[MTD] [NAND] Freescale enhanced Local Bus Controller FCM NAND support.

Signed-off-by: Nick Spence <nick.spence@freescale.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
diff --git a/drivers/mtd/nand/fsl_elbc_nand.c b/drivers/mtd/nand/fsl_elbc_nand.c
new file mode 100644
index 0000000..b025dfe
--- /dev/null
+++ b/drivers/mtd/nand/fsl_elbc_nand.c
@@ -0,0 +1,1244 @@
+/* Freescale Enhanced Local Bus Controller NAND driver
+ *
+ * Copyright (c) 2006-2007 Freescale Semiconductor
+ *
+ * Authors: Nick Spence <nick.spence@freescale.com>,
+ *          Scott Wood <scottwood@freescale.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ */
+
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/string.h>
+#include <linux/ioport.h>
+#include <linux/of_platform.h>
+#include <linux/slab.h>
+#include <linux/interrupt.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/partitions.h>
+
+#include <asm/io.h>
+
+
+#define MAX_BANKS 8
+#define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
+#define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
+
+struct elbc_bank {
+	__be32 br;             /**< Base Register  */
+#define BR_BA           0xFFFF8000
+#define BR_BA_SHIFT             15
+#define BR_PS           0x00001800
+#define BR_PS_SHIFT             11
+#define BR_PS_8         0x00000800  /* Port Size 8 bit */
+#define BR_PS_16        0x00001000  /* Port Size 16 bit */
+#define BR_PS_32        0x00001800  /* Port Size 32 bit */
+#define BR_DECC         0x00000600
+#define BR_DECC_SHIFT            9
+#define BR_DECC_OFF     0x00000000  /* HW ECC checking and generation off */
+#define BR_DECC_CHK     0x00000200  /* HW ECC checking on, generation off */
+#define BR_DECC_CHK_GEN 0x00000400  /* HW ECC checking and generation on */
+#define BR_WP           0x00000100
+#define BR_WP_SHIFT              8
+#define BR_MSEL         0x000000E0
+#define BR_MSEL_SHIFT            5
+#define BR_MS_GPCM      0x00000000  /* GPCM */
+#define BR_MS_FCM       0x00000020  /* FCM */
+#define BR_MS_SDRAM     0x00000060  /* SDRAM */
+#define BR_MS_UPMA      0x00000080  /* UPMA */
+#define BR_MS_UPMB      0x000000A0  /* UPMB */
+#define BR_MS_UPMC      0x000000C0  /* UPMC */
+#define BR_V            0x00000001
+#define BR_V_SHIFT               0
+#define BR_RES          ~(BR_BA|BR_PS|BR_DECC|BR_WP|BR_MSEL|BR_V)
+
+	__be32 or;             /**< Base Register  */
+#define OR0 0x5004
+#define OR1 0x500C
+#define OR2 0x5014
+#define OR3 0x501C
+#define OR4 0x5024
+#define OR5 0x502C
+#define OR6 0x5034
+#define OR7 0x503C
+
+#define OR_FCM_AM               0xFFFF8000
+#define OR_FCM_AM_SHIFT                 15
+#define OR_FCM_BCTLD            0x00001000
+#define OR_FCM_BCTLD_SHIFT              12
+#define OR_FCM_PGS              0x00000400
+#define OR_FCM_PGS_SHIFT                10
+#define OR_FCM_CSCT             0x00000200
+#define OR_FCM_CSCT_SHIFT                9
+#define OR_FCM_CST              0x00000100
+#define OR_FCM_CST_SHIFT                 8
+#define OR_FCM_CHT              0x00000080
+#define OR_FCM_CHT_SHIFT                 7
+#define OR_FCM_SCY              0x00000070
+#define OR_FCM_SCY_SHIFT                 4
+#define OR_FCM_SCY_1            0x00000010
+#define OR_FCM_SCY_2            0x00000020
+#define OR_FCM_SCY_3            0x00000030
+#define OR_FCM_SCY_4            0x00000040
+#define OR_FCM_SCY_5            0x00000050
+#define OR_FCM_SCY_6            0x00000060
+#define OR_FCM_SCY_7            0x00000070
+#define OR_FCM_RST              0x00000008
+#define OR_FCM_RST_SHIFT                 3
+#define OR_FCM_TRLX             0x00000004
+#define OR_FCM_TRLX_SHIFT                2
+#define OR_FCM_EHTR             0x00000002
+#define OR_FCM_EHTR_SHIFT                1
+};
+
+struct elbc_regs {
+	struct elbc_bank bank[8];
+	u8 res0[0x28];
+	__be32 mar;             /**< UPM Address Register */
+	u8 res1[0x4];
+	__be32 mamr;            /**< UPMA Mode Register */
+	__be32 mbmr;            /**< UPMB Mode Register */
+	__be32 mcmr;            /**< UPMC Mode Register */
+	u8 res2[0x8];
+	__be32 mrtpr;           /**< Memory Refresh Timer Prescaler Register */
+	__be32 mdr;             /**< UPM Data Register */
+	u8 res3[0x4];
+	__be32 lsor;            /**< Special Operation Initiation Register */
+	__be32 lsdmr;           /**< SDRAM Mode Register */
+	u8 res4[0x8];
+	__be32 lurt;            /**< UPM Refresh Timer */
+	__be32 lsrt;            /**< SDRAM Refresh Timer */
+	u8 res5[0x8];
+	__be32 ltesr;           /**< Transfer Error Status Register */
+#define LTESR_BM   0x80000000
+#define LTESR_FCT  0x40000000
+#define LTESR_PAR  0x20000000
+#define LTESR_WP   0x04000000
+#define LTESR_ATMW 0x00800000
+#define LTESR_ATMR 0x00400000
+#define LTESR_CS   0x00080000
+#define LTESR_CC   0x00000001
+#define LTESR_NAND_MASK (LTESR_FCT | LTESR_PAR | LTESR_CC)
+	__be32 ltedr;           /**< Transfer Error Disable Register */
+	__be32 lteir;           /**< Transfer Error Interrupt Register */
+	__be32 lteatr;          /**< Transfer Error Attributes Register */
+	__be32 ltear;           /**< Transfer Error Address Register */
+	u8 res6[0xC];
+	__be32 lbcr;            /**< Configuration Register */
+#define LBCR_LDIS  0x80000000
+#define LBCR_LDIS_SHIFT    31
+#define LBCR_BCTLC 0x00C00000
+#define LBCR_BCTLC_SHIFT   22
+#define LBCR_AHD   0x00200000
+#define LBCR_LPBSE 0x00020000
+#define LBCR_LPBSE_SHIFT   17
+#define LBCR_EPAR  0x00010000
+#define LBCR_EPAR_SHIFT    16
+#define LBCR_BMT   0x0000FF00
+#define LBCR_BMT_SHIFT      8
+#define LBCR_INIT  0x00040000
+	__be32 lcrr;            /**< Clock Ratio Register */
+#define LCRR_DBYP    0x80000000
+#define LCRR_DBYP_SHIFT      31
+#define LCRR_BUFCMDC 0x30000000
+#define LCRR_BUFCMDC_SHIFT   28
+#define LCRR_ECL     0x03000000
+#define LCRR_ECL_SHIFT       24
+#define LCRR_EADC    0x00030000
+#define LCRR_EADC_SHIFT      16
+#define LCRR_CLKDIV  0x0000000F
+#define LCRR_CLKDIV_SHIFT     0
+	u8 res7[0x8];
+	__be32 fmr;             /**< Flash Mode Register */
+#define FMR_CWTO     0x0000F000
+#define FMR_CWTO_SHIFT       12
+#define FMR_BOOT     0x00000800
+#define FMR_ECCM     0x00000100
+#define FMR_AL       0x00000030
+#define FMR_AL_SHIFT          4
+#define FMR_OP       0x00000003
+#define FMR_OP_SHIFT          0
+	__be32 fir;             /**< Flash Instruction Register */
+#define FIR_OP0      0xF0000000
+#define FIR_OP0_SHIFT        28
+#define FIR_OP1      0x0F000000
+#define FIR_OP1_SHIFT        24
+#define FIR_OP2      0x00F00000
+#define FIR_OP2_SHIFT        20
+#define FIR_OP3      0x000F0000
+#define FIR_OP3_SHIFT        16
+#define FIR_OP4      0x0000F000
+#define FIR_OP4_SHIFT        12
+#define FIR_OP5      0x00000F00
+#define FIR_OP5_SHIFT         8
+#define FIR_OP6      0x000000F0
+#define FIR_OP6_SHIFT         4
+#define FIR_OP7      0x0000000F
+#define FIR_OP7_SHIFT         0
+#define FIR_OP_NOP   0x0	/* No operation and end of sequence */
+#define FIR_OP_CA    0x1        /* Issue current column address */
+#define FIR_OP_PA    0x2        /* Issue current block+page address */
+#define FIR_OP_UA    0x3        /* Issue user defined address */
+#define FIR_OP_CM0   0x4        /* Issue command from FCR[CMD0] */
+#define FIR_OP_CM1   0x5        /* Issue command from FCR[CMD1] */
+#define FIR_OP_CM2   0x6        /* Issue command from FCR[CMD2] */
+#define FIR_OP_CM3   0x7        /* Issue command from FCR[CMD3] */
+#define FIR_OP_WB    0x8        /* Write FBCR bytes from FCM buffer */
+#define FIR_OP_WS    0x9        /* Write 1 or 2 bytes from MDR[AS] */
+#define FIR_OP_RB    0xA        /* Read FBCR bytes to FCM buffer */
+#define FIR_OP_RS    0xB        /* Read 1 or 2 bytes to MDR[AS] */
+#define FIR_OP_CW0   0xC        /* Wait then issue FCR[CMD0] */
+#define FIR_OP_CW1   0xD        /* Wait then issue FCR[CMD1] */
+#define FIR_OP_RBW   0xE        /* Wait then read FBCR bytes */
+#define FIR_OP_RSW   0xE        /* Wait then read 1 or 2 bytes */
+	__be32 fcr;             /**< Flash Command Register */
+#define FCR_CMD0     0xFF000000
+#define FCR_CMD0_SHIFT       24
+#define FCR_CMD1     0x00FF0000
+#define FCR_CMD1_SHIFT       16
+#define FCR_CMD2     0x0000FF00
+#define FCR_CMD2_SHIFT        8
+#define FCR_CMD3     0x000000FF
+#define FCR_CMD3_SHIFT        0
+	__be32 fbar;            /**< Flash Block Address Register */
+#define FBAR_BLK     0x00FFFFFF
+	__be32 fpar;            /**< Flash Page Address Register */
+#define FPAR_SP_PI   0x00007C00
+#define FPAR_SP_PI_SHIFT     10
+#define FPAR_SP_MS   0x00000200
+#define FPAR_SP_CI   0x000001FF
+#define FPAR_SP_CI_SHIFT      0
+#define FPAR_LP_PI   0x0003F000
+#define FPAR_LP_PI_SHIFT     12
+#define FPAR_LP_MS   0x00000800
+#define FPAR_LP_CI   0x000007FF
+#define FPAR_LP_CI_SHIFT      0
+	__be32 fbcr;            /**< Flash Byte Count Register */
+#define FBCR_BC      0x00000FFF
+	u8 res11[0x8];
+	u8 res8[0xF00];
+};
+
+struct fsl_elbc_ctrl;
+
+/* mtd information per set */
+
+struct fsl_elbc_mtd {
+	struct mtd_info mtd;
+	struct nand_chip chip;
+	struct fsl_elbc_ctrl *ctrl;
+
+	struct device *dev;
+	int bank;               /* Chip select bank number           */
+	u8 __iomem *vbase;      /* Chip select base virtual address  */
+	int page_size;          /* NAND page size (0=512, 1=2048)    */
+	unsigned int fmr;       /* FCM Flash Mode Register value     */
+};
+
+/* overview of the fsl elbc controller */
+
+struct fsl_elbc_ctrl {
+	struct nand_hw_control controller;
+	struct fsl_elbc_mtd *chips[MAX_BANKS];
+
+	/* device info */
+	struct device *dev;
+	struct elbc_regs __iomem *regs;
+	int irq;
+	wait_queue_head_t irq_wait;
+	unsigned int irq_status; /* status read from LTESR by irq handler */
+	u8 __iomem *addr;        /* Address of assigned FCM buffer        */
+	unsigned int page;       /* Last page written to / read from      */
+	unsigned int read_bytes; /* Number of bytes read during command   */
+	unsigned int column;     /* Saved column from SEQIN               */
+	unsigned int index;      /* Pointer to next byte to 'read'        */
+	unsigned int status;     /* status read from LTESR after last op  */
+	unsigned int mdr;        /* UPM/FCM Data Register value           */
+	unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
+	unsigned int oob;        /* Non zero if operating on OOB data     */
+	char *oob_poi;           /* Place to write ECC after read back    */
+};
+
+/* These map to the positions used by the FCM hardware ECC generator */
+
+/* Small Page FLASH with FMR[ECCM] = 0 */
+static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
+	.eccbytes = 3,
+	.eccpos = {6, 7, 8},
+	.oobfree = { {0, 5}, {9, 7} },
+	.oobavail = 12,
+};
+
+/* Small Page FLASH with FMR[ECCM] = 1 */
+static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
+	.eccbytes = 3,
+	.eccpos = {8, 9, 10},
+	.oobfree = { {0, 5}, {6, 2}, {11, 5} },
+	.oobavail = 12,
+};
+
+/* Large Page FLASH with FMR[ECCM] = 0 */
+static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
+	.eccbytes = 12,
+	.eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
+	.oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
+	.oobavail = 48,
+};
+
+/* Large Page FLASH with FMR[ECCM] = 1 */
+static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
+	.eccbytes = 12,
+	.eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
+	.oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
+	.oobavail = 48,
+};
+
+/*=================================*/
+
+/*
+ * Set up the FCM hardware block and page address fields, and the fcm
+ * structure addr field to point to the correct FCM buffer in memory
+ */
+static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct fsl_elbc_mtd *priv = chip->priv;
+	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+	struct elbc_regs __iomem *lbc = ctrl->regs;
+	int buf_num;
+
+	ctrl->page = page_addr;
+
+	out_be32(&lbc->fbar,
+	         page_addr >> (chip->phys_erase_shift - chip->page_shift));
+
+	if (priv->page_size) {
+		out_be32(&lbc->fpar,
+		         ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
+		         (oob ? FPAR_LP_MS : 0) | column);
+		buf_num = (page_addr & 1) << 2;
+	} else {
+		out_be32(&lbc->fpar,
+		         ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
+		         (oob ? FPAR_SP_MS : 0) | column);
+		buf_num = page_addr & 7;
+	}
+
+	ctrl->addr = priv->vbase + buf_num * 1024;
+	ctrl->index = column;
+
+	/* for OOB data point to the second half of the buffer */
+	if (oob)
+		ctrl->index += priv->page_size ? 2048 : 512;
+
+	dev_vdbg(ctrl->dev, "set_addr: bank=%d, ctrl->addr=0x%p (0x%p), "
+	                    "index %x, pes %d ps %d\n",
+	         buf_num, ctrl->addr, priv->vbase, ctrl->index,
+	         chip->phys_erase_shift, chip->page_shift);
+}
+
+/*
+ * execute FCM command and wait for it to complete
+ */
+static int fsl_elbc_run_command(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct fsl_elbc_mtd *priv = chip->priv;
+	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+	struct elbc_regs __iomem *lbc = ctrl->regs;
+
+	/* Setup the FMR[OP] to execute without write protection */
+	out_be32(&lbc->fmr, priv->fmr | 3);
+	if (ctrl->use_mdr)
+		out_be32(&lbc->mdr, ctrl->mdr);
+
+	dev_vdbg(ctrl->dev,
+	         "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
+	         in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
+	dev_vdbg(ctrl->dev,
+	         "fsl_elbc_run_command: fbar=%08x fpar=%08x "
+	         "fbcr=%08x bank=%d\n",
+	         in_be32(&lbc->fbar), in_be32(&lbc->fpar),
+	         in_be32(&lbc->fbcr), priv->bank);
+
+	/* execute special operation */
+	out_be32(&lbc->lsor, priv->bank);
+
+	/* wait for FCM complete flag or timeout */
+	ctrl->irq_status = 0;
+	wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
+	                   FCM_TIMEOUT_MSECS * HZ/1000);
+	ctrl->status = ctrl->irq_status;
+
+	/* store mdr value in case it was needed */
+	if (ctrl->use_mdr)
+		ctrl->mdr = in_be32(&lbc->mdr);
+
+	ctrl->use_mdr = 0;
+
+	dev_vdbg(ctrl->dev,
+	         "fsl_elbc_run_command: stat=%08x mdr=%08x fmr=%08x\n",
+	         ctrl->status, ctrl->mdr, in_be32(&lbc->fmr));
+
+	/* returns 0 on success otherwise non-zero) */
+	return ctrl->status == LTESR_CC ? 0 : -EIO;
+}
+
+static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
+{
+	struct fsl_elbc_mtd *priv = chip->priv;
+	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+	struct elbc_regs __iomem *lbc = ctrl->regs;
+
+	if (priv->page_size) {
+		out_be32(&lbc->fir,
+		         (FIR_OP_CW0 << FIR_OP0_SHIFT) |
+		         (FIR_OP_CA  << FIR_OP1_SHIFT) |
+		         (FIR_OP_PA  << FIR_OP2_SHIFT) |
+		         (FIR_OP_CW1 << FIR_OP3_SHIFT) |
+		         (FIR_OP_RBW << FIR_OP4_SHIFT));
+
+		out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
+		                    (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
+	} else {
+		out_be32(&lbc->fir,
+		         (FIR_OP_CW0 << FIR_OP0_SHIFT) |
+		         (FIR_OP_CA  << FIR_OP1_SHIFT) |
+		         (FIR_OP_PA  << FIR_OP2_SHIFT) |
+		         (FIR_OP_RBW << FIR_OP3_SHIFT));
+
+		if (oob)
+			out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
+		else
+			out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
+	}
+}
+
+/* cmdfunc send commands to the FCM */
+static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
+                             int column, int page_addr)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct fsl_elbc_mtd *priv = chip->priv;
+	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+	struct elbc_regs __iomem *lbc = ctrl->regs;
+
+	ctrl->use_mdr = 0;
+
+	/* clear the read buffer */
+	ctrl->read_bytes = 0;
+	if (command != NAND_CMD_PAGEPROG)
+		ctrl->index = 0;
+
+	switch (command) {
+	/* READ0 and READ1 read the entire buffer to use hardware ECC. */
+	case NAND_CMD_READ1:
+		column += 256;
+
+	/* fall-through */
+	case NAND_CMD_READ0:
+		dev_dbg(ctrl->dev,
+		        "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
+		        " 0x%x, column: 0x%x.\n", page_addr, column);
+
+
+		out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
+		set_addr(mtd, 0, page_addr, 0);
+
+		ctrl->read_bytes = mtd->writesize + mtd->oobsize;
+		ctrl->index += column;
+
+		fsl_elbc_do_read(chip, 0);
+		fsl_elbc_run_command(mtd);
+		return;
+
+	/* READOOB reads only the OOB because no ECC is performed. */
+	case NAND_CMD_READOOB:
+		dev_vdbg(ctrl->dev,
+		         "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
+			 " 0x%x, column: 0x%x.\n", page_addr, column);
+
+		out_be32(&lbc->fbcr, mtd->oobsize - column);
+		set_addr(mtd, column, page_addr, 1);
+
+		ctrl->read_bytes = mtd->writesize + mtd->oobsize;
+
+		fsl_elbc_do_read(chip, 1);
+		fsl_elbc_run_command(mtd);
+		return;
+
+	/* READID must read all 5 possible bytes while CEB is active */
+	case NAND_CMD_READID:
+		dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
+
+		out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) |
+		                    (FIR_OP_UA  << FIR_OP1_SHIFT) |
+		                    (FIR_OP_RBW << FIR_OP2_SHIFT));
+		out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
+		/* 5 bytes for manuf, device and exts */
+		out_be32(&lbc->fbcr, 5);
+		ctrl->read_bytes = 5;
+		ctrl->use_mdr = 1;
+		ctrl->mdr = 0;
+
+		set_addr(mtd, 0, 0, 0);
+		fsl_elbc_run_command(mtd);
+		return;
+
+	/* ERASE1 stores the block and page address */
+	case NAND_CMD_ERASE1:
+		dev_vdbg(ctrl->dev,
+		         "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
+		         "page_addr: 0x%x.\n", page_addr);
+		set_addr(mtd, 0, page_addr, 0);
+		return;
+
+	/* ERASE2 uses the block and page address from ERASE1 */
+	case NAND_CMD_ERASE2:
+		dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
+
+		out_be32(&lbc->fir,
+		         (FIR_OP_CW0 << FIR_OP0_SHIFT) |
+		         (FIR_OP_PA  << FIR_OP1_SHIFT) |
+		         (FIR_OP_CM1 << FIR_OP2_SHIFT));
+
+		out_be32(&lbc->fcr,
+		         (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
+		         (NAND_CMD_ERASE2 << FCR_CMD1_SHIFT));
+
+		out_be32(&lbc->fbcr, 0);
+		ctrl->read_bytes = 0;
+
+		fsl_elbc_run_command(mtd);
+		return;
+
+	/* SEQIN sets up the addr buffer and all registers except the length */
+	case NAND_CMD_SEQIN: {
+		__be32 fcr;
+		dev_vdbg(ctrl->dev,
+		         "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
+		         "page_addr: 0x%x, column: 0x%x.\n",
+		         page_addr, column);
+
+		ctrl->column = column;
+		ctrl->oob = 0;
+
+		fcr = (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT) |
+		      (NAND_CMD_SEQIN << FCR_CMD2_SHIFT);
+
+		if (priv->page_size) {
+			out_be32(&lbc->fir,
+			         (FIR_OP_CW0 << FIR_OP0_SHIFT) |
+			         (FIR_OP_CA  << FIR_OP1_SHIFT) |
+			         (FIR_OP_PA  << FIR_OP2_SHIFT) |
+			         (FIR_OP_WB  << FIR_OP3_SHIFT) |
+			         (FIR_OP_CW1 << FIR_OP4_SHIFT));
+
+			fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
+		} else {
+			out_be32(&lbc->fir,
+			         (FIR_OP_CW0 << FIR_OP0_SHIFT) |
+			         (FIR_OP_CM2 << FIR_OP1_SHIFT) |
+			         (FIR_OP_CA  << FIR_OP2_SHIFT) |
+			         (FIR_OP_PA  << FIR_OP3_SHIFT) |
+			         (FIR_OP_WB  << FIR_OP4_SHIFT) |
+			         (FIR_OP_CW1 << FIR_OP5_SHIFT));
+
+			if (column >= mtd->writesize) {
+				/* OOB area --> READOOB */
+				column -= mtd->writesize;
+				fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
+				ctrl->oob = 1;
+			} else if (column < 256) {
+				/* First 256 bytes --> READ0 */
+				fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
+			} else {
+				/* Second 256 bytes --> READ1 */
+				fcr |= NAND_CMD_READ1 << FCR_CMD0_SHIFT;
+			}
+		}
+
+		out_be32(&lbc->fcr, fcr);
+		set_addr(mtd, column, page_addr, ctrl->oob);
+		return;
+	}
+
+	/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
+	case NAND_CMD_PAGEPROG: {
+		int full_page;
+		dev_vdbg(ctrl->dev,
+		         "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
+		         "writing %d bytes.\n", ctrl->index);
+
+		/* if the write did not start at 0 or is not a full page
+		 * then set the exact length, otherwise use a full page
+		 * write so the HW generates the ECC.
+		 */
+		if (ctrl->oob || ctrl->column != 0 ||
+		    ctrl->index != mtd->writesize + mtd->oobsize) {
+			out_be32(&lbc->fbcr, ctrl->index);
+			full_page = 0;
+		} else {
+			out_be32(&lbc->fbcr, 0);
+			full_page = 1;
+		}
+
+		fsl_elbc_run_command(mtd);
+
+		/* Read back the page in order to fill in the ECC for the
+		 * caller.  Is this really needed?
+		 */
+		if (full_page && ctrl->oob_poi) {
+			out_be32(&lbc->fbcr, 3);
+			set_addr(mtd, 6, page_addr, 1);
+
+			ctrl->read_bytes = mtd->writesize + 9;
+
+			fsl_elbc_do_read(chip, 1);
+			fsl_elbc_run_command(mtd);
+
+			memcpy_fromio(ctrl->oob_poi + 6,
+			              &ctrl->addr[ctrl->index], 3);
+			ctrl->index += 3;
+		}
+
+		ctrl->oob_poi = NULL;
+		return;
+	}
+
+	/* CMD_STATUS must read the status byte while CEB is active */
+	/* Note - it does not wait for the ready line */
+	case NAND_CMD_STATUS:
+		out_be32(&lbc->fir,
+		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
+		         (FIR_OP_RBW << FIR_OP1_SHIFT));
+		out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
+		out_be32(&lbc->fbcr, 1);
+		set_addr(mtd, 0, 0, 0);
+		ctrl->read_bytes = 1;
+
+		fsl_elbc_run_command(mtd);
+
+		/* The chip always seems to report that it is
+		 * write-protected, even when it is not.
+		 */
+		setbits8(ctrl->addr, NAND_STATUS_WP);
+		return;
+
+	/* RESET without waiting for the ready line */
+	case NAND_CMD_RESET:
+		dev_dbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
+		out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
+		out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
+		fsl_elbc_run_command(mtd);
+		return;
+
+	default:
+		dev_err(ctrl->dev,
+		        "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
+		        command);
+	}
+}
+
+static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
+{
+	/* The hardware does not seem to support multiple
+	 * chips per bank.
+	 */
+}
+
+/*
+ * Write buf to the FCM Controller Data Buffer
+ */
+static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct fsl_elbc_mtd *priv = chip->priv;
+	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+	unsigned int bufsize = mtd->writesize + mtd->oobsize;
+
+	if (len < 0) {
+		dev_err(ctrl->dev, "write_buf of %d bytes", len);
+		ctrl->status = 0;
+		return;
+	}
+
+	if ((unsigned int)len > bufsize - ctrl->index) {
+		dev_err(ctrl->dev,
+		        "write_buf beyond end of buffer "
+		        "(%d requested, %u available)\n",
+		        len, bufsize - ctrl->index);
+		len = bufsize - ctrl->index;
+	}
+
+	memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
+	ctrl->index += len;
+}
+
+/*
+ * read a byte from either the FCM hardware buffer if it has any data left
+ * otherwise issue a command to read a single byte.
+ */
+static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct fsl_elbc_mtd *priv = chip->priv;
+	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+
+	/* If there are still bytes in the FCM, then use the next byte. */
+	if (ctrl->index < ctrl->read_bytes)
+		return in_8(&ctrl->addr[ctrl->index++]);
+
+	dev_err(ctrl->dev, "read_byte beyond end of buffer\n");
+	return ERR_BYTE;
+}
+
+/*
+ * Read from the FCM Controller Data Buffer
+ */
+static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct fsl_elbc_mtd *priv = chip->priv;
+	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+	int avail;
+
+	if (len < 0)
+		return;
+
+	avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
+	memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
+	ctrl->index += avail;
+
+	if (len > avail)
+		dev_err(ctrl->dev,
+		        "read_buf beyond end of buffer "
+		        "(%d requested, %d available)\n",
+		        len, avail);
+}
+
+/*
+ * Verify buffer against the FCM Controller Data Buffer
+ */
+static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct fsl_elbc_mtd *priv = chip->priv;
+	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+	int i;
+
+	if (len < 0) {
+		dev_err(ctrl->dev, "write_buf of %d bytes", len);
+		return -EINVAL;
+	}
+
+	if ((unsigned int)len > ctrl->read_bytes - ctrl->index) {
+		dev_err(ctrl->dev,
+		        "verify_buf beyond end of buffer "
+		        "(%d requested, %u available)\n",
+		        len, ctrl->read_bytes - ctrl->index);
+
+		ctrl->index = ctrl->read_bytes;
+		return -EINVAL;
+	}
+
+	for (i = 0; i < len; i++)
+		if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i])
+			break;
+
+	ctrl->index += len;
+	return i == len && ctrl->status == LTESR_CC ? 0 : -EIO;
+}
+
+/* This function is called after Program and Erase Operations to
+ * check for success or failure.
+ */
+static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
+{
+	struct fsl_elbc_mtd *priv = chip->priv;
+	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+	struct elbc_regs __iomem *lbc = ctrl->regs;
+
+	if (ctrl->status != LTESR_CC)
+		return NAND_STATUS_FAIL;
+
+	/* Use READ_STATUS command, but wait for the device to be ready */
+	ctrl->use_mdr = 0;
+	out_be32(&lbc->fir,
+	         (FIR_OP_CW0 << FIR_OP0_SHIFT) |
+	         (FIR_OP_RBW << FIR_OP1_SHIFT));
+	out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
+	out_be32(&lbc->fbcr, 1);
+	set_addr(mtd, 0, 0, 0);
+	ctrl->read_bytes = 1;
+
+	fsl_elbc_run_command(mtd);
+
+	if (ctrl->status != LTESR_CC)
+		return NAND_STATUS_FAIL;
+
+	/* The chip always seems to report that it is
+	 * write-protected, even when it is not.
+	 */
+	setbits8(ctrl->addr, NAND_STATUS_WP);
+	return fsl_elbc_read_byte(mtd);
+}
+
+static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd->priv;
+	struct fsl_elbc_mtd *priv = chip->priv;
+	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+	struct elbc_regs __iomem *lbc = ctrl->regs;
+	unsigned int al;
+
+	/* calculate FMR Address Length field */
+	al = 0;
+	if (chip->pagemask & 0xffff0000)
+		al++;
+	if (chip->pagemask & 0xff000000)
+		al++;
+
+	/* add to ECCM mode set in fsl_elbc_init */
+	priv->fmr |= (12 << FMR_CWTO_SHIFT) |  /* Timeout > 12 ms */
+	             (al << FMR_AL_SHIFT);
+
+	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->numchips = %d\n",
+	        chip->numchips);
+	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chipsize = %ld\n",
+	        chip->chipsize);
+	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
+	        chip->pagemask);
+	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
+	        chip->chip_delay);
+	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
+	        chip->badblockpos);
+	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
+	        chip->chip_shift);
+	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->page_shift = %d\n",
+	        chip->page_shift);
+	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
+	        chip->phys_erase_shift);
+	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
+	        chip->ecclayout);
+	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
+	        chip->ecc.mode);
+	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
+	        chip->ecc.steps);
+	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
+	        chip->ecc.bytes);
+	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
+	        chip->ecc.total);
+	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
+	        chip->ecc.layout);
+	dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
+	dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->size = %d\n", mtd->size);
+	dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
+	        mtd->erasesize);
+	dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->writesize = %d\n",
+	        mtd->writesize);
+	dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
+	        mtd->oobsize);
+
+	/* adjust Option Register and ECC to match Flash page size */
+	if (mtd->writesize == 512) {
+		priv->page_size = 0;
+		clrbits32(&lbc->bank[priv->bank].or, ~OR_FCM_PGS);
+	} else if (mtd->writesize == 2048) {
+		priv->page_size = 1;
+		setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
+		/* adjust ecc setup if needed */
+		if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
+		    BR_DECC_CHK_GEN) {
+			chip->ecc.size = 512;
+			chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
+			                   &fsl_elbc_oob_lp_eccm1 :
+			                   &fsl_elbc_oob_lp_eccm0;
+			mtd->ecclayout = chip->ecc.layout;
+			mtd->oobavail = chip->ecc.layout->oobavail;
+		}
+	} else {
+		dev_err(ctrl->dev,
+		        "fsl_elbc_init: page size %d is not supported\n",
+		        mtd->writesize);
+		return -1;
+	}
+
+	/* The default u-boot configuration on MPC8313ERDB causes errors;
+	 * more delay is needed.  This should be safe for other boards
+	 * as well.
+	 */
+	setbits32(&lbc->bank[priv->bank].or, 0x70);
+	return 0;
+}
+
+static int fsl_elbc_read_page(struct mtd_info *mtd,
+                              struct nand_chip *chip,
+                              uint8_t *buf)
+{
+	fsl_elbc_read_buf(mtd, buf, mtd->writesize);
+	fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
+		mtd->ecc_stats.failed++;
+
+	return 0;
+}
+
+/* ECC will be calculated automatically, and errors will be detected in
+ * waitfunc.
+ */
+static void fsl_elbc_write_page(struct mtd_info *mtd,
+                                struct nand_chip *chip,
+                                const uint8_t *buf)
+{
+	struct fsl_elbc_mtd *priv = chip->priv;
+	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+
+	fsl_elbc_write_buf(mtd, buf, mtd->writesize);
+	fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	ctrl->oob_poi = chip->oob_poi;
+}
+
+static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
+{
+	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+	struct elbc_regs __iomem *lbc = ctrl->regs;
+	struct nand_chip *chip = &priv->chip;
+
+	dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
+
+	/* Fill in fsl_elbc_mtd structure */
+	priv->mtd.priv = chip;
+	priv->mtd.owner = THIS_MODULE;
+	priv->fmr = 0; /* rest filled in later */
+
+	/* fill in nand_chip structure */
+	/* set up function call table */
+	chip->read_byte = fsl_elbc_read_byte;
+	chip->write_buf = fsl_elbc_write_buf;
+	chip->read_buf = fsl_elbc_read_buf;
+	chip->verify_buf = fsl_elbc_verify_buf;
+	chip->select_chip = fsl_elbc_select_chip;
+	chip->cmdfunc = fsl_elbc_cmdfunc;
+	chip->waitfunc = fsl_elbc_wait;
+
+	/* set up nand options */
+	chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR;
+
+	chip->controller = &ctrl->controller;
+	chip->priv = priv;
+
+	chip->ecc.read_page = fsl_elbc_read_page;
+	chip->ecc.write_page = fsl_elbc_write_page;
+
+	/* If CS Base Register selects full hardware ECC then use it */
+	if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
+	    BR_DECC_CHK_GEN) {
+		chip->ecc.mode = NAND_ECC_HW;
+		/* put in small page settings and adjust later if needed */
+		chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
+				&fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
+		chip->ecc.size = 512;
+		chip->ecc.bytes = 3;
+	} else {
+		/* otherwise fall back to default software ECC */
+		chip->ecc.mode = NAND_ECC_SOFT;
+	}
+
+	return 0;
+}
+
+static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
+{
+	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+
+	nand_release(&priv->mtd);
+
+	if (priv->vbase)
+		iounmap(priv->vbase);
+
+	ctrl->chips[priv->bank] = NULL;
+	kfree(priv);
+
+	return 0;
+}
+
+static int fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl,
+                               struct device_node *node)
+{
+	struct elbc_regs __iomem *lbc = ctrl->regs;
+	struct fsl_elbc_mtd *priv;
+	struct resource res;
+#ifdef CONFIG_MTD_PARTITIONS
+	static const char *part_probe_types[]
+		= { "cmdlinepart", "RedBoot", NULL };
+	struct mtd_partition *parts;
+#endif
+	int ret;
+	int bank;
+
+	/* get, allocate and map the memory resource */
+	ret = of_address_to_resource(node, 0, &res);
+	if (ret) {
+		dev_err(ctrl->dev, "failed to get resource\n");
+		return ret;
+	}
+
+	/* find which chip select it is connected to */
+	for (bank = 0; bank < MAX_BANKS; bank++)
+		if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
+		    (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
+		    (in_be32(&lbc->bank[bank].br) &
+		     in_be32(&lbc->bank[bank].or) & BR_BA)
+		     == res.start)
+			break;
+
+	if (bank >= MAX_BANKS) {
+		dev_err(ctrl->dev, "address did not match any chip selects\n");
+		return -ENODEV;
+	}
+
+	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
+	if (!priv)
+		return -ENOMEM;
+
+	ctrl->chips[bank] = priv;
+	priv->bank = bank;
+	priv->ctrl = ctrl;
+	priv->dev = ctrl->dev;
+
+	priv->vbase = ioremap(res.start, res.end - res.start + 1);
+	if (!priv->vbase) {
+		dev_err(ctrl->dev, "failed to map chip region\n");
+		ret = -ENOMEM;
+		goto err;
+	}
+
+	ret = fsl_elbc_chip_init(priv);
+	if (ret)
+		goto err;
+
+	ret = nand_scan_ident(&priv->mtd, 1);
+	if (ret)
+		goto err;
+
+	ret = fsl_elbc_chip_init_tail(&priv->mtd);
+	if (ret)
+		goto err;
+
+	ret = nand_scan_tail(&priv->mtd);
+	if (ret)
+		goto err;
+
+#ifdef CONFIG_MTD_PARTITIONS
+	/* First look for RedBoot table or partitions on the command
+	 * line, these take precedence over device tree information */
+	ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0);
+	if (ret < 0)
+		goto err;
+
+#ifdef CONFIG_MTD_OF_PARTS
+	if (ret == 0) {
+		ret = of_mtd_parse_partitions(priv->dev, &priv->mtd,
+		                              node, &parts);
+		if (ret < 0)
+			goto err;
+	}
+#endif
+
+	if (ret > 0)
+		add_mtd_partitions(&priv->mtd, parts, ret);
+	else
+#endif
+		add_mtd_device(&priv->mtd);
+
+	printk(KERN_INFO "eLBC NAND device at 0x%zx, bank %d\n",
+	       res.start, priv->bank);
+	return 0;
+
+err:
+	fsl_elbc_chip_remove(priv);
+	return ret;
+}
+
+static int __devinit fsl_elbc_ctrl_init(struct fsl_elbc_ctrl *ctrl)
+{
+	struct elbc_regs __iomem *lbc = ctrl->regs;
+
+	/* clear event registers */
+	setbits32(&lbc->ltesr, LTESR_NAND_MASK);
+	out_be32(&lbc->lteatr, 0);
+
+	/* Enable interrupts for any detected events */
+	out_be32(&lbc->lteir, LTESR_NAND_MASK);
+
+	ctrl->read_bytes = 0;
+	ctrl->index = 0;
+	ctrl->addr = NULL;
+
+	return 0;
+}
+
+static int __devexit fsl_elbc_ctrl_remove(struct of_device *ofdev)
+{
+	struct fsl_elbc_ctrl *ctrl = dev_get_drvdata(&ofdev->dev);
+	int i;
+
+	for (i = 0; i < MAX_BANKS; i++)
+		if (ctrl->chips[i])
+			fsl_elbc_chip_remove(ctrl->chips[i]);
+
+	if (ctrl->irq)
+		free_irq(ctrl->irq, ctrl);
+
+	if (ctrl->regs)
+		iounmap(ctrl->regs);
+
+	dev_set_drvdata(&ofdev->dev, NULL);
+	kfree(ctrl);
+	return 0;
+}
+
+/* NOTE: This interrupt is also used to report other localbus events,
+ * such as transaction errors on other chipselects.  If we want to
+ * capture those, we'll need to move the IRQ code into a shared
+ * LBC driver.
+ */
+
+static irqreturn_t fsl_elbc_ctrl_irq(int irqno, void *data)
+{
+	struct fsl_elbc_ctrl *ctrl = data;
+	struct elbc_regs __iomem *lbc = ctrl->regs;
+	__be32 status = in_be32(&lbc->ltesr) & LTESR_NAND_MASK;
+
+	if (status) {
+		out_be32(&lbc->ltesr, status);
+		out_be32(&lbc->lteatr, 0);
+
+		ctrl->irq_status = status;
+		smp_wmb();
+		wake_up(&ctrl->irq_wait);
+
+		return IRQ_HANDLED;
+	}
+
+	return IRQ_NONE;
+}
+
+/* fsl_elbc_ctrl_probe
+ *
+ * called by device layer when it finds a device matching
+ * one our driver can handled. This code allocates all of
+ * the resources needed for the controller only.  The
+ * resources for the NAND banks themselves are allocated
+ * in the chip probe function.
+*/
+
+static int __devinit fsl_elbc_ctrl_probe(struct of_device *ofdev,
+                                         const struct of_device_id *match)
+{
+	struct device_node *child;
+	struct fsl_elbc_ctrl *ctrl;
+	int ret;
+
+	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
+	if (!ctrl)
+		return -ENOMEM;
+
+	dev_set_drvdata(&ofdev->dev, ctrl);
+
+	spin_lock_init(&ctrl->controller.lock);
+	init_waitqueue_head(&ctrl->controller.wq);
+	init_waitqueue_head(&ctrl->irq_wait);
+
+	ctrl->regs = of_iomap(ofdev->node, 0);
+	if (!ctrl->regs) {
+		dev_err(&ofdev->dev, "failed to get memory region\n");
+		ret = -ENODEV;
+		goto err;
+	}
+
+	ctrl->irq = of_irq_to_resource(ofdev->node, 0, NULL);
+	if (ctrl->irq == NO_IRQ) {
+		dev_err(&ofdev->dev, "failed to get irq resource\n");
+		ret = -ENODEV;
+		goto err;
+	}
+
+	ctrl->dev = &ofdev->dev;
+
+	ret = fsl_elbc_ctrl_init(ctrl);
+	if (ret < 0)
+		goto err;
+
+	ret = request_irq(ctrl->irq, fsl_elbc_ctrl_irq, 0, "fsl-elbc", ctrl);
+	if (ret != 0) {
+		dev_err(&ofdev->dev, "failed to install irq (%d)\n",
+		        ctrl->irq);
+		ret = ctrl->irq;
+		goto err;
+	}
+
+	for_each_child_of_node(ofdev->node, child)
+		if (of_device_is_compatible(child, "fsl,elbc-fcm-nand"))
+			fsl_elbc_chip_probe(ctrl, child);
+
+	return 0;
+
+err:
+	fsl_elbc_ctrl_remove(ofdev);
+	return ret;
+}
+
+static const struct of_device_id fsl_elbc_match[] = {
+	{
+		.compatible = "fsl,elbc",
+	},
+	{}
+};
+
+static struct of_platform_driver fsl_elbc_ctrl_driver = {
+	.driver = {
+		.name	= "fsl-elbc",
+	},
+	.match_table = fsl_elbc_match,
+	.probe = fsl_elbc_ctrl_probe,
+	.remove = __devexit_p(fsl_elbc_ctrl_remove),
+};
+
+static int __init fsl_elbc_init(void)
+{
+	return of_register_platform_driver(&fsl_elbc_ctrl_driver);
+}
+
+static void __exit fsl_elbc_exit(void)
+{
+	of_unregister_platform_driver(&fsl_elbc_ctrl_driver);
+}
+
+module_init(fsl_elbc_init);
+module_exit(fsl_elbc_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Freescale");
+MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");