| /* |
| * nicstar.c |
| * |
| * Device driver supporting CBR for IDT 77201/77211 "NICStAR" based cards. |
| * |
| * IMPORTANT: The included file nicstarmac.c was NOT WRITTEN BY ME. |
| * It was taken from the frle-0.22 device driver. |
| * As the file doesn't have a copyright notice, in the file |
| * nicstarmac.copyright I put the copyright notice from the |
| * frle-0.22 device driver. |
| * Some code is based on the nicstar driver by M. Welsh. |
| * |
| * Author: Rui Prior (rprior@inescn.pt) |
| * PowerPC support by Jay Talbott (jay_talbott@mcg.mot.com) April 1999 |
| * |
| * |
| * (C) INESC 1999 |
| */ |
| |
| /* |
| * IMPORTANT INFORMATION |
| * |
| * There are currently three types of spinlocks: |
| * |
| * 1 - Per card interrupt spinlock (to protect structures and such) |
| * 2 - Per SCQ scq spinlock |
| * 3 - Per card resource spinlock (to access registers, etc.) |
| * |
| * These must NEVER be grabbed in reverse order. |
| * |
| */ |
| |
| /* Header files */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/skbuff.h> |
| #include <linux/atmdev.h> |
| #include <linux/atm.h> |
| #include <linux/pci.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/types.h> |
| #include <linux/string.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/sched.h> |
| #include <linux/timer.h> |
| #include <linux/interrupt.h> |
| #include <linux/bitops.h> |
| #include <linux/slab.h> |
| #include <linux/idr.h> |
| #include <asm/io.h> |
| #include <linux/uaccess.h> |
| #include <linux/atomic.h> |
| #include <linux/etherdevice.h> |
| #include "nicstar.h" |
| #ifdef CONFIG_ATM_NICSTAR_USE_SUNI |
| #include "suni.h" |
| #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */ |
| #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105 |
| #include "idt77105.h" |
| #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */ |
| |
| /* Additional code */ |
| |
| #include "nicstarmac.c" |
| |
| /* Configurable parameters */ |
| |
| #undef PHY_LOOPBACK |
| #undef TX_DEBUG |
| #undef RX_DEBUG |
| #undef GENERAL_DEBUG |
| #undef EXTRA_DEBUG |
| |
| /* Do not touch these */ |
| |
| #ifdef TX_DEBUG |
| #define TXPRINTK(args...) printk(args) |
| #else |
| #define TXPRINTK(args...) |
| #endif /* TX_DEBUG */ |
| |
| #ifdef RX_DEBUG |
| #define RXPRINTK(args...) printk(args) |
| #else |
| #define RXPRINTK(args...) |
| #endif /* RX_DEBUG */ |
| |
| #ifdef GENERAL_DEBUG |
| #define PRINTK(args...) printk(args) |
| #else |
| #define PRINTK(args...) |
| #endif /* GENERAL_DEBUG */ |
| |
| #ifdef EXTRA_DEBUG |
| #define XPRINTK(args...) printk(args) |
| #else |
| #define XPRINTK(args...) |
| #endif /* EXTRA_DEBUG */ |
| |
| /* Macros */ |
| |
| #define CMD_BUSY(card) (readl((card)->membase + STAT) & NS_STAT_CMDBZ) |
| |
| #define NS_DELAY mdelay(1) |
| |
| #define PTR_DIFF(a, b) ((u32)((unsigned long)(a) - (unsigned long)(b))) |
| |
| #ifndef ATM_SKB |
| #define ATM_SKB(s) (&(s)->atm) |
| #endif |
| |
| #define scq_virt_to_bus(scq, p) \ |
| (scq->dma + ((unsigned long)(p) - (unsigned long)(scq)->org)) |
| |
| /* Function declarations */ |
| |
| static u32 ns_read_sram(ns_dev * card, u32 sram_address); |
| static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value, |
| int count); |
| static int ns_init_card(int i, struct pci_dev *pcidev); |
| static void ns_init_card_error(ns_dev * card, int error); |
| static scq_info *get_scq(ns_dev *card, int size, u32 scd); |
| static void free_scq(ns_dev *card, scq_info * scq, struct atm_vcc *vcc); |
| static void push_rxbufs(ns_dev *, struct sk_buff *); |
| static irqreturn_t ns_irq_handler(int irq, void *dev_id); |
| static int ns_open(struct atm_vcc *vcc); |
| static void ns_close(struct atm_vcc *vcc); |
| static void fill_tst(ns_dev * card, int n, vc_map * vc); |
| static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb); |
| static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd, |
| struct sk_buff *skb); |
| static void process_tsq(ns_dev * card); |
| static void drain_scq(ns_dev * card, scq_info * scq, int pos); |
| static void process_rsq(ns_dev * card); |
| static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe); |
| static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb); |
| static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count); |
| static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb); |
| static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb); |
| static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb); |
| static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page); |
| static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg); |
| #ifdef EXTRA_DEBUG |
| static void which_list(ns_dev * card, struct sk_buff *skb); |
| #endif |
| static void ns_poll(unsigned long arg); |
| static void ns_phy_put(struct atm_dev *dev, unsigned char value, |
| unsigned long addr); |
| static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr); |
| |
| /* Global variables */ |
| |
| static struct ns_dev *cards[NS_MAX_CARDS]; |
| static unsigned num_cards; |
| static struct atmdev_ops atm_ops = { |
| .open = ns_open, |
| .close = ns_close, |
| .ioctl = ns_ioctl, |
| .send = ns_send, |
| .phy_put = ns_phy_put, |
| .phy_get = ns_phy_get, |
| .proc_read = ns_proc_read, |
| .owner = THIS_MODULE, |
| }; |
| |
| static struct timer_list ns_timer; |
| static char *mac[NS_MAX_CARDS]; |
| module_param_array(mac, charp, NULL, 0); |
| MODULE_LICENSE("GPL"); |
| |
| /* Functions */ |
| |
| static int nicstar_init_one(struct pci_dev *pcidev, |
| const struct pci_device_id *ent) |
| { |
| static int index = -1; |
| unsigned int error; |
| |
| index++; |
| cards[index] = NULL; |
| |
| error = ns_init_card(index, pcidev); |
| if (error) { |
| cards[index--] = NULL; /* don't increment index */ |
| goto err_out; |
| } |
| |
| return 0; |
| err_out: |
| return -ENODEV; |
| } |
| |
| static void nicstar_remove_one(struct pci_dev *pcidev) |
| { |
| int i, j; |
| ns_dev *card = pci_get_drvdata(pcidev); |
| struct sk_buff *hb; |
| struct sk_buff *iovb; |
| struct sk_buff *lb; |
| struct sk_buff *sb; |
| |
| i = card->index; |
| |
| if (cards[i] == NULL) |
| return; |
| |
| if (card->atmdev->phy && card->atmdev->phy->stop) |
| card->atmdev->phy->stop(card->atmdev); |
| |
| /* Stop everything */ |
| writel(0x00000000, card->membase + CFG); |
| |
| /* De-register device */ |
| atm_dev_deregister(card->atmdev); |
| |
| /* Disable PCI device */ |
| pci_disable_device(pcidev); |
| |
| /* Free up resources */ |
| j = 0; |
| PRINTK("nicstar%d: freeing %d huge buffers.\n", i, card->hbpool.count); |
| while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) { |
| dev_kfree_skb_any(hb); |
| j++; |
| } |
| PRINTK("nicstar%d: %d huge buffers freed.\n", i, j); |
| j = 0; |
| PRINTK("nicstar%d: freeing %d iovec buffers.\n", i, |
| card->iovpool.count); |
| while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) { |
| dev_kfree_skb_any(iovb); |
| j++; |
| } |
| PRINTK("nicstar%d: %d iovec buffers freed.\n", i, j); |
| while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL) |
| dev_kfree_skb_any(lb); |
| while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL) |
| dev_kfree_skb_any(sb); |
| free_scq(card, card->scq0, NULL); |
| for (j = 0; j < NS_FRSCD_NUM; j++) { |
| if (card->scd2vc[j] != NULL) |
| free_scq(card, card->scd2vc[j]->scq, card->scd2vc[j]->tx_vcc); |
| } |
| idr_destroy(&card->idr); |
| dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT, |
| card->rsq.org, card->rsq.dma); |
| dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT, |
| card->tsq.org, card->tsq.dma); |
| free_irq(card->pcidev->irq, card); |
| iounmap(card->membase); |
| kfree(card); |
| } |
| |
| static const struct pci_device_id nicstar_pci_tbl[] = { |
| { PCI_VDEVICE(IDT, PCI_DEVICE_ID_IDT_IDT77201), 0 }, |
| {0,} /* terminate list */ |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, nicstar_pci_tbl); |
| |
| static struct pci_driver nicstar_driver = { |
| .name = "nicstar", |
| .id_table = nicstar_pci_tbl, |
| .probe = nicstar_init_one, |
| .remove = nicstar_remove_one, |
| }; |
| |
| static int __init nicstar_init(void) |
| { |
| unsigned error = 0; /* Initialized to remove compile warning */ |
| |
| XPRINTK("nicstar: nicstar_init() called.\n"); |
| |
| error = pci_register_driver(&nicstar_driver); |
| |
| TXPRINTK("nicstar: TX debug enabled.\n"); |
| RXPRINTK("nicstar: RX debug enabled.\n"); |
| PRINTK("nicstar: General debug enabled.\n"); |
| #ifdef PHY_LOOPBACK |
| printk("nicstar: using PHY loopback.\n"); |
| #endif /* PHY_LOOPBACK */ |
| XPRINTK("nicstar: nicstar_init() returned.\n"); |
| |
| if (!error) { |
| init_timer(&ns_timer); |
| ns_timer.expires = jiffies + NS_POLL_PERIOD; |
| ns_timer.data = 0UL; |
| ns_timer.function = ns_poll; |
| add_timer(&ns_timer); |
| } |
| |
| return error; |
| } |
| |
| static void __exit nicstar_cleanup(void) |
| { |
| XPRINTK("nicstar: nicstar_cleanup() called.\n"); |
| |
| del_timer(&ns_timer); |
| |
| pci_unregister_driver(&nicstar_driver); |
| |
| XPRINTK("nicstar: nicstar_cleanup() returned.\n"); |
| } |
| |
| static u32 ns_read_sram(ns_dev * card, u32 sram_address) |
| { |
| unsigned long flags; |
| u32 data; |
| sram_address <<= 2; |
| sram_address &= 0x0007FFFC; /* address must be dword aligned */ |
| sram_address |= 0x50000000; /* SRAM read command */ |
| spin_lock_irqsave(&card->res_lock, flags); |
| while (CMD_BUSY(card)) ; |
| writel(sram_address, card->membase + CMD); |
| while (CMD_BUSY(card)) ; |
| data = readl(card->membase + DR0); |
| spin_unlock_irqrestore(&card->res_lock, flags); |
| return data; |
| } |
| |
| static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value, |
| int count) |
| { |
| unsigned long flags; |
| int i, c; |
| count--; /* count range now is 0..3 instead of 1..4 */ |
| c = count; |
| c <<= 2; /* to use increments of 4 */ |
| spin_lock_irqsave(&card->res_lock, flags); |
| while (CMD_BUSY(card)) ; |
| for (i = 0; i <= c; i += 4) |
| writel(*(value++), card->membase + i); |
| /* Note: DR# registers are the first 4 dwords in nicstar's memspace, |
| so card->membase + DR0 == card->membase */ |
| sram_address <<= 2; |
| sram_address &= 0x0007FFFC; |
| sram_address |= (0x40000000 | count); |
| writel(sram_address, card->membase + CMD); |
| spin_unlock_irqrestore(&card->res_lock, flags); |
| } |
| |
| static int ns_init_card(int i, struct pci_dev *pcidev) |
| { |
| int j; |
| struct ns_dev *card = NULL; |
| unsigned char pci_latency; |
| unsigned error; |
| u32 data; |
| u32 u32d[4]; |
| u32 ns_cfg_rctsize; |
| int bcount; |
| unsigned long membase; |
| |
| error = 0; |
| |
| if (pci_enable_device(pcidev)) { |
| printk("nicstar%d: can't enable PCI device\n", i); |
| error = 2; |
| ns_init_card_error(card, error); |
| return error; |
| } |
| if (dma_set_mask_and_coherent(&pcidev->dev, DMA_BIT_MASK(32)) != 0) { |
| printk(KERN_WARNING |
| "nicstar%d: No suitable DMA available.\n", i); |
| error = 2; |
| ns_init_card_error(card, error); |
| return error; |
| } |
| |
| card = kmalloc(sizeof(*card), GFP_KERNEL); |
| if (!card) { |
| printk |
| ("nicstar%d: can't allocate memory for device structure.\n", |
| i); |
| error = 2; |
| ns_init_card_error(card, error); |
| return error; |
| } |
| cards[i] = card; |
| spin_lock_init(&card->int_lock); |
| spin_lock_init(&card->res_lock); |
| |
| pci_set_drvdata(pcidev, card); |
| |
| card->index = i; |
| card->atmdev = NULL; |
| card->pcidev = pcidev; |
| membase = pci_resource_start(pcidev, 1); |
| card->membase = ioremap(membase, NS_IOREMAP_SIZE); |
| if (!card->membase) { |
| printk("nicstar%d: can't ioremap() membase.\n", i); |
| error = 3; |
| ns_init_card_error(card, error); |
| return error; |
| } |
| PRINTK("nicstar%d: membase at 0x%p.\n", i, card->membase); |
| |
| pci_set_master(pcidev); |
| |
| if (pci_read_config_byte(pcidev, PCI_LATENCY_TIMER, &pci_latency) != 0) { |
| printk("nicstar%d: can't read PCI latency timer.\n", i); |
| error = 6; |
| ns_init_card_error(card, error); |
| return error; |
| } |
| #ifdef NS_PCI_LATENCY |
| if (pci_latency < NS_PCI_LATENCY) { |
| PRINTK("nicstar%d: setting PCI latency timer to %d.\n", i, |
| NS_PCI_LATENCY); |
| for (j = 1; j < 4; j++) { |
| if (pci_write_config_byte |
| (pcidev, PCI_LATENCY_TIMER, NS_PCI_LATENCY) != 0) |
| break; |
| } |
| if (j == 4) { |
| printk |
| ("nicstar%d: can't set PCI latency timer to %d.\n", |
| i, NS_PCI_LATENCY); |
| error = 7; |
| ns_init_card_error(card, error); |
| return error; |
| } |
| } |
| #endif /* NS_PCI_LATENCY */ |
| |
| /* Clear timer overflow */ |
| data = readl(card->membase + STAT); |
| if (data & NS_STAT_TMROF) |
| writel(NS_STAT_TMROF, card->membase + STAT); |
| |
| /* Software reset */ |
| writel(NS_CFG_SWRST, card->membase + CFG); |
| NS_DELAY; |
| writel(0x00000000, card->membase + CFG); |
| |
| /* PHY reset */ |
| writel(0x00000008, card->membase + GP); |
| NS_DELAY; |
| writel(0x00000001, card->membase + GP); |
| NS_DELAY; |
| while (CMD_BUSY(card)) ; |
| writel(NS_CMD_WRITE_UTILITY | 0x00000100, card->membase + CMD); /* Sync UTOPIA with SAR clock */ |
| NS_DELAY; |
| |
| /* Detect PHY type */ |
| while (CMD_BUSY(card)) ; |
| writel(NS_CMD_READ_UTILITY | 0x00000200, card->membase + CMD); |
| while (CMD_BUSY(card)) ; |
| data = readl(card->membase + DR0); |
| switch (data) { |
| case 0x00000009: |
| printk("nicstar%d: PHY seems to be 25 Mbps.\n", i); |
| card->max_pcr = ATM_25_PCR; |
| while (CMD_BUSY(card)) ; |
| writel(0x00000008, card->membase + DR0); |
| writel(NS_CMD_WRITE_UTILITY | 0x00000200, card->membase + CMD); |
| /* Clear an eventual pending interrupt */ |
| writel(NS_STAT_SFBQF, card->membase + STAT); |
| #ifdef PHY_LOOPBACK |
| while (CMD_BUSY(card)) ; |
| writel(0x00000022, card->membase + DR0); |
| writel(NS_CMD_WRITE_UTILITY | 0x00000202, card->membase + CMD); |
| #endif /* PHY_LOOPBACK */ |
| break; |
| case 0x00000030: |
| case 0x00000031: |
| printk("nicstar%d: PHY seems to be 155 Mbps.\n", i); |
| card->max_pcr = ATM_OC3_PCR; |
| #ifdef PHY_LOOPBACK |
| while (CMD_BUSY(card)) ; |
| writel(0x00000002, card->membase + DR0); |
| writel(NS_CMD_WRITE_UTILITY | 0x00000205, card->membase + CMD); |
| #endif /* PHY_LOOPBACK */ |
| break; |
| default: |
| printk("nicstar%d: unknown PHY type (0x%08X).\n", i, data); |
| error = 8; |
| ns_init_card_error(card, error); |
| return error; |
| } |
| writel(0x00000000, card->membase + GP); |
| |
| /* Determine SRAM size */ |
| data = 0x76543210; |
| ns_write_sram(card, 0x1C003, &data, 1); |
| data = 0x89ABCDEF; |
| ns_write_sram(card, 0x14003, &data, 1); |
| if (ns_read_sram(card, 0x14003) == 0x89ABCDEF && |
| ns_read_sram(card, 0x1C003) == 0x76543210) |
| card->sram_size = 128; |
| else |
| card->sram_size = 32; |
| PRINTK("nicstar%d: %dK x 32bit SRAM size.\n", i, card->sram_size); |
| |
| card->rct_size = NS_MAX_RCTSIZE; |
| |
| #if (NS_MAX_RCTSIZE == 4096) |
| if (card->sram_size == 128) |
| printk |
| ("nicstar%d: limiting maximum VCI. See NS_MAX_RCTSIZE in nicstar.h\n", |
| i); |
| #elif (NS_MAX_RCTSIZE == 16384) |
| if (card->sram_size == 32) { |
| printk |
| ("nicstar%d: wasting memory. See NS_MAX_RCTSIZE in nicstar.h\n", |
| i); |
| card->rct_size = 4096; |
| } |
| #else |
| #error NS_MAX_RCTSIZE must be either 4096 or 16384 in nicstar.c |
| #endif |
| |
| card->vpibits = NS_VPIBITS; |
| if (card->rct_size == 4096) |
| card->vcibits = 12 - NS_VPIBITS; |
| else /* card->rct_size == 16384 */ |
| card->vcibits = 14 - NS_VPIBITS; |
| |
| /* Initialize the nicstar eeprom/eprom stuff, for the MAC addr */ |
| if (mac[i] == NULL) |
| nicstar_init_eprom(card->membase); |
| |
| /* Set the VPI/VCI MSb mask to zero so we can receive OAM cells */ |
| writel(0x00000000, card->membase + VPM); |
| |
| /* Initialize TSQ */ |
| card->tsq.org = dma_alloc_coherent(&card->pcidev->dev, |
| NS_TSQSIZE + NS_TSQ_ALIGNMENT, |
| &card->tsq.dma, GFP_KERNEL); |
| if (card->tsq.org == NULL) { |
| printk("nicstar%d: can't allocate TSQ.\n", i); |
| error = 10; |
| ns_init_card_error(card, error); |
| return error; |
| } |
| card->tsq.base = PTR_ALIGN(card->tsq.org, NS_TSQ_ALIGNMENT); |
| card->tsq.next = card->tsq.base; |
| card->tsq.last = card->tsq.base + (NS_TSQ_NUM_ENTRIES - 1); |
| for (j = 0; j < NS_TSQ_NUM_ENTRIES; j++) |
| ns_tsi_init(card->tsq.base + j); |
| writel(0x00000000, card->membase + TSQH); |
| writel(ALIGN(card->tsq.dma, NS_TSQ_ALIGNMENT), card->membase + TSQB); |
| PRINTK("nicstar%d: TSQ base at 0x%p.\n", i, card->tsq.base); |
| |
| /* Initialize RSQ */ |
| card->rsq.org = dma_alloc_coherent(&card->pcidev->dev, |
| NS_RSQSIZE + NS_RSQ_ALIGNMENT, |
| &card->rsq.dma, GFP_KERNEL); |
| if (card->rsq.org == NULL) { |
| printk("nicstar%d: can't allocate RSQ.\n", i); |
| error = 11; |
| ns_init_card_error(card, error); |
| return error; |
| } |
| card->rsq.base = PTR_ALIGN(card->rsq.org, NS_RSQ_ALIGNMENT); |
| card->rsq.next = card->rsq.base; |
| card->rsq.last = card->rsq.base + (NS_RSQ_NUM_ENTRIES - 1); |
| for (j = 0; j < NS_RSQ_NUM_ENTRIES; j++) |
| ns_rsqe_init(card->rsq.base + j); |
| writel(0x00000000, card->membase + RSQH); |
| writel(ALIGN(card->rsq.dma, NS_RSQ_ALIGNMENT), card->membase + RSQB); |
| PRINTK("nicstar%d: RSQ base at 0x%p.\n", i, card->rsq.base); |
| |
| /* Initialize SCQ0, the only VBR SCQ used */ |
| card->scq1 = NULL; |
| card->scq2 = NULL; |
| card->scq0 = get_scq(card, VBR_SCQSIZE, NS_VRSCD0); |
| if (card->scq0 == NULL) { |
| printk("nicstar%d: can't get SCQ0.\n", i); |
| error = 12; |
| ns_init_card_error(card, error); |
| return error; |
| } |
| u32d[0] = scq_virt_to_bus(card->scq0, card->scq0->base); |
| u32d[1] = (u32) 0x00000000; |
| u32d[2] = (u32) 0xffffffff; |
| u32d[3] = (u32) 0x00000000; |
| ns_write_sram(card, NS_VRSCD0, u32d, 4); |
| ns_write_sram(card, NS_VRSCD1, u32d, 4); /* These last two won't be used */ |
| ns_write_sram(card, NS_VRSCD2, u32d, 4); /* but are initialized, just in case... */ |
| card->scq0->scd = NS_VRSCD0; |
| PRINTK("nicstar%d: VBR-SCQ0 base at 0x%p.\n", i, card->scq0->base); |
| |
| /* Initialize TSTs */ |
| card->tst_addr = NS_TST0; |
| card->tst_free_entries = NS_TST_NUM_ENTRIES; |
| data = NS_TST_OPCODE_VARIABLE; |
| for (j = 0; j < NS_TST_NUM_ENTRIES; j++) |
| ns_write_sram(card, NS_TST0 + j, &data, 1); |
| data = ns_tste_make(NS_TST_OPCODE_END, NS_TST0); |
| ns_write_sram(card, NS_TST0 + NS_TST_NUM_ENTRIES, &data, 1); |
| for (j = 0; j < NS_TST_NUM_ENTRIES; j++) |
| ns_write_sram(card, NS_TST1 + j, &data, 1); |
| data = ns_tste_make(NS_TST_OPCODE_END, NS_TST1); |
| ns_write_sram(card, NS_TST1 + NS_TST_NUM_ENTRIES, &data, 1); |
| for (j = 0; j < NS_TST_NUM_ENTRIES; j++) |
| card->tste2vc[j] = NULL; |
| writel(NS_TST0 << 2, card->membase + TSTB); |
| |
| /* Initialize RCT. AAL type is set on opening the VC. */ |
| #ifdef RCQ_SUPPORT |
| u32d[0] = NS_RCTE_RAWCELLINTEN; |
| #else |
| u32d[0] = 0x00000000; |
| #endif /* RCQ_SUPPORT */ |
| u32d[1] = 0x00000000; |
| u32d[2] = 0x00000000; |
| u32d[3] = 0xFFFFFFFF; |
| for (j = 0; j < card->rct_size; j++) |
| ns_write_sram(card, j * 4, u32d, 4); |
| |
| memset(card->vcmap, 0, sizeof(card->vcmap)); |
| |
| for (j = 0; j < NS_FRSCD_NUM; j++) |
| card->scd2vc[j] = NULL; |
| |
| /* Initialize buffer levels */ |
| card->sbnr.min = MIN_SB; |
| card->sbnr.init = NUM_SB; |
| card->sbnr.max = MAX_SB; |
| card->lbnr.min = MIN_LB; |
| card->lbnr.init = NUM_LB; |
| card->lbnr.max = MAX_LB; |
| card->iovnr.min = MIN_IOVB; |
| card->iovnr.init = NUM_IOVB; |
| card->iovnr.max = MAX_IOVB; |
| card->hbnr.min = MIN_HB; |
| card->hbnr.init = NUM_HB; |
| card->hbnr.max = MAX_HB; |
| |
| card->sm_handle = NULL; |
| card->sm_addr = 0x00000000; |
| card->lg_handle = NULL; |
| card->lg_addr = 0x00000000; |
| |
| card->efbie = 1; /* To prevent push_rxbufs from enabling the interrupt */ |
| |
| idr_init(&card->idr); |
| |
| /* Pre-allocate some huge buffers */ |
| skb_queue_head_init(&card->hbpool.queue); |
| card->hbpool.count = 0; |
| for (j = 0; j < NUM_HB; j++) { |
| struct sk_buff *hb; |
| hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL); |
| if (hb == NULL) { |
| printk |
| ("nicstar%d: can't allocate %dth of %d huge buffers.\n", |
| i, j, NUM_HB); |
| error = 13; |
| ns_init_card_error(card, error); |
| return error; |
| } |
| NS_PRV_BUFTYPE(hb) = BUF_NONE; |
| skb_queue_tail(&card->hbpool.queue, hb); |
| card->hbpool.count++; |
| } |
| |
| /* Allocate large buffers */ |
| skb_queue_head_init(&card->lbpool.queue); |
| card->lbpool.count = 0; /* Not used */ |
| for (j = 0; j < NUM_LB; j++) { |
| struct sk_buff *lb; |
| lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL); |
| if (lb == NULL) { |
| printk |
| ("nicstar%d: can't allocate %dth of %d large buffers.\n", |
| i, j, NUM_LB); |
| error = 14; |
| ns_init_card_error(card, error); |
| return error; |
| } |
| NS_PRV_BUFTYPE(lb) = BUF_LG; |
| skb_queue_tail(&card->lbpool.queue, lb); |
| skb_reserve(lb, NS_SMBUFSIZE); |
| push_rxbufs(card, lb); |
| /* Due to the implementation of push_rxbufs() this is 1, not 0 */ |
| if (j == 1) { |
| card->rcbuf = lb; |
| card->rawcell = (struct ns_rcqe *) lb->data; |
| card->rawch = NS_PRV_DMA(lb); |
| } |
| } |
| /* Test for strange behaviour which leads to crashes */ |
| if ((bcount = |
| ns_stat_lfbqc_get(readl(card->membase + STAT))) < card->lbnr.min) { |
| printk |
| ("nicstar%d: Strange... Just allocated %d large buffers and lfbqc = %d.\n", |
| i, j, bcount); |
| error = 14; |
| ns_init_card_error(card, error); |
| return error; |
| } |
| |
| /* Allocate small buffers */ |
| skb_queue_head_init(&card->sbpool.queue); |
| card->sbpool.count = 0; /* Not used */ |
| for (j = 0; j < NUM_SB; j++) { |
| struct sk_buff *sb; |
| sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL); |
| if (sb == NULL) { |
| printk |
| ("nicstar%d: can't allocate %dth of %d small buffers.\n", |
| i, j, NUM_SB); |
| error = 15; |
| ns_init_card_error(card, error); |
| return error; |
| } |
| NS_PRV_BUFTYPE(sb) = BUF_SM; |
| skb_queue_tail(&card->sbpool.queue, sb); |
| skb_reserve(sb, NS_AAL0_HEADER); |
| push_rxbufs(card, sb); |
| } |
| /* Test for strange behaviour which leads to crashes */ |
| if ((bcount = |
| ns_stat_sfbqc_get(readl(card->membase + STAT))) < card->sbnr.min) { |
| printk |
| ("nicstar%d: Strange... Just allocated %d small buffers and sfbqc = %d.\n", |
| i, j, bcount); |
| error = 15; |
| ns_init_card_error(card, error); |
| return error; |
| } |
| |
| /* Allocate iovec buffers */ |
| skb_queue_head_init(&card->iovpool.queue); |
| card->iovpool.count = 0; |
| for (j = 0; j < NUM_IOVB; j++) { |
| struct sk_buff *iovb; |
| iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL); |
| if (iovb == NULL) { |
| printk |
| ("nicstar%d: can't allocate %dth of %d iovec buffers.\n", |
| i, j, NUM_IOVB); |
| error = 16; |
| ns_init_card_error(card, error); |
| return error; |
| } |
| NS_PRV_BUFTYPE(iovb) = BUF_NONE; |
| skb_queue_tail(&card->iovpool.queue, iovb); |
| card->iovpool.count++; |
| } |
| |
| /* Configure NICStAR */ |
| if (card->rct_size == 4096) |
| ns_cfg_rctsize = NS_CFG_RCTSIZE_4096_ENTRIES; |
| else /* (card->rct_size == 16384) */ |
| ns_cfg_rctsize = NS_CFG_RCTSIZE_16384_ENTRIES; |
| |
| card->efbie = 1; |
| |
| card->intcnt = 0; |
| if (request_irq |
| (pcidev->irq, &ns_irq_handler, IRQF_SHARED, "nicstar", card) != 0) { |
| printk("nicstar%d: can't allocate IRQ %d.\n", i, pcidev->irq); |
| error = 9; |
| ns_init_card_error(card, error); |
| return error; |
| } |
| |
| /* Register device */ |
| card->atmdev = atm_dev_register("nicstar", &card->pcidev->dev, &atm_ops, |
| -1, NULL); |
| if (card->atmdev == NULL) { |
| printk("nicstar%d: can't register device.\n", i); |
| error = 17; |
| ns_init_card_error(card, error); |
| return error; |
| } |
| |
| if (mac[i] == NULL || !mac_pton(mac[i], card->atmdev->esi)) { |
| nicstar_read_eprom(card->membase, NICSTAR_EPROM_MAC_ADDR_OFFSET, |
| card->atmdev->esi, 6); |
| if (ether_addr_equal(card->atmdev->esi, "\x00\x00\x00\x00\x00\x00")) { |
| nicstar_read_eprom(card->membase, |
| NICSTAR_EPROM_MAC_ADDR_OFFSET_ALT, |
| card->atmdev->esi, 6); |
| } |
| } |
| |
| printk("nicstar%d: MAC address %pM\n", i, card->atmdev->esi); |
| |
| card->atmdev->dev_data = card; |
| card->atmdev->ci_range.vpi_bits = card->vpibits; |
| card->atmdev->ci_range.vci_bits = card->vcibits; |
| card->atmdev->link_rate = card->max_pcr; |
| card->atmdev->phy = NULL; |
| |
| #ifdef CONFIG_ATM_NICSTAR_USE_SUNI |
| if (card->max_pcr == ATM_OC3_PCR) |
| suni_init(card->atmdev); |
| #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */ |
| |
| #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105 |
| if (card->max_pcr == ATM_25_PCR) |
| idt77105_init(card->atmdev); |
| #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */ |
| |
| if (card->atmdev->phy && card->atmdev->phy->start) |
| card->atmdev->phy->start(card->atmdev); |
| |
| writel(NS_CFG_RXPATH | NS_CFG_SMBUFSIZE | NS_CFG_LGBUFSIZE | NS_CFG_EFBIE | NS_CFG_RSQSIZE | NS_CFG_VPIBITS | ns_cfg_rctsize | NS_CFG_RXINT_NODELAY | NS_CFG_RAWIE | /* Only enabled if RCQ_SUPPORT */ |
| NS_CFG_RSQAFIE | NS_CFG_TXEN | NS_CFG_TXIE | NS_CFG_TSQFIE_OPT | /* Only enabled if ENABLE_TSQFIE */ |
| NS_CFG_PHYIE, card->membase + CFG); |
| |
| num_cards++; |
| |
| return error; |
| } |
| |
| static void ns_init_card_error(ns_dev *card, int error) |
| { |
| if (error >= 17) { |
| writel(0x00000000, card->membase + CFG); |
| } |
| if (error >= 16) { |
| struct sk_buff *iovb; |
| while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) |
| dev_kfree_skb_any(iovb); |
| } |
| if (error >= 15) { |
| struct sk_buff *sb; |
| while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL) |
| dev_kfree_skb_any(sb); |
| free_scq(card, card->scq0, NULL); |
| } |
| if (error >= 14) { |
| struct sk_buff *lb; |
| while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL) |
| dev_kfree_skb_any(lb); |
| } |
| if (error >= 13) { |
| struct sk_buff *hb; |
| while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) |
| dev_kfree_skb_any(hb); |
| } |
| if (error >= 12) { |
| kfree(card->rsq.org); |
| } |
| if (error >= 11) { |
| kfree(card->tsq.org); |
| } |
| if (error >= 10) { |
| free_irq(card->pcidev->irq, card); |
| } |
| if (error >= 4) { |
| iounmap(card->membase); |
| } |
| if (error >= 3) { |
| pci_disable_device(card->pcidev); |
| kfree(card); |
| } |
| } |
| |
| static scq_info *get_scq(ns_dev *card, int size, u32 scd) |
| { |
| scq_info *scq; |
| int i; |
| |
| if (size != VBR_SCQSIZE && size != CBR_SCQSIZE) |
| return NULL; |
| |
| scq = kmalloc(sizeof(*scq), GFP_KERNEL); |
| if (!scq) |
| return NULL; |
| scq->org = dma_alloc_coherent(&card->pcidev->dev, |
| 2 * size, &scq->dma, GFP_KERNEL); |
| if (!scq->org) { |
| kfree(scq); |
| return NULL; |
| } |
| scq->skb = kmalloc_array(size / NS_SCQE_SIZE, |
| sizeof(*scq->skb), |
| GFP_KERNEL); |
| if (!scq->skb) { |
| dma_free_coherent(&card->pcidev->dev, |
| 2 * size, scq->org, scq->dma); |
| kfree(scq); |
| return NULL; |
| } |
| scq->num_entries = size / NS_SCQE_SIZE; |
| scq->base = PTR_ALIGN(scq->org, size); |
| scq->next = scq->base; |
| scq->last = scq->base + (scq->num_entries - 1); |
| scq->tail = scq->last; |
| scq->scd = scd; |
| scq->num_entries = size / NS_SCQE_SIZE; |
| scq->tbd_count = 0; |
| init_waitqueue_head(&scq->scqfull_waitq); |
| scq->full = 0; |
| spin_lock_init(&scq->lock); |
| |
| for (i = 0; i < scq->num_entries; i++) |
| scq->skb[i] = NULL; |
| |
| return scq; |
| } |
| |
| /* For variable rate SCQ vcc must be NULL */ |
| static void free_scq(ns_dev *card, scq_info *scq, struct atm_vcc *vcc) |
| { |
| int i; |
| |
| if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) |
| for (i = 0; i < scq->num_entries; i++) { |
| if (scq->skb[i] != NULL) { |
| vcc = ATM_SKB(scq->skb[i])->vcc; |
| if (vcc->pop != NULL) |
| vcc->pop(vcc, scq->skb[i]); |
| else |
| dev_kfree_skb_any(scq->skb[i]); |
| } |
| } else { /* vcc must be != NULL */ |
| |
| if (vcc == NULL) { |
| printk |
| ("nicstar: free_scq() called with vcc == NULL for fixed rate scq."); |
| for (i = 0; i < scq->num_entries; i++) |
| dev_kfree_skb_any(scq->skb[i]); |
| } else |
| for (i = 0; i < scq->num_entries; i++) { |
| if (scq->skb[i] != NULL) { |
| if (vcc->pop != NULL) |
| vcc->pop(vcc, scq->skb[i]); |
| else |
| dev_kfree_skb_any(scq->skb[i]); |
| } |
| } |
| } |
| kfree(scq->skb); |
| dma_free_coherent(&card->pcidev->dev, |
| 2 * (scq->num_entries == VBR_SCQ_NUM_ENTRIES ? |
| VBR_SCQSIZE : CBR_SCQSIZE), |
| scq->org, scq->dma); |
| kfree(scq); |
| } |
| |
| /* The handles passed must be pointers to the sk_buff containing the small |
| or large buffer(s) cast to u32. */ |
| static void push_rxbufs(ns_dev * card, struct sk_buff *skb) |
| { |
| struct sk_buff *handle1, *handle2; |
| int id1, id2; |
| u32 addr1, addr2; |
| u32 stat; |
| unsigned long flags; |
| |
| /* *BARF* */ |
| handle2 = NULL; |
| addr2 = 0; |
| handle1 = skb; |
| addr1 = dma_map_single(&card->pcidev->dev, |
| skb->data, |
| (NS_PRV_BUFTYPE(skb) == BUF_SM |
| ? NS_SMSKBSIZE : NS_LGSKBSIZE), |
| DMA_TO_DEVICE); |
| NS_PRV_DMA(skb) = addr1; /* save so we can unmap later */ |
| |
| #ifdef GENERAL_DEBUG |
| if (!addr1) |
| printk("nicstar%d: push_rxbufs called with addr1 = 0.\n", |
| card->index); |
| #endif /* GENERAL_DEBUG */ |
| |
| stat = readl(card->membase + STAT); |
| card->sbfqc = ns_stat_sfbqc_get(stat); |
| card->lbfqc = ns_stat_lfbqc_get(stat); |
| if (NS_PRV_BUFTYPE(skb) == BUF_SM) { |
| if (!addr2) { |
| if (card->sm_addr) { |
| addr2 = card->sm_addr; |
| handle2 = card->sm_handle; |
| card->sm_addr = 0x00000000; |
| card->sm_handle = NULL; |
| } else { /* (!sm_addr) */ |
| |
| card->sm_addr = addr1; |
| card->sm_handle = handle1; |
| } |
| } |
| } else { /* buf_type == BUF_LG */ |
| |
| if (!addr2) { |
| if (card->lg_addr) { |
| addr2 = card->lg_addr; |
| handle2 = card->lg_handle; |
| card->lg_addr = 0x00000000; |
| card->lg_handle = NULL; |
| } else { /* (!lg_addr) */ |
| |
| card->lg_addr = addr1; |
| card->lg_handle = handle1; |
| } |
| } |
| } |
| |
| if (addr2) { |
| if (NS_PRV_BUFTYPE(skb) == BUF_SM) { |
| if (card->sbfqc >= card->sbnr.max) { |
| skb_unlink(handle1, &card->sbpool.queue); |
| dev_kfree_skb_any(handle1); |
| skb_unlink(handle2, &card->sbpool.queue); |
| dev_kfree_skb_any(handle2); |
| return; |
| } else |
| card->sbfqc += 2; |
| } else { /* (buf_type == BUF_LG) */ |
| |
| if (card->lbfqc >= card->lbnr.max) { |
| skb_unlink(handle1, &card->lbpool.queue); |
| dev_kfree_skb_any(handle1); |
| skb_unlink(handle2, &card->lbpool.queue); |
| dev_kfree_skb_any(handle2); |
| return; |
| } else |
| card->lbfqc += 2; |
| } |
| |
| id1 = idr_alloc(&card->idr, handle1, 0, 0, GFP_ATOMIC); |
| if (id1 < 0) |
| goto out; |
| |
| id2 = idr_alloc(&card->idr, handle2, 0, 0, GFP_ATOMIC); |
| if (id2 < 0) |
| goto out; |
| |
| spin_lock_irqsave(&card->res_lock, flags); |
| while (CMD_BUSY(card)) ; |
| writel(addr2, card->membase + DR3); |
| writel(id2, card->membase + DR2); |
| writel(addr1, card->membase + DR1); |
| writel(id1, card->membase + DR0); |
| writel(NS_CMD_WRITE_FREEBUFQ | NS_PRV_BUFTYPE(skb), |
| card->membase + CMD); |
| spin_unlock_irqrestore(&card->res_lock, flags); |
| |
| XPRINTK("nicstar%d: Pushing %s buffers at 0x%x and 0x%x.\n", |
| card->index, |
| (NS_PRV_BUFTYPE(skb) == BUF_SM ? "small" : "large"), |
| addr1, addr2); |
| } |
| |
| if (!card->efbie && card->sbfqc >= card->sbnr.min && |
| card->lbfqc >= card->lbnr.min) { |
| card->efbie = 1; |
| writel((readl(card->membase + CFG) | NS_CFG_EFBIE), |
| card->membase + CFG); |
| } |
| |
| out: |
| return; |
| } |
| |
| static irqreturn_t ns_irq_handler(int irq, void *dev_id) |
| { |
| u32 stat_r; |
| ns_dev *card; |
| struct atm_dev *dev; |
| unsigned long flags; |
| |
| card = (ns_dev *) dev_id; |
| dev = card->atmdev; |
| card->intcnt++; |
| |
| PRINTK("nicstar%d: NICStAR generated an interrupt\n", card->index); |
| |
| spin_lock_irqsave(&card->int_lock, flags); |
| |
| stat_r = readl(card->membase + STAT); |
| |
| /* Transmit Status Indicator has been written to T. S. Queue */ |
| if (stat_r & NS_STAT_TSIF) { |
| TXPRINTK("nicstar%d: TSI interrupt\n", card->index); |
| process_tsq(card); |
| writel(NS_STAT_TSIF, card->membase + STAT); |
| } |
| |
| /* Incomplete CS-PDU has been transmitted */ |
| if (stat_r & NS_STAT_TXICP) { |
| writel(NS_STAT_TXICP, card->membase + STAT); |
| TXPRINTK("nicstar%d: Incomplete CS-PDU transmitted.\n", |
| card->index); |
| } |
| |
| /* Transmit Status Queue 7/8 full */ |
| if (stat_r & NS_STAT_TSQF) { |
| writel(NS_STAT_TSQF, card->membase + STAT); |
| PRINTK("nicstar%d: TSQ full.\n", card->index); |
| process_tsq(card); |
| } |
| |
| /* Timer overflow */ |
| if (stat_r & NS_STAT_TMROF) { |
| writel(NS_STAT_TMROF, card->membase + STAT); |
| PRINTK("nicstar%d: Timer overflow.\n", card->index); |
| } |
| |
| /* PHY device interrupt signal active */ |
| if (stat_r & NS_STAT_PHYI) { |
| writel(NS_STAT_PHYI, card->membase + STAT); |
| PRINTK("nicstar%d: PHY interrupt.\n", card->index); |
| if (dev->phy && dev->phy->interrupt) { |
| dev->phy->interrupt(dev); |
| } |
| } |
| |
| /* Small Buffer Queue is full */ |
| if (stat_r & NS_STAT_SFBQF) { |
| writel(NS_STAT_SFBQF, card->membase + STAT); |
| printk("nicstar%d: Small free buffer queue is full.\n", |
| card->index); |
| } |
| |
| /* Large Buffer Queue is full */ |
| if (stat_r & NS_STAT_LFBQF) { |
| writel(NS_STAT_LFBQF, card->membase + STAT); |
| printk("nicstar%d: Large free buffer queue is full.\n", |
| card->index); |
| } |
| |
| /* Receive Status Queue is full */ |
| if (stat_r & NS_STAT_RSQF) { |
| writel(NS_STAT_RSQF, card->membase + STAT); |
| printk("nicstar%d: RSQ full.\n", card->index); |
| process_rsq(card); |
| } |
| |
| /* Complete CS-PDU received */ |
| if (stat_r & NS_STAT_EOPDU) { |
| RXPRINTK("nicstar%d: End of CS-PDU received.\n", card->index); |
| process_rsq(card); |
| writel(NS_STAT_EOPDU, card->membase + STAT); |
| } |
| |
| /* Raw cell received */ |
| if (stat_r & NS_STAT_RAWCF) { |
| writel(NS_STAT_RAWCF, card->membase + STAT); |
| #ifndef RCQ_SUPPORT |
| printk("nicstar%d: Raw cell received and no support yet...\n", |
| card->index); |
| #endif /* RCQ_SUPPORT */ |
| /* NOTE: the following procedure may keep a raw cell pending until the |
| next interrupt. As this preliminary support is only meant to |
| avoid buffer leakage, this is not an issue. */ |
| while (readl(card->membase + RAWCT) != card->rawch) { |
| |
| if (ns_rcqe_islast(card->rawcell)) { |
| struct sk_buff *oldbuf; |
| |
| oldbuf = card->rcbuf; |
| card->rcbuf = idr_find(&card->idr, |
| ns_rcqe_nextbufhandle(card->rawcell)); |
| card->rawch = NS_PRV_DMA(card->rcbuf); |
| card->rawcell = (struct ns_rcqe *) |
| card->rcbuf->data; |
| recycle_rx_buf(card, oldbuf); |
| } else { |
| card->rawch += NS_RCQE_SIZE; |
| card->rawcell++; |
| } |
| } |
| } |
| |
| /* Small buffer queue is empty */ |
| if (stat_r & NS_STAT_SFBQE) { |
| int i; |
| struct sk_buff *sb; |
| |
| writel(NS_STAT_SFBQE, card->membase + STAT); |
| printk("nicstar%d: Small free buffer queue empty.\n", |
| card->index); |
| for (i = 0; i < card->sbnr.min; i++) { |
| sb = dev_alloc_skb(NS_SMSKBSIZE); |
| if (sb == NULL) { |
| writel(readl(card->membase + CFG) & |
| ~NS_CFG_EFBIE, card->membase + CFG); |
| card->efbie = 0; |
| break; |
| } |
| NS_PRV_BUFTYPE(sb) = BUF_SM; |
| skb_queue_tail(&card->sbpool.queue, sb); |
| skb_reserve(sb, NS_AAL0_HEADER); |
| push_rxbufs(card, sb); |
| } |
| card->sbfqc = i; |
| process_rsq(card); |
| } |
| |
| /* Large buffer queue empty */ |
| if (stat_r & NS_STAT_LFBQE) { |
| int i; |
| struct sk_buff *lb; |
| |
| writel(NS_STAT_LFBQE, card->membase + STAT); |
| printk("nicstar%d: Large free buffer queue empty.\n", |
| card->index); |
| for (i = 0; i < card->lbnr.min; i++) { |
| lb = dev_alloc_skb(NS_LGSKBSIZE); |
| if (lb == NULL) { |
| writel(readl(card->membase + CFG) & |
| ~NS_CFG_EFBIE, card->membase + CFG); |
| card->efbie = 0; |
| break; |
| } |
| NS_PRV_BUFTYPE(lb) = BUF_LG; |
| skb_queue_tail(&card->lbpool.queue, lb); |
| skb_reserve(lb, NS_SMBUFSIZE); |
| push_rxbufs(card, lb); |
| } |
| card->lbfqc = i; |
| process_rsq(card); |
| } |
| |
| /* Receive Status Queue is 7/8 full */ |
| if (stat_r & NS_STAT_RSQAF) { |
| writel(NS_STAT_RSQAF, card->membase + STAT); |
| RXPRINTK("nicstar%d: RSQ almost full.\n", card->index); |
| process_rsq(card); |
| } |
| |
| spin_unlock_irqrestore(&card->int_lock, flags); |
| PRINTK("nicstar%d: end of interrupt service\n", card->index); |
| return IRQ_HANDLED; |
| } |
| |
| static int ns_open(struct atm_vcc *vcc) |
| { |
| ns_dev *card; |
| vc_map *vc; |
| unsigned long tmpl, modl; |
| int tcr, tcra; /* target cell rate, and absolute value */ |
| int n = 0; /* Number of entries in the TST. Initialized to remove |
| the compiler warning. */ |
| u32 u32d[4]; |
| int frscdi = 0; /* Index of the SCD. Initialized to remove the compiler |
| warning. How I wish compilers were clever enough to |
| tell which variables can truly be used |
| uninitialized... */ |
| int inuse; /* tx or rx vc already in use by another vcc */ |
| short vpi = vcc->vpi; |
| int vci = vcc->vci; |
| |
| card = (ns_dev *) vcc->dev->dev_data; |
| PRINTK("nicstar%d: opening vpi.vci %d.%d \n", card->index, (int)vpi, |
| vci); |
| if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) { |
| PRINTK("nicstar%d: unsupported AAL.\n", card->index); |
| return -EINVAL; |
| } |
| |
| vc = &(card->vcmap[vpi << card->vcibits | vci]); |
| vcc->dev_data = vc; |
| |
| inuse = 0; |
| if (vcc->qos.txtp.traffic_class != ATM_NONE && vc->tx) |
| inuse = 1; |
| if (vcc->qos.rxtp.traffic_class != ATM_NONE && vc->rx) |
| inuse += 2; |
| if (inuse) { |
| printk("nicstar%d: %s vci already in use.\n", card->index, |
| inuse == 1 ? "tx" : inuse == 2 ? "rx" : "tx and rx"); |
| return -EINVAL; |
| } |
| |
| set_bit(ATM_VF_ADDR, &vcc->flags); |
| |
| /* NOTE: You are not allowed to modify an open connection's QOS. To change |
| that, remove the ATM_VF_PARTIAL flag checking. There may be other changes |
| needed to do that. */ |
| if (!test_bit(ATM_VF_PARTIAL, &vcc->flags)) { |
| scq_info *scq; |
| |
| set_bit(ATM_VF_PARTIAL, &vcc->flags); |
| if (vcc->qos.txtp.traffic_class == ATM_CBR) { |
| /* Check requested cell rate and availability of SCD */ |
| if (vcc->qos.txtp.max_pcr == 0 && vcc->qos.txtp.pcr == 0 |
| && vcc->qos.txtp.min_pcr == 0) { |
| PRINTK |
| ("nicstar%d: trying to open a CBR vc with cell rate = 0 \n", |
| card->index); |
| clear_bit(ATM_VF_PARTIAL, &vcc->flags); |
| clear_bit(ATM_VF_ADDR, &vcc->flags); |
| return -EINVAL; |
| } |
| |
| tcr = atm_pcr_goal(&(vcc->qos.txtp)); |
| tcra = tcr >= 0 ? tcr : -tcr; |
| |
| PRINTK("nicstar%d: target cell rate = %d.\n", |
| card->index, vcc->qos.txtp.max_pcr); |
| |
| tmpl = |
| (unsigned long)tcra *(unsigned long) |
| NS_TST_NUM_ENTRIES; |
| modl = tmpl % card->max_pcr; |
| |
| n = (int)(tmpl / card->max_pcr); |
| if (tcr > 0) { |
| if (modl > 0) |
| n++; |
| } else if (tcr == 0) { |
| if ((n = |
| (card->tst_free_entries - |
| NS_TST_RESERVED)) <= 0) { |
| PRINTK |
| ("nicstar%d: no CBR bandwidth free.\n", |
| card->index); |
| clear_bit(ATM_VF_PARTIAL, &vcc->flags); |
| clear_bit(ATM_VF_ADDR, &vcc->flags); |
| return -EINVAL; |
| } |
| } |
| |
| if (n == 0) { |
| printk |
| ("nicstar%d: selected bandwidth < granularity.\n", |
| card->index); |
| clear_bit(ATM_VF_PARTIAL, &vcc->flags); |
| clear_bit(ATM_VF_ADDR, &vcc->flags); |
| return -EINVAL; |
| } |
| |
| if (n > (card->tst_free_entries - NS_TST_RESERVED)) { |
| PRINTK |
| ("nicstar%d: not enough free CBR bandwidth.\n", |
| card->index); |
| clear_bit(ATM_VF_PARTIAL, &vcc->flags); |
| clear_bit(ATM_VF_ADDR, &vcc->flags); |
| return -EINVAL; |
| } else |
| card->tst_free_entries -= n; |
| |
| XPRINTK("nicstar%d: writing %d tst entries.\n", |
| card->index, n); |
| for (frscdi = 0; frscdi < NS_FRSCD_NUM; frscdi++) { |
| if (card->scd2vc[frscdi] == NULL) { |
| card->scd2vc[frscdi] = vc; |
| break; |
| } |
| } |
| if (frscdi == NS_FRSCD_NUM) { |
| PRINTK |
| ("nicstar%d: no SCD available for CBR channel.\n", |
| card->index); |
| card->tst_free_entries += n; |
| clear_bit(ATM_VF_PARTIAL, &vcc->flags); |
| clear_bit(ATM_VF_ADDR, &vcc->flags); |
| return -EBUSY; |
| } |
| |
| vc->cbr_scd = NS_FRSCD + frscdi * NS_FRSCD_SIZE; |
| |
| scq = get_scq(card, CBR_SCQSIZE, vc->cbr_scd); |
| if (scq == NULL) { |
| PRINTK("nicstar%d: can't get fixed rate SCQ.\n", |
| card->index); |
| card->scd2vc[frscdi] = NULL; |
| card->tst_free_entries += n; |
| clear_bit(ATM_VF_PARTIAL, &vcc->flags); |
| clear_bit(ATM_VF_ADDR, &vcc->flags); |
| return -ENOMEM; |
| } |
| vc->scq = scq; |
| u32d[0] = scq_virt_to_bus(scq, scq->base); |
| u32d[1] = (u32) 0x00000000; |
| u32d[2] = (u32) 0xffffffff; |
| u32d[3] = (u32) 0x00000000; |
| ns_write_sram(card, vc->cbr_scd, u32d, 4); |
| |
| fill_tst(card, n, vc); |
| } else if (vcc->qos.txtp.traffic_class == ATM_UBR) { |
| vc->cbr_scd = 0x00000000; |
| vc->scq = card->scq0; |
| } |
| |
| if (vcc->qos.txtp.traffic_class != ATM_NONE) { |
| vc->tx = 1; |
| vc->tx_vcc = vcc; |
| vc->tbd_count = 0; |
| } |
| if (vcc->qos.rxtp.traffic_class != ATM_NONE) { |
| u32 status; |
| |
| vc->rx = 1; |
| vc->rx_vcc = vcc; |
| vc->rx_iov = NULL; |
| |
| /* Open the connection in hardware */ |
| if (vcc->qos.aal == ATM_AAL5) |
| status = NS_RCTE_AAL5 | NS_RCTE_CONNECTOPEN; |
| else /* vcc->qos.aal == ATM_AAL0 */ |
| status = NS_RCTE_AAL0 | NS_RCTE_CONNECTOPEN; |
| #ifdef RCQ_SUPPORT |
| status |= NS_RCTE_RAWCELLINTEN; |
| #endif /* RCQ_SUPPORT */ |
| ns_write_sram(card, |
| NS_RCT + |
| (vpi << card->vcibits | vci) * |
| NS_RCT_ENTRY_SIZE, &status, 1); |
| } |
| |
| } |
| |
| set_bit(ATM_VF_READY, &vcc->flags); |
| return 0; |
| } |
| |
| static void ns_close(struct atm_vcc *vcc) |
| { |
| vc_map *vc; |
| ns_dev *card; |
| u32 data; |
| int i; |
| |
| vc = vcc->dev_data; |
| card = vcc->dev->dev_data; |
| PRINTK("nicstar%d: closing vpi.vci %d.%d \n", card->index, |
| (int)vcc->vpi, vcc->vci); |
| |
| clear_bit(ATM_VF_READY, &vcc->flags); |
| |
| if (vcc->qos.rxtp.traffic_class != ATM_NONE) { |
| u32 addr; |
| unsigned long flags; |
| |
| addr = |
| NS_RCT + |
| (vcc->vpi << card->vcibits | vcc->vci) * NS_RCT_ENTRY_SIZE; |
| spin_lock_irqsave(&card->res_lock, flags); |
| while (CMD_BUSY(card)) ; |
| writel(NS_CMD_CLOSE_CONNECTION | addr << 2, |
| card->membase + CMD); |
| spin_unlock_irqrestore(&card->res_lock, flags); |
| |
| vc->rx = 0; |
| if (vc->rx_iov != NULL) { |
| struct sk_buff *iovb; |
| u32 stat; |
| |
| stat = readl(card->membase + STAT); |
| card->sbfqc = ns_stat_sfbqc_get(stat); |
| card->lbfqc = ns_stat_lfbqc_get(stat); |
| |
| PRINTK |
| ("nicstar%d: closing a VC with pending rx buffers.\n", |
| card->index); |
| iovb = vc->rx_iov; |
| recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data, |
| NS_PRV_IOVCNT(iovb)); |
| NS_PRV_IOVCNT(iovb) = 0; |
| spin_lock_irqsave(&card->int_lock, flags); |
| recycle_iov_buf(card, iovb); |
| spin_unlock_irqrestore(&card->int_lock, flags); |
| vc->rx_iov = NULL; |
| } |
| } |
| |
| if (vcc->qos.txtp.traffic_class != ATM_NONE) { |
| vc->tx = 0; |
| } |
| |
| if (vcc->qos.txtp.traffic_class == ATM_CBR) { |
| unsigned long flags; |
| ns_scqe *scqep; |
| scq_info *scq; |
| |
| scq = vc->scq; |
| |
| for (;;) { |
| spin_lock_irqsave(&scq->lock, flags); |
| scqep = scq->next; |
| if (scqep == scq->base) |
| scqep = scq->last; |
| else |
| scqep--; |
| if (scqep == scq->tail) { |
| spin_unlock_irqrestore(&scq->lock, flags); |
| break; |
| } |
| /* If the last entry is not a TSR, place one in the SCQ in order to |
| be able to completely drain it and then close. */ |
| if (!ns_scqe_is_tsr(scqep) && scq->tail != scq->next) { |
| ns_scqe tsr; |
| u32 scdi, scqi; |
| u32 data; |
| int index; |
| |
| tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE); |
| scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE; |
| scqi = scq->next - scq->base; |
| tsr.word_2 = ns_tsr_mkword_2(scdi, scqi); |
| tsr.word_3 = 0x00000000; |
| tsr.word_4 = 0x00000000; |
| *scq->next = tsr; |
| index = (int)scqi; |
| scq->skb[index] = NULL; |
| if (scq->next == scq->last) |
| scq->next = scq->base; |
| else |
| scq->next++; |
| data = scq_virt_to_bus(scq, scq->next); |
| ns_write_sram(card, scq->scd, &data, 1); |
| } |
| spin_unlock_irqrestore(&scq->lock, flags); |
| schedule(); |
| } |
| |
| /* Free all TST entries */ |
| data = NS_TST_OPCODE_VARIABLE; |
| for (i = 0; i < NS_TST_NUM_ENTRIES; i++) { |
| if (card->tste2vc[i] == vc) { |
| ns_write_sram(card, card->tst_addr + i, &data, |
| 1); |
| card->tste2vc[i] = NULL; |
| card->tst_free_entries++; |
| } |
| } |
| |
| card->scd2vc[(vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE] = NULL; |
| free_scq(card, vc->scq, vcc); |
| } |
| |
| /* remove all references to vcc before deleting it */ |
| if (vcc->qos.txtp.traffic_class != ATM_NONE) { |
| unsigned long flags; |
| scq_info *scq = card->scq0; |
| |
| spin_lock_irqsave(&scq->lock, flags); |
| |
| for (i = 0; i < scq->num_entries; i++) { |
| if (scq->skb[i] && ATM_SKB(scq->skb[i])->vcc == vcc) { |
| ATM_SKB(scq->skb[i])->vcc = NULL; |
| atm_return(vcc, scq->skb[i]->truesize); |
| PRINTK |
| ("nicstar: deleted pending vcc mapping\n"); |
| } |
| } |
| |
| spin_unlock_irqrestore(&scq->lock, flags); |
| } |
| |
| vcc->dev_data = NULL; |
| clear_bit(ATM_VF_PARTIAL, &vcc->flags); |
| clear_bit(ATM_VF_ADDR, &vcc->flags); |
| |
| #ifdef RX_DEBUG |
| { |
| u32 stat, cfg; |
| stat = readl(card->membase + STAT); |
| cfg = readl(card->membase + CFG); |
| printk("STAT = 0x%08X CFG = 0x%08X \n", stat, cfg); |
| printk |
| ("TSQ: base = 0x%p next = 0x%p last = 0x%p TSQT = 0x%08X \n", |
| card->tsq.base, card->tsq.next, |
| card->tsq.last, readl(card->membase + TSQT)); |
| printk |
| ("RSQ: base = 0x%p next = 0x%p last = 0x%p RSQT = 0x%08X \n", |
| card->rsq.base, card->rsq.next, |
| card->rsq.last, readl(card->membase + RSQT)); |
| printk("Empty free buffer queue interrupt %s \n", |
| card->efbie ? "enabled" : "disabled"); |
| printk("SBCNT = %d count = %d LBCNT = %d count = %d \n", |
| ns_stat_sfbqc_get(stat), card->sbpool.count, |
| ns_stat_lfbqc_get(stat), card->lbpool.count); |
| printk("hbpool.count = %d iovpool.count = %d \n", |
| card->hbpool.count, card->iovpool.count); |
| } |
| #endif /* RX_DEBUG */ |
| } |
| |
| static void fill_tst(ns_dev * card, int n, vc_map * vc) |
| { |
| u32 new_tst; |
| unsigned long cl; |
| int e, r; |
| u32 data; |
| |
| /* It would be very complicated to keep the two TSTs synchronized while |
| assuring that writes are only made to the inactive TST. So, for now I |
| will use only one TST. If problems occur, I will change this again */ |
| |
| new_tst = card->tst_addr; |
| |
| /* Fill procedure */ |
| |
| for (e = 0; e < NS_TST_NUM_ENTRIES; e++) { |
| if (card->tste2vc[e] == NULL) |
| break; |
| } |
| if (e == NS_TST_NUM_ENTRIES) { |
| printk("nicstar%d: No free TST entries found. \n", card->index); |
| return; |
| } |
| |
| r = n; |
| cl = NS_TST_NUM_ENTRIES; |
| data = ns_tste_make(NS_TST_OPCODE_FIXED, vc->cbr_scd); |
| |
| while (r > 0) { |
| if (cl >= NS_TST_NUM_ENTRIES && card->tste2vc[e] == NULL) { |
| card->tste2vc[e] = vc; |
| ns_write_sram(card, new_tst + e, &data, 1); |
| cl -= NS_TST_NUM_ENTRIES; |
| r--; |
| } |
| |
| if (++e == NS_TST_NUM_ENTRIES) { |
| e = 0; |
| } |
| cl += n; |
| } |
| |
| /* End of fill procedure */ |
| |
| data = ns_tste_make(NS_TST_OPCODE_END, new_tst); |
| ns_write_sram(card, new_tst + NS_TST_NUM_ENTRIES, &data, 1); |
| ns_write_sram(card, card->tst_addr + NS_TST_NUM_ENTRIES, &data, 1); |
| card->tst_addr = new_tst; |
| } |
| |
| static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb) |
| { |
| ns_dev *card; |
| vc_map *vc; |
| scq_info *scq; |
| unsigned long buflen; |
| ns_scqe scqe; |
| u32 flags; /* TBD flags, not CPU flags */ |
| |
| card = vcc->dev->dev_data; |
| TXPRINTK("nicstar%d: ns_send() called.\n", card->index); |
| if ((vc = (vc_map *) vcc->dev_data) == NULL) { |
| printk("nicstar%d: vcc->dev_data == NULL on ns_send().\n", |
| card->index); |
| atomic_inc(&vcc->stats->tx_err); |
| dev_kfree_skb_any(skb); |
| return -EINVAL; |
| } |
| |
| if (!vc->tx) { |
| printk("nicstar%d: Trying to transmit on a non-tx VC.\n", |
| card->index); |
| atomic_inc(&vcc->stats->tx_err); |
| dev_kfree_skb_any(skb); |
| return -EINVAL; |
| } |
| |
| if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) { |
| printk("nicstar%d: Only AAL0 and AAL5 are supported.\n", |
| card->index); |
| atomic_inc(&vcc->stats->tx_err); |
| dev_kfree_skb_any(skb); |
| return -EINVAL; |
| } |
| |
| if (skb_shinfo(skb)->nr_frags != 0) { |
| printk("nicstar%d: No scatter-gather yet.\n", card->index); |
| atomic_inc(&vcc->stats->tx_err); |
| dev_kfree_skb_any(skb); |
| return -EINVAL; |
| } |
| |
| ATM_SKB(skb)->vcc = vcc; |
| |
| NS_PRV_DMA(skb) = dma_map_single(&card->pcidev->dev, skb->data, |
| skb->len, DMA_TO_DEVICE); |
| |
| if (vcc->qos.aal == ATM_AAL5) { |
| buflen = (skb->len + 47 + 8) / 48 * 48; /* Multiple of 48 */ |
| flags = NS_TBD_AAL5; |
| scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb)); |
| scqe.word_3 = cpu_to_le32(skb->len); |
| scqe.word_4 = |
| ns_tbd_mkword_4(0, (u32) vcc->vpi, (u32) vcc->vci, 0, |
| ATM_SKB(skb)-> |
| atm_options & ATM_ATMOPT_CLP ? 1 : 0); |
| flags |= NS_TBD_EOPDU; |
| } else { /* (vcc->qos.aal == ATM_AAL0) */ |
| |
| buflen = ATM_CELL_PAYLOAD; /* i.e., 48 bytes */ |
| flags = NS_TBD_AAL0; |
| scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb) + NS_AAL0_HEADER); |
| scqe.word_3 = cpu_to_le32(0x00000000); |
| if (*skb->data & 0x02) /* Payload type 1 - end of pdu */ |
| flags |= NS_TBD_EOPDU; |
| scqe.word_4 = |
| cpu_to_le32(*((u32 *) skb->data) & ~NS_TBD_VC_MASK); |
| /* Force the VPI/VCI to be the same as in VCC struct */ |
| scqe.word_4 |= |
| cpu_to_le32((((u32) vcc-> |
| vpi) << NS_TBD_VPI_SHIFT | ((u32) vcc-> |
| vci) << |
| NS_TBD_VCI_SHIFT) & NS_TBD_VC_MASK); |
| } |
| |
| if (vcc->qos.txtp.traffic_class == ATM_CBR) { |
| scqe.word_1 = ns_tbd_mkword_1_novbr(flags, (u32) buflen); |
| scq = ((vc_map *) vcc->dev_data)->scq; |
| } else { |
| scqe.word_1 = |
| ns_tbd_mkword_1(flags, (u32) 1, (u32) 1, (u32) buflen); |
| scq = card->scq0; |
| } |
| |
| if (push_scqe(card, vc, scq, &scqe, skb) != 0) { |
| atomic_inc(&vcc->stats->tx_err); |
| dev_kfree_skb_any(skb); |
| return -EIO; |
| } |
| atomic_inc(&vcc->stats->tx); |
| |
| return 0; |
| } |
| |
| static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd, |
| struct sk_buff *skb) |
| { |
| unsigned long flags; |
| ns_scqe tsr; |
| u32 scdi, scqi; |
| int scq_is_vbr; |
| u32 data; |
| int index; |
| |
| spin_lock_irqsave(&scq->lock, flags); |
| while (scq->tail == scq->next) { |
| if (in_interrupt()) { |
| spin_unlock_irqrestore(&scq->lock, flags); |
| printk("nicstar%d: Error pushing TBD.\n", card->index); |
| return 1; |
| } |
| |
| scq->full = 1; |
| wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq, |
| scq->tail != scq->next, |
| scq->lock, |
| SCQFULL_TIMEOUT); |
| |
| if (scq->full) { |
| spin_unlock_irqrestore(&scq->lock, flags); |
| printk("nicstar%d: Timeout pushing TBD.\n", |
| card->index); |
| return 1; |
| } |
| } |
| *scq->next = *tbd; |
| index = (int)(scq->next - scq->base); |
| scq->skb[index] = skb; |
| XPRINTK("nicstar%d: sending skb at 0x%p (pos %d).\n", |
| card->index, skb, index); |
| XPRINTK("nicstar%d: TBD written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n", |
| card->index, le32_to_cpu(tbd->word_1), le32_to_cpu(tbd->word_2), |
| le32_to_cpu(tbd->word_3), le32_to_cpu(tbd->word_4), |
| scq->next); |
| if (scq->next == scq->last) |
| scq->next = scq->base; |
| else |
| scq->next++; |
| |
| vc->tbd_count++; |
| if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) { |
| scq->tbd_count++; |
| scq_is_vbr = 1; |
| } else |
| scq_is_vbr = 0; |
| |
| if (vc->tbd_count >= MAX_TBD_PER_VC |
| || scq->tbd_count >= MAX_TBD_PER_SCQ) { |
| int has_run = 0; |
| |
| while (scq->tail == scq->next) { |
| if (in_interrupt()) { |
| data = scq_virt_to_bus(scq, scq->next); |
| ns_write_sram(card, scq->scd, &data, 1); |
| spin_unlock_irqrestore(&scq->lock, flags); |
| printk("nicstar%d: Error pushing TSR.\n", |
| card->index); |
| return 0; |
| } |
| |
| scq->full = 1; |
| if (has_run++) |
| break; |
| wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq, |
| scq->tail != scq->next, |
| scq->lock, |
| SCQFULL_TIMEOUT); |
| } |
| |
| if (!scq->full) { |
| tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE); |
| if (scq_is_vbr) |
| scdi = NS_TSR_SCDISVBR; |
| else |
| scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE; |
| scqi = scq->next - scq->base; |
| tsr.word_2 = ns_tsr_mkword_2(scdi, scqi); |
| tsr.word_3 = 0x00000000; |
| tsr.word_4 = 0x00000000; |
| |
| *scq->next = tsr; |
| index = (int)scqi; |
| scq->skb[index] = NULL; |
| XPRINTK |
| ("nicstar%d: TSR written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n", |
| card->index, le32_to_cpu(tsr.word_1), |
| le32_to_cpu(tsr.word_2), le32_to_cpu(tsr.word_3), |
| le32_to_cpu(tsr.word_4), scq->next); |
| if (scq->next == scq->last) |
| scq->next = scq->base; |
| else |
| scq->next++; |
| vc->tbd_count = 0; |
| scq->tbd_count = 0; |
| } else |
| PRINTK("nicstar%d: Timeout pushing TSR.\n", |
| card->index); |
| } |
| data = scq_virt_to_bus(scq, scq->next); |
| ns_write_sram(card, scq->scd, &data, 1); |
| |
| spin_unlock_irqrestore(&scq->lock, flags); |
| |
| return 0; |
| } |
| |
| static void process_tsq(ns_dev * card) |
| { |
| u32 scdi; |
| scq_info *scq; |
| ns_tsi *previous = NULL, *one_ahead, *two_ahead; |
| int serviced_entries; /* flag indicating at least on entry was serviced */ |
| |
| serviced_entries = 0; |
| |
| if (card->tsq.next == card->tsq.last) |
| one_ahead = card->tsq.base; |
| else |
| one_ahead = card->tsq.next + 1; |
| |
| if (one_ahead == card->tsq.last) |
| two_ahead = card->tsq.base; |
| else |
| two_ahead = one_ahead + 1; |
| |
| while (!ns_tsi_isempty(card->tsq.next) || !ns_tsi_isempty(one_ahead) || |
| !ns_tsi_isempty(two_ahead)) |
| /* At most two empty, as stated in the 77201 errata */ |
| { |
| serviced_entries = 1; |
| |
| /* Skip the one or two possible empty entries */ |
| while (ns_tsi_isempty(card->tsq.next)) { |
| if (card->tsq.next == card->tsq.last) |
| card->tsq.next = card->tsq.base; |
| else |
| card->tsq.next++; |
| } |
| |
| if (!ns_tsi_tmrof(card->tsq.next)) { |
| scdi = ns_tsi_getscdindex(card->tsq.next); |
| if (scdi == NS_TSI_SCDISVBR) |
| scq = card->scq0; |
| else { |
| if (card->scd2vc[scdi] == NULL) { |
| printk |
| ("nicstar%d: could not find VC from SCD index.\n", |
| card->index); |
| ns_tsi_init(card->tsq.next); |
| return; |
| } |
| scq = card->scd2vc[scdi]->scq; |
| } |
| drain_scq(card, scq, ns_tsi_getscqpos(card->tsq.next)); |
| scq->full = 0; |
| wake_up_interruptible(&(scq->scqfull_waitq)); |
| } |
| |
| ns_tsi_init(card->tsq.next); |
| previous = card->tsq.next; |
| if (card->tsq.next == card->tsq.last) |
| card->tsq.next = card->tsq.base; |
| else |
| card->tsq.next++; |
| |
| if (card->tsq.next == card->tsq.last) |
| one_ahead = card->tsq.base; |
| else |
| one_ahead = card->tsq.next + 1; |
| |
| if (one_ahead == card->tsq.last) |
| two_ahead = card->tsq.base; |
| else |
| two_ahead = one_ahead + 1; |
| } |
| |
| if (serviced_entries) |
| writel(PTR_DIFF(previous, card->tsq.base), |
| card->membase + TSQH); |
| } |
| |
| static void drain_scq(ns_dev * card, scq_info * scq, int pos) |
| { |
| struct atm_vcc *vcc; |
| struct sk_buff *skb; |
| int i; |
| unsigned long flags; |
| |
| XPRINTK("nicstar%d: drain_scq() called, scq at 0x%p, pos %d.\n", |
| card->index, scq, pos); |
| if (pos >= scq->num_entries) { |
| printk("nicstar%d: Bad index on drain_scq().\n", card->index); |
| return; |
| } |
| |
| spin_lock_irqsave(&scq->lock, flags); |
| i = (int)(scq->tail - scq->base); |
| if (++i == scq->num_entries) |
| i = 0; |
| while (i != pos) { |
| skb = scq->skb[i]; |
| XPRINTK("nicstar%d: freeing skb at 0x%p (index %d).\n", |
| card->index, skb, i); |
| if (skb != NULL) { |
| dma_unmap_single(&card->pcidev->dev, |
| NS_PRV_DMA(skb), |
| skb->len, |
| DMA_TO_DEVICE); |
| vcc = ATM_SKB(skb)->vcc; |
| if (vcc && vcc->pop != NULL) { |
| vcc->pop(vcc, skb); |
| } else { |
| dev_kfree_skb_irq(skb); |
| } |
| scq->skb[i] = NULL; |
| } |
| if (++i == scq->num_entries) |
| i = 0; |
| } |
| scq->tail = scq->base + pos; |
| spin_unlock_irqrestore(&scq->lock, flags); |
| } |
| |
| static void process_rsq(ns_dev * card) |
| { |
| ns_rsqe *previous; |
| |
| if (!ns_rsqe_valid(card->rsq.next)) |
| return; |
| do { |
| dequeue_rx(card, card->rsq.next); |
| ns_rsqe_init(card->rsq.next); |
| previous = card->rsq.next; |
| if (card->rsq.next == card->rsq.last) |
| card->rsq.next = card->rsq.base; |
| else |
| card->rsq.next++; |
| } while (ns_rsqe_valid(card->rsq.next)); |
| writel(PTR_DIFF(previous, card->rsq.base), card->membase + RSQH); |
| } |
| |
| static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe) |
| { |
| u32 vpi, vci; |
| vc_map *vc; |
| struct sk_buff *iovb; |
| struct iovec *iov; |
| struct atm_vcc *vcc; |
| struct sk_buff *skb; |
| unsigned short aal5_len; |
| int len; |
| u32 stat; |
| u32 id; |
| |
| stat = readl(card->membase + STAT); |
| card->sbfqc = ns_stat_sfbqc_get(stat); |
| card->lbfqc = ns_stat_lfbqc_get(stat); |
| |
| id = le32_to_cpu(rsqe->buffer_handle); |
| skb = idr_remove(&card->idr, id); |
| if (!skb) { |
| RXPRINTK(KERN_ERR |
| "nicstar%d: skb not found!\n", card->index); |
| return; |
| } |
| dma_sync_single_for_cpu(&card->pcidev->dev, |
| NS_PRV_DMA(skb), |
| (NS_PRV_BUFTYPE(skb) == BUF_SM |
| ? NS_SMSKBSIZE : NS_LGSKBSIZE), |
| DMA_FROM_DEVICE); |
| dma_unmap_single(&card->pcidev->dev, |
| NS_PRV_DMA(skb), |
| (NS_PRV_BUFTYPE(skb) == BUF_SM |
| ? NS_SMSKBSIZE : NS_LGSKBSIZE), |
| DMA_FROM_DEVICE); |
| vpi = ns_rsqe_vpi(rsqe); |
| vci = ns_rsqe_vci(rsqe); |
| if (vpi >= 1UL << card->vpibits || vci >= 1UL << card->vcibits) { |
| printk("nicstar%d: SDU received for out-of-range vc %d.%d.\n", |
| card->index, vpi, vci); |
| recycle_rx_buf(card, skb); |
| return; |
| } |
| |
| vc = &(card->vcmap[vpi << card->vcibits | vci]); |
| if (!vc->rx) { |
| RXPRINTK("nicstar%d: SDU received on non-rx vc %d.%d.\n", |
| card->index, vpi, vci); |
| recycle_rx_buf(card, skb); |
| return; |
| } |
| |
| vcc = vc->rx_vcc; |
| |
| if (vcc->qos.aal == ATM_AAL0) { |
| struct sk_buff *sb; |
| unsigned char *cell; |
| int i; |
| |
| cell = skb->data; |
| for (i = ns_rsqe_cellcount(rsqe); i; i--) { |
| sb = dev_alloc_skb(NS_SMSKBSIZE); |
| if (!sb) { |
| printk |
| ("nicstar%d: Can't allocate buffers for aal0.\n", |
| card->index); |
| atomic_add(i, &vcc->stats->rx_drop); |
| break; |
| } |
| if (!atm_charge(vcc, sb->truesize)) { |
| RXPRINTK |
| ("nicstar%d: atm_charge() dropped aal0 packets.\n", |
| card->index); |
| atomic_add(i - 1, &vcc->stats->rx_drop); /* already increased by 1 */ |
| dev_kfree_skb_any(sb); |
| break; |
| } |
| /* Rebuild the header */ |
| *((u32 *) sb->data) = le32_to_cpu(rsqe->word_1) << 4 | |
| (ns_rsqe_clp(rsqe) ? 0x00000001 : 0x00000000); |
| if (i == 1 && ns_rsqe_eopdu(rsqe)) |
| *((u32 *) sb->data) |= 0x00000002; |
| skb_put(sb, NS_AAL0_HEADER); |
| memcpy(skb_tail_pointer(sb), cell, ATM_CELL_PAYLOAD); |
| skb_put(sb, ATM_CELL_PAYLOAD); |
| ATM_SKB(sb)->vcc = vcc; |
| __net_timestamp(sb); |
| vcc->push(vcc, sb); |
| atomic_inc(&vcc->stats->rx); |
| cell += ATM_CELL_PAYLOAD; |
| } |
| |
| recycle_rx_buf(card, skb); |
| return; |
| } |
| |
| /* To reach this point, the AAL layer can only be AAL5 */ |
| |
| if ((iovb = vc->rx_iov) == NULL) { |
| iovb = skb_dequeue(&(card->iovpool.queue)); |
| if (iovb == NULL) { /* No buffers in the queue */ |
| iovb = alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC); |
| if (iovb == NULL) { |
| printk("nicstar%d: Out of iovec buffers.\n", |
| card->index); |
| atomic_inc(&vcc->stats->rx_drop); |
| recycle_rx_buf(card, skb); |
| return; |
| } |
| NS_PRV_BUFTYPE(iovb) = BUF_NONE; |
| } else if (--card->iovpool.count < card->iovnr.min) { |
| struct sk_buff *new_iovb; |
| if ((new_iovb = |
| alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC)) != NULL) { |
| NS_PRV_BUFTYPE(iovb) = BUF_NONE; |
| skb_queue_tail(&card->iovpool.queue, new_iovb); |
| card->iovpool.count++; |
| } |
| } |
| vc->rx_iov = iovb; |
| NS_PRV_IOVCNT(iovb) = 0; |
| iovb->len = 0; |
| iovb->data = iovb->head; |
| skb_reset_tail_pointer(iovb); |
| /* IMPORTANT: a pointer to the sk_buff containing the small or large |
| buffer is stored as iovec base, NOT a pointer to the |
| small or large buffer itself. */ |
| } else if (NS_PRV_IOVCNT(iovb) >= NS_MAX_IOVECS) { |
| printk("nicstar%d: received too big AAL5 SDU.\n", card->index); |
| atomic_inc(&vcc->stats->rx_err); |
| recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data, |
| NS_MAX_IOVECS); |
| NS_PRV_IOVCNT(iovb) = 0; |
| iovb->len = 0; |
| iovb->data = iovb->head; |
| skb_reset_tail_pointer(iovb); |
| } |
| iov = &((struct iovec *)iovb->data)[NS_PRV_IOVCNT(iovb)++]; |
| iov->iov_base = (void *)skb; |
| iov->iov_len = ns_rsqe_cellcount(rsqe) * 48; |
| iovb->len += iov->iov_len; |
| |
| #ifdef EXTRA_DEBUG |
| if (NS_PRV_IOVCNT(iovb) == 1) { |
| if (NS_PRV_BUFTYPE(skb) != BUF_SM) { |
| printk |
| ("nicstar%d: Expected a small buffer, and this is not one.\n", |
| card->index); |
| which_list(card, skb); |
| atomic_inc(&vcc->stats->rx_err); |
| recycle_rx_buf(card, skb); |
| vc->rx_iov = NULL; |
| recycle_iov_buf(card, iovb); |
| return; |
| } |
| } else { /* NS_PRV_IOVCNT(iovb) >= 2 */ |
| |
| if (NS_PRV_BUFTYPE(skb) != BUF_LG) { |
| printk |
| ("nicstar%d: Expected a large buffer, and this is not one.\n", |
| card->index); |
| which_list(card, skb); |
| atomic_inc(&vcc->stats->rx_err); |
| recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data, |
| NS_PRV_IOVCNT(iovb)); |
| vc->rx_iov = NULL; |
| recycle_iov_buf(card, iovb); |
| return; |
| } |
| } |
| #endif /* EXTRA_DEBUG */ |
| |
| if (ns_rsqe_eopdu(rsqe)) { |
| /* This works correctly regardless of the endianness of the host */ |
| unsigned char *L1L2 = (unsigned char *) |
| (skb->data + iov->iov_len - 6); |
| aal5_len = L1L2[0] << 8 | L1L2[1]; |
| len = (aal5_len == 0x0000) ? 0x10000 : aal5_len; |
| if (ns_rsqe_crcerr(rsqe) || |
| len + 8 > iovb->len || len + (47 + 8) < iovb->len) { |
| printk("nicstar%d: AAL5 CRC error", card->index); |
| if (len + 8 > iovb->len || len + (47 + 8) < iovb->len) |
| printk(" - PDU size mismatch.\n"); |
| else |
| printk(".\n"); |
| atomic_inc(&vcc->stats->rx_err); |
| recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data, |
| NS_PRV_IOVCNT(iovb)); |
| vc->rx_iov = NULL; |
| recycle_iov_buf(card, iovb); |
| return; |
| } |
| |
| /* By this point we (hopefully) have a complete SDU without errors. */ |
| |
| if (NS_PRV_IOVCNT(iovb) == 1) { /* Just a small buffer */ |
| /* skb points to a small buffer */ |
| if (!atm_charge(vcc, skb->truesize)) { |
| push_rxbufs(card, skb); |
| atomic_inc(&vcc->stats->rx_drop); |
| } else { |
| skb_put(skb, len); |
| dequeue_sm_buf(card, skb); |
| ATM_SKB(skb)->vcc = vcc; |
| __net_timestamp(skb); |
| vcc->push(vcc, skb); |
| atomic_inc(&vcc->stats->rx); |
| } |
| } else if (NS_PRV_IOVCNT(iovb) == 2) { /* One small plus one large buffer */ |
| struct sk_buff *sb; |
| |
| sb = (struct sk_buff *)(iov - 1)->iov_base; |
| /* skb points to a large buffer */ |
| |
| if (len <= NS_SMBUFSIZE) { |
| if (!atm_charge(vcc, sb->truesize)) { |
| push_rxbufs(card, sb); |
| atomic_inc(&vcc->stats->rx_drop); |
| } else { |
| skb_put(sb, len); |
| dequeue_sm_buf(card, sb); |
| ATM_SKB(sb)->vcc = vcc; |
| __net_timestamp(sb); |
| vcc->push(vcc, sb); |
| atomic_inc(&vcc->stats->rx); |
| } |
| |
| push_rxbufs(card, skb); |
| |
| } else { /* len > NS_SMBUFSIZE, the usual case */ |
| |
| if (!atm_charge(vcc, skb->truesize)) { |
| push_rxbufs(card, skb); |
| atomic_inc(&vcc->stats->rx_drop); |
| } else { |
| dequeue_lg_buf(card, skb); |
| skb_push(skb, NS_SMBUFSIZE); |
| skb_copy_from_linear_data(sb, skb->data, |
| NS_SMBUFSIZE); |
| skb_put(skb, len - NS_SMBUFSIZE); |
| ATM_SKB(skb)->vcc = vcc; |
| __net_timestamp(skb); |
| vcc->push(vcc, skb); |
| atomic_inc(&vcc->stats->rx); |
| } |
| |
| push_rxbufs(card, sb); |
| |
| } |
| |
| } else { /* Must push a huge buffer */ |
| |
| struct sk_buff *hb, *sb, *lb; |
| int remaining, tocopy; |
| int j; |
| |
| hb = skb_dequeue(&(card->hbpool.queue)); |
| if (hb == NULL) { /* No buffers in the queue */ |
| |
| hb = dev_alloc_skb(NS_HBUFSIZE); |
| if (hb == NULL) { |
| printk |
| ("nicstar%d: Out of huge buffers.\n", |
| card->index); |
| atomic_inc(&vcc->stats->rx_drop); |
| recycle_iovec_rx_bufs(card, |
| (struct iovec *) |
| iovb->data, |
| NS_PRV_IOVCNT(iovb)); |
| vc->rx_iov = NULL; |
| recycle_iov_buf(card, iovb); |
| return; |
| } else if (card->hbpool.count < card->hbnr.min) { |
| struct sk_buff *new_hb; |
| if ((new_hb = |
| dev_alloc_skb(NS_HBUFSIZE)) != |
| NULL) { |
| skb_queue_tail(&card->hbpool. |
| queue, new_hb); |
| card->hbpool.count++; |
| } |
| } |
| NS_PRV_BUFTYPE(hb) = BUF_NONE; |
| } else if (--card->hbpool.count < card->hbnr.min) { |
| struct sk_buff *new_hb; |
| if ((new_hb = |
| dev_alloc_skb(NS_HBUFSIZE)) != NULL) { |
| NS_PRV_BUFTYPE(new_hb) = BUF_NONE; |
| skb_queue_tail(&card->hbpool.queue, |
| new_hb); |
| card->hbpool.count++; |
| } |
| if (card->hbpool.count < card->hbnr.min) { |
| if ((new_hb = |
| dev_alloc_skb(NS_HBUFSIZE)) != |
| NULL) { |
| NS_PRV_BUFTYPE(new_hb) = |
| BUF_NONE; |
| skb_queue_tail(&card->hbpool. |
| queue, new_hb); |
| card->hbpool.count++; |
| } |
| } |
| } |
| |
| iov = (struct iovec *)iovb->data; |
| |
| if (!atm_charge(vcc, hb->truesize)) { |
| recycle_iovec_rx_bufs(card, iov, |
| NS_PRV_IOVCNT(iovb)); |
| if (card->hbpool.count < card->hbnr.max) { |
| skb_queue_tail(&card->hbpool.queue, hb); |
| card->hbpool.count++; |
| } else |
| dev_kfree_skb_any(hb); |
| atomic_inc(&vcc->stats->rx_drop); |
| } else { |
| /* Copy the small buffer to the huge buffer */ |
| sb = (struct sk_buff *)iov->iov_base; |
| skb_copy_from_linear_data(sb, hb->data, |
| iov->iov_len); |
| skb_put(hb, iov->iov_len); |
| remaining = len - iov->iov_len; |
| iov++; |
| /* Free the small buffer */ |
| push_rxbufs(card, sb); |
| |
| /* Copy all large buffers to the huge buffer and free them */ |
| for (j = 1; j < NS_PRV_IOVCNT(iovb); j++) { |
| lb = (struct sk_buff *)iov->iov_base; |
| tocopy = |
| min_t(int, remaining, iov->iov_len); |
| skb_copy_from_linear_data(lb, |
| skb_tail_pointer |
| (hb), tocopy); |
| skb_put(hb, tocopy); |
| iov++; |
| remaining -= tocopy; |
| push_rxbufs(card, lb); |
| } |
| #ifdef EXTRA_DEBUG |
| if (remaining != 0 || hb->len != len) |
| printk |
| ("nicstar%d: Huge buffer len mismatch.\n", |
| card->index); |
| #endif /* EXTRA_DEBUG */ |
| ATM_SKB(hb)->vcc = vcc; |
| __net_timestamp(hb); |
| vcc->push(vcc, hb); |
| atomic_inc(&vcc->stats->rx); |
| } |
| } |
| |
| vc->rx_iov = NULL; |
| recycle_iov_buf(card, iovb); |
| } |
| |
| } |
| |
| static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb) |
| { |
| if (unlikely(NS_PRV_BUFTYPE(skb) == BUF_NONE)) { |
| printk("nicstar%d: What kind of rx buffer is this?\n", |
| card->index); |
| dev_kfree_skb_any(skb); |
| } else |
| push_rxbufs(card, skb); |
| } |
| |
| static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count) |
| { |
| while (count-- > 0) |
| recycle_rx_buf(card, (struct sk_buff *)(iov++)->iov_base); |
| } |
| |
| static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb) |
| { |
| if (card->iovpool.count < card->iovnr.max) { |
| skb_queue_tail(&card->iovpool.queue, iovb); |
| card->iovpool.count++; |
| } else |
| dev_kfree_skb_any(iovb); |
| } |
| |
| static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb) |
| { |
| skb_unlink(sb, &card->sbpool.queue); |
| if (card->sbfqc < card->sbnr.init) { |
| struct sk_buff *new_sb; |
| if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) { |
| NS_PRV_BUFTYPE(new_sb) = BUF_SM; |
| skb_queue_tail(&card->sbpool.queue, new_sb); |
| skb_reserve(new_sb, NS_AAL0_HEADER); |
| push_rxbufs(card, new_sb); |
| } |
| } |
| if (card->sbfqc < card->sbnr.init) |
| { |
| struct sk_buff *new_sb; |
| if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) { |
| NS_PRV_BUFTYPE(new_sb) = BUF_SM; |
| skb_queue_tail(&card->sbpool.queue, new_sb); |
| skb_reserve(new_sb, NS_AAL0_HEADER); |
| push_rxbufs(card, new_sb); |
| } |
| } |
| } |
| |
| static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb) |
| { |
| skb_unlink(lb, &card->lbpool.queue); |
| if (card->lbfqc < card->lbnr.init) { |
| struct sk_buff *new_lb; |
| if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) { |
| NS_PRV_BUFTYPE(new_lb) = BUF_LG; |
| skb_queue_tail(&card->lbpool.queue, new_lb); |
| skb_reserve(new_lb, NS_SMBUFSIZE); |
| push_rxbufs(card, new_lb); |
| } |
| } |
| if (card->lbfqc < card->lbnr.init) |
| { |
| struct sk_buff *new_lb; |
| if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) { |
| NS_PRV_BUFTYPE(new_lb) = BUF_LG; |
| skb_queue_tail(&card->lbpool.queue, new_lb); |
| skb_reserve(new_lb, NS_SMBUFSIZE); |
| push_rxbufs(card, new_lb); |
| } |
| } |
| } |
| |
| static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page) |
| { |
| u32 stat; |
| ns_dev *card; |
| int left; |
| |
| left = (int)*pos; |
| card = (ns_dev *) dev->dev_data; |
| stat = readl(card->membase + STAT); |
| if (!left--) |
| return sprintf(page, "Pool count min init max \n"); |
| if (!left--) |
| return sprintf(page, "Small %5d %5d %5d %5d \n", |
| ns_stat_sfbqc_get(stat), card->sbnr.min, |
| card->sbnr.init, card->sbnr.max); |
| if (!left--) |
| return sprintf(page, "Large %5d %5d %5d %5d \n", |
| ns_stat_lfbqc_get(stat), card->lbnr.min, |
| card->lbnr.init, card->lbnr.max); |
| if (!left--) |
| return sprintf(page, "Huge %5d %5d %5d %5d \n", |
| card->hbpool.count, card->hbnr.min, |
| card->hbnr.init, card->hbnr.max); |
| if (!left--) |
| return sprintf(page, "Iovec %5d %5d %5d %5d \n", |
| card->iovpool.count, card->iovnr.min, |
| card->iovnr.init, card->iovnr.max); |
| if (!left--) { |
| int retval; |
| retval = |
| sprintf(page, "Interrupt counter: %u \n", card->intcnt); |
| card->intcnt = 0; |
| return retval; |
| } |
| #if 0 |
| /* Dump 25.6 Mbps PHY registers */ |
| /* Now there's a 25.6 Mbps PHY driver this code isn't needed. I left it |
| here just in case it's needed for debugging. */ |
| if (card->max_pcr == ATM_25_PCR && !left--) { |
| u32 phy_regs[4]; |
| u32 i; |
| |
| for (i = 0; i < 4; i++) { |
| while (CMD_BUSY(card)) ; |
| writel(NS_CMD_READ_UTILITY | 0x00000200 | i, |
| card->membase + CMD); |
| while (CMD_BUSY(card)) ; |
| phy_regs[i] = readl(card->membase + DR0) & 0x000000FF; |
| } |
| |
| return sprintf(page, "PHY regs: 0x%02X 0x%02X 0x%02X 0x%02X \n", |
| phy_regs[0], phy_regs[1], phy_regs[2], |
| phy_regs[3]); |
| } |
| #endif /* 0 - Dump 25.6 Mbps PHY registers */ |
| #if 0 |
| /* Dump TST */ |
| if (left-- < NS_TST_NUM_ENTRIES) { |
| if (card->tste2vc[left + 1] == NULL) |
| return sprintf(page, "%5d - VBR/UBR \n", left + 1); |
| else |
| return sprintf(page, "%5d - %d %d \n", left + 1, |
| card->tste2vc[left + 1]->tx_vcc->vpi, |
| card->tste2vc[left + 1]->tx_vcc->vci); |
| } |
| #endif /* 0 */ |
| return 0; |
| } |
| |
| static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg) |
| { |
| ns_dev *card; |
| pool_levels pl; |
| long btype; |
| unsigned long flags; |
| |
| card = dev->dev_data; |
| switch (cmd) { |
| case NS_GETPSTAT: |
| if (get_user |
| (pl.buftype, &((pool_levels __user *) arg)->buftype)) |
| return -EFAULT; |
| switch (pl.buftype) { |
| case NS_BUFTYPE_SMALL: |
| pl.count = |
| ns_stat_sfbqc_get(readl(card->membase + STAT)); |
| pl.level.min = card->sbnr.min; |
| pl.level.init = card->sbnr.init; |
| pl.level.max = card->sbnr.max; |
| break; |
| |
| case NS_BUFTYPE_LARGE: |
| pl.count = |
| ns_stat_lfbqc_get(readl(card->membase + STAT)); |
| pl.level.min = card->lbnr.min; |
| pl.level.init = card->lbnr.init; |
| pl.level.max = card->lbnr.max; |
| break; |
| |
| case NS_BUFTYPE_HUGE: |
| pl.count = card->hbpool.count; |
| pl.level.min = card->hbnr.min; |
| pl.level.init = card->hbnr.init; |
| pl.level.max = card->hbnr.max; |
| break; |
| |
| case NS_BUFTYPE_IOVEC: |
| pl.count = card->iovpool.count; |
| pl.level.min = card->iovnr.min; |
| pl.level.init = card->iovnr.init; |
| pl.level.max = card->iovnr.max; |
| break; |
| |
| default: |
| return -ENOIOCTLCMD; |
| |
| } |
| if (!copy_to_user((pool_levels __user *) arg, &pl, sizeof(pl))) |
| return (sizeof(pl)); |
| else |
| return -EFAULT; |
| |
| case NS_SETBUFLEV: |
| if (!capable(CAP_NET_ADMIN)) |
| return -EPERM; |
| if (copy_from_user(&pl, (pool_levels __user *) arg, sizeof(pl))) |
| return -EFAULT; |
| if (pl.level.min >= pl.level.init |
| || pl.level.init >= pl.level.max) |
| return -EINVAL; |
| if (pl.level.min == 0) |
| return -EINVAL; |
| switch (pl.buftype) { |
| case NS_BUFTYPE_SMALL: |
| if (pl.level.max > TOP_SB) |
| return -EINVAL; |
| card->sbnr.min = pl.level.min; |
| card->sbnr.init = pl.level.init; |
| card->sbnr.max = pl.level.max; |
| break; |
| |
| case NS_BUFTYPE_LARGE: |
| if (pl.level.max > TOP_LB) |
| return -EINVAL; |
| card->lbnr.min = pl.level.min; |
| card->lbnr.init = pl.level.init; |
| card->lbnr.max = pl.level.max; |
| break; |
| |
| case NS_BUFTYPE_HUGE: |
| if (pl.level.max > TOP_HB) |
| return -EINVAL; |
| card->hbnr.min = pl.level.min; |
| card->hbnr.init = pl.level.init; |
| card->hbnr.max = pl.level.max; |
| break; |
| |
| case NS_BUFTYPE_IOVEC: |
| if (pl.level.max > TOP_IOVB) |
| return -EINVAL; |
| card->iovnr.min = pl.level.min; |
| card->iovnr.init = pl.level.init; |
| card->iovnr.max = pl.level.max; |
| break; |
| |
| default: |
| return -EINVAL; |
| |
| } |
| return 0; |
| |
| case NS_ADJBUFLEV: |
| if (!capable(CAP_NET_ADMIN)) |
| return -EPERM; |
| btype = (long)arg; /* a long is the same size as a pointer or bigger */ |
| switch (btype) { |
| case NS_BUFTYPE_SMALL: |
| while (card->sbfqc < card->sbnr.init) { |
| struct sk_buff *sb; |
| |
| sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL); |
| if (sb == NULL) |
| return -ENOMEM; |
| NS_PRV_BUFTYPE(sb) = BUF_SM; |
| skb_queue_tail(&card->sbpool.queue, sb); |
| skb_reserve(sb, NS_AAL0_HEADER); |
| push_rxbufs(card, sb); |
| } |
| break; |
| |
| case NS_BUFTYPE_LARGE: |
| while (card->lbfqc < card->lbnr.init) { |
| struct sk_buff *lb; |
| |
| lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL); |
| if (lb == NULL) |
| return -ENOMEM; |
| NS_PRV_BUFTYPE(lb) = BUF_LG; |
| skb_queue_tail(&card->lbpool.queue, lb); |
| skb_reserve(lb, NS_SMBUFSIZE); |
| push_rxbufs(card, lb); |
| } |
| break; |
| |
| case NS_BUFTYPE_HUGE: |
| while (card->hbpool.count > card->hbnr.init) { |
| struct sk_buff *hb; |
| |
| spin_lock_irqsave(&card->int_lock, flags); |
| hb = skb_dequeue(&card->hbpool.queue); |
| card->hbpool.count--; |
| spin_unlock_irqrestore(&card->int_lock, flags); |
| if (hb == NULL) |
| printk |
| ("nicstar%d: huge buffer count inconsistent.\n", |
| card->index); |
| else |
| dev_kfree_skb_any(hb); |
| |
| } |
| while (card->hbpool.count < card->hbnr.init) { |
| struct sk_buff *hb; |
| |
| hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL); |
| if (hb == NULL) |
| return -ENOMEM; |
| NS_PRV_BUFTYPE(hb) = BUF_NONE; |
| spin_lock_irqsave(&card->int_lock, flags); |
| skb_queue_tail(&card->hbpool.queue, hb); |
| card->hbpool.count++; |
| spin_unlock_irqrestore(&card->int_lock, flags); |
| } |
| break; |
| |
| case NS_BUFTYPE_IOVEC: |
| while (card->iovpool.count > card->iovnr.init) { |
| struct sk_buff *iovb; |
| |
| spin_lock_irqsave(&card->int_lock, flags); |
| iovb = skb_dequeue(&card->iovpool.queue); |
| card->iovpool.count--; |
| spin_unlock_irqrestore(&card->int_lock, flags); |
| if (iovb == NULL) |
| printk |
| ("nicstar%d: iovec buffer count inconsistent.\n", |
| card->index); |
| else |
| dev_kfree_skb_any(iovb); |
| |
| } |
| while (card->iovpool.count < card->iovnr.init) { |
| struct sk_buff *iovb; |
| |
| iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL); |
| if (iovb == NULL) |
| return -ENOMEM; |
| NS_PRV_BUFTYPE(iovb) = BUF_NONE; |
| spin_lock_irqsave(&card->int_lock, flags); |
| skb_queue_tail(&card->iovpool.queue, iovb); |
| card->iovpool.count++; |
| spin_unlock_irqrestore(&card->int_lock, flags); |
| } |
| break; |
| |
| default: |
| return -EINVAL; |
| |
| } |
| return 0; |
| |
| default: |
| if (dev->phy && dev->phy->ioctl) { |
| return dev->phy->ioctl(dev, cmd, arg); |
| } else { |
| printk("nicstar%d: %s == NULL \n", card->index, |
| dev->phy ? "dev->phy->ioctl" : "dev->phy"); |
| return -ENOIOCTLCMD; |
| } |
| } |
| } |
| |
| #ifdef EXTRA_DEBUG |
| static void which_list(ns_dev * card, struct sk_buff *skb) |
| { |
| printk("skb buf_type: 0x%08x\n", NS_PRV_BUFTYPE(skb)); |
| } |
| #endif /* EXTRA_DEBUG */ |
| |
| static void ns_poll(unsigned long arg) |
| { |
| int i; |
| ns_dev *card; |
| unsigned long flags; |
| u32 stat_r, stat_w; |
| |
| PRINTK("nicstar: Entering ns_poll().\n"); |
| for (i = 0; i < num_cards; i++) { |
| card = cards[i]; |
| if (spin_is_locked(&card->int_lock)) { |
| /* Probably it isn't worth spinning */ |
| continue; |
| } |
| spin_lock_irqsave(&card->int_lock, flags); |
| |
| stat_w = 0; |
| stat_r = readl(card->membase + STAT); |
| if (stat_r & NS_STAT_TSIF) |
| stat_w |= NS_STAT_TSIF; |
| if (stat_r & NS_STAT_EOPDU) |
| stat_w |= NS_STAT_EOPDU; |
| |
| process_tsq(card); |
| process_rsq(card); |
| |
| writel(stat_w, card->membase + STAT); |
| spin_unlock_irqrestore(&card->int_lock, flags); |
| } |
| mod_timer(&ns_timer, jiffies + NS_POLL_PERIOD); |
| PRINTK("nicstar: Leaving ns_poll().\n"); |
| } |
| |
| static void ns_phy_put(struct atm_dev *dev, unsigned char value, |
| unsigned long addr) |
| { |
| ns_dev *card; |
| unsigned long flags; |
| |
| card = dev->dev_data; |
| spin_lock_irqsave(&card->res_lock, flags); |
| while (CMD_BUSY(card)) ; |
| writel((u32) value, card->membase + DR0); |
| writel(NS_CMD_WRITE_UTILITY | 0x00000200 | (addr & 0x000000FF), |
| card->membase + CMD); |
| spin_unlock_irqrestore(&card->res_lock, flags); |
| } |
| |
| static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr) |
| { |
| ns_dev *card; |
| unsigned long flags; |
| u32 data; |
| |
| card = dev->dev_data; |
| spin_lock_irqsave(&card->res_lock, flags); |
| while (CMD_BUSY(card)) ; |
| writel(NS_CMD_READ_UTILITY | 0x00000200 | (addr & 0x000000FF), |
| card->membase + CMD); |
| while (CMD_BUSY(card)) ; |
| data = readl(card->membase + DR0) & 0x000000FF; |
| spin_unlock_irqrestore(&card->res_lock, flags); |
| return (unsigned char)data; |
| } |
| |
| module_init(nicstar_init); |
| module_exit(nicstar_cleanup); |