->src.type == CCP_MEMTYPE_SYSTEM)
+		cr[1] = op->src.u.dma.length - 1;
+	else
+		cr[1] = op->dst.u.dma.length - 1;
+
+	if (op->src.type == CCP_MEMTYPE_SYSTEM) {
+		cr[2] = ccp_addr_lo(&op->src.u.dma);
+		cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
+			| ccp_addr_hi(&op->src.u.dma);
+
+		if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
+			cr[3] |= (op->ksb_key << REQ4_KSB_SHIFT);
+	} else {
+		cr[2] = op->src.u.ksb * CCP_KSB_BYTES;
+		cr[3] = (CCP_MEMTYPE_KSB << REQ4_MEMTYPE_SHIFT);
+	}
+
+	if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
+		cr[4] = ccp_addr_lo(&op->dst.u.dma);
+		cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
+			| ccp_addr_hi(&op->dst.u.dma);
+	} else {
+		cr[4] = op->dst.u.ksb * CCP_KSB_BYTES;
+		cr[5] = (CCP_MEMTYPE_KSB << REQ6_MEMTYPE_SHIFT);
+	}
+
+	if (op->eom)
+		cr[0] |= REQ1_EOM;
+
+	return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
+}
+
+static int ccp_perform_ecc(struct ccp_op *op)
+{
+	u32 cr[6];
+
+	/* Fill out the register contents for REQ1 through REQ6 */
+	cr[0] = REQ1_ECC_AFFINE_CONVERT
+		| (CCP_ENGINE_ECC << REQ1_ENGINE_SHIFT)
+		| (op->u.ecc.function << REQ1_ECC_FUNCTION_SHIFT)
+		| REQ1_EOM;
+	cr[1] = op->src.u.dma.length - 1;
+	cr[2] = ccp_addr_lo(&op->src.u.dma);
+	cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
+		| ccp_addr_hi(&op->src.u.dma);
+	cr[4] = ccp_addr_lo(&op->dst.u.dma);
+	cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
+		| ccp_addr_hi(&op->dst.u.dma);
+
+	return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
+}
+
+static u32 ccp_alloc_ksb(struct ccp_device *ccp, unsigned int count)
+{
+	int start;
+
+	for (;;) {
+		mutex_lock(&ccp->ksb_mutex);
+
+		start = (u32)bitmap_find_next_zero_area(ccp->ksb,
+							ccp->ksb_count,
+							ccp->ksb_start,
+							count, 0);
+		if (start <= ccp->ksb_count) {
+			bitmap_set(ccp->ksb, start, count);
+
+			mutex_unlock(&ccp->ksb_mutex);
+			break;
+		}
+
+		ccp->ksb_avail = 0;
+
+		mutex_unlock(&ccp->ksb_mutex);
+
+		/* Wait for KSB entries to become available */
+		if (wait_event_interruptible(ccp->ksb_queue, ccp->ksb_avail))
+			return 0;
+	}
+
+	return KSB_START + start;
+}
+
+static void ccp_free_ksb(struct ccp_device *ccp, unsigned int start,
+			 unsigned int count)
+{
+	if (!start)
+		return;
+
+	mutex_lock(&ccp->ksb_mutex);
+
+	bitmap_clear(ccp->ksb, start - KSB_START, count);
+
+	ccp->ksb_avail = 1;
+
+	mutex_unlock(&ccp->ksb_mutex);
+
+	wake_up_interruptible_all(&ccp->ksb_queue);
+}
+
+static u32 ccp_gen_jobid(struct ccp_device *ccp)
+{
+	return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
+}
+
+static void ccp_sg_free(struct ccp_sg_workarea *wa)
+{
+	if (wa->dma_count)
+		dma_unmap_sg(wa->dma_dev, wa->dma_sg, wa->nents, wa->dma_dir);
+
+	wa->dma_count = 0;
+}
+
+static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
+				struct scatterlist *sg, unsigned int len,
+				enum dma_data_direction dma_dir)
+{
+	memset(wa, 0, sizeof(*wa));
+
+	wa->sg = sg;
+	if (!sg)
+		return 0;
+
+	wa->nents = sg_nents(sg);
+	wa->length = sg->length;
+	wa->bytes_left = len;
+	wa->sg_used = 0;
+
+	if (len == 0)
+		return 0;
+
+	if (dma_dir == DMA_NONE)
+		return 0;
+
+	wa->dma_sg = sg;
+	wa->dma_dev = dev;
+	wa->dma_dir = dma_dir;
+	wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
+	if (!wa->dma_count)
+		return -ENOMEM;
+
+
+	return 0;
+}
+
+static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
+{
+	unsigned int nbytes = min(len, wa->bytes_left);
+
+	if (!wa->sg)
+		return;
+
+	wa->sg_used += nbytes;
+	wa->bytes_left -= nbytes;
+	if (wa->sg_used == wa->sg->length) {
+		wa->sg = sg_next(wa->sg);
+		wa->sg_used = 0;
+	}
+}
+
+static void ccp_dm_free(struct ccp_dm_workarea *wa)
+{
+	if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
+		if (wa->address)
+			dma_pool_free(wa->dma_pool, wa->address,
+				      wa->dma.address);
+	} else {
+		if (wa->dma.address)
+			dma_unmap_single(wa->dev, wa->dma.address, wa->length,
+					 wa->dma.dir);
+		kfree(wa->address);
+	}
+
+	wa->address = NULL;
+	wa->dma.address = 0;
+}
+
+static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
+				struct ccp_cmd_queue *cmd_q,
+				unsigned int len,
+				enum dma_data_direction dir)
+{
+	memset(wa, 0, sizeof(*wa));
+
+	if (!len)
+		return 0;
+
+	wa->dev = cmd_q->ccp->dev;
+	wa->length = len;
+
+	if (len <= CCP_DMAPOOL_MAX_SIZE) {
+		wa->dma_pool = cmd_q->dma_pool;
+
+		wa->address = dma_pool_alloc(wa->dma_pool, GFP_KERNEL,
+					     &wa->dma.address);
+		if (!wa->address)
+			return -ENOMEM;
+
+		wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
+
+		memset(wa->address, 0, CCP_DMAPOOL_MAX_SIZE);
+	} else {
+		wa->address = kzalloc(len, GFP_KERNEL);
+		if (!wa->address)
+			return -ENOMEM;
+
+		wa->dma.address = dma_map_single(wa->dev, wa->address, len,
+						 dir);
+		if (!wa->dma.address)
+			return -ENOMEM;
+
+		wa->dma.length = len;
+	}
+	wa->dma.dir = dir;
+
+	return 0;
+}
+
+static void ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
+			    struct scatterlist *sg, unsigned int sg_offset,
+			    unsigned int len)
+{
+	WARN_ON(!wa->address);
+
+	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
+				 0);
+}
+
+static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
+			    struct scatterlist *sg, unsigned int sg_offset,
+			    unsigned int len)
+{
+	WARN_ON(!wa->address);
+
+	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
+				 1);
+}
+
+static void ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
+				    struct scatterlist *sg,
+				    unsigned int len, unsigned int se_len,
+				    bool sign_extend)
+{
+	unsigned int nbytes, sg_offset, dm_offset, ksb_len, i;
+	u8 buffer[CCP_REVERSE_BUF_SIZE];
+
+	BUG_ON(se_len > sizeof(buffer));
+
+	sg_offset = len;
+	dm_offset = 0;
+	nbytes = len;
+	while (nbytes) {
+		ksb_len = min_t(unsigned int, nbytes, se_len);
+		sg_offset -= ksb_len;
+
+		scatterwalk_map_and_copy(buffer, sg, sg_offset, ksb_len, 0);
+		for (i = 0; i < ksb_len; i++)
+			wa->address[dm_offset + i] = buffer[ksb_len - i - 1];
+
+		dm_offset += ksb_len;
+		nbytes -= ksb_len;
+
+		if ((ksb_len != se_len) && sign_extend) {
+			/* Must sign-extend to nearest sign-extend length */
+			if (wa->address[dm_offset - 1] & 0x80)
+				memset(wa->address + dm_offset, 0xff,
+				       se_len - ksb_len);
+		}
+	}
+}
+
+static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
+				    struct scatterlist *sg,
+				    unsigned int len)
+{
+	unsigned int nbytes, sg_offset, dm_offset, ksb_len, i;
+	u8 buffer[CCP_REVERSE_BUF_SIZE];
+
+	sg_offset = 0;
+	dm_offset = len;
+	nbytes = len;
+	while (nbytes) {
+		ksb_len = min_t(unsigned int, nbytes, sizeof(buffer));
+		dm_offset -= ksb_len;
+
+		for (i = 0; i < ksb_len; i++)
+			buffer[ksb_len - i - 1] = wa->address[dm_offset + i];
+		scatterwalk_map_and_copy(buffer, sg, sg_offset, ksb_len, 1);
+
+		sg_offset += ksb_len;
+		nbytes -= ksb_len;
+	}
+}
+
+static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
+{
+	ccp_dm_free(&data->dm_wa);
+	ccp_sg_free(&data->sg_wa);
+}
+
+static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
+			 struct scatterlist *sg, unsigned int sg_len,
+			 unsigned int dm_len,
+			 enum dma_data_direction dir)
+{
+	int ret;
+
+	memset(data, 0, sizeof(*data));
+
+	ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
+				   dir);
+	if (ret)
+		goto e_err;
+
+	ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
+	if (ret)
+		goto e_err;
+
+	return 0;
+
+e_err:
+	ccp_free_data(data, cmd_q);
+
+	return ret;
+}
+
+static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
+{
+	struct ccp_sg_workarea *sg_wa = &data->sg_wa;
+	struct ccp_dm_workarea *dm_wa = &data->dm_wa;
+	unsigned int buf_count, nbytes;
+
+	/* Clear the buffer if setting it */
+	if (!from)
+		memset(dm_wa->address, 0, dm_wa->length);
+
+	if (!sg_wa->sg)
+		return 0;
+
+	/* Perform the copy operation */
+	nbytes = min(sg_wa->bytes_left, dm_wa->length);
+	scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
+				 nbytes, from);
+
+	/* Update the structures and generate the count */
+	buf_count = 0;
+	while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
+		nbytes = min3(sg_wa->sg->length - sg_wa->sg_used,
+			      dm_wa->length - buf_count,
+			      sg_wa->bytes_left);
+
+		buf_count += nbytes;
+		ccp_update_sg_workarea(sg_wa, nbytes);
+	}
+
+	return buf_count;
+}
+
+static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
+{
+	return ccp_queue_buf(data, 0);
+}
+
+static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
+{
+	return ccp_queue_buf(data, 1);
+}
+
+static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
+			     struct ccp_op *op, unsigned int block_size,
+			     bool blocksize_op)
+{
+	unsigned int sg_src_len, sg_dst_len, op_len;
+
+	/* The CCP can only DMA from/to one address each per operation. This
+	 * requires that we find the smallest DMA area between the source
+	 * and destination.
+	 */
+	sg_src_len = min(sg_dma_len(src->sg_wa.sg) - src->sg_wa.sg_used,
+			 src->sg_wa.bytes_left);
+
+	if (dst) {
+		sg_dst_len = min(sg_dma_len(dst->sg_wa.sg) - dst->sg_wa.sg_used,
+				 src->sg_wa.bytes_left);
+		op_len = min(sg_src_len, sg_dst_len);
+	} else
+		op_len = sg_src_len;
+
+	/* The data operation length will be at least block_size in length
+	 * or the smaller of available sg room remaining for the source or
+	 * the destination
+	 */
+	op_len = max(op_len, block_size);
+
+	/* Unless we have to buffer data, there's no reason to wait */
+	op->soc = 0;
+
+	if (sg_src_len < block_size) {
+		/* Not enough data in the sg element, so it
+		 * needs to be buffered into a blocksize chunk
+		 */
+		int cp_len = ccp_fill_queue_buf(src);
+
+		op->soc = 1;
+		op->src.u.dma.address = src->dm_wa.dma.address;
+		op->src.u.dma.offset = 0;
+		op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
+	} else {
+		/* Enough data in the sg element, but we need to
+		 * adjust for any previously copied data
+		 */
+		op->src.u.dma.address = sg_dma_address(src->sg_wa.sg);
+		op->src.u.dma.offset = src->sg_wa.sg_used;
+		op->src.u.dma.length = op_len & ~(block_size - 1);
+
+		ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
+	}
+
+	if (dst) {
+		if (sg_dst_len < block_size) {
+			/* Not enough room in the sg element or we're on the
+			 * last piece of data (when using padding), so the
+			 * output needs to be buffered into a blocksize chunk
+			 */
+			op->soc = 1;
+			op->dst.u.dma.address = dst->dm_wa.dma.address;
+			op->dst.u.dma.offset = 0;
+			op->dst.u.dma.length = op->src.u.dma.length;
+		} else {
+			/* Enough room in the sg element, but we need to
+			 * adjust for any previously used area
+			 */
+			op->dst.u.dma.address = sg_dma_address(dst->sg_wa.sg);
+			op->dst.u.dma.offset = dst->sg_wa.sg_used;
+			op->dst.u.dma.length = op->src.u.dma.length;
+		}
+	}
+}
+
+static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
+			     struct ccp_op *op)
+{
+	op->init = 0;
+
+	if (dst) {
+		if (op->dst.u.dma.address == dst->dm_wa.dma.address)
+			ccp_empty_queue_buf(dst);
+		else
+			ccp_update_sg_workarea(&dst->sg_wa,
+					       op->dst.u.dma.length);
+	}
+}
+
+static int ccp_copy_to_from_ksb(struct ccp_cmd_queue *cmd_q,
+				struct ccp_dm_workarea *wa, u32 jobid, u32 ksb,
+				u32 byte_swap, bool from)
+{
+	struct ccp_op op;
+
+	memset(&op, 0, sizeof(op));
+
+	op.cmd_q = cmd_q;
+	op.jobid = jobid;
+	op.eom = 1;
+
+	if (from) {
+		op.soc = 1;
+		op.src.type = CCP_MEMTYPE_KSB;
+		op.src.u.ksb = ksb;
+		op.dst.type = CCP_MEMTYPE_SYSTEM;
+		op.dst.u.dma.address = wa->dma.address;
+		op.dst.u.dma.length = wa->length;
+	} else {
+		op.src.type = CCP_MEMTYPE_SYSTEM;
+		op.src.u.dma.address = wa->dma.address;
+		op.src.u.dma.length = wa->length;
+		op.dst.type = CCP_MEMTYPE_KSB;
+		op.dst.u.ksb = ksb;
+	}
+
+	op.u.passthru.byte_swap = byte_swap;
+
+	return ccp_perform_passthru(&op);
+}
+
+static int ccp_copy_to_ksb(struct ccp_cmd_queue *cmd_q,
+			   struct ccp_dm_workarea *wa, u32 jobid, u32 ksb,
+			   u32 byte_swap)
+{
+	return ccp_copy_to_from_ksb(cmd_q, wa, jobid, ksb, byte_swap, false);
+}
+
+static int ccp_copy_from_ksb(struct ccp_cmd_queue *cmd_q,
+			     struct ccp_dm_workarea *wa, u32 jobid, u32 ksb,
+			     u32 byte_swap)
+{
+	return ccp_copy_to_from_ksb(cmd_q, wa, jobid, ksb, byte_swap, true);
+}
+
+static int ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q,
+				struct ccp_cmd *cmd)
+{
+	struct ccp_aes_engine *aes = &cmd->u.aes;
+	struct ccp_dm_workarea key, ctx;
+	struct ccp_data src;
+	struct ccp_op op;
+	unsigned int dm_offset;
+	int ret;
+
+	if (!((aes->key_len == AES_KEYSIZE_128) ||
+	      (aes->key_len == AES_KEYSIZE_192) ||
+	      (aes->key_len == AES_KEYSIZE_256)))
+		return -EINVAL;
+
+	if (aes->src_len & (AES_BLOCK_SIZE - 1))
+		return -EINVAL;
+
+	if (aes->iv_len != AES_BLOCK_SIZE)
+		return -EINVAL;
+
+	if (!aes->key || !aes->iv || !aes->src)
+		return -EINVAL;
+
+	if (aes->cmac_final) {
+		if (aes->cmac_key_len != AES_BLOCK_SIZE)
+			return -EINVAL;
+
+		if (!aes->cmac_key)
+			return -EINVAL;
+	}
+
+	BUILD_BUG_ON(CCP_AES_KEY_KSB_COUNT != 1);
+	BUILD_BUG_ON(CCP_AES_CTX_KSB_COUNT != 1);
+
+	ret = -EIO;
+	memset(&op, 0, sizeof(op));
+	op.cmd_q = cmd_q;
+	op.jobid = ccp_gen_jobid(cmd_q->ccp);
+	op.ksb_key = cmd_q->ksb_key;
+	op.ksb_ctx = cmd_q->ksb_ctx;
+	op.init = 1;
+	op.u.aes.type = aes->type;
+	op.u.aes.mode = aes->mode;
+	op.u.aes.action = aes->action;
+
+	/* All supported key sizes fit in a single (32-byte) KSB entry
+	 * and must be in little endian format. Use the 256-bit byte
+	 * swap passthru option to convert from big endian to little
+	 * endian.
+	 */
+	ret = ccp_init_dm_workarea(&key, cmd_q,
+				   CCP_AES_KEY_KSB_COUNT * CCP_KSB_BYTES,
+				   DMA_TO_DEVICE);
+	if (ret)
+		return ret;
+
+	dm_offset = CCP_KSB_BYTES - aes->key_len;
+	ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
+	ret = ccp_copy_to_ksb(cmd_q, &key, op.jobid, op.ksb_key,
+			      CCP_PASSTHRU_BYTESWAP_256BIT);
+	if (ret) {
+		cmd->engine_error = cmd_q->cmd_error;
+		goto e_key;
+	}
+
+	/* The AES context fits in a single (32-byte) KSB entry and
+	 * must be in little endian format. Use the 256-bit byte swap
+	 * passthru option to convert from big endian to little endian.
+	 */
+	ret = ccp_init_dm_workarea(&ctx, cmd_q,
+				   CCP_AES_CTX_KSB_COUNT * CCP_KSB_BYTES,
+				   DMA_BIDIRECTIONAL);
+	if (ret)
+		goto e_key;
+
+	dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE;
+	ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
+	ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
+			      CCP_PASSTHRU_BYTESWAP_256BIT);
+	if (ret) {
+		cmd->engine_error = cmd_q->cmd_error;
+		goto e_ctx;
+	}
+
+	/* Send data to the CCP AES engine */
+	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
+			    AES_BLOCK_SIZE, DMA_TO_DEVICE);
+	if (ret)
+		goto e_ctx;
+
+	while (src.sg_wa.bytes_left) {
+		ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
+		if (aes->cmac_final && !src.sg_wa.bytes_left) {
+			op.eom = 1;
+
+			/* Push the K1/K2 key to the CCP now */
+			ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid,
+						op.ksb_ctx,
+						CCP_PASSTHRU_BYTESWAP_256BIT);
+			if (ret) {
+				cmd->engine_error = cmd_q->cmd_error;
+				goto e_src;
+			}
+
+			ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
+					aes->cmac_key_len);
+			ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
+					      CCP_PASSTHRU_BYTESWAP_256BIT);
+			if (ret) {
+				cmd->engine_error = cmd_q->cmd_error;
+				goto e_src;
+			}
+		}
+
+		ret = ccp_perform_aes(&op);
+		if (ret) {
+			cmd->engine_error = cmd_q->cmd_error;
+			goto e_src;
+		}
+
+		ccp_process_data(&src, NULL, &op);
+	}
+
+	/* Retrieve the AES context - convert from LE to BE using
+	 * 32-byte (256-bit) byteswapping
+	 */
+	ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
+				CCP_PASSTHRU_BYTESWAP_256BIT);
+	if (ret) {
+		cmd->engine_error = cmd_q->cmd_error;
+		goto e_src;
+	}
+
+	/* ...but we only need AES_BLOCK_SIZE bytes */
+	dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE;
+	ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
+
+e_src:
+	ccp_free_data(&src, cmd_q);
+
+e_ctx:
+	ccp_dm_free(&ctx);
+
+e_key:
+	ccp_dm_free(&key);
+
+	return ret;
+}
+
+static int ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+	struct ccp_aes_engine *aes = &cmd->u.aes;
+	struct ccp_dm_workarea key, ctx;
+	struct ccp_data src, dst;
+	struct ccp_op op;
+	unsigned int dm_offset;
+	bool in_place = false;
+	int ret;
+
+	if (aes->mode == CCP_AES_MODE_CMAC)
+		return ccp_run_aes_cmac_cmd(cmd_q, cmd);
+
+	if (!((aes->key_len == AES_KEYSIZE_128) ||
+	      (aes->key_len == AES_KEYSIZE_192) ||
+	      (aes->key_len == AES_KEYSIZE_256)))
+		return -EINVAL;
+
+	if (((aes->mode == CCP_AES_MODE_ECB) ||
+	     (aes->mode == CCP_AES_MODE_CBC) ||
+	     (aes->mode == CCP_AES_MODE_CFB)) &&
+	    (aes->src_len & (AES_BLOCK_SIZE - 1)))
+		return -EINVAL;
+
+	if (!aes->key || !aes->src || !aes->dst)
+		return -EINVAL;
+
+	if (aes->mode != CCP_AES_MODE_ECB) {
+		if (aes->iv_len != AES_BLOCK_SIZE)
+			return -EINVAL;
+
+		if (!aes->iv)
+			return -EINVAL;
+	}
+
+	BUILD_BUG_ON(CCP_AES_KEY_KSB_COUNT != 1);
+	BUILD_BUG_ON(CCP_AES_CTX_KSB_COUNT != 1);
+
+	ret = -EIO;
+	memset(&op, 0, sizeof(op));
+	op.cmd_q = cmd_q;
+	op.jobid = ccp_gen_jobid(cmd_q->ccp);
+	op.ksb_key = cmd_q->ksb_key;
+	op.ksb_ctx = cmd_q->ksb_ctx;
+	op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
+	op.u.aes.type = aes->type;
+	op.u.aes.mode = aes->mode;
+	op.u.aes.action = aes->action;
+
+	/* All supported key sizes fit in a single (32-byte) KSB entry
+	 * and must be in little endian format. Use the 256-bit byte
+	 * swap passthru option to convert from big endian to little
+	 * endian.
+	 */
+	ret = ccp_init_dm_workarea(&key, cmd_q,
+				   CCP_AES_KEY_KSB_COUNT * CCP_KSB_BYTES,
+				   DMA_TO_DEVICE);
+	if (ret)
+		return ret;
+
+	dm_offset = CCP_KSB_BYTES - aes->key_len;
+	ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
+	ret = ccp_copy_to_ksb(cmd_q, &key, op.jobid, op.ksb_key,
+			      CCP_PASSTHRU_BYTESWAP_256BIT);
+	if (ret) {
+		cmd->engine_error = cmd_q->cmd_error;
+		goto e_key;
+	}
+
+	/* The AES context fits in a single (32-byte) KSB entry and
+	 * must be in little endian format. Use the 256-bit byte swap
+	 * passthru option to convert from big endian to little endian.
+	 */
+	ret = ccp_init_dm_workarea(&ctx, cmd_q,
+				   CCP_AES_CTX_KSB_COUNT * CCP_KSB_BYTES,
+				   DMA_BIDIRECTIONAL);
+	if (ret)
+		goto e_key;
+
+	if (aes->mode != CCP_AES_MODE_ECB) {
+		/* Load the AES context - conver to LE */
+		dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE;
+		ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
+		ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
+				      CCP_PASSTHRU_BYTESWAP_256BIT);
+		if (ret) {
+			cmd->engine_error = cmd_q->cmd_error;
+			goto e_ctx;
+		}
+	}
+
+	/* Prepare the input and output data workareas. For in-place
+	 * operations we need to set the dma direction to BIDIRECTIONAL
+	 * and copy the src workarea to the dst workarea.
+	 */
+	if (sg_virt(aes->src) == sg_virt(aes->dst))
+		in_place = true;
+
+	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
+			    AES_BLOCK_SIZE,
+			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
+	if (ret)
+		goto e_ctx;
+
+	if (in_place)
+		dst = src;
+	else {
+		ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
+				    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
+		if (ret)
+			goto e_src;
+	}
+
+	/* Send data to the CCP AES engine */
+	while (src.sg_wa.bytes_left) {
+		ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
+		if (!src.sg_wa.bytes_left) {
+			op.eom = 1;
+
+			/* Since we don't retrieve the AES context in ECB
+			 * mode we have to wait for the operation to complete
+			 * on the last piece of data
+			 */
+			if (aes->mode == CCP_AES_MODE_ECB)
+				op.soc = 1;
+		}
+
+		ret = ccp_perform_aes(&op);
+		if (ret) {
+			cmd->engine_error = cmd_q->cmd_error;
+			goto e_dst;
+		}
+
+		ccp_process_data(&src, &dst, &op);
+	}
+
+	if (aes->mode != CCP_AES_MODE_ECB) {
+		/* Retrieve the AES context - convert from LE to BE using
+		 * 32-byte (256-bit) byteswapping
+		 */
+		ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
+					CCP_PASSTHRU_BYTESWAP_256BIT);
+		if (ret) {
+			cmd->engine_error = cmd_q->cmd_error;
+			goto e_dst;
+		}
+
+		/* ...but we only need AES_BLOCK_SIZE bytes */
+		dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE;
+		ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
+	}
+
+e_dst:
+	if (!in_place)
+		ccp_free_data(&dst, cmd_q);
+
+e_src:
+	ccp_free_data(&src, cmd_q);
+
+e_ctx:
+	ccp_dm_free(&ctx);
+
+e_key:
+	ccp_dm_free(&key);
+
+	return ret;
+}
+
+static int ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q,
+			       struct ccp_cmd *cmd)
+{
+	struct ccp_xts_aes_engine *xts = &cmd->u.xts;
+	struct ccp_dm_workarea key, ctx;
+	struct ccp_data src, dst;
+	struct ccp_op op;
+	unsigned int unit_size, dm_offset;
+	bool in_place = false;
+	int ret;
+
+	switch (xts->unit_size) {
+	case CCP_XTS_AES_UNIT_SIZE_16:
+		unit_size = 16;
+		break;
+	case CCP_XTS_AES_UNIT_SIZE_512:
+		unit_size = 512;
+		break;
+	case CCP_XTS_AES_UNIT_SIZE_1024:
+		unit_size = 1024;
+		break;
+	case CCP_XTS_AES_UNIT_SIZE_2048:
+		unit_size = 2048;
+		break;
+	case CCP_XTS_AES_UNIT_SIZE_4096:
+		unit_size = 4096;
+		break;
+
+	default:
+		return -EINVAL;
+	}
+
+	if (xts->key_len != AES_KEYSIZE_128)
+		return -EINVAL;
+
+	if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
+		return -EINVAL;
+
+	if (xts->iv_len != AES_BLOCK_SIZE)
+		return -EINVAL;
+
+	if (!xts->key || !xts->iv || !xts->src || !xts->dst)
+		return -EINVAL;
+
+	BUILD_BUG_ON(CCP_XTS_AES_KEY_KSB_COUNT != 1);
+	BUILD_BUG_ON(CCP_XTS_AES_CTX_KSB_COUNT != 1);
+
+	ret = -EIO;
+	memset(&op, 0, sizeof(op));
+	op.cmd_q = cmd_q;
+	op.jobid = ccp_gen_jobid(cmd_q->ccp);
+	op.ksb_key = cmd_q->ksb_key;
+	op.ksb_ctx = cmd_q->ksb_ctx;
+	op.init = 1;
+	op.u.xts.action = xts->action;
+	op.u.xts.unit_size = xts->unit_size;
+
+	/* All supported key sizes fit in a single (32-byte) KSB entry
+	 * and must be in little endian format. Use the 256-bit byte
+	 * swap passthru option to convert from big endian to little
+	 * endian.
+	 */
+	ret = ccp_init_dm_workarea(&key, cmd_q,
+				   CCP_XTS_AES_KEY_KSB_COUNT * CCP_KSB_BYTES,
+				   DMA_TO_DEVICE);
+	if (ret)
+		return ret;
+
+	dm_offset = CCP_KSB_BYTES - AES_KEYSIZE_128;
+	ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
+	ccp_set_dm_area(&key, 0, xts->key, dm_offset, xts->key_len);
+	ret = ccp_copy_to_ksb(cmd_q, &key, op.jobid, op.ksb_key,
+			      CCP_PASSTHRU_BYTESWAP_256BIT);
+	if (ret) {
+		cmd->engine_error = cmd_q->cmd_error;
+		goto e_key;
+	}
+
+	/* The AES context fits in a single (32-byte) KSB entry and
+	 * for XTS is already in little endian format so no byte swapping
+	 * is needed.
+	 */
+	ret = ccp_init_dm_workarea(&ctx, cmd_q,
+				   CCP_XTS_AES_CTX_KSB_COUNT * CCP_KSB_BYTES,
+				   DMA_BIDIRECTIONAL);
+	if (ret)
+		goto e_key;
+
+	ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
+	ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
+			      CCP_PASSTHRU_BYTESWAP_NOOP);
+	if (ret) {
+		cmd->engine_error = cmd_q->cmd_error;
+		goto e_ctx;
+	}
+
+	/* Prepare the input and output data workareas. For in-place
+	 * operations we need to set the dma direction to BIDIRECTIONAL
+	 * and copy the src workarea to the dst workarea.
+	 */
+	if (sg_virt(xts->src) == sg_virt(xts->dst))
+		in_place = true;
+
+	ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
+			    unit_size,
+			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
+	if (ret)
+		goto e_ctx;
+
+	if (in_place)
+		dst = src;
+	else {
+		ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
+				    unit_size, DMA_FROM_DEVICE);
+		if (ret)
+			goto e_src;
+	}
+
+	/* Send data to the CCP AES engine */
+	while (src.sg_wa.bytes_left) {
+		ccp_prepare_data(&src, &dst, &op, unit_size, true);
+		if (!src.sg_wa.bytes_left)
+			op.eom = 1;
+
+		ret = ccp_perform_xts_aes(&op);
+		if (ret) {
+			cmd->engine_error = cmd_q->cmd_error;
+			goto e_dst;
+		}
+
+		ccp_process_data(&src, &dst, &op);
+	}
+
+	/* Retrieve the AES context - convert from LE to BE using
+	 * 32-byte (256-bit) byteswapping
+	 */
+	ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
+				CCP_PASSTHRU_BYTESWAP_256BIT);
+	if (ret) {
+		cmd->engine_error = cmd_q->cmd_error;
+		goto e_dst;
+	}
+
+	/* ...but we only need AES_BLOCK_SIZE bytes */
+	dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE;
+	ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
+
+e_dst:
+	if (!in_place)
+		ccp_free_data(&dst, cmd_q);
+
+e_src:
+	ccp_free_data(&src, cmd_q);
+
+e_ctx:
+	ccp_dm_free(&ctx);
+
+e_key:
+	ccp_dm_free(&key);
+
+	return ret;
+}
+
+static int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+	struct ccp_sha_engine *sha = &cmd->u.sha;
+	struct ccp_dm_workarea ctx;
+	struct ccp_data src;
+	struct ccp_op op;
+	int ret;
+
+	if (sha->ctx_len != CCP_SHA_CTXSIZE)
+		return -EINVAL;
+
+	if (!sha->ctx)
+		return -EINVAL;
+
+	if (!sha->final && (sha->src_len & (CCP_SHA_BLOCKSIZE - 1)))
+		return -EINVAL;
+
+	if (!sha->src_len) {
+		const u8 *sha_zero;
+
+		/* Not final, just return */
+		if (!sha->final)
+			return 0;
+
+		/* CCP can't do a zero length sha operation so the caller
+		 * must buffer the data.
+		 */
+		if (sha->msg_bits)
+			return -EINVAL;
+
+		/* A sha operation for a message with a total length of zero,
+		 * return known result.
+		 */
+		switch (sha->type) {
+		case CCP_SHA_TYPE_1:
+			sha_zero = ccp_sha1_zero;
+			break;
+		case CCP_SHA_TYPE_224:
+			sha_zero = ccp_sha224_zero;
+			break;
+		case CCP_SHA_TYPE_256:
+			sha_zero = ccp_sha256_zero;
+			break;
+		default:
+			return -EINVAL;
+		}
+
+		scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
+					 sha->ctx_len, 1);
+
+		return 0;
+	}
+
+	if (!sha->src)
+		return -EINVAL;
+
+	BUILD_BUG_ON(CCP_SHA_KSB_COUNT != 1);
+
+	memset(&op, 0, sizeof(op));
+	op.cmd_q = cmd_q;
+	op.jobid = ccp_gen_jobid(cmd_q->ccp);
+	op.ksb_ctx = cmd_q->ksb_ctx;
+	op.u.sha.type = sha->type;
+	op.u.sha.msg_bits = sha->msg_bits;
+
+	/* The SHA context fits in a single (32-byte) KSB entry and
+	 * must be in little endian format. Use the 256-bit byte swap
+	 * passthru option to convert from big endian to little endian.
+	 */
+	ret = ccp_init_dm_workarea(&ctx, cmd_q,
+				   CCP_SHA_KSB_COUNT * CCP_KSB_BYTES,
+				   DMA_BIDIRECTIONAL);
+	if (ret)
+		return ret;
+
+	ccp_set_dm_area(&ctx, 0, sha->ctx, 0, sha->ctx_len);
+	ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
+			      CCP_PASSTHRU_BYTESWAP_256BIT);
+	if (ret) {
+		cmd->engine_error = cmd_q->cmd_error;
+		goto e_ctx;
+	}
+
+	/* Send data to the CCP SHA engine */
+	ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
+			    CCP_SHA_BLOCKSIZE, DMA_TO_DEVICE);
+	if (ret)
+		goto e_ctx;
+
+	while (src.sg_wa.bytes_left) {
+		ccp_prepare_data(&src, NULL, &op, CCP_SHA_BLOCKSIZE, false);
+		if (sha->final && !src.sg_wa.bytes_left)
+			op.eom = 1;
+
+		ret = ccp_perform_sha(&op);
+		if (ret) {
+			cmd->engine_error = cmd_q->cmd_error;
+			goto e_data;
+		}
+
+		ccp_process_data(&src, NULL, &op);
+	}
+
+	/* Retrieve the SHA context - convert from LE to BE using
+	 * 32-byte (256-bit) byteswapping to BE
+	 */
+	ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
+				CCP_PASSTHRU_BYTESWAP_256BIT);
+	if (ret) {
+		cmd->engine_error = cmd_q->cmd_error;
+		goto e_data;
+	}
+
+	ccp_get_dm_area(&ctx, 0, sha->ctx, 0, sha->ctx_len);
+
+e_data:
+	ccp_free_data(&src, cmd_q);
+
+e_ctx:
+	ccp_dm_free(&ctx);
+
+	return ret;
+}
+
+static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+	struct ccp_rsa_engine *rsa = &cmd->u.rsa;
+	struct ccp_dm_workarea exp, src;
+	struct ccp_data dst;
+	struct ccp_op op;
+	unsigned int ksb_count, i_len, o_len;
+	int ret;
+
+	if (rsa->key_size > CCP_RSA_MAX_WIDTH)
+		return -EINVAL;
+
+	if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
+		return -EINVAL;
+
+	/* The RSA modulus must precede the message being acted upon, so
+	 * it must be copied to a DMA area where the message and the
+	 * modulus can be concatenated.  Therefore the input buffer
+	 * length required is twice the output buffer length (which
+	 * must be a multiple of 256-bits).
+	 */
+	o_len = ((rsa->key_size + 255) / 256) * 32;
+	i_len = o_len * 2;
+
+	ksb_count = o_len / CCP_KSB_BYTES;
+
+	memset(&op, 0, sizeof(op));
+	op.cmd_q = cmd_q;
+	op.jobid = ccp_gen_jobid(cmd_q->ccp);
+	op.ksb_key = ccp_alloc_ksb(cmd_q->ccp, ksb_count);
+	if (!op.ksb_key)
+		return -EIO;
+
+	/* The RSA exponent may span multiple (32-byte) KSB entries and must
+	 * be in little endian format. Reverse copy each 32-byte chunk
+	 * of the exponent (En chunk to E0 chunk, E(n-1) chunk to E1 chunk)
+	 * and each byte within that chunk and do not perform any byte swap
+	 * operations on the passthru operation.
+	 */
+	ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
+	if (ret)
+		goto e_ksb;
+
+	ccp_reverse_set_dm_area(&exp, rsa->exp, rsa->exp_len, CCP_KSB_BYTES,
+				true);
+	ret = ccp_copy_to_ksb(cmd_q, &exp, op.jobid, op.ksb_key,
+			      CCP_PASSTHRU_BYTESWAP_NOOP);
+	if (ret) {
+		cmd->engine_error = cmd_q->cmd_error;
+		goto e_exp;
+	}
+
+	/* Concatenate the modulus and the message. Both the modulus and
+	 * the operands must be in little endian format.  Since the input
+	 * is in big endian format it must be converted.
+	 */
+	ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
+	if (ret)
+		goto e_exp;
+
+	ccp_reverse_set_dm_area(&src, rsa->mod, rsa->mod_len, CCP_KSB_BYTES,
+				true);
+	src.address += o_len;	/* Adjust the address for the copy operation */
+	ccp_reverse_set_dm_area(&src, rsa->src, rsa->src_len, CCP_KSB_BYTES,
+				true);
+	src.address -= o_len;	/* Reset the address to original value */
+
+	/* Prepare the output area for the operation */
+	ret = ccp_init_data(&dst, cmd_q, rsa->dst, rsa->mod_len,
+			    o_len, DMA_FROM_DEVICE);
+	if (ret)
+		goto e_src;
+
+	op.soc = 1;
+	op.src.u.dma.address = src.dma.address;
+	op.src.u.dma.offset = 0;
+	op.src.u.dma.length = i_len;
+	op.dst.u.dma.address = dst.dm_wa.dma.address;
+	op.dst.u.dma.offset = 0;
+	op.dst.u.dma.length = o_len;
+
+	op.u.rsa.mod_size = rsa->key_size;
+	op.u.rsa.input_len = i_len;
+
+	ret = ccp_perform_rsa(&op);
+	if (ret) {
+		cmd->engine_error = cmd_q->cmd_error;
+		goto e_dst;
+	}
+
+	ccp_reverse_get_dm_area(&dst.dm_wa, rsa->dst, rsa->mod_len);
+
+e_dst:
+	ccp_free_data(&dst, cmd_q);
+
+e_src:
+	ccp_dm_free(&src);
+
+e_exp:
+	ccp_dm_free(&exp);
+
+e_ksb:
+	ccp_free_ksb(cmd_q->ccp, op.ksb_key, ksb_count);
+
+	return ret;
+}
+
+static int ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q,
+				struct ccp_cmd *cmd)
+{
+	struct ccp_passthru_engine *pt = &cmd->u.passthru;
+	struct ccp_dm_workarea mask;
+	struct ccp_data src, dst;
+	struct ccp_op op;
+	bool in_place = false;
+	unsigned int i;
+	int ret;
+
+	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
+		return -EINVAL;
+
+	if (!pt->src || !pt->dst)
+		return -EINVAL;
+
+	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
+		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
+			return -EINVAL;
+		if (!pt->mask)
+			return -EINVAL;
+	}
+
+	BUILD_BUG_ON(CCP_PASSTHRU_KSB_COUNT != 1);
+
+	memset(&op, 0, sizeof(op));
+	op.cmd_q = cmd_q;
+	op.jobid = ccp_gen_jobid(cmd_q->ccp);
+
+	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
+		/* Load the mask */
+		op.ksb_key = cmd_q->ksb_key;
+
+		ret = ccp_init_dm_workarea(&mask, cmd_q,
+					   CCP_PASSTHRU_KSB_COUNT *
+					   CCP_KSB_BYTES,
+					   DMA_TO_DEVICE);
+		if (ret)
+			return ret;
+
+		ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
+		ret = ccp_copy_to_ksb(cmd_q, &mask, op.jobid, op.ksb_key,
+				      CCP_PASSTHRU_BYTESWAP_NOOP);
+		if (ret) {
+			cmd->engine_error = cmd_q->cmd_error;
+			goto e_mask;
+		}
+	}
+
+	/* Prepare the input and output data workareas. For in-place
+	 * operations we need to set the dma direction to BIDIRECTIONAL
+	 * and copy the src workarea to the dst workarea.
+	 */
+	if (sg_virt(pt->src) == sg_virt(pt->dst))
+		in_place = true;
+
+	ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
+			    CCP_PASSTHRU_MASKSIZE,
+			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
+	if (ret)
+		goto e_mask;
+
+	if (in_place)
+		dst = src;
+	else {
+		ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
+				    CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
+		if (ret)
+			goto e_src;
+	}
+
+	/* Send data to the CCP Passthru engine
+	 *   Because the CCP engine works on a single source and destination
+	 *   dma address at a time, each entry in the source scatterlist
+	 *   (after the dma_map_sg call) must be less than or equal to the
+	 *   (remaining) length in the destination scatterlist entry and the
+	 *   length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
+	 */
+	dst.sg_wa.sg_used = 0;
+	for (i = 1; i <= src.sg_wa.dma_count; i++) {
+		if (!dst.sg_wa.sg ||
+		    (dst.sg_wa.sg->length < src.sg_wa.sg->length)) {
+			ret = -EINVAL;
+			goto e_dst;
+		}
+
+		if (i == src.sg_wa.dma_count) {
+			op.eom = 1;
+			op.soc = 1;
+		}
+
+		op.src.type = CCP_MEMTYPE_SYSTEM;
+		op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
+		op.src.u.dma.offset = 0;
+		op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
+
+		op.dst.type = CCP_MEMTYPE_SYSTEM;
+		op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
+		op.src.u.dma.offset = dst.sg_wa.sg_used;
+		op.src.u.dma.length = op.src.u.dma.length;
+
+		ret = ccp_perform_passthru(&op);
+		if (ret) {
+			cmd->engine_error = cmd_q->cmd_error;
+			goto e_dst;
+		}
+
+		dst.sg_wa.sg_used += src.sg_wa.sg->length;
+		if (dst.sg_wa.sg_used == dst.sg_wa.sg->length) {
+			dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
+			dst.sg_wa.sg_used = 0;
+		}
+		src.sg_wa.sg = sg_next(src.sg_wa.sg);
+	}
+
+e_dst:
+	if (!in_place)
+		ccp_free_data(&dst, cmd_q);
+
+e_src:
+	ccp_free_data(&src, cmd_q);
+
+e_mask:
+	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
+		ccp_dm_free(&mask);
+
+	return ret;
+}
+
+static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
+	struct ccp_dm_workarea src, dst;
+	struct ccp_op op;
+	int ret;
+	u8 *save;
+
+	if (!ecc->u.mm.operand_1 ||
+	    (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
+		return -EINVAL;
+
+	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
+		if (!ecc->u.mm.operand_2 ||
+		    (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
+			return -EINVAL;
+
+	if (!ecc->u.mm.result ||
+	    (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
+		return -EINVAL;
+
+	memset(&op, 0, sizeof(op));
+	op.cmd_q = cmd_q;
+	op.jobid = ccp_gen_jobid(cmd_q->ccp);
+
+	/* Concatenate the modulus and the operands. Both the modulus and
+	 * the operands must be in little endian format.  Since the input
+	 * is in big endian format it must be converted and placed in a
+	 * fixed length buffer.
+	 */
+	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
+				   DMA_TO_DEVICE);
+	if (ret)
+		return ret;
+
+	/* Save the workarea address since it is updated in order to perform
+	 * the concatenation
+	 */
+	save = src.address;
+
+	/* Copy the ECC modulus */
+	ccp_reverse_set_dm_area(&src, ecc->mod, ecc->mod_len,
+				CCP_ECC_OPERAND_SIZE, true);
+	src.address += CCP_ECC_OPERAND_SIZE;
+
+	/* Copy the first operand */
+	ccp_reverse_set_dm_area(&src, ecc->u.mm.operand_1,
+				ecc->u.mm.operand_1_len,
+				CCP_ECC_OPERAND_SIZE, true);
+	src.address += CCP_ECC_OPERAND_SIZE;
+
+	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
+		/* Copy the second operand */
+		ccp_reverse_set_dm_area(&src, ecc->u.mm.operand_2,
+					ecc->u.mm.operand_2_len,
+					CCP_ECC_OPERAND_SIZE, true);
+		src.address += CCP_ECC_OPERAND_SIZE;
+	}
+
+	/* Restore the workarea address */
+	src.address = save;
+
+	/* Prepare the output area for the operation */
+	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
+				   DMA_FROM_DEVICE);
+	if (ret)
+		goto e_src;
+
+	op.soc = 1;
+	op.src.u.dma.address = src.dma.address;
+	op.src.u.dma.offset = 0;
+	op.src.u.dma.length = src.length;
+	op.dst.u.dma.address = dst.dma.address;
+	op.dst.u.dma.offset = 0;
+	op.dst.u.dma.length = dst.length;
+
+	op.u.ecc.function = cmd->u.ecc.function;
+
+	ret = ccp_perform_ecc(&op);
+	if (ret) {
+		cmd->engine_error = cmd_q->cmd_error;
+		goto e_dst;
+	}
+
+	ecc->ecc_result = le16_to_cpup(
+		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
+	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
+		ret = -EIO;
+		goto e_dst;
+	}
+
+	/* Save the ECC result */
+	ccp_reverse_get_dm_area(&dst, ecc->u.mm.result, CCP_ECC_MODULUS_BYTES);
+
+e_dst:
+	ccp_dm_free(&dst);
+
+e_src:
+	ccp_dm_free(&src);
+
+	return ret;
+}
+
+static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
+	struct ccp_dm_workarea src, dst;
+	struct ccp_op op;
+	int ret;
+	u8 *save;
+
+	if (!ecc->u.pm.point_1.x ||
+	    (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
+	    !ecc->u.pm.point_1.y ||
+	    (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
+		return -EINVAL;
+
+	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
+		if (!ecc->u.pm.point_2.x ||
+		    (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
+		    !ecc->u.pm.point_2.y ||
+		    (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
+			return -EINVAL;
+	} else {
+		if (!ecc->u.pm.domain_a ||
+		    (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
+			return -EINVAL;
+
+		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
+			if (!ecc->u.pm.scalar ||
+			    (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
+				return -EINVAL;
+	}
+
+	if (!ecc->u.pm.result.x ||
+	    (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
+	    !ecc->u.pm.result.y ||
+	    (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
+		return -EINVAL;
+
+	memset(&op, 0, sizeof(op));
+	op.cmd_q = cmd_q;
+	op.jobid = ccp_gen_jobid(cmd_q->ccp);
+
+	/* Concatenate the modulus and the operands. Both the modulus and
+	 * the operands must be in little endian format.  Since the input
+	 * is in big endian format it must be converted and placed in a
+	 * fixed length buffer.
+	 */
+	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
+				   DMA_TO_DEVICE);
+	if (ret)
+		return ret;
+
+	/* Save the workarea address since it is updated in order to perform
+	 * the concatenation
+	 */
+	save = src.address;
+
+	/* Copy the ECC modulus */
+	ccp_reverse_set_dm_area(&src, ecc->mod, ecc->mod_len,
+				CCP_ECC_OPERAND_SIZE, true);
+	src.address += CCP_ECC_OPERAND_SIZE;
+
+	/* Copy the first point X and Y coordinate */
+	ccp_reverse_set_dm_area(&src, ecc->u.pm.point_1.x,
+				ecc->u.pm.point_1.x_len,
+				CCP_ECC_OPERAND_SIZE, true);
+	src.address += CCP_ECC_OPERAND_SIZE;
+	ccp_reverse_set_dm_area(&src, ecc->u.pm.point_1.y,
+				ecc->u.pm.point_1.y_len,
+				CCP_ECC_OPERAND_SIZE, true);
+	src.address += CCP_ECC_OPERAND_SIZE;
+
+	/* Set the first point Z coordianate to 1 */
+	*(src.address) = 0x01;
+	src.address += CCP_ECC_OPERAND_SIZE;
+
+	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
+		/* Copy the second point X and Y coordinate */
+		ccp_reverse_set_dm_area(&src, ecc->u.pm.point_2.x,
+					ecc->u.pm.point_2.x_len,
+					CCP_ECC_OPERAND_SIZE, true);
+		src.address += CCP_ECC_OPERAND_SIZE;
+		ccp_reverse_set_dm_area(&src, ecc->u.pm.point_2.y,
+					ecc->u.pm.point_2.y_len,
+					CCP_ECC_OPERAND_SIZE, true);
+		src.address += CCP_ECC_OPERAND_SIZE;
+
+		/* Set the second point Z coordianate to 1 */
+		*(src.address) = 0x01;
+		src.address += CCP_ECC_OPERAND_SIZE;
+	} else {
+		/* Copy the Domain "a" parameter */
+		ccp_reverse_set_dm_area(&src, ecc->u.pm.domain_a,
+					ecc->u.pm.domain_a_len,
+					CCP_ECC_OPERAND_SIZE, true);
+		src.address += CCP_ECC_OPERAND_SIZE;
+
+		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
+			/* Copy the scalar value */
+			ccp_reverse_set_dm_area(&src, ecc->u.pm.scalar,
+						ecc->u.pm.scalar_len,
+						CCP_ECC_OPERAND_SIZE, true);
+			src.address += CCP_ECC_OPERAND_SIZE;
+		}
+	}
+
+	/* Restore the workarea address */
+	src.address = save;
+
+	/* Prepare the output area for the operation */
+	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
+				   DMA_FROM_DEVICE);
+	if (ret)
+		goto e_src;
+
+	op.soc = 1;
+	op.src.u.dma.address = src.dma.address;
+	op.src.u.dma.offset = 0;
+	op.src.u.dma.length = src.length;
+	op.dst.u.dma.address = dst.dma.address;
+	op.dst.u.dma.offset = 0;
+	op.dst.u.dma.length = dst.length;
+
+	op.u.ecc.function = cmd->u.ecc.function;
+
+	ret = ccp_perform_ecc(&op);
+	if (ret) {
+		cmd->engine_error = cmd_q->cmd_error;
+		goto e_dst;
+	}
+
+	ecc->ecc_result = le16_to_cpup(
+		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
+	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
+		ret = -EIO;
+		goto e_dst;
+	}
+
+	/* Save the workarea address since it is updated as we walk through
+	 * to copy the point math result
+	 */
+	save = dst.address;
+
+	/* Save the ECC result X and Y coordinates */
+	ccp_reverse_get_dm_area(&dst, ecc->u.pm.result.x,
+				CCP_ECC_MODULUS_BYTES);
+	dst.address += CCP_ECC_OUTPUT_SIZE;
+	ccp_reverse_get_dm_area(&dst, ecc->u.pm.result.y,
+				CCP_ECC_MODULUS_BYTES);
+	dst.address += CCP_ECC_OUTPUT_SIZE;
+
+	/* Restore the workarea address */
+	dst.address = save;
+
+e_dst:
+	ccp_dm_free(&dst);
+
+e_src:
+	ccp_dm_free(&src);
+
+	return ret;
+}
+
+static int ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
+
+	ecc->ecc_result = 0;
+
+	if (!ecc->mod ||
+	    (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
+		return -EINVAL;
+
+	switch (ecc->function) {
+	case CCP_ECC_FUNCTION_MMUL_384BIT:
+	case CCP_ECC_FUNCTION_MADD_384BIT:
+	case CCP_ECC_FUNCTION_MINV_384BIT:
+		return ccp_run_ecc_mm_cmd(cmd_q, cmd);
+
+	case CCP_ECC_FUNCTION_PADD_384BIT:
+	case CCP_ECC_FUNCTION_PMUL_384BIT:
+	case CCP_ECC_FUNCTION_PDBL_384BIT:
+		return ccp_run_ecc_pm_cmd(cmd_q, cmd);
+
+	default:
+		return -EINVAL;
+	}
+}
+
+int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+	int ret;
+
+	cmd->engine_error = 0;
+	cmd_q->cmd_error = 0;
+	cmd_q->int_rcvd = 0;
+	cmd_q->free_slots = CMD_Q_DEPTH(ioread32(cmd_q->reg_status));
+
+	switch (cmd->engine) {
+	case CCP_ENGINE_AES:
+		ret = ccp_run_aes_cmd(cmd_q, cmd);
+		break;
+	case CCP_ENGINE_XTS_AES_128:
+		ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
+		break;
+	case CCP_ENGINE_SHA:
+		ret = ccp_run_sha_cmd(cmd_q, cmd);
+		break;
+	case CCP_ENGINE_RSA:
+		ret = ccp_run_rsa_cmd(cmd_q, cmd);
+		break;
+	case CCP_ENGINE_PASSTHRU:
+		ret = ccp_run_passthru_cmd(cmd_q, cmd);
+		break;
+	case CCP_ENGINE_ECC:
+		ret = ccp_run_ecc_cmd(cmd_q, cmd);
+		break;
+	default:
+		ret = -EINVAL;
+	}
+
+	return ret;
+}