blob: 083bacaecb3bd2b6af4aa68434401ec08dcee2de [file] [log] [blame]
/*
* net/dccp/ipv4.c
*
* An implementation of the DCCP protocol
* Arnaldo Carvalho de Melo <acme@conectiva.com.br>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/config.h>
#include <linux/dccp.h>
#include <linux/icmp.h>
#include <linux/module.h>
#include <linux/skbuff.h>
#include <linux/random.h>
#include <net/icmp.h>
#include <net/inet_hashtables.h>
#include <net/sock.h>
#include <net/tcp_states.h>
#include <net/xfrm.h>
#include "ccid.h"
#include "dccp.h"
struct inet_hashinfo __cacheline_aligned dccp_hashinfo = {
.lhash_lock = RW_LOCK_UNLOCKED,
.lhash_users = ATOMIC_INIT(0),
.lhash_wait = __WAIT_QUEUE_HEAD_INITIALIZER(dccp_hashinfo.lhash_wait),
.portalloc_lock = SPIN_LOCK_UNLOCKED,
.port_rover = 1024 - 1,
};
static int dccp_v4_get_port(struct sock *sk, const unsigned short snum)
{
return inet_csk_get_port(&dccp_hashinfo, sk, snum);
}
static void dccp_v4_hash(struct sock *sk)
{
inet_hash(&dccp_hashinfo, sk);
}
static void dccp_v4_unhash(struct sock *sk)
{
inet_unhash(&dccp_hashinfo, sk);
}
/* called with local bh disabled */
static int __dccp_v4_check_established(struct sock *sk, const __u16 lport,
struct inet_timewait_sock **twp)
{
struct inet_sock *inet = inet_sk(sk);
const u32 daddr = inet->rcv_saddr;
const u32 saddr = inet->daddr;
const int dif = sk->sk_bound_dev_if;
INET_ADDR_COOKIE(acookie, saddr, daddr)
const __u32 ports = INET_COMBINED_PORTS(inet->dport, lport);
const int hash = inet_ehashfn(daddr, lport, saddr, inet->dport, dccp_hashinfo.ehash_size);
struct inet_ehash_bucket *head = &dccp_hashinfo.ehash[hash];
const struct sock *sk2;
const struct hlist_node *node;
struct inet_timewait_sock *tw;
write_lock(&head->lock);
/* Check TIME-WAIT sockets first. */
sk_for_each(sk2, node, &(head + dccp_hashinfo.ehash_size)->chain) {
tw = inet_twsk(sk2);
if (INET_TW_MATCH(sk2, acookie, saddr, daddr, ports, dif))
goto not_unique;
}
tw = NULL;
/* And established part... */
sk_for_each(sk2, node, &head->chain) {
if (INET_MATCH(sk2, acookie, saddr, daddr, ports, dif))
goto not_unique;
}
/* Must record num and sport now. Otherwise we will see
* in hash table socket with a funny identity. */
inet->num = lport;
inet->sport = htons(lport);
sk->sk_hashent = hash;
BUG_TRAP(sk_unhashed(sk));
__sk_add_node(sk, &head->chain);
sock_prot_inc_use(sk->sk_prot);
write_unlock(&head->lock);
if (twp != NULL) {
*twp = tw;
NET_INC_STATS_BH(LINUX_MIB_TIMEWAITRECYCLED);
} else if (tw != NULL) {
/* Silly. Should hash-dance instead... */
dccp_tw_deschedule(tw);
NET_INC_STATS_BH(LINUX_MIB_TIMEWAITRECYCLED);
inet_twsk_put(tw);
}
return 0;
not_unique:
write_unlock(&head->lock);
return -EADDRNOTAVAIL;
}
/*
* Bind a port for a connect operation and hash it.
*/
static int dccp_v4_hash_connect(struct sock *sk)
{
const unsigned short snum = inet_sk(sk)->num;
struct inet_bind_hashbucket *head;
struct inet_bind_bucket *tb;
int ret;
if (snum == 0) {
int rover;
int low = sysctl_local_port_range[0];
int high = sysctl_local_port_range[1];
int remaining = (high - low) + 1;
struct hlist_node *node;
struct inet_timewait_sock *tw = NULL;
local_bh_disable();
/* TODO. Actually it is not so bad idea to remove
* dccp_hashinfo.portalloc_lock before next submission to Linus.
* As soon as we touch this place at all it is time to think.
*
* Now it protects single _advisory_ variable dccp_hashinfo.port_rover,
* hence it is mostly useless.
* Code will work nicely if we just delete it, but
* I am afraid in contented case it will work not better or
* even worse: another cpu just will hit the same bucket
* and spin there.
* So some cpu salt could remove both contention and
* memory pingpong. Any ideas how to do this in a nice way?
*/
spin_lock(&dccp_hashinfo.portalloc_lock);
rover = dccp_hashinfo.port_rover;
do {
rover++;
if ((rover < low) || (rover > high))
rover = low;
head = &dccp_hashinfo.bhash[inet_bhashfn(rover, dccp_hashinfo.bhash_size)];
spin_lock(&head->lock);
/* Does not bother with rcv_saddr checks,
* because the established check is already
* unique enough.
*/
inet_bind_bucket_for_each(tb, node, &head->chain) {
if (tb->port == rover) {
BUG_TRAP(!hlist_empty(&tb->owners));
if (tb->fastreuse >= 0)
goto next_port;
if (!__dccp_v4_check_established(sk,
rover,
&tw))
goto ok;
goto next_port;
}
}
tb = inet_bind_bucket_create(dccp_hashinfo.bind_bucket_cachep, head, rover);
if (tb == NULL) {
spin_unlock(&head->lock);
break;
}
tb->fastreuse = -1;
goto ok;
next_port:
spin_unlock(&head->lock);
} while (--remaining > 0);
dccp_hashinfo.port_rover = rover;
spin_unlock(&dccp_hashinfo.portalloc_lock);
local_bh_enable();
return -EADDRNOTAVAIL;
ok:
/* All locks still held and bhs disabled */
dccp_hashinfo.port_rover = rover;
spin_unlock(&dccp_hashinfo.portalloc_lock);
inet_bind_hash(sk, tb, rover);
if (sk_unhashed(sk)) {
inet_sk(sk)->sport = htons(rover);
__inet_hash(&dccp_hashinfo, sk, 0);
}
spin_unlock(&head->lock);
if (tw != NULL) {
dccp_tw_deschedule(tw);
inet_twsk_put(tw);
}
ret = 0;
goto out;
}
head = &dccp_hashinfo.bhash[inet_bhashfn(snum, dccp_hashinfo.bhash_size)];
tb = inet_csk(sk)->icsk_bind_hash;
spin_lock_bh(&head->lock);
if (sk_head(&tb->owners) == sk && sk->sk_bind_node.next == NULL) {
__inet_hash(&dccp_hashinfo, sk, 0);
spin_unlock_bh(&head->lock);
return 0;
} else {
spin_unlock(&head->lock);
/* No definite answer... Walk to established hash table */
ret = __dccp_v4_check_established(sk, snum, NULL);
out:
local_bh_enable();
return ret;
}
}
static int dccp_v4_connect(struct sock *sk, struct sockaddr *uaddr,
int addr_len)
{
struct inet_sock *inet = inet_sk(sk);
struct dccp_sock *dp = dccp_sk(sk);
const struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
struct rtable *rt;
u32 daddr, nexthop;
int tmp;
int err;
dp->dccps_role = DCCP_ROLE_CLIENT;
if (addr_len < sizeof(struct sockaddr_in))
return -EINVAL;
if (usin->sin_family != AF_INET)
return -EAFNOSUPPORT;
nexthop = daddr = usin->sin_addr.s_addr;
if (inet->opt != NULL && inet->opt->srr) {
if (daddr == 0)
return -EINVAL;
nexthop = inet->opt->faddr;
}
tmp = ip_route_connect(&rt, nexthop, inet->saddr,
RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
IPPROTO_DCCP,
inet->sport, usin->sin_port, sk);
if (tmp < 0)
return tmp;
if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
ip_rt_put(rt);
return -ENETUNREACH;
}
if (inet->opt == NULL || !inet->opt->srr)
daddr = rt->rt_dst;
if (inet->saddr == 0)
inet->saddr = rt->rt_src;
inet->rcv_saddr = inet->saddr;
inet->dport = usin->sin_port;
inet->daddr = daddr;
dp->dccps_ext_header_len = 0;
if (inet->opt != NULL)
dp->dccps_ext_header_len = inet->opt->optlen;
/*
* Socket identity is still unknown (sport may be zero).
* However we set state to DCCP_REQUESTING and not releasing socket
* lock select source port, enter ourselves into the hash tables and
* complete initialization after this.
*/
dccp_set_state(sk, DCCP_REQUESTING);
err = dccp_v4_hash_connect(sk);
if (err != 0)
goto failure;
err = ip_route_newports(&rt, inet->sport, inet->dport, sk);
if (err != 0)
goto failure;
/* OK, now commit destination to socket. */
sk_setup_caps(sk, &rt->u.dst);
dp->dccps_gar =
dp->dccps_iss = secure_dccp_sequence_number(inet->saddr,
inet->daddr,
inet->sport,
usin->sin_port);
dccp_update_gss(sk, dp->dccps_iss);
inet->id = dp->dccps_iss ^ jiffies;
err = dccp_connect(sk);
rt = NULL;
if (err != 0)
goto failure;
out:
return err;
failure:
/* This unhashes the socket and releases the local port, if necessary. */
dccp_set_state(sk, DCCP_CLOSED);
ip_rt_put(rt);
sk->sk_route_caps = 0;
inet->dport = 0;
goto out;
}
/*
* This routine does path mtu discovery as defined in RFC1191.
*/
static inline void dccp_do_pmtu_discovery(struct sock *sk,
const struct iphdr *iph,
u32 mtu)
{
struct dst_entry *dst;
const struct inet_sock *inet = inet_sk(sk);
const struct dccp_sock *dp = dccp_sk(sk);
/* We are not interested in DCCP_LISTEN and request_socks (RESPONSEs
* send out by Linux are always < 576bytes so they should go through
* unfragmented).
*/
if (sk->sk_state == DCCP_LISTEN)
return;
/* We don't check in the destentry if pmtu discovery is forbidden
* on this route. We just assume that no packet_to_big packets
* are send back when pmtu discovery is not active.
* There is a small race when the user changes this flag in the
* route, but I think that's acceptable.
*/
if ((dst = __sk_dst_check(sk, 0)) == NULL)
return;
dst->ops->update_pmtu(dst, mtu);
/* Something is about to be wrong... Remember soft error
* for the case, if this connection will not able to recover.
*/
if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
sk->sk_err_soft = EMSGSIZE;
mtu = dst_mtu(dst);
if (inet->pmtudisc != IP_PMTUDISC_DONT &&
dp->dccps_pmtu_cookie > mtu) {
dccp_sync_mss(sk, mtu);
/*
* From: draft-ietf-dccp-spec-11.txt
*
* DCCP-Sync packets are the best choice for upward probing,
* since DCCP-Sync probes do not risk application data loss.
*/
dccp_send_sync(sk, dp->dccps_gsr);
} /* else let the usual retransmit timer handle it */
}
static void dccp_v4_ctl_send_ack(struct sk_buff *rxskb)
{
int err;
struct dccp_hdr *rxdh = dccp_hdr(rxskb), *dh;
const int dccp_hdr_ack_len = sizeof(struct dccp_hdr) +
sizeof(struct dccp_hdr_ext) +
sizeof(struct dccp_hdr_ack_bits);
struct sk_buff *skb;
if (((struct rtable *)rxskb->dst)->rt_type != RTN_LOCAL)
return;
skb = alloc_skb(MAX_DCCP_HEADER + 15, GFP_ATOMIC);
if (skb == NULL)
return;
/* Reserve space for headers. */
skb_reserve(skb, MAX_DCCP_HEADER);
skb->dst = dst_clone(rxskb->dst);
skb->h.raw = skb_push(skb, dccp_hdr_ack_len);
dh = dccp_hdr(skb);
memset(dh, 0, dccp_hdr_ack_len);
/* Build DCCP header and checksum it. */
dh->dccph_type = DCCP_PKT_ACK;
dh->dccph_sport = rxdh->dccph_dport;
dh->dccph_dport = rxdh->dccph_sport;
dh->dccph_doff = dccp_hdr_ack_len / 4;
dh->dccph_x = 1;
dccp_hdr_set_seq(dh, DCCP_SKB_CB(rxskb)->dccpd_ack_seq);
dccp_hdr_set_ack(dccp_hdr_ack_bits(skb), DCCP_SKB_CB(rxskb)->dccpd_seq);
bh_lock_sock(dccp_ctl_socket->sk);
err = ip_build_and_send_pkt(skb, dccp_ctl_socket->sk,
rxskb->nh.iph->daddr, rxskb->nh.iph->saddr, NULL);
bh_unlock_sock(dccp_ctl_socket->sk);
if (err == NET_XMIT_CN || err == 0) {
DCCP_INC_STATS_BH(DCCP_MIB_OUTSEGS);
DCCP_INC_STATS_BH(DCCP_MIB_OUTRSTS);
}
}
static void dccp_v4_reqsk_send_ack(struct sk_buff *skb, struct request_sock *req)
{
dccp_v4_ctl_send_ack(skb);
}
static int dccp_v4_send_response(struct sock *sk, struct request_sock *req,
struct dst_entry *dst)
{
int err = -1;
struct sk_buff *skb;
/* First, grab a route. */
if (dst == NULL && (dst = inet_csk_route_req(sk, req)) == NULL)
goto out;
skb = dccp_make_response(sk, dst, req);
if (skb != NULL) {
const struct inet_request_sock *ireq = inet_rsk(req);
err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
ireq->rmt_addr,
ireq->opt);
if (err == NET_XMIT_CN)
err = 0;
}
out:
dst_release(dst);
return err;
}
/*
* This routine is called by the ICMP module when it gets some sort of error
* condition. If err < 0 then the socket should be closed and the error
* returned to the user. If err > 0 it's just the icmp type << 8 | icmp code.
* After adjustment header points to the first 8 bytes of the tcp header. We
* need to find the appropriate port.
*
* The locking strategy used here is very "optimistic". When someone else
* accesses the socket the ICMP is just dropped and for some paths there is no
* check at all. A more general error queue to queue errors for later handling
* is probably better.
*/
void dccp_v4_err(struct sk_buff *skb, u32 info)
{
const struct iphdr *iph = (struct iphdr *)skb->data;
const struct dccp_hdr *dh = (struct dccp_hdr *)(skb->data + (iph->ihl << 2));
struct dccp_sock *dp;
struct inet_sock *inet;
const int type = skb->h.icmph->type;
const int code = skb->h.icmph->code;
struct sock *sk;
__u64 seq;
int err;
if (skb->len < (iph->ihl << 2) + 8) {
ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
return;
}
sk = inet_lookup(&dccp_hashinfo, iph->daddr, dh->dccph_dport,
iph->saddr, dh->dccph_sport, inet_iif(skb));
if (sk == NULL) {
ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
return;
}
if (sk->sk_state == DCCP_TIME_WAIT) {
inet_twsk_put((struct inet_timewait_sock *)sk);
return;
}
bh_lock_sock(sk);
/* If too many ICMPs get dropped on busy
* servers this needs to be solved differently.
*/
if (sock_owned_by_user(sk))
NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS);
if (sk->sk_state == DCCP_CLOSED)
goto out;
dp = dccp_sk(sk);
seq = dccp_hdr_seq(skb);
if (sk->sk_state != DCCP_LISTEN &&
!between48(seq, dp->dccps_swl, dp->dccps_swh)) {
NET_INC_STATS(LINUX_MIB_OUTOFWINDOWICMPS);
goto out;
}
switch (type) {
case ICMP_SOURCE_QUENCH:
/* Just silently ignore these. */
goto out;
case ICMP_PARAMETERPROB:
err = EPROTO;
break;
case ICMP_DEST_UNREACH:
if (code > NR_ICMP_UNREACH)
goto out;
if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
if (!sock_owned_by_user(sk))
dccp_do_pmtu_discovery(sk, iph, info);
goto out;
}
err = icmp_err_convert[code].errno;
break;
case ICMP_TIME_EXCEEDED:
err = EHOSTUNREACH;
break;
default:
goto out;
}
switch (sk->sk_state) {
struct request_sock *req , **prev;
case DCCP_LISTEN:
if (sock_owned_by_user(sk))
goto out;
req = inet_csk_search_req(sk, &prev, dh->dccph_dport,
iph->daddr, iph->saddr);
if (!req)
goto out;
/*
* ICMPs are not backlogged, hence we cannot get an established
* socket here.
*/
BUG_TRAP(!req->sk);
if (seq != dccp_rsk(req)->dreq_iss) {
NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
goto out;
}
/*
* Still in RESPOND, just remove it silently.
* There is no good way to pass the error to the newly
* created socket, and POSIX does not want network
* errors returned from accept().
*/
inet_csk_reqsk_queue_drop(sk, req, prev);
goto out;
case DCCP_REQUESTING:
case DCCP_RESPOND:
if (!sock_owned_by_user(sk)) {
DCCP_INC_STATS_BH(DCCP_MIB_ATTEMPTFAILS);
sk->sk_err = err;
sk->sk_error_report(sk);
dccp_done(sk);
} else
sk->sk_err_soft = err;
goto out;
}
/* If we've already connected we will keep trying
* until we time out, or the user gives up.
*
* rfc1122 4.2.3.9 allows to consider as hard errors
* only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
* but it is obsoleted by pmtu discovery).
*
* Note, that in modern internet, where routing is unreliable
* and in each dark corner broken firewalls sit, sending random
* errors ordered by their masters even this two messages finally lose
* their original sense (even Linux sends invalid PORT_UNREACHs)
*
* Now we are in compliance with RFCs.
* --ANK (980905)
*/
inet = inet_sk(sk);
if (!sock_owned_by_user(sk) && inet->recverr) {
sk->sk_err = err;
sk->sk_error_report(sk);
} else /* Only an error on timeout */
sk->sk_err_soft = err;
out:
bh_unlock_sock(sk);
sock_put(sk);
}
extern struct sk_buff *dccp_make_reset(struct sock *sk, struct dst_entry *dst, enum dccp_reset_codes code);
int dccp_v4_send_reset(struct sock *sk, enum dccp_reset_codes code)
{
struct sk_buff *skb;
/*
* FIXME: what if rebuild_header fails?
* Should we be doing a rebuild_header here?
*/
int err = inet_sk_rebuild_header(sk);
if (err != 0)
return err;
skb = dccp_make_reset(sk, sk->sk_dst_cache, code);
if (skb != NULL) {
const struct dccp_sock *dp = dccp_sk(sk);
const struct inet_sock *inet = inet_sk(sk);
err = ip_build_and_send_pkt(skb, sk,
inet->saddr, inet->daddr, NULL);
if (err == NET_XMIT_CN)
err = 0;
ccid_hc_rx_exit(dp->dccps_hc_rx_ccid, sk);
ccid_hc_tx_exit(dp->dccps_hc_tx_ccid, sk);
}
return err;
}
static inline u64 dccp_v4_init_sequence(const struct sock *sk,
const struct sk_buff *skb)
{
return secure_dccp_sequence_number(skb->nh.iph->daddr,
skb->nh.iph->saddr,
dccp_hdr(skb)->dccph_dport,
dccp_hdr(skb)->dccph_sport);
}
int dccp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
{
struct inet_request_sock *ireq;
struct dccp_sock dp;
struct request_sock *req;
struct dccp_request_sock *dreq;
const __u32 saddr = skb->nh.iph->saddr;
const __u32 daddr = skb->nh.iph->daddr;
struct dst_entry *dst = NULL;
/* Never answer to DCCP_PKT_REQUESTs send to broadcast or multicast */
if (((struct rtable *)skb->dst)->rt_flags &
(RTCF_BROADCAST | RTCF_MULTICAST))
goto drop;
/*
* TW buckets are converted to open requests without
* limitations, they conserve resources and peer is
* evidently real one.
*/
if (inet_csk_reqsk_queue_is_full(sk))
goto drop;
/*
* Accept backlog is full. If we have already queued enough
* of warm entries in syn queue, drop request. It is better than
* clogging syn queue with openreqs with exponentially increasing
* timeout.
*/
if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
goto drop;
req = reqsk_alloc(sk->sk_prot->rsk_prot);
if (req == NULL)
goto drop;
/* FIXME: process options */
dccp_openreq_init(req, &dp, skb);
ireq = inet_rsk(req);
ireq->loc_addr = daddr;
ireq->rmt_addr = saddr;
/* FIXME: Merge Aristeu's option parsing code when ready */
req->rcv_wnd = 100; /* Fake, option parsing will get the right value */
ireq->opt = NULL;
/*
* Step 3: Process LISTEN state
*
* Set S.ISR, S.GSR, S.SWL, S.SWH from packet or Init Cookie
*
* In fact we defer setting S.GSR, S.SWL, S.SWH to
* dccp_create_openreq_child.
*/
dreq = dccp_rsk(req);
dreq->dreq_isr = DCCP_SKB_CB(skb)->dccpd_seq;
dreq->dreq_iss = dccp_v4_init_sequence(sk, skb);
dreq->dreq_service = dccp_hdr_request(skb)->dccph_req_service;
if (dccp_v4_send_response(sk, req, dst))
goto drop_and_free;
inet_csk_reqsk_queue_hash_add(sk, req, DCCP_TIMEOUT_INIT);
return 0;
drop_and_free:
/*
* FIXME: should be reqsk_free after implementing req->rsk_ops
*/
__reqsk_free(req);
drop:
DCCP_INC_STATS_BH(DCCP_MIB_ATTEMPTFAILS);
return -1;
}
/*
* The three way handshake has completed - we got a valid ACK or DATAACK -
* now create the new socket.
*
* This is the equivalent of TCP's tcp_v4_syn_recv_sock
*/
struct sock *dccp_v4_request_recv_sock(struct sock *sk, struct sk_buff *skb,
struct request_sock *req,
struct dst_entry *dst)
{
struct inet_request_sock *ireq;
struct inet_sock *newinet;
struct dccp_sock *newdp;
struct sock *newsk;
if (sk_acceptq_is_full(sk))
goto exit_overflow;
if (dst == NULL && (dst = inet_csk_route_req(sk, req)) == NULL)
goto exit;
newsk = dccp_create_openreq_child(sk, req, skb);
if (newsk == NULL)
goto exit;
sk_setup_caps(newsk, dst);
newdp = dccp_sk(newsk);
newinet = inet_sk(newsk);
ireq = inet_rsk(req);
newinet->daddr = ireq->rmt_addr;
newinet->rcv_saddr = ireq->loc_addr;
newinet->saddr = ireq->loc_addr;
newinet->opt = ireq->opt;
ireq->opt = NULL;
newinet->mc_index = inet_iif(skb);
newinet->mc_ttl = skb->nh.iph->ttl;
newinet->id = jiffies;
dccp_sync_mss(newsk, dst_mtu(dst));
__inet_hash(&dccp_hashinfo, newsk, 0);
__inet_inherit_port(&dccp_hashinfo, sk, newsk);
return newsk;
exit_overflow:
NET_INC_STATS_BH(LINUX_MIB_LISTENOVERFLOWS);
exit:
NET_INC_STATS_BH(LINUX_MIB_LISTENDROPS);
dst_release(dst);
return NULL;
}
static struct sock *dccp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
{
const struct dccp_hdr *dh = dccp_hdr(skb);
const struct iphdr *iph = skb->nh.iph;
struct sock *nsk;
struct request_sock **prev;
/* Find possible connection requests. */
struct request_sock *req = inet_csk_search_req(sk, &prev,
dh->dccph_sport,
iph->saddr, iph->daddr);
if (req != NULL)
return dccp_check_req(sk, skb, req, prev);
nsk = __inet_lookup_established(&dccp_hashinfo,
iph->saddr, dh->dccph_sport,
iph->daddr, ntohs(dh->dccph_dport),
inet_iif(skb));
if (nsk != NULL) {
if (nsk->sk_state != DCCP_TIME_WAIT) {
bh_lock_sock(nsk);
return nsk;
}
inet_twsk_put((struct inet_timewait_sock *)nsk);
return NULL;
}
return sk;
}
int dccp_v4_checksum(struct sk_buff *skb)
{
struct dccp_hdr* dh = dccp_hdr(skb);
int checksum_len;
u32 tmp;
if (dh->dccph_cscov == 0)
checksum_len = skb->len;
else {
checksum_len = (dh->dccph_cscov + dh->dccph_x) * sizeof(u32);
checksum_len = checksum_len < skb->len ? checksum_len : skb->len;
}
tmp = csum_partial((unsigned char *)dh, checksum_len, 0);
return csum_fold(tmp);
}
static int dccp_v4_verify_checksum(struct sk_buff *skb)
{
struct dccp_hdr *th = dccp_hdr(skb);
const u16 remote_checksum = th->dccph_checksum;
u16 local_checksum;
/* FIXME: don't mess with skb payload */
th->dccph_checksum = 0; /* zero it for computation */
local_checksum = dccp_v4_checksum(skb);
/* FIXME: don't mess with skb payload */
th->dccph_checksum = remote_checksum; /* put it back */
return remote_checksum == local_checksum ? 0 : -1;
}
static struct dst_entry* dccp_v4_route_skb(struct sock *sk,
struct sk_buff *skb)
{
struct rtable *rt;
struct flowi fl = { .oif = ((struct rtable *)skb->dst)->rt_iif,
.nl_u = { .ip4_u =
{ .daddr = skb->nh.iph->saddr,
.saddr = skb->nh.iph->daddr,
.tos = RT_CONN_FLAGS(sk) } },
.proto = sk->sk_protocol,
.uli_u = { .ports =
{ .sport = dccp_hdr(skb)->dccph_dport,
.dport = dccp_hdr(skb)->dccph_sport } } };
if (ip_route_output_flow(&rt, &fl, sk, 0)) {
IP_INC_STATS_BH(IPSTATS_MIB_OUTNOROUTES);
return NULL;
}
return &rt->u.dst;
}
void dccp_v4_ctl_send_reset(struct sk_buff *rxskb)
{
int err;
struct dccp_hdr *rxdh = dccp_hdr(rxskb), *dh;
const int dccp_hdr_reset_len = sizeof(struct dccp_hdr) +
sizeof(struct dccp_hdr_ext) +
sizeof(struct dccp_hdr_reset);
struct sk_buff *skb;
struct dst_entry *dst;
/* Never send a reset in response to a reset. */
if (rxdh->dccph_type == DCCP_PKT_RESET)
return;
if (((struct rtable *)rxskb->dst)->rt_type != RTN_LOCAL)
return;
dst = dccp_v4_route_skb(dccp_ctl_socket->sk, rxskb);
if (dst == NULL)
return;
skb = alloc_skb(MAX_DCCP_HEADER + 15, GFP_ATOMIC);
if (skb == NULL)
goto out;
/* Reserve space for headers. */
skb_reserve(skb, MAX_DCCP_HEADER);
skb->dst = dst_clone(dst);
skb->h.raw = skb_push(skb, dccp_hdr_reset_len);
dh = dccp_hdr(skb);
memset(dh, 0, dccp_hdr_reset_len);
/* Build DCCP header and checksum it. */
dh->dccph_type = DCCP_PKT_RESET;
dh->dccph_sport = rxdh->dccph_dport;
dh->dccph_dport = rxdh->dccph_sport;
dh->dccph_doff = dccp_hdr_reset_len / 4;
dh->dccph_x = 1;
dccp_hdr_reset(skb)->dccph_reset_code = DCCP_SKB_CB(rxskb)->dccpd_reset_code;
dccp_hdr_set_seq(dh, DCCP_SKB_CB(rxskb)->dccpd_ack_seq);
dccp_hdr_set_ack(dccp_hdr_ack_bits(skb), DCCP_SKB_CB(rxskb)->dccpd_seq);
dh->dccph_checksum = dccp_v4_checksum(skb);
bh_lock_sock(dccp_ctl_socket->sk);
err = ip_build_and_send_pkt(skb, dccp_ctl_socket->sk,
rxskb->nh.iph->daddr, rxskb->nh.iph->saddr, NULL);
bh_unlock_sock(dccp_ctl_socket->sk);
if (err == NET_XMIT_CN || err == 0) {
DCCP_INC_STATS_BH(DCCP_MIB_OUTSEGS);
DCCP_INC_STATS_BH(DCCP_MIB_OUTRSTS);
}
out:
dst_release(dst);
}
int dccp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
{
struct dccp_hdr *dh = dccp_hdr(skb);
if (sk->sk_state == DCCP_OPEN) { /* Fast path */
if (dccp_rcv_established(sk, skb, dh, skb->len))
goto reset;
return 0;
}
/*
* Step 3: Process LISTEN state
* If S.state == LISTEN,
* If P.type == Request or P contains a valid Init Cookie option,
* * Must scan the packet's options to check for an Init
* Cookie. Only the Init Cookie is processed here,
* however; other options are processed in Step 8. This
* scan need only be performed if the endpoint uses Init
* Cookies *
* * Generate a new socket and switch to that socket *
* Set S := new socket for this port pair
* S.state = RESPOND
* Choose S.ISS (initial seqno) or set from Init Cookie
* Set S.ISR, S.GSR, S.SWL, S.SWH from packet or Init Cookie
* Continue with S.state == RESPOND
* * A Response packet will be generated in Step 11 *
* Otherwise,
* Generate Reset(No Connection) unless P.type == Reset
* Drop packet and return
*
* NOTE: the check for the packet types is done in dccp_rcv_state_process
*/
if (sk->sk_state == DCCP_LISTEN) {
struct sock *nsk = dccp_v4_hnd_req(sk, skb);
if (nsk == NULL)
goto discard;
if (nsk != sk) {
if (dccp_child_process(sk, nsk, skb))
goto reset;
return 0;
}
}
if (dccp_rcv_state_process(sk, skb, dh, skb->len))
goto reset;
return 0;
reset:
DCCP_SKB_CB(skb)->dccpd_reset_code = DCCP_RESET_CODE_NO_CONNECTION;
dccp_v4_ctl_send_reset(skb);
discard:
kfree_skb(skb);
return 0;
}
static inline int dccp_invalid_packet(struct sk_buff *skb)
{
const struct dccp_hdr *dh;
if (skb->pkt_type != PACKET_HOST)
return 1;
if (!pskb_may_pull(skb, sizeof(struct dccp_hdr))) {
dccp_pr_debug("pskb_may_pull failed\n");
return 1;
}
dh = dccp_hdr(skb);
/* If the packet type is not understood, drop packet and return */
if (dh->dccph_type >= DCCP_PKT_INVALID) {
dccp_pr_debug("invalid packet type\n");
return 1;
}
/*
* If P.Data Offset is too small for packet type, or too large for
* packet, drop packet and return
*/
if (dh->dccph_doff < dccp_hdr_len(skb) / sizeof(u32)) {
dccp_pr_debug("Offset(%u) too small 1\n", dh->dccph_doff);
return 1;
}
if (!pskb_may_pull(skb, dh->dccph_doff * sizeof(u32))) {
dccp_pr_debug("P.Data Offset(%u) too small 2\n", dh->dccph_doff);
return 1;
}
dh = dccp_hdr(skb);
/*
* If P.type is not Data, Ack, or DataAck and P.X == 0 (the packet
* has short sequence numbers), drop packet and return
*/
if (dh->dccph_x == 0 &&
dh->dccph_type != DCCP_PKT_DATA &&
dh->dccph_type != DCCP_PKT_ACK &&
dh->dccph_type != DCCP_PKT_DATAACK) {
dccp_pr_debug("P.type (%s) not Data, Ack nor DataAck and P.X == 0\n",
dccp_packet_name(dh->dccph_type));
return 1;
}
/* If the header checksum is incorrect, drop packet and return */
if (dccp_v4_verify_checksum(skb) < 0) {
dccp_pr_debug("header checksum is incorrect\n");
return 1;
}
return 0;
}
/* this is called when real data arrives */
int dccp_v4_rcv(struct sk_buff *skb)
{
const struct dccp_hdr *dh;
struct sock *sk;
int rc;
/* Step 1: Check header basics: */
if (dccp_invalid_packet(skb))
goto discard_it;
dh = dccp_hdr(skb);
#if 0
/*
* Use something like this to simulate some DATA/DATAACK loss to test
* dccp_ackpkts_add, you'll get something like this on a session that
* sends 10 DATA/DATAACK packets:
*
* dccp_ackpkts_print: 281473596467422 |0,0|3,0|0,0|3,0|0,0|3,0|0,0|3,0|0,1|
*
* 0, 0 means: DCCP_ACKPKTS_STATE_RECEIVED, RLE == just this packet
* 0, 1 means: DCCP_ACKPKTS_STATE_RECEIVED, RLE == two adjacent packets with the same state
* 3, 0 means: DCCP_ACKPKTS_STATE_NOT_RECEIVED, RLE == just this packet
*
* So...
*
* 281473596467422 was received
* 281473596467421 was not received
* 281473596467420 was received
* 281473596467419 was not received
* 281473596467418 was received
* 281473596467417 was not received
* 281473596467416 was received
* 281473596467415 was not received
* 281473596467414 was received
* 281473596467413 was received (this one was the 3way handshake RESPONSE)
*
*/
if (dh->dccph_type == DCCP_PKT_DATA || dh->dccph_type == DCCP_PKT_DATAACK) {
static int discard = 0;
if (discard) {
discard = 0;
goto discard_it;
}
discard = 1;
}
#endif
DCCP_SKB_CB(skb)->dccpd_seq = dccp_hdr_seq(skb);
DCCP_SKB_CB(skb)->dccpd_type = dh->dccph_type;
dccp_pr_debug("%8.8s "
"src=%u.%u.%u.%u@%-5d "
"dst=%u.%u.%u.%u@%-5d seq=%llu",
dccp_packet_name(dh->dccph_type),
NIPQUAD(skb->nh.iph->saddr), ntohs(dh->dccph_sport),
NIPQUAD(skb->nh.iph->daddr), ntohs(dh->dccph_dport),
DCCP_SKB_CB(skb)->dccpd_seq);
if (dccp_packet_without_ack(skb)) {
DCCP_SKB_CB(skb)->dccpd_ack_seq = DCCP_PKT_WITHOUT_ACK_SEQ;
dccp_pr_debug_cat("\n");
} else {
DCCP_SKB_CB(skb)->dccpd_ack_seq = dccp_hdr_ack_seq(skb);
dccp_pr_debug_cat(", ack=%llu\n", DCCP_SKB_CB(skb)->dccpd_ack_seq);
}
/* Step 2:
* Look up flow ID in table and get corresponding socket */
sk = __inet_lookup(&dccp_hashinfo,
skb->nh.iph->saddr, dh->dccph_sport,
skb->nh.iph->daddr, ntohs(dh->dccph_dport),
inet_iif(skb));
/*
* Step 2:
* If no socket ...
* Generate Reset(No Connection) unless P.type == Reset
* Drop packet and return
*/
if (sk == NULL) {
dccp_pr_debug("failed to look up flow ID in table and "
"get corresponding socket\n");
goto no_dccp_socket;
}
/*
* Step 2:
* ... or S.state == TIMEWAIT,
* Generate Reset(No Connection) unless P.type == Reset
* Drop packet and return
*/
if (sk->sk_state == DCCP_TIME_WAIT) {
dccp_pr_debug("sk->sk_state == DCCP_TIME_WAIT: discard_and_relse\n");
goto discard_and_relse;
}
if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
dccp_pr_debug("xfrm4_policy_check failed\n");
goto discard_and_relse;
}
if (sk_filter(sk, skb, 0)) {
dccp_pr_debug("sk_filter failed\n");
goto discard_and_relse;
}
skb->dev = NULL;
bh_lock_sock(sk);
rc = 0;
if (!sock_owned_by_user(sk))
rc = dccp_v4_do_rcv(sk, skb);
else
sk_add_backlog(sk, skb);
bh_unlock_sock(sk);
sock_put(sk);
return rc;
no_dccp_socket:
if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
goto discard_it;
/*
* Step 2:
* Generate Reset(No Connection) unless P.type == Reset
* Drop packet and return
*/
if (dh->dccph_type != DCCP_PKT_RESET) {
DCCP_SKB_CB(skb)->dccpd_reset_code = DCCP_RESET_CODE_NO_CONNECTION;
dccp_v4_ctl_send_reset(skb);
}
discard_it:
/* Discard frame. */
kfree_skb(skb);
return 0;
discard_and_relse:
sock_put(sk);
goto discard_it;
}
static int dccp_v4_init_sock(struct sock *sk)
{
struct dccp_sock *dp = dccp_sk(sk);
static int dccp_ctl_socket_init = 1;
dccp_options_init(&dp->dccps_options);
if (dp->dccps_options.dccpo_send_ack_vector) {
dp->dccps_hc_rx_ackpkts = dccp_ackpkts_alloc(DCCP_MAX_ACK_VECTOR_LEN,
GFP_KERNEL);
if (dp->dccps_hc_rx_ackpkts == NULL)
return -ENOMEM;
}
/*
* FIXME: We're hardcoding the CCID, and doing this at this point makes
* the listening (master) sock get CCID control blocks, which is not
* necessary, but for now, to not mess with the test userspace apps,
* lets leave it here, later the real solution is to do this in a
* setsockopt(CCIDs-I-want/accept). -acme
*/
if (likely(!dccp_ctl_socket_init)) {
dp->dccps_hc_rx_ccid = ccid_init(dp->dccps_options.dccpo_ccid, sk);
dp->dccps_hc_tx_ccid = ccid_init(dp->dccps_options.dccpo_ccid, sk);
if (dp->dccps_hc_rx_ccid == NULL ||
dp->dccps_hc_tx_ccid == NULL) {
ccid_exit(dp->dccps_hc_rx_ccid, sk);
ccid_exit(dp->dccps_hc_tx_ccid, sk);
dccp_ackpkts_free(dp->dccps_hc_rx_ackpkts);
dp->dccps_hc_rx_ackpkts = NULL;
dp->dccps_hc_rx_ccid = dp->dccps_hc_tx_ccid = NULL;
return -ENOMEM;
}
} else
dccp_ctl_socket_init = 0;
dccp_init_xmit_timers(sk);
sk->sk_state = DCCP_CLOSED;
dp->dccps_mss_cache = 536;
dp->dccps_role = DCCP_ROLE_UNDEFINED;
return 0;
}
int dccp_v4_destroy_sock(struct sock *sk)
{
struct dccp_sock *dp = dccp_sk(sk);
/*
* DCCP doesn't use sk_qrite_queue, just sk_send_head
* for retransmissions
*/
if (sk->sk_send_head != NULL) {
kfree_skb(sk->sk_send_head);
sk->sk_send_head = NULL;
}
/* Clean up a referenced DCCP bind bucket. */
if (inet_csk(sk)->icsk_bind_hash != NULL)
inet_put_port(&dccp_hashinfo, sk);
dccp_ackpkts_free(dp->dccps_hc_rx_ackpkts);
dp->dccps_hc_rx_ackpkts = NULL;
ccid_exit(dp->dccps_hc_rx_ccid, sk);
ccid_exit(dp->dccps_hc_tx_ccid, sk);
dp->dccps_hc_rx_ccid = dp->dccps_hc_tx_ccid = NULL;
return 0;
}
static void dccp_v4_reqsk_destructor(struct request_sock *req)
{
kfree(inet_rsk(req)->opt);
}
static struct request_sock_ops dccp_request_sock_ops = {
.family = PF_INET,
.obj_size = sizeof(struct dccp_request_sock),
.rtx_syn_ack = dccp_v4_send_response,
.send_ack = dccp_v4_reqsk_send_ack,
.destructor = dccp_v4_reqsk_destructor,
.send_reset = dccp_v4_ctl_send_reset,
};
struct proto dccp_v4_prot = {
.name = "DCCP",
.owner = THIS_MODULE,
.close = dccp_close,
.connect = dccp_v4_connect,
.disconnect = dccp_disconnect,
.ioctl = dccp_ioctl,
.init = dccp_v4_init_sock,
.setsockopt = dccp_setsockopt,
.getsockopt = dccp_getsockopt,
.sendmsg = dccp_sendmsg,
.recvmsg = dccp_recvmsg,
.backlog_rcv = dccp_v4_do_rcv,
.hash = dccp_v4_hash,
.unhash = dccp_v4_unhash,
.accept = inet_csk_accept,
.get_port = dccp_v4_get_port,
.shutdown = dccp_shutdown,
.destroy = dccp_v4_destroy_sock,
.orphan_count = &dccp_orphan_count,
.max_header = MAX_DCCP_HEADER,
.obj_size = sizeof(struct dccp_sock),
.rsk_prot = &dccp_request_sock_ops,
.twsk_obj_size = sizeof(struct inet_timewait_sock), /* FIXME! create dccp_timewait_sock */
};