| /* |
| * Copyright (c) 2008-2011 Atheros Communications Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| #include <linux/io.h> |
| #include <linux/slab.h> |
| #include <linux/module.h> |
| #include <linux/time.h> |
| #include <linux/bitops.h> |
| #include <asm/unaligned.h> |
| |
| #include "hw.h" |
| #include "hw-ops.h" |
| #include "ar9003_mac.h" |
| #include "ar9003_mci.h" |
| #include "ar9003_phy.h" |
| #include "ath9k.h" |
| |
| static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type); |
| |
| MODULE_AUTHOR("Atheros Communications"); |
| MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards."); |
| MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards"); |
| MODULE_LICENSE("Dual BSD/GPL"); |
| |
| static void ath9k_hw_set_clockrate(struct ath_hw *ah) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| struct ath9k_channel *chan = ah->curchan; |
| unsigned int clockrate; |
| |
| /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */ |
| if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) |
| clockrate = 117; |
| else if (!chan) /* should really check for CCK instead */ |
| clockrate = ATH9K_CLOCK_RATE_CCK; |
| else if (IS_CHAN_2GHZ(chan)) |
| clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM; |
| else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK) |
| clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM; |
| else |
| clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM; |
| |
| if (chan) { |
| if (IS_CHAN_HT40(chan)) |
| clockrate *= 2; |
| if (IS_CHAN_HALF_RATE(chan)) |
| clockrate /= 2; |
| if (IS_CHAN_QUARTER_RATE(chan)) |
| clockrate /= 4; |
| } |
| |
| common->clockrate = clockrate; |
| } |
| |
| static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| |
| return usecs * common->clockrate; |
| } |
| |
| bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout) |
| { |
| int i; |
| |
| BUG_ON(timeout < AH_TIME_QUANTUM); |
| |
| for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) { |
| if ((REG_READ(ah, reg) & mask) == val) |
| return true; |
| |
| udelay(AH_TIME_QUANTUM); |
| } |
| |
| ath_dbg(ath9k_hw_common(ah), ANY, |
| "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n", |
| timeout, reg, REG_READ(ah, reg), mask, val); |
| |
| return false; |
| } |
| EXPORT_SYMBOL(ath9k_hw_wait); |
| |
| void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan, |
| int hw_delay) |
| { |
| hw_delay /= 10; |
| |
| if (IS_CHAN_HALF_RATE(chan)) |
| hw_delay *= 2; |
| else if (IS_CHAN_QUARTER_RATE(chan)) |
| hw_delay *= 4; |
| |
| udelay(hw_delay + BASE_ACTIVATE_DELAY); |
| } |
| |
| void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array, |
| int column, unsigned int *writecnt) |
| { |
| int r; |
| |
| ENABLE_REGWRITE_BUFFER(ah); |
| for (r = 0; r < array->ia_rows; r++) { |
| REG_WRITE(ah, INI_RA(array, r, 0), |
| INI_RA(array, r, column)); |
| DO_DELAY(*writecnt); |
| } |
| REGWRITE_BUFFER_FLUSH(ah); |
| } |
| |
| u32 ath9k_hw_reverse_bits(u32 val, u32 n) |
| { |
| u32 retval; |
| int i; |
| |
| for (i = 0, retval = 0; i < n; i++) { |
| retval = (retval << 1) | (val & 1); |
| val >>= 1; |
| } |
| return retval; |
| } |
| |
| u16 ath9k_hw_computetxtime(struct ath_hw *ah, |
| u8 phy, int kbps, |
| u32 frameLen, u16 rateix, |
| bool shortPreamble) |
| { |
| u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime; |
| |
| if (kbps == 0) |
| return 0; |
| |
| switch (phy) { |
| case WLAN_RC_PHY_CCK: |
| phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS; |
| if (shortPreamble) |
| phyTime >>= 1; |
| numBits = frameLen << 3; |
| txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps); |
| break; |
| case WLAN_RC_PHY_OFDM: |
| if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) { |
| bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000; |
| numBits = OFDM_PLCP_BITS + (frameLen << 3); |
| numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); |
| txTime = OFDM_SIFS_TIME_QUARTER |
| + OFDM_PREAMBLE_TIME_QUARTER |
| + (numSymbols * OFDM_SYMBOL_TIME_QUARTER); |
| } else if (ah->curchan && |
| IS_CHAN_HALF_RATE(ah->curchan)) { |
| bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000; |
| numBits = OFDM_PLCP_BITS + (frameLen << 3); |
| numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); |
| txTime = OFDM_SIFS_TIME_HALF + |
| OFDM_PREAMBLE_TIME_HALF |
| + (numSymbols * OFDM_SYMBOL_TIME_HALF); |
| } else { |
| bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000; |
| numBits = OFDM_PLCP_BITS + (frameLen << 3); |
| numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); |
| txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME |
| + (numSymbols * OFDM_SYMBOL_TIME); |
| } |
| break; |
| default: |
| ath_err(ath9k_hw_common(ah), |
| "Unknown phy %u (rate ix %u)\n", phy, rateix); |
| txTime = 0; |
| break; |
| } |
| |
| return txTime; |
| } |
| EXPORT_SYMBOL(ath9k_hw_computetxtime); |
| |
| void ath9k_hw_get_channel_centers(struct ath_hw *ah, |
| struct ath9k_channel *chan, |
| struct chan_centers *centers) |
| { |
| int8_t extoff; |
| |
| if (!IS_CHAN_HT40(chan)) { |
| centers->ctl_center = centers->ext_center = |
| centers->synth_center = chan->channel; |
| return; |
| } |
| |
| if (IS_CHAN_HT40PLUS(chan)) { |
| centers->synth_center = |
| chan->channel + HT40_CHANNEL_CENTER_SHIFT; |
| extoff = 1; |
| } else { |
| centers->synth_center = |
| chan->channel - HT40_CHANNEL_CENTER_SHIFT; |
| extoff = -1; |
| } |
| |
| centers->ctl_center = |
| centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT); |
| /* 25 MHz spacing is supported by hw but not on upper layers */ |
| centers->ext_center = |
| centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT); |
| } |
| |
| /******************/ |
| /* Chip Revisions */ |
| /******************/ |
| |
| static void ath9k_hw_read_revisions(struct ath_hw *ah) |
| { |
| u32 val; |
| |
| switch (ah->hw_version.devid) { |
| case AR5416_AR9100_DEVID: |
| ah->hw_version.macVersion = AR_SREV_VERSION_9100; |
| break; |
| case AR9300_DEVID_AR9330: |
| ah->hw_version.macVersion = AR_SREV_VERSION_9330; |
| if (ah->get_mac_revision) { |
| ah->hw_version.macRev = ah->get_mac_revision(); |
| } else { |
| val = REG_READ(ah, AR_SREV); |
| ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); |
| } |
| return; |
| case AR9300_DEVID_AR9340: |
| ah->hw_version.macVersion = AR_SREV_VERSION_9340; |
| val = REG_READ(ah, AR_SREV); |
| ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); |
| return; |
| case AR9300_DEVID_QCA955X: |
| ah->hw_version.macVersion = AR_SREV_VERSION_9550; |
| return; |
| case AR9300_DEVID_AR953X: |
| ah->hw_version.macVersion = AR_SREV_VERSION_9531; |
| if (ah->get_mac_revision) |
| ah->hw_version.macRev = ah->get_mac_revision(); |
| return; |
| } |
| |
| val = REG_READ(ah, AR_SREV) & AR_SREV_ID; |
| |
| if (val == 0xFF) { |
| val = REG_READ(ah, AR_SREV); |
| ah->hw_version.macVersion = |
| (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S; |
| ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); |
| |
| if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) |
| ah->is_pciexpress = true; |
| else |
| ah->is_pciexpress = (val & |
| AR_SREV_TYPE2_HOST_MODE) ? 0 : 1; |
| } else { |
| if (!AR_SREV_9100(ah)) |
| ah->hw_version.macVersion = MS(val, AR_SREV_VERSION); |
| |
| ah->hw_version.macRev = val & AR_SREV_REVISION; |
| |
| if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) |
| ah->is_pciexpress = true; |
| } |
| } |
| |
| /************************************/ |
| /* HW Attach, Detach, Init Routines */ |
| /************************************/ |
| |
| static void ath9k_hw_disablepcie(struct ath_hw *ah) |
| { |
| if (!AR_SREV_5416(ah)) |
| return; |
| |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554); |
| REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007); |
| |
| REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000); |
| } |
| |
| /* This should work for all families including legacy */ |
| static bool ath9k_hw_chip_test(struct ath_hw *ah) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| u32 regAddr[2] = { AR_STA_ID0 }; |
| u32 regHold[2]; |
| static const u32 patternData[4] = { |
| 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999 |
| }; |
| int i, j, loop_max; |
| |
| if (!AR_SREV_9300_20_OR_LATER(ah)) { |
| loop_max = 2; |
| regAddr[1] = AR_PHY_BASE + (8 << 2); |
| } else |
| loop_max = 1; |
| |
| for (i = 0; i < loop_max; i++) { |
| u32 addr = regAddr[i]; |
| u32 wrData, rdData; |
| |
| regHold[i] = REG_READ(ah, addr); |
| for (j = 0; j < 0x100; j++) { |
| wrData = (j << 16) | j; |
| REG_WRITE(ah, addr, wrData); |
| rdData = REG_READ(ah, addr); |
| if (rdData != wrData) { |
| ath_err(common, |
| "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", |
| addr, wrData, rdData); |
| return false; |
| } |
| } |
| for (j = 0; j < 4; j++) { |
| wrData = patternData[j]; |
| REG_WRITE(ah, addr, wrData); |
| rdData = REG_READ(ah, addr); |
| if (wrData != rdData) { |
| ath_err(common, |
| "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", |
| addr, wrData, rdData); |
| return false; |
| } |
| } |
| REG_WRITE(ah, regAddr[i], regHold[i]); |
| } |
| udelay(100); |
| |
| return true; |
| } |
| |
| static void ath9k_hw_init_config(struct ath_hw *ah) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| |
| ah->config.dma_beacon_response_time = 1; |
| ah->config.sw_beacon_response_time = 6; |
| ah->config.cwm_ignore_extcca = 0; |
| ah->config.analog_shiftreg = 1; |
| |
| ah->config.rx_intr_mitigation = true; |
| |
| if (AR_SREV_9300_20_OR_LATER(ah)) { |
| ah->config.rimt_last = 500; |
| ah->config.rimt_first = 2000; |
| } else { |
| ah->config.rimt_last = 250; |
| ah->config.rimt_first = 700; |
| } |
| |
| /* |
| * We need this for PCI devices only (Cardbus, PCI, miniPCI) |
| * _and_ if on non-uniprocessor systems (Multiprocessor/HT). |
| * This means we use it for all AR5416 devices, and the few |
| * minor PCI AR9280 devices out there. |
| * |
| * Serialization is required because these devices do not handle |
| * well the case of two concurrent reads/writes due to the latency |
| * involved. During one read/write another read/write can be issued |
| * on another CPU while the previous read/write may still be working |
| * on our hardware, if we hit this case the hardware poops in a loop. |
| * We prevent this by serializing reads and writes. |
| * |
| * This issue is not present on PCI-Express devices or pre-AR5416 |
| * devices (legacy, 802.11abg). |
| */ |
| if (num_possible_cpus() > 1) |
| ah->config.serialize_regmode = SER_REG_MODE_AUTO; |
| |
| if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) { |
| if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI || |
| ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) && |
| !ah->is_pciexpress)) { |
| ah->config.serialize_regmode = SER_REG_MODE_ON; |
| } else { |
| ah->config.serialize_regmode = SER_REG_MODE_OFF; |
| } |
| } |
| |
| ath_dbg(common, RESET, "serialize_regmode is %d\n", |
| ah->config.serialize_regmode); |
| |
| if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) |
| ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1; |
| else |
| ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD; |
| } |
| |
| static void ath9k_hw_init_defaults(struct ath_hw *ah) |
| { |
| struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); |
| |
| regulatory->country_code = CTRY_DEFAULT; |
| regulatory->power_limit = MAX_RATE_POWER; |
| |
| ah->hw_version.magic = AR5416_MAGIC; |
| ah->hw_version.subvendorid = 0; |
| |
| ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE | |
| AR_STA_ID1_MCAST_KSRCH; |
| if (AR_SREV_9100(ah)) |
| ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX; |
| |
| ah->slottime = ATH9K_SLOT_TIME_9; |
| ah->globaltxtimeout = (u32) -1; |
| ah->power_mode = ATH9K_PM_UNDEFINED; |
| ah->htc_reset_init = true; |
| |
| ah->ani_function = ATH9K_ANI_ALL; |
| if (!AR_SREV_9300_20_OR_LATER(ah)) |
| ah->ani_function &= ~ATH9K_ANI_MRC_CCK; |
| |
| if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) |
| ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S); |
| else |
| ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S); |
| } |
| |
| static int ath9k_hw_init_macaddr(struct ath_hw *ah) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| u32 sum; |
| int i; |
| u16 eeval; |
| static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW }; |
| |
| sum = 0; |
| for (i = 0; i < 3; i++) { |
| eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]); |
| sum += eeval; |
| common->macaddr[2 * i] = eeval >> 8; |
| common->macaddr[2 * i + 1] = eeval & 0xff; |
| } |
| if (sum == 0 || sum == 0xffff * 3) |
| return -EADDRNOTAVAIL; |
| |
| return 0; |
| } |
| |
| static int ath9k_hw_post_init(struct ath_hw *ah) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| int ecode; |
| |
| if (common->bus_ops->ath_bus_type != ATH_USB) { |
| if (!ath9k_hw_chip_test(ah)) |
| return -ENODEV; |
| } |
| |
| if (!AR_SREV_9300_20_OR_LATER(ah)) { |
| ecode = ar9002_hw_rf_claim(ah); |
| if (ecode != 0) |
| return ecode; |
| } |
| |
| ecode = ath9k_hw_eeprom_init(ah); |
| if (ecode != 0) |
| return ecode; |
| |
| ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n", |
| ah->eep_ops->get_eeprom_ver(ah), |
| ah->eep_ops->get_eeprom_rev(ah)); |
| |
| ath9k_hw_ani_init(ah); |
| |
| /* |
| * EEPROM needs to be initialized before we do this. |
| * This is required for regulatory compliance. |
| */ |
| if (AR_SREV_9300_20_OR_LATER(ah)) { |
| u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0); |
| if ((regdmn & 0xF0) == CTL_FCC) { |
| ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ; |
| ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int ath9k_hw_attach_ops(struct ath_hw *ah) |
| { |
| if (!AR_SREV_9300_20_OR_LATER(ah)) |
| return ar9002_hw_attach_ops(ah); |
| |
| ar9003_hw_attach_ops(ah); |
| return 0; |
| } |
| |
| /* Called for all hardware families */ |
| static int __ath9k_hw_init(struct ath_hw *ah) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| int r = 0; |
| |
| ath9k_hw_read_revisions(ah); |
| |
| switch (ah->hw_version.macVersion) { |
| case AR_SREV_VERSION_5416_PCI: |
| case AR_SREV_VERSION_5416_PCIE: |
| case AR_SREV_VERSION_9160: |
| case AR_SREV_VERSION_9100: |
| case AR_SREV_VERSION_9280: |
| case AR_SREV_VERSION_9285: |
| case AR_SREV_VERSION_9287: |
| case AR_SREV_VERSION_9271: |
| case AR_SREV_VERSION_9300: |
| case AR_SREV_VERSION_9330: |
| case AR_SREV_VERSION_9485: |
| case AR_SREV_VERSION_9340: |
| case AR_SREV_VERSION_9462: |
| case AR_SREV_VERSION_9550: |
| case AR_SREV_VERSION_9565: |
| case AR_SREV_VERSION_9531: |
| break; |
| default: |
| ath_err(common, |
| "Mac Chip Rev 0x%02x.%x is not supported by this driver\n", |
| ah->hw_version.macVersion, ah->hw_version.macRev); |
| return -EOPNOTSUPP; |
| } |
| |
| /* |
| * Read back AR_WA into a permanent copy and set bits 14 and 17. |
| * We need to do this to avoid RMW of this register. We cannot |
| * read the reg when chip is asleep. |
| */ |
| if (AR_SREV_9300_20_OR_LATER(ah)) { |
| ah->WARegVal = REG_READ(ah, AR_WA); |
| ah->WARegVal |= (AR_WA_D3_L1_DISABLE | |
| AR_WA_ASPM_TIMER_BASED_DISABLE); |
| } |
| |
| if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) { |
| ath_err(common, "Couldn't reset chip\n"); |
| return -EIO; |
| } |
| |
| if (AR_SREV_9565(ah)) { |
| ah->WARegVal |= AR_WA_BIT22; |
| REG_WRITE(ah, AR_WA, ah->WARegVal); |
| } |
| |
| ath9k_hw_init_defaults(ah); |
| ath9k_hw_init_config(ah); |
| |
| r = ath9k_hw_attach_ops(ah); |
| if (r) |
| return r; |
| |
| if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) { |
| ath_err(common, "Couldn't wakeup chip\n"); |
| return -EIO; |
| } |
| |
| if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) || |
| AR_SREV_9330(ah) || AR_SREV_9550(ah)) |
| ah->is_pciexpress = false; |
| |
| ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID); |
| ath9k_hw_init_cal_settings(ah); |
| |
| if (!ah->is_pciexpress) |
| ath9k_hw_disablepcie(ah); |
| |
| r = ath9k_hw_post_init(ah); |
| if (r) |
| return r; |
| |
| ath9k_hw_init_mode_gain_regs(ah); |
| r = ath9k_hw_fill_cap_info(ah); |
| if (r) |
| return r; |
| |
| r = ath9k_hw_init_macaddr(ah); |
| if (r) { |
| ath_err(common, "Failed to initialize MAC address\n"); |
| return r; |
| } |
| |
| ath9k_hw_init_hang_checks(ah); |
| |
| common->state = ATH_HW_INITIALIZED; |
| |
| return 0; |
| } |
| |
| int ath9k_hw_init(struct ath_hw *ah) |
| { |
| int ret; |
| struct ath_common *common = ath9k_hw_common(ah); |
| |
| /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */ |
| switch (ah->hw_version.devid) { |
| case AR5416_DEVID_PCI: |
| case AR5416_DEVID_PCIE: |
| case AR5416_AR9100_DEVID: |
| case AR9160_DEVID_PCI: |
| case AR9280_DEVID_PCI: |
| case AR9280_DEVID_PCIE: |
| case AR9285_DEVID_PCIE: |
| case AR9287_DEVID_PCI: |
| case AR9287_DEVID_PCIE: |
| case AR2427_DEVID_PCIE: |
| case AR9300_DEVID_PCIE: |
| case AR9300_DEVID_AR9485_PCIE: |
| case AR9300_DEVID_AR9330: |
| case AR9300_DEVID_AR9340: |
| case AR9300_DEVID_QCA955X: |
| case AR9300_DEVID_AR9580: |
| case AR9300_DEVID_AR9462: |
| case AR9485_DEVID_AR1111: |
| case AR9300_DEVID_AR9565: |
| case AR9300_DEVID_AR953X: |
| break; |
| default: |
| if (common->bus_ops->ath_bus_type == ATH_USB) |
| break; |
| ath_err(common, "Hardware device ID 0x%04x not supported\n", |
| ah->hw_version.devid); |
| return -EOPNOTSUPP; |
| } |
| |
| ret = __ath9k_hw_init(ah); |
| if (ret) { |
| ath_err(common, |
| "Unable to initialize hardware; initialization status: %d\n", |
| ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ath9k_hw_init); |
| |
| static void ath9k_hw_init_qos(struct ath_hw *ah) |
| { |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa); |
| REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210); |
| |
| REG_WRITE(ah, AR_QOS_NO_ACK, |
| SM(2, AR_QOS_NO_ACK_TWO_BIT) | |
| SM(5, AR_QOS_NO_ACK_BIT_OFF) | |
| SM(0, AR_QOS_NO_ACK_BYTE_OFF)); |
| |
| REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL); |
| REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF); |
| REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF); |
| REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF); |
| REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF); |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| } |
| |
| u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| int i = 0; |
| |
| REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK); |
| udelay(100); |
| REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK); |
| |
| while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) { |
| |
| udelay(100); |
| |
| if (WARN_ON_ONCE(i >= 100)) { |
| ath_err(common, "PLL4 meaurement not done\n"); |
| break; |
| } |
| |
| i++; |
| } |
| |
| return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3; |
| } |
| EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc); |
| |
| static void ath9k_hw_init_pll(struct ath_hw *ah, |
| struct ath9k_channel *chan) |
| { |
| u32 pll; |
| |
| if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) { |
| /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */ |
| REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, |
| AR_CH0_BB_DPLL2_PLL_PWD, 0x1); |
| REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, |
| AR_CH0_DPLL2_KD, 0x40); |
| REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, |
| AR_CH0_DPLL2_KI, 0x4); |
| |
| REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1, |
| AR_CH0_BB_DPLL1_REFDIV, 0x5); |
| REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1, |
| AR_CH0_BB_DPLL1_NINI, 0x58); |
| REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1, |
| AR_CH0_BB_DPLL1_NFRAC, 0x0); |
| |
| REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, |
| AR_CH0_BB_DPLL2_OUTDIV, 0x1); |
| REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, |
| AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1); |
| REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, |
| AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1); |
| |
| /* program BB PLL phase_shift to 0x6 */ |
| REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3, |
| AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6); |
| |
| REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, |
| AR_CH0_BB_DPLL2_PLL_PWD, 0x0); |
| udelay(1000); |
| } else if (AR_SREV_9330(ah)) { |
| u32 ddr_dpll2, pll_control2, kd; |
| |
| if (ah->is_clk_25mhz) { |
| ddr_dpll2 = 0x18e82f01; |
| pll_control2 = 0xe04a3d; |
| kd = 0x1d; |
| } else { |
| ddr_dpll2 = 0x19e82f01; |
| pll_control2 = 0x886666; |
| kd = 0x3d; |
| } |
| |
| /* program DDR PLL ki and kd value */ |
| REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2); |
| |
| /* program DDR PLL phase_shift */ |
| REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3, |
| AR_CH0_DPLL3_PHASE_SHIFT, 0x1); |
| |
| REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c); |
| udelay(1000); |
| |
| /* program refdiv, nint, frac to RTC register */ |
| REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2); |
| |
| /* program BB PLL kd and ki value */ |
| REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd); |
| REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06); |
| |
| /* program BB PLL phase_shift */ |
| REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3, |
| AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1); |
| } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah)) { |
| u32 regval, pll2_divint, pll2_divfrac, refdiv; |
| |
| REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c); |
| udelay(1000); |
| |
| REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16); |
| udelay(100); |
| |
| if (ah->is_clk_25mhz) { |
| if (AR_SREV_9531(ah)) { |
| pll2_divint = 0x1c; |
| pll2_divfrac = 0xa3d2; |
| refdiv = 1; |
| } else { |
| pll2_divint = 0x54; |
| pll2_divfrac = 0x1eb85; |
| refdiv = 3; |
| } |
| } else { |
| if (AR_SREV_9340(ah)) { |
| pll2_divint = 88; |
| pll2_divfrac = 0; |
| refdiv = 5; |
| } else { |
| pll2_divint = 0x11; |
| pll2_divfrac = |
| AR_SREV_9531(ah) ? 0x26665 : 0x26666; |
| refdiv = 1; |
| } |
| } |
| |
| regval = REG_READ(ah, AR_PHY_PLL_MODE); |
| if (AR_SREV_9531(ah)) |
| regval |= (0x1 << 22); |
| else |
| regval |= (0x1 << 16); |
| REG_WRITE(ah, AR_PHY_PLL_MODE, regval); |
| udelay(100); |
| |
| REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) | |
| (pll2_divint << 18) | pll2_divfrac); |
| udelay(100); |
| |
| regval = REG_READ(ah, AR_PHY_PLL_MODE); |
| if (AR_SREV_9340(ah)) |
| regval = (regval & 0x80071fff) | |
| (0x1 << 30) | |
| (0x1 << 13) | |
| (0x4 << 26) | |
| (0x18 << 19); |
| else if (AR_SREV_9531(ah)) |
| regval = (regval & 0x01c00fff) | |
| (0x1 << 31) | |
| (0x2 << 29) | |
| (0xa << 25) | |
| (0x1 << 19) | |
| (0x6 << 12); |
| else |
| regval = (regval & 0x80071fff) | |
| (0x3 << 30) | |
| (0x1 << 13) | |
| (0x4 << 26) | |
| (0x60 << 19); |
| REG_WRITE(ah, AR_PHY_PLL_MODE, regval); |
| |
| if (AR_SREV_9531(ah)) |
| REG_WRITE(ah, AR_PHY_PLL_MODE, |
| REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff); |
| else |
| REG_WRITE(ah, AR_PHY_PLL_MODE, |
| REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff); |
| |
| udelay(1000); |
| } |
| |
| pll = ath9k_hw_compute_pll_control(ah, chan); |
| if (AR_SREV_9565(ah)) |
| pll |= 0x40000; |
| REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll); |
| |
| if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) || |
| AR_SREV_9550(ah)) |
| udelay(1000); |
| |
| /* Switch the core clock for ar9271 to 117Mhz */ |
| if (AR_SREV_9271(ah)) { |
| udelay(500); |
| REG_WRITE(ah, 0x50040, 0x304); |
| } |
| |
| udelay(RTC_PLL_SETTLE_DELAY); |
| |
| REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK); |
| |
| if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) { |
| if (ah->is_clk_25mhz) { |
| REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1); |
| REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7); |
| REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae); |
| } else { |
| REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1); |
| REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400); |
| REG_WRITE(ah, AR_SLP32_INC, 0x0001e800); |
| } |
| udelay(100); |
| } |
| } |
| |
| static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah, |
| enum nl80211_iftype opmode) |
| { |
| u32 sync_default = AR_INTR_SYNC_DEFAULT; |
| u32 imr_reg = AR_IMR_TXERR | |
| AR_IMR_TXURN | |
| AR_IMR_RXERR | |
| AR_IMR_RXORN | |
| AR_IMR_BCNMISC; |
| |
| if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah)) |
| sync_default &= ~AR_INTR_SYNC_HOST1_FATAL; |
| |
| if (AR_SREV_9300_20_OR_LATER(ah)) { |
| imr_reg |= AR_IMR_RXOK_HP; |
| if (ah->config.rx_intr_mitigation) |
| imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; |
| else |
| imr_reg |= AR_IMR_RXOK_LP; |
| |
| } else { |
| if (ah->config.rx_intr_mitigation) |
| imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; |
| else |
| imr_reg |= AR_IMR_RXOK; |
| } |
| |
| if (ah->config.tx_intr_mitigation) |
| imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR; |
| else |
| imr_reg |= AR_IMR_TXOK; |
| |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| REG_WRITE(ah, AR_IMR, imr_reg); |
| ah->imrs2_reg |= AR_IMR_S2_GTT; |
| REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg); |
| |
| if (!AR_SREV_9100(ah)) { |
| REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF); |
| REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default); |
| REG_WRITE(ah, AR_INTR_SYNC_MASK, 0); |
| } |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| |
| if (AR_SREV_9300_20_OR_LATER(ah)) { |
| REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0); |
| REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0); |
| REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0); |
| REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0); |
| } |
| } |
| |
| static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us) |
| { |
| u32 val = ath9k_hw_mac_to_clks(ah, us - 2); |
| val = min(val, (u32) 0xFFFF); |
| REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val); |
| } |
| |
| void ath9k_hw_setslottime(struct ath_hw *ah, u32 us) |
| { |
| u32 val = ath9k_hw_mac_to_clks(ah, us); |
| val = min(val, (u32) 0xFFFF); |
| REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val); |
| } |
| |
| void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us) |
| { |
| u32 val = ath9k_hw_mac_to_clks(ah, us); |
| val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK)); |
| REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val); |
| } |
| |
| void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us) |
| { |
| u32 val = ath9k_hw_mac_to_clks(ah, us); |
| val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS)); |
| REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val); |
| } |
| |
| static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu) |
| { |
| if (tu > 0xFFFF) { |
| ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n", |
| tu); |
| ah->globaltxtimeout = (u32) -1; |
| return false; |
| } else { |
| REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu); |
| ah->globaltxtimeout = tu; |
| return true; |
| } |
| } |
| |
| void ath9k_hw_init_global_settings(struct ath_hw *ah) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| const struct ath9k_channel *chan = ah->curchan; |
| int acktimeout, ctstimeout, ack_offset = 0; |
| int slottime; |
| int sifstime; |
| int rx_lat = 0, tx_lat = 0, eifs = 0; |
| u32 reg; |
| |
| ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n", |
| ah->misc_mode); |
| |
| if (!chan) |
| return; |
| |
| if (ah->misc_mode != 0) |
| REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode); |
| |
| if (IS_CHAN_A_FAST_CLOCK(ah, chan)) |
| rx_lat = 41; |
| else |
| rx_lat = 37; |
| tx_lat = 54; |
| |
| if (IS_CHAN_5GHZ(chan)) |
| sifstime = 16; |
| else |
| sifstime = 10; |
| |
| if (IS_CHAN_HALF_RATE(chan)) { |
| eifs = 175; |
| rx_lat *= 2; |
| tx_lat *= 2; |
| if (IS_CHAN_A_FAST_CLOCK(ah, chan)) |
| tx_lat += 11; |
| |
| sifstime = 32; |
| ack_offset = 16; |
| slottime = 13; |
| } else if (IS_CHAN_QUARTER_RATE(chan)) { |
| eifs = 340; |
| rx_lat = (rx_lat * 4) - 1; |
| tx_lat *= 4; |
| if (IS_CHAN_A_FAST_CLOCK(ah, chan)) |
| tx_lat += 22; |
| |
| sifstime = 64; |
| ack_offset = 32; |
| slottime = 21; |
| } else { |
| if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) { |
| eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO; |
| reg = AR_USEC_ASYNC_FIFO; |
| } else { |
| eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/ |
| common->clockrate; |
| reg = REG_READ(ah, AR_USEC); |
| } |
| rx_lat = MS(reg, AR_USEC_RX_LAT); |
| tx_lat = MS(reg, AR_USEC_TX_LAT); |
| |
| slottime = ah->slottime; |
| } |
| |
| /* As defined by IEEE 802.11-2007 17.3.8.6 */ |
| slottime += 3 * ah->coverage_class; |
| acktimeout = slottime + sifstime + ack_offset; |
| ctstimeout = acktimeout; |
| |
| /* |
| * Workaround for early ACK timeouts, add an offset to match the |
| * initval's 64us ack timeout value. Use 48us for the CTS timeout. |
| * This was initially only meant to work around an issue with delayed |
| * BA frames in some implementations, but it has been found to fix ACK |
| * timeout issues in other cases as well. |
| */ |
| if (IS_CHAN_2GHZ(chan) && |
| !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) { |
| acktimeout += 64 - sifstime - ah->slottime; |
| ctstimeout += 48 - sifstime - ah->slottime; |
| } |
| |
| ath9k_hw_set_sifs_time(ah, sifstime); |
| ath9k_hw_setslottime(ah, slottime); |
| ath9k_hw_set_ack_timeout(ah, acktimeout); |
| ath9k_hw_set_cts_timeout(ah, ctstimeout); |
| if (ah->globaltxtimeout != (u32) -1) |
| ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout); |
| |
| REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs)); |
| REG_RMW(ah, AR_USEC, |
| (common->clockrate - 1) | |
| SM(rx_lat, AR_USEC_RX_LAT) | |
| SM(tx_lat, AR_USEC_TX_LAT), |
| AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC); |
| |
| } |
| EXPORT_SYMBOL(ath9k_hw_init_global_settings); |
| |
| void ath9k_hw_deinit(struct ath_hw *ah) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| |
| if (common->state < ATH_HW_INITIALIZED) |
| return; |
| |
| ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP); |
| } |
| EXPORT_SYMBOL(ath9k_hw_deinit); |
| |
| /*******/ |
| /* INI */ |
| /*******/ |
| |
| u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan) |
| { |
| u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band); |
| |
| if (IS_CHAN_2GHZ(chan)) |
| ctl |= CTL_11G; |
| else |
| ctl |= CTL_11A; |
| |
| return ctl; |
| } |
| |
| /****************************************/ |
| /* Reset and Channel Switching Routines */ |
| /****************************************/ |
| |
| static inline void ath9k_hw_set_dma(struct ath_hw *ah) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| int txbuf_size; |
| |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| /* |
| * set AHB_MODE not to do cacheline prefetches |
| */ |
| if (!AR_SREV_9300_20_OR_LATER(ah)) |
| REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN); |
| |
| /* |
| * let mac dma reads be in 128 byte chunks |
| */ |
| REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK); |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| |
| /* |
| * Restore TX Trigger Level to its pre-reset value. |
| * The initial value depends on whether aggregation is enabled, and is |
| * adjusted whenever underruns are detected. |
| */ |
| if (!AR_SREV_9300_20_OR_LATER(ah)) |
| REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level); |
| |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| /* |
| * let mac dma writes be in 128 byte chunks |
| */ |
| REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK); |
| |
| /* |
| * Setup receive FIFO threshold to hold off TX activities |
| */ |
| REG_WRITE(ah, AR_RXFIFO_CFG, 0x200); |
| |
| if (AR_SREV_9300_20_OR_LATER(ah)) { |
| REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1); |
| REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1); |
| |
| ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize - |
| ah->caps.rx_status_len); |
| } |
| |
| /* |
| * reduce the number of usable entries in PCU TXBUF to avoid |
| * wrap around issues. |
| */ |
| if (AR_SREV_9285(ah)) { |
| /* For AR9285 the number of Fifos are reduced to half. |
| * So set the usable tx buf size also to half to |
| * avoid data/delimiter underruns |
| */ |
| txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE; |
| } else if (AR_SREV_9340_13_OR_LATER(ah)) { |
| /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */ |
| txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE; |
| } else { |
| txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE; |
| } |
| |
| if (!AR_SREV_9271(ah)) |
| REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size); |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| |
| if (AR_SREV_9300_20_OR_LATER(ah)) |
| ath9k_hw_reset_txstatus_ring(ah); |
| } |
| |
| static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode) |
| { |
| u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC; |
| u32 set = AR_STA_ID1_KSRCH_MODE; |
| |
| switch (opmode) { |
| case NL80211_IFTYPE_ADHOC: |
| set |= AR_STA_ID1_ADHOC; |
| REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); |
| break; |
| case NL80211_IFTYPE_MESH_POINT: |
| case NL80211_IFTYPE_AP: |
| set |= AR_STA_ID1_STA_AP; |
| /* fall through */ |
| case NL80211_IFTYPE_STATION: |
| REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); |
| break; |
| default: |
| if (!ah->is_monitoring) |
| set = 0; |
| break; |
| } |
| REG_RMW(ah, AR_STA_ID1, set, mask); |
| } |
| |
| void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled, |
| u32 *coef_mantissa, u32 *coef_exponent) |
| { |
| u32 coef_exp, coef_man; |
| |
| for (coef_exp = 31; coef_exp > 0; coef_exp--) |
| if ((coef_scaled >> coef_exp) & 0x1) |
| break; |
| |
| coef_exp = 14 - (coef_exp - COEF_SCALE_S); |
| |
| coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1)); |
| |
| *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp); |
| *coef_exponent = coef_exp - 16; |
| } |
| |
| /* AR9330 WAR: |
| * call external reset function to reset WMAC if: |
| * - doing a cold reset |
| * - we have pending frames in the TX queues. |
| */ |
| static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type) |
| { |
| int i, npend = 0; |
| |
| for (i = 0; i < AR_NUM_QCU; i++) { |
| npend = ath9k_hw_numtxpending(ah, i); |
| if (npend) |
| break; |
| } |
| |
| if (ah->external_reset && |
| (npend || type == ATH9K_RESET_COLD)) { |
| int reset_err = 0; |
| |
| ath_dbg(ath9k_hw_common(ah), RESET, |
| "reset MAC via external reset\n"); |
| |
| reset_err = ah->external_reset(); |
| if (reset_err) { |
| ath_err(ath9k_hw_common(ah), |
| "External reset failed, err=%d\n", |
| reset_err); |
| return false; |
| } |
| |
| REG_WRITE(ah, AR_RTC_RESET, 1); |
| } |
| |
| return true; |
| } |
| |
| static bool ath9k_hw_set_reset(struct ath_hw *ah, int type) |
| { |
| u32 rst_flags; |
| u32 tmpReg; |
| |
| if (AR_SREV_9100(ah)) { |
| REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK, |
| AR_RTC_DERIVED_CLK_PERIOD, 1); |
| (void)REG_READ(ah, AR_RTC_DERIVED_CLK); |
| } |
| |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| if (AR_SREV_9300_20_OR_LATER(ah)) { |
| REG_WRITE(ah, AR_WA, ah->WARegVal); |
| udelay(10); |
| } |
| |
| REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | |
| AR_RTC_FORCE_WAKE_ON_INT); |
| |
| if (AR_SREV_9100(ah)) { |
| rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD | |
| AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET; |
| } else { |
| tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE); |
| if (AR_SREV_9340(ah)) |
| tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT; |
| else |
| tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT | |
| AR_INTR_SYNC_RADM_CPL_TIMEOUT; |
| |
| if (tmpReg) { |
| u32 val; |
| REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); |
| |
| val = AR_RC_HOSTIF; |
| if (!AR_SREV_9300_20_OR_LATER(ah)) |
| val |= AR_RC_AHB; |
| REG_WRITE(ah, AR_RC, val); |
| |
| } else if (!AR_SREV_9300_20_OR_LATER(ah)) |
| REG_WRITE(ah, AR_RC, AR_RC_AHB); |
| |
| rst_flags = AR_RTC_RC_MAC_WARM; |
| if (type == ATH9K_RESET_COLD) |
| rst_flags |= AR_RTC_RC_MAC_COLD; |
| } |
| |
| if (AR_SREV_9330(ah)) { |
| if (!ath9k_hw_ar9330_reset_war(ah, type)) |
| return false; |
| } |
| |
| if (ath9k_hw_mci_is_enabled(ah)) |
| ar9003_mci_check_gpm_offset(ah); |
| |
| REG_WRITE(ah, AR_RTC_RC, rst_flags); |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| |
| if (AR_SREV_9300_20_OR_LATER(ah)) |
| udelay(50); |
| else if (AR_SREV_9100(ah)) |
| mdelay(10); |
| else |
| udelay(100); |
| |
| REG_WRITE(ah, AR_RTC_RC, 0); |
| if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) { |
| ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n"); |
| return false; |
| } |
| |
| if (!AR_SREV_9100(ah)) |
| REG_WRITE(ah, AR_RC, 0); |
| |
| if (AR_SREV_9100(ah)) |
| udelay(50); |
| |
| return true; |
| } |
| |
| static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah) |
| { |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| if (AR_SREV_9300_20_OR_LATER(ah)) { |
| REG_WRITE(ah, AR_WA, ah->WARegVal); |
| udelay(10); |
| } |
| |
| REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | |
| AR_RTC_FORCE_WAKE_ON_INT); |
| |
| if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) |
| REG_WRITE(ah, AR_RC, AR_RC_AHB); |
| |
| REG_WRITE(ah, AR_RTC_RESET, 0); |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| |
| udelay(2); |
| |
| if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) |
| REG_WRITE(ah, AR_RC, 0); |
| |
| REG_WRITE(ah, AR_RTC_RESET, 1); |
| |
| if (!ath9k_hw_wait(ah, |
| AR_RTC_STATUS, |
| AR_RTC_STATUS_M, |
| AR_RTC_STATUS_ON, |
| AH_WAIT_TIMEOUT)) { |
| ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n"); |
| return false; |
| } |
| |
| return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM); |
| } |
| |
| static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type) |
| { |
| bool ret = false; |
| |
| if (AR_SREV_9300_20_OR_LATER(ah)) { |
| REG_WRITE(ah, AR_WA, ah->WARegVal); |
| udelay(10); |
| } |
| |
| REG_WRITE(ah, AR_RTC_FORCE_WAKE, |
| AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); |
| |
| if (!ah->reset_power_on) |
| type = ATH9K_RESET_POWER_ON; |
| |
| switch (type) { |
| case ATH9K_RESET_POWER_ON: |
| ret = ath9k_hw_set_reset_power_on(ah); |
| if (ret) |
| ah->reset_power_on = true; |
| break; |
| case ATH9K_RESET_WARM: |
| case ATH9K_RESET_COLD: |
| ret = ath9k_hw_set_reset(ah, type); |
| break; |
| default: |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static bool ath9k_hw_chip_reset(struct ath_hw *ah, |
| struct ath9k_channel *chan) |
| { |
| int reset_type = ATH9K_RESET_WARM; |
| |
| if (AR_SREV_9280(ah)) { |
| if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) |
| reset_type = ATH9K_RESET_POWER_ON; |
| else |
| reset_type = ATH9K_RESET_COLD; |
| } else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) || |
| (REG_READ(ah, AR_CR) & AR_CR_RXE)) |
| reset_type = ATH9K_RESET_COLD; |
| |
| if (!ath9k_hw_set_reset_reg(ah, reset_type)) |
| return false; |
| |
| if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) |
| return false; |
| |
| ah->chip_fullsleep = false; |
| |
| if (AR_SREV_9330(ah)) |
| ar9003_hw_internal_regulator_apply(ah); |
| ath9k_hw_init_pll(ah, chan); |
| |
| return true; |
| } |
| |
| static bool ath9k_hw_channel_change(struct ath_hw *ah, |
| struct ath9k_channel *chan) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| struct ath9k_hw_capabilities *pCap = &ah->caps; |
| bool band_switch = false, mode_diff = false; |
| u8 ini_reloaded = 0; |
| u32 qnum; |
| int r; |
| |
| if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) { |
| u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags; |
| band_switch = !!(flags_diff & CHANNEL_5GHZ); |
| mode_diff = !!(flags_diff & ~CHANNEL_HT); |
| } |
| |
| for (qnum = 0; qnum < AR_NUM_QCU; qnum++) { |
| if (ath9k_hw_numtxpending(ah, qnum)) { |
| ath_dbg(common, QUEUE, |
| "Transmit frames pending on queue %d\n", qnum); |
| return false; |
| } |
| } |
| |
| if (!ath9k_hw_rfbus_req(ah)) { |
| ath_err(common, "Could not kill baseband RX\n"); |
| return false; |
| } |
| |
| if (band_switch || mode_diff) { |
| ath9k_hw_mark_phy_inactive(ah); |
| udelay(5); |
| |
| if (band_switch) |
| ath9k_hw_init_pll(ah, chan); |
| |
| if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) { |
| ath_err(common, "Failed to do fast channel change\n"); |
| return false; |
| } |
| } |
| |
| ath9k_hw_set_channel_regs(ah, chan); |
| |
| r = ath9k_hw_rf_set_freq(ah, chan); |
| if (r) { |
| ath_err(common, "Failed to set channel\n"); |
| return false; |
| } |
| ath9k_hw_set_clockrate(ah); |
| ath9k_hw_apply_txpower(ah, chan, false); |
| |
| ath9k_hw_set_delta_slope(ah, chan); |
| ath9k_hw_spur_mitigate_freq(ah, chan); |
| |
| if (band_switch || ini_reloaded) |
| ah->eep_ops->set_board_values(ah, chan); |
| |
| ath9k_hw_init_bb(ah, chan); |
| ath9k_hw_rfbus_done(ah); |
| |
| if (band_switch || ini_reloaded) { |
| ah->ah_flags |= AH_FASTCC; |
| ath9k_hw_init_cal(ah, chan); |
| ah->ah_flags &= ~AH_FASTCC; |
| } |
| |
| return true; |
| } |
| |
| static void ath9k_hw_apply_gpio_override(struct ath_hw *ah) |
| { |
| u32 gpio_mask = ah->gpio_mask; |
| int i; |
| |
| for (i = 0; gpio_mask; i++, gpio_mask >>= 1) { |
| if (!(gpio_mask & 1)) |
| continue; |
| |
| ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT); |
| ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i))); |
| } |
| } |
| |
| void ath9k_hw_check_nav(struct ath_hw *ah) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| u32 val; |
| |
| val = REG_READ(ah, AR_NAV); |
| if (val != 0xdeadbeef && val > 0x7fff) { |
| ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val); |
| REG_WRITE(ah, AR_NAV, 0); |
| } |
| } |
| EXPORT_SYMBOL(ath9k_hw_check_nav); |
| |
| bool ath9k_hw_check_alive(struct ath_hw *ah) |
| { |
| int count = 50; |
| u32 reg, last_val; |
| |
| if (AR_SREV_9300(ah)) |
| return !ath9k_hw_detect_mac_hang(ah); |
| |
| if (AR_SREV_9285_12_OR_LATER(ah)) |
| return true; |
| |
| last_val = REG_READ(ah, AR_OBS_BUS_1); |
| do { |
| reg = REG_READ(ah, AR_OBS_BUS_1); |
| if (reg != last_val) |
| return true; |
| |
| udelay(1); |
| last_val = reg; |
| if ((reg & 0x7E7FFFEF) == 0x00702400) |
| continue; |
| |
| switch (reg & 0x7E000B00) { |
| case 0x1E000000: |
| case 0x52000B00: |
| case 0x18000B00: |
| continue; |
| default: |
| return true; |
| } |
| } while (count-- > 0); |
| |
| return false; |
| } |
| EXPORT_SYMBOL(ath9k_hw_check_alive); |
| |
| static void ath9k_hw_init_mfp(struct ath_hw *ah) |
| { |
| /* Setup MFP options for CCMP */ |
| if (AR_SREV_9280_20_OR_LATER(ah)) { |
| /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt |
| * frames when constructing CCMP AAD. */ |
| REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT, |
| 0xc7ff); |
| ah->sw_mgmt_crypto = false; |
| } else if (AR_SREV_9160_10_OR_LATER(ah)) { |
| /* Disable hardware crypto for management frames */ |
| REG_CLR_BIT(ah, AR_PCU_MISC_MODE2, |
| AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE); |
| REG_SET_BIT(ah, AR_PCU_MISC_MODE2, |
| AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT); |
| ah->sw_mgmt_crypto = true; |
| } else { |
| ah->sw_mgmt_crypto = true; |
| } |
| } |
| |
| static void ath9k_hw_reset_opmode(struct ath_hw *ah, |
| u32 macStaId1, u32 saveDefAntenna) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| REG_RMW(ah, AR_STA_ID1, macStaId1 |
| | AR_STA_ID1_RTS_USE_DEF |
| | ah->sta_id1_defaults, |
| ~AR_STA_ID1_SADH_MASK); |
| ath_hw_setbssidmask(common); |
| REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna); |
| ath9k_hw_write_associd(ah); |
| REG_WRITE(ah, AR_ISR, ~0); |
| REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR); |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| |
| ath9k_hw_set_operating_mode(ah, ah->opmode); |
| } |
| |
| static void ath9k_hw_init_queues(struct ath_hw *ah) |
| { |
| int i; |
| |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| for (i = 0; i < AR_NUM_DCU; i++) |
| REG_WRITE(ah, AR_DQCUMASK(i), 1 << i); |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| |
| ah->intr_txqs = 0; |
| for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) |
| ath9k_hw_resettxqueue(ah, i); |
| } |
| |
| /* |
| * For big endian systems turn on swapping for descriptors |
| */ |
| static void ath9k_hw_init_desc(struct ath_hw *ah) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| |
| if (AR_SREV_9100(ah)) { |
| u32 mask; |
| mask = REG_READ(ah, AR_CFG); |
| if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) { |
| ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n", |
| mask); |
| } else { |
| mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB; |
| REG_WRITE(ah, AR_CFG, mask); |
| ath_dbg(common, RESET, "Setting CFG 0x%x\n", |
| REG_READ(ah, AR_CFG)); |
| } |
| } else { |
| if (common->bus_ops->ath_bus_type == ATH_USB) { |
| /* Configure AR9271 target WLAN */ |
| if (AR_SREV_9271(ah)) |
| REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB); |
| else |
| REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); |
| } |
| #ifdef __BIG_ENDIAN |
| else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) || |
| AR_SREV_9550(ah) || AR_SREV_9531(ah)) |
| REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0); |
| else |
| REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); |
| #endif |
| } |
| } |
| |
| /* |
| * Fast channel change: |
| * (Change synthesizer based on channel freq without resetting chip) |
| */ |
| static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| struct ath9k_hw_capabilities *pCap = &ah->caps; |
| int ret; |
| |
| if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI) |
| goto fail; |
| |
| if (ah->chip_fullsleep) |
| goto fail; |
| |
| if (!ah->curchan) |
| goto fail; |
| |
| if (chan->channel == ah->curchan->channel) |
| goto fail; |
| |
| if ((ah->curchan->channelFlags | chan->channelFlags) & |
| (CHANNEL_HALF | CHANNEL_QUARTER)) |
| goto fail; |
| |
| /* |
| * If cross-band fcc is not supoprted, bail out if channelFlags differ. |
| */ |
| if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) && |
| ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT)) |
| goto fail; |
| |
| if (!ath9k_hw_check_alive(ah)) |
| goto fail; |
| |
| /* |
| * For AR9462, make sure that calibration data for |
| * re-using are present. |
| */ |
| if (AR_SREV_9462(ah) && (ah->caldata && |
| (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) || |
| !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) || |
| !test_bit(RTT_DONE, &ah->caldata->cal_flags)))) |
| goto fail; |
| |
| ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n", |
| ah->curchan->channel, chan->channel); |
| |
| ret = ath9k_hw_channel_change(ah, chan); |
| if (!ret) |
| goto fail; |
| |
| if (ath9k_hw_mci_is_enabled(ah)) |
| ar9003_mci_2g5g_switch(ah, false); |
| |
| ath9k_hw_loadnf(ah, ah->curchan); |
| ath9k_hw_start_nfcal(ah, true); |
| |
| if (AR_SREV_9271(ah)) |
| ar9002_hw_load_ani_reg(ah, chan); |
| |
| return 0; |
| fail: |
| return -EINVAL; |
| } |
| |
| u32 ath9k_hw_get_tsf_offset(struct timespec *last, struct timespec *cur) |
| { |
| struct timespec ts; |
| s64 usec; |
| |
| if (!cur) { |
| getrawmonotonic(&ts); |
| cur = &ts; |
| } |
| |
| usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000; |
| usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000; |
| |
| return (u32) usec; |
| } |
| EXPORT_SYMBOL(ath9k_hw_get_tsf_offset); |
| |
| int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan, |
| struct ath9k_hw_cal_data *caldata, bool fastcc) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| u32 saveLedState; |
| u32 saveDefAntenna; |
| u32 macStaId1; |
| u64 tsf = 0; |
| s64 usec = 0; |
| int r; |
| bool start_mci_reset = false; |
| bool save_fullsleep = ah->chip_fullsleep; |
| |
| if (ath9k_hw_mci_is_enabled(ah)) { |
| start_mci_reset = ar9003_mci_start_reset(ah, chan); |
| if (start_mci_reset) |
| return 0; |
| } |
| |
| if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) |
| return -EIO; |
| |
| if (ah->curchan && !ah->chip_fullsleep) |
| ath9k_hw_getnf(ah, ah->curchan); |
| |
| ah->caldata = caldata; |
| if (caldata && (chan->channel != caldata->channel || |
| chan->channelFlags != caldata->channelFlags)) { |
| /* Operating channel changed, reset channel calibration data */ |
| memset(caldata, 0, sizeof(*caldata)); |
| ath9k_init_nfcal_hist_buffer(ah, chan); |
| } else if (caldata) { |
| clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags); |
| } |
| ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor); |
| |
| if (fastcc) { |
| r = ath9k_hw_do_fastcc(ah, chan); |
| if (!r) |
| return r; |
| } |
| |
| if (ath9k_hw_mci_is_enabled(ah)) |
| ar9003_mci_stop_bt(ah, save_fullsleep); |
| |
| saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA); |
| if (saveDefAntenna == 0) |
| saveDefAntenna = 1; |
| |
| macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B; |
| |
| /* Save TSF before chip reset, a cold reset clears it */ |
| tsf = ath9k_hw_gettsf64(ah); |
| usec = ktime_to_us(ktime_get_raw()); |
| |
| saveLedState = REG_READ(ah, AR_CFG_LED) & |
| (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL | |
| AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW); |
| |
| ath9k_hw_mark_phy_inactive(ah); |
| |
| ah->paprd_table_write_done = false; |
| |
| /* Only required on the first reset */ |
| if (AR_SREV_9271(ah) && ah->htc_reset_init) { |
| REG_WRITE(ah, |
| AR9271_RESET_POWER_DOWN_CONTROL, |
| AR9271_RADIO_RF_RST); |
| udelay(50); |
| } |
| |
| if (!ath9k_hw_chip_reset(ah, chan)) { |
| ath_err(common, "Chip reset failed\n"); |
| return -EINVAL; |
| } |
| |
| /* Only required on the first reset */ |
| if (AR_SREV_9271(ah) && ah->htc_reset_init) { |
| ah->htc_reset_init = false; |
| REG_WRITE(ah, |
| AR9271_RESET_POWER_DOWN_CONTROL, |
| AR9271_GATE_MAC_CTL); |
| udelay(50); |
| } |
| |
| /* Restore TSF */ |
| usec = ktime_to_us(ktime_get_raw()) - usec; |
| ath9k_hw_settsf64(ah, tsf + usec); |
| |
| if (AR_SREV_9280_20_OR_LATER(ah)) |
| REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE); |
| |
| if (!AR_SREV_9300_20_OR_LATER(ah)) |
| ar9002_hw_enable_async_fifo(ah); |
| |
| r = ath9k_hw_process_ini(ah, chan); |
| if (r) |
| return r; |
| |
| ath9k_hw_set_rfmode(ah, chan); |
| |
| if (ath9k_hw_mci_is_enabled(ah)) |
| ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep); |
| |
| /* |
| * Some AR91xx SoC devices frequently fail to accept TSF writes |
| * right after the chip reset. When that happens, write a new |
| * value after the initvals have been applied, with an offset |
| * based on measured time difference |
| */ |
| if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) { |
| tsf += 1500; |
| ath9k_hw_settsf64(ah, tsf); |
| } |
| |
| ath9k_hw_init_mfp(ah); |
| |
| ath9k_hw_set_delta_slope(ah, chan); |
| ath9k_hw_spur_mitigate_freq(ah, chan); |
| ah->eep_ops->set_board_values(ah, chan); |
| |
| ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna); |
| |
| r = ath9k_hw_rf_set_freq(ah, chan); |
| if (r) |
| return r; |
| |
| ath9k_hw_set_clockrate(ah); |
| |
| ath9k_hw_init_queues(ah); |
| ath9k_hw_init_interrupt_masks(ah, ah->opmode); |
| ath9k_hw_ani_cache_ini_regs(ah); |
| ath9k_hw_init_qos(ah); |
| |
| if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT) |
| ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio); |
| |
| ath9k_hw_init_global_settings(ah); |
| |
| if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) { |
| REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER, |
| AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768); |
| REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN, |
| AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL); |
| REG_SET_BIT(ah, AR_PCU_MISC_MODE2, |
| AR_PCU_MISC_MODE2_ENABLE_AGGWEP); |
| } |
| |
| REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM); |
| |
| ath9k_hw_set_dma(ah); |
| |
| if (!ath9k_hw_mci_is_enabled(ah)) |
| REG_WRITE(ah, AR_OBS, 8); |
| |
| if (ah->config.rx_intr_mitigation) { |
| REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last); |
| REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first); |
| } |
| |
| if (ah->config.tx_intr_mitigation) { |
| REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300); |
| REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750); |
| } |
| |
| ath9k_hw_init_bb(ah, chan); |
| |
| if (caldata) { |
| clear_bit(TXIQCAL_DONE, &caldata->cal_flags); |
| clear_bit(TXCLCAL_DONE, &caldata->cal_flags); |
| } |
| if (!ath9k_hw_init_cal(ah, chan)) |
| return -EIO; |
| |
| if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata)) |
| return -EIO; |
| |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| ath9k_hw_restore_chainmask(ah); |
| REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ); |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| |
| ath9k_hw_init_desc(ah); |
| |
| if (ath9k_hw_btcoex_is_enabled(ah)) |
| ath9k_hw_btcoex_enable(ah); |
| |
| if (ath9k_hw_mci_is_enabled(ah)) |
| ar9003_mci_check_bt(ah); |
| |
| ath9k_hw_loadnf(ah, chan); |
| ath9k_hw_start_nfcal(ah, true); |
| |
| if (AR_SREV_9300_20_OR_LATER(ah)) |
| ar9003_hw_bb_watchdog_config(ah); |
| |
| if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR) |
| ar9003_hw_disable_phy_restart(ah); |
| |
| ath9k_hw_apply_gpio_override(ah); |
| |
| if (AR_SREV_9565(ah) && common->bt_ant_diversity) |
| REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON); |
| |
| if (ah->hw->conf.radar_enabled) { |
| /* set HW specific DFS configuration */ |
| ath9k_hw_set_radar_params(ah); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ath9k_hw_reset); |
| |
| /******************************/ |
| /* Power Management (Chipset) */ |
| /******************************/ |
| |
| /* |
| * Notify Power Mgt is disabled in self-generated frames. |
| * If requested, force chip to sleep. |
| */ |
| static void ath9k_set_power_sleep(struct ath_hw *ah) |
| { |
| REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); |
| |
| if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { |
| REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff); |
| REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff); |
| REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff); |
| /* xxx Required for WLAN only case ? */ |
| REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0); |
| udelay(100); |
| } |
| |
| /* |
| * Clear the RTC force wake bit to allow the |
| * mac to go to sleep. |
| */ |
| REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); |
| |
| if (ath9k_hw_mci_is_enabled(ah)) |
| udelay(100); |
| |
| if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) |
| REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF); |
| |
| /* Shutdown chip. Active low */ |
| if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) { |
| REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN); |
| udelay(2); |
| } |
| |
| /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */ |
| if (AR_SREV_9300_20_OR_LATER(ah)) |
| REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE); |
| } |
| |
| /* |
| * Notify Power Management is enabled in self-generating |
| * frames. If request, set power mode of chip to |
| * auto/normal. Duration in units of 128us (1/8 TU). |
| */ |
| static void ath9k_set_power_network_sleep(struct ath_hw *ah) |
| { |
| struct ath9k_hw_capabilities *pCap = &ah->caps; |
| |
| REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); |
| |
| if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { |
| /* Set WakeOnInterrupt bit; clear ForceWake bit */ |
| REG_WRITE(ah, AR_RTC_FORCE_WAKE, |
| AR_RTC_FORCE_WAKE_ON_INT); |
| } else { |
| |
| /* When chip goes into network sleep, it could be waken |
| * up by MCI_INT interrupt caused by BT's HW messages |
| * (LNA_xxx, CONT_xxx) which chould be in a very fast |
| * rate (~100us). This will cause chip to leave and |
| * re-enter network sleep mode frequently, which in |
| * consequence will have WLAN MCI HW to generate lots of |
| * SYS_WAKING and SYS_SLEEPING messages which will make |
| * BT CPU to busy to process. |
| */ |
| if (ath9k_hw_mci_is_enabled(ah)) |
| REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN, |
| AR_MCI_INTERRUPT_RX_HW_MSG_MASK); |
| /* |
| * Clear the RTC force wake bit to allow the |
| * mac to go to sleep. |
| */ |
| REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); |
| |
| if (ath9k_hw_mci_is_enabled(ah)) |
| udelay(30); |
| } |
| |
| /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */ |
| if (AR_SREV_9300_20_OR_LATER(ah)) |
| REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE); |
| } |
| |
| static bool ath9k_hw_set_power_awake(struct ath_hw *ah) |
| { |
| u32 val; |
| int i; |
| |
| /* Set Bits 14 and 17 of AR_WA before powering on the chip. */ |
| if (AR_SREV_9300_20_OR_LATER(ah)) { |
| REG_WRITE(ah, AR_WA, ah->WARegVal); |
| udelay(10); |
| } |
| |
| if ((REG_READ(ah, AR_RTC_STATUS) & |
| AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) { |
| if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) { |
| return false; |
| } |
| if (!AR_SREV_9300_20_OR_LATER(ah)) |
| ath9k_hw_init_pll(ah, NULL); |
| } |
| if (AR_SREV_9100(ah)) |
| REG_SET_BIT(ah, AR_RTC_RESET, |
| AR_RTC_RESET_EN); |
| |
| REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, |
| AR_RTC_FORCE_WAKE_EN); |
| if (AR_SREV_9100(ah)) |
| mdelay(10); |
| else |
| udelay(50); |
| |
| for (i = POWER_UP_TIME / 50; i > 0; i--) { |
| val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M; |
| if (val == AR_RTC_STATUS_ON) |
| break; |
| udelay(50); |
| REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, |
| AR_RTC_FORCE_WAKE_EN); |
| } |
| if (i == 0) { |
| ath_err(ath9k_hw_common(ah), |
| "Failed to wakeup in %uus\n", |
| POWER_UP_TIME / 20); |
| return false; |
| } |
| |
| if (ath9k_hw_mci_is_enabled(ah)) |
| ar9003_mci_set_power_awake(ah); |
| |
| REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); |
| |
| return true; |
| } |
| |
| bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| int status = true; |
| static const char *modes[] = { |
| "AWAKE", |
| "FULL-SLEEP", |
| "NETWORK SLEEP", |
| "UNDEFINED" |
| }; |
| |
| if (ah->power_mode == mode) |
| return status; |
| |
| ath_dbg(common, RESET, "%s -> %s\n", |
| modes[ah->power_mode], modes[mode]); |
| |
| switch (mode) { |
| case ATH9K_PM_AWAKE: |
| status = ath9k_hw_set_power_awake(ah); |
| break; |
| case ATH9K_PM_FULL_SLEEP: |
| if (ath9k_hw_mci_is_enabled(ah)) |
| ar9003_mci_set_full_sleep(ah); |
| |
| ath9k_set_power_sleep(ah); |
| ah->chip_fullsleep = true; |
| break; |
| case ATH9K_PM_NETWORK_SLEEP: |
| ath9k_set_power_network_sleep(ah); |
| break; |
| default: |
| ath_err(common, "Unknown power mode %u\n", mode); |
| return false; |
| } |
| ah->power_mode = mode; |
| |
| /* |
| * XXX: If this warning never comes up after a while then |
| * simply keep the ATH_DBG_WARN_ON_ONCE() but make |
| * ath9k_hw_setpower() return type void. |
| */ |
| |
| if (!(ah->ah_flags & AH_UNPLUGGED)) |
| ATH_DBG_WARN_ON_ONCE(!status); |
| |
| return status; |
| } |
| EXPORT_SYMBOL(ath9k_hw_setpower); |
| |
| /*******************/ |
| /* Beacon Handling */ |
| /*******************/ |
| |
| void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period) |
| { |
| int flags = 0; |
| |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| switch (ah->opmode) { |
| case NL80211_IFTYPE_ADHOC: |
| REG_SET_BIT(ah, AR_TXCFG, |
| AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY); |
| case NL80211_IFTYPE_MESH_POINT: |
| case NL80211_IFTYPE_AP: |
| REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon); |
| REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon - |
| TU_TO_USEC(ah->config.dma_beacon_response_time)); |
| REG_WRITE(ah, AR_NEXT_SWBA, next_beacon - |
| TU_TO_USEC(ah->config.sw_beacon_response_time)); |
| flags |= |
| AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN; |
| break; |
| default: |
| ath_dbg(ath9k_hw_common(ah), BEACON, |
| "%s: unsupported opmode: %d\n", __func__, ah->opmode); |
| return; |
| break; |
| } |
| |
| REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period); |
| REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period); |
| REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period); |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| |
| REG_SET_BIT(ah, AR_TIMER_MODE, flags); |
| } |
| EXPORT_SYMBOL(ath9k_hw_beaconinit); |
| |
| void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah, |
| const struct ath9k_beacon_state *bs) |
| { |
| u32 nextTbtt, beaconintval, dtimperiod, beacontimeout; |
| struct ath9k_hw_capabilities *pCap = &ah->caps; |
| struct ath_common *common = ath9k_hw_common(ah); |
| |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt); |
| REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval); |
| REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval); |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| |
| REG_RMW_FIELD(ah, AR_RSSI_THR, |
| AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold); |
| |
| beaconintval = bs->bs_intval; |
| |
| if (bs->bs_sleepduration > beaconintval) |
| beaconintval = bs->bs_sleepduration; |
| |
| dtimperiod = bs->bs_dtimperiod; |
| if (bs->bs_sleepduration > dtimperiod) |
| dtimperiod = bs->bs_sleepduration; |
| |
| if (beaconintval == dtimperiod) |
| nextTbtt = bs->bs_nextdtim; |
| else |
| nextTbtt = bs->bs_nexttbtt; |
| |
| ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim); |
| ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt); |
| ath_dbg(common, BEACON, "beacon period %d\n", beaconintval); |
| ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod); |
| |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP); |
| REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP); |
| |
| REG_WRITE(ah, AR_SLEEP1, |
| SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT) |
| | AR_SLEEP1_ASSUME_DTIM); |
| |
| if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP) |
| beacontimeout = (BEACON_TIMEOUT_VAL << 3); |
| else |
| beacontimeout = MIN_BEACON_TIMEOUT_VAL; |
| |
| REG_WRITE(ah, AR_SLEEP2, |
| SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT)); |
| |
| REG_WRITE(ah, AR_TIM_PERIOD, beaconintval); |
| REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod); |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| |
| REG_SET_BIT(ah, AR_TIMER_MODE, |
| AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | |
| AR_DTIM_TIMER_EN); |
| |
| /* TSF Out of Range Threshold */ |
| REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold); |
| } |
| EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers); |
| |
| /*******************/ |
| /* HW Capabilities */ |
| /*******************/ |
| |
| static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask) |
| { |
| eeprom_chainmask &= chip_chainmask; |
| if (eeprom_chainmask) |
| return eeprom_chainmask; |
| else |
| return chip_chainmask; |
| } |
| |
| /** |
| * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset |
| * @ah: the atheros hardware data structure |
| * |
| * We enable DFS support upstream on chipsets which have passed a series |
| * of tests. The testing requirements are going to be documented. Desired |
| * test requirements are documented at: |
| * |
| * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs |
| * |
| * Once a new chipset gets properly tested an individual commit can be used |
| * to document the testing for DFS for that chipset. |
| */ |
| static bool ath9k_hw_dfs_tested(struct ath_hw *ah) |
| { |
| |
| switch (ah->hw_version.macVersion) { |
| /* for temporary testing DFS with 9280 */ |
| case AR_SREV_VERSION_9280: |
| /* AR9580 will likely be our first target to get testing on */ |
| case AR_SREV_VERSION_9580: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| int ath9k_hw_fill_cap_info(struct ath_hw *ah) |
| { |
| struct ath9k_hw_capabilities *pCap = &ah->caps; |
| struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); |
| struct ath_common *common = ath9k_hw_common(ah); |
| unsigned int chip_chainmask; |
| |
| u16 eeval; |
| u8 ant_div_ctl1, tx_chainmask, rx_chainmask; |
| |
| eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0); |
| regulatory->current_rd = eeval; |
| |
| if (ah->opmode != NL80211_IFTYPE_AP && |
| ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) { |
| if (regulatory->current_rd == 0x64 || |
| regulatory->current_rd == 0x65) |
| regulatory->current_rd += 5; |
| else if (regulatory->current_rd == 0x41) |
| regulatory->current_rd = 0x43; |
| ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n", |
| regulatory->current_rd); |
| } |
| |
| eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE); |
| if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) { |
| ath_err(common, |
| "no band has been marked as supported in EEPROM\n"); |
| return -EINVAL; |
| } |
| |
| if (eeval & AR5416_OPFLAGS_11A) |
| pCap->hw_caps |= ATH9K_HW_CAP_5GHZ; |
| |
| if (eeval & AR5416_OPFLAGS_11G) |
| pCap->hw_caps |= ATH9K_HW_CAP_2GHZ; |
| |
| if (AR_SREV_9485(ah) || |
| AR_SREV_9285(ah) || |
| AR_SREV_9330(ah) || |
| AR_SREV_9565(ah)) |
| chip_chainmask = 1; |
| else if (AR_SREV_9462(ah)) |
| chip_chainmask = 3; |
| else if (!AR_SREV_9280_20_OR_LATER(ah)) |
| chip_chainmask = 7; |
| else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah)) |
| chip_chainmask = 3; |
| else |
| chip_chainmask = 7; |
| |
| pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK); |
| /* |
| * For AR9271 we will temporarilly uses the rx chainmax as read from |
| * the EEPROM. |
| */ |
| if ((ah->hw_version.devid == AR5416_DEVID_PCI) && |
| !(eeval & AR5416_OPFLAGS_11A) && |
| !(AR_SREV_9271(ah))) |
| /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */ |
| pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7; |
| else if (AR_SREV_9100(ah)) |
| pCap->rx_chainmask = 0x7; |
| else |
| /* Use rx_chainmask from EEPROM. */ |
| pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK); |
| |
| pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask); |
| pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask); |
| ah->txchainmask = pCap->tx_chainmask; |
| ah->rxchainmask = pCap->rx_chainmask; |
| |
| ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA; |
| |
| /* enable key search for every frame in an aggregate */ |
| if (AR_SREV_9300_20_OR_LATER(ah)) |
| ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH; |
| |
| common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM; |
| |
| if (ah->hw_version.devid != AR2427_DEVID_PCIE) |
| pCap->hw_caps |= ATH9K_HW_CAP_HT; |
| else |
| pCap->hw_caps &= ~ATH9K_HW_CAP_HT; |
| |
| if (AR_SREV_9271(ah)) |
| pCap->num_gpio_pins = AR9271_NUM_GPIO; |
| else if (AR_DEVID_7010(ah)) |
| pCap->num_gpio_pins = AR7010_NUM_GPIO; |
| else if (AR_SREV_9300_20_OR_LATER(ah)) |
| pCap->num_gpio_pins = AR9300_NUM_GPIO; |
| else if (AR_SREV_9287_11_OR_LATER(ah)) |
| pCap->num_gpio_pins = AR9287_NUM_GPIO; |
| else if (AR_SREV_9285_12_OR_LATER(ah)) |
| pCap->num_gpio_pins = AR9285_NUM_GPIO; |
| else if (AR_SREV_9280_20_OR_LATER(ah)) |
| pCap->num_gpio_pins = AR928X_NUM_GPIO; |
| else |
| pCap->num_gpio_pins = AR_NUM_GPIO; |
| |
| if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) |
| pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX; |
| else |
| pCap->rts_aggr_limit = (8 * 1024); |
| |
| #ifdef CONFIG_ATH9K_RFKILL |
| ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT); |
| if (ah->rfsilent & EEP_RFSILENT_ENABLED) { |
| ah->rfkill_gpio = |
| MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL); |
| ah->rfkill_polarity = |
| MS(ah->rfsilent, EEP_RFSILENT_POLARITY); |
| |
| pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT; |
| } |
| #endif |
| if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah)) |
| pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP; |
| else |
| pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP; |
| |
| if (AR_SREV_9280(ah) || AR_SREV_9285(ah)) |
| pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS; |
| else |
| pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS; |
| |
| if (AR_SREV_9300_20_OR_LATER(ah)) { |
| pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK; |
| if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah)) |
| pCap->hw_caps |= ATH9K_HW_CAP_LDPC; |
| |
| pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH; |
| pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH; |
| pCap->rx_status_len = sizeof(struct ar9003_rxs); |
| pCap->tx_desc_len = sizeof(struct ar9003_txc); |
| pCap->txs_len = sizeof(struct ar9003_txs); |
| } else { |
| pCap->tx_desc_len = sizeof(struct ath_desc); |
| if (AR_SREV_9280_20(ah)) |
| pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK; |
| } |
| |
| if (AR_SREV_9300_20_OR_LATER(ah)) |
| pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED; |
| |
| if (AR_SREV_9300_20_OR_LATER(ah)) |
| ah->ent_mode = REG_READ(ah, AR_ENT_OTP); |
| |
| if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah)) |
| pCap->hw_caps |= ATH9K_HW_CAP_SGI_20; |
| |
| if (AR_SREV_9285(ah)) { |
| if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) { |
| ant_div_ctl1 = |
| ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1); |
| if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) { |
| pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB; |
| ath_info(common, "Enable LNA combining\n"); |
| } |
| } |
| } |
| |
| if (AR_SREV_9300_20_OR_LATER(ah)) { |
| if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE)) |
| pCap->hw_caps |= ATH9K_HW_CAP_APM; |
| } |
| |
| if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) { |
| ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1); |
| if ((ant_div_ctl1 >> 0x6) == 0x3) { |
| pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB; |
| ath_info(common, "Enable LNA combining\n"); |
| } |
| } |
| |
| if (ath9k_hw_dfs_tested(ah)) |
| pCap->hw_caps |= ATH9K_HW_CAP_DFS; |
| |
| tx_chainmask = pCap->tx_chainmask; |
| rx_chainmask = pCap->rx_chainmask; |
| while (tx_chainmask || rx_chainmask) { |
| if (tx_chainmask & BIT(0)) |
| pCap->max_txchains++; |
| if (rx_chainmask & BIT(0)) |
| pCap->max_rxchains++; |
| |
| tx_chainmask >>= 1; |
| rx_chainmask >>= 1; |
| } |
| |
| if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { |
| if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE)) |
| pCap->hw_caps |= ATH9K_HW_CAP_MCI; |
| |
| if (AR_SREV_9462_20_OR_LATER(ah)) |
| pCap->hw_caps |= ATH9K_HW_CAP_RTT; |
| } |
| |
| if (AR_SREV_9462(ah)) |
| pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE; |
| |
| if (AR_SREV_9300_20_OR_LATER(ah) && |
| ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) |
| pCap->hw_caps |= ATH9K_HW_CAP_PAPRD; |
| |
| return 0; |
| } |
| |
| /****************************/ |
| /* GPIO / RFKILL / Antennae */ |
| /****************************/ |
| |
| static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, |
| u32 gpio, u32 type) |
| { |
| int addr; |
| u32 gpio_shift, tmp; |
| |
| if (gpio > 11) |
| addr = AR_GPIO_OUTPUT_MUX3; |
| else if (gpio > 5) |
| addr = AR_GPIO_OUTPUT_MUX2; |
| else |
| addr = AR_GPIO_OUTPUT_MUX1; |
| |
| gpio_shift = (gpio % 6) * 5; |
| |
| if (AR_SREV_9280_20_OR_LATER(ah) |
| || (addr != AR_GPIO_OUTPUT_MUX1)) { |
| REG_RMW(ah, addr, (type << gpio_shift), |
| (0x1f << gpio_shift)); |
| } else { |
| tmp = REG_READ(ah, addr); |
| tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0); |
| tmp &= ~(0x1f << gpio_shift); |
| tmp |= (type << gpio_shift); |
| REG_WRITE(ah, addr, tmp); |
| } |
| } |
| |
| void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio) |
| { |
| u32 gpio_shift; |
| |
| BUG_ON(gpio >= ah->caps.num_gpio_pins); |
| |
| if (AR_DEVID_7010(ah)) { |
| gpio_shift = gpio; |
| REG_RMW(ah, AR7010_GPIO_OE, |
| (AR7010_GPIO_OE_AS_INPUT << gpio_shift), |
| (AR7010_GPIO_OE_MASK << gpio_shift)); |
| return; |
| } |
| |
| gpio_shift = gpio << 1; |
| REG_RMW(ah, |
| AR_GPIO_OE_OUT, |
| (AR_GPIO_OE_OUT_DRV_NO << gpio_shift), |
| (AR_GPIO_OE_OUT_DRV << gpio_shift)); |
| } |
| EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input); |
| |
| u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio) |
| { |
| #define MS_REG_READ(x, y) \ |
| (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y))) |
| |
| if (gpio >= ah->caps.num_gpio_pins) |
| return 0xffffffff; |
| |
| if (AR_DEVID_7010(ah)) { |
| u32 val; |
| val = REG_READ(ah, AR7010_GPIO_IN); |
| return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0; |
| } else if (AR_SREV_9300_20_OR_LATER(ah)) |
| return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) & |
| AR_GPIO_BIT(gpio)) != 0; |
| else if (AR_SREV_9271(ah)) |
| return MS_REG_READ(AR9271, gpio) != 0; |
| else if (AR_SREV_9287_11_OR_LATER(ah)) |
| return MS_REG_READ(AR9287, gpio) != 0; |
| else if (AR_SREV_9285_12_OR_LATER(ah)) |
| return MS_REG_READ(AR9285, gpio) != 0; |
| else if (AR_SREV_9280_20_OR_LATER(ah)) |
| return MS_REG_READ(AR928X, gpio) != 0; |
| else |
| return MS_REG_READ(AR, gpio) != 0; |
| } |
| EXPORT_SYMBOL(ath9k_hw_gpio_get); |
| |
| void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio, |
| u32 ah_signal_type) |
| { |
| u32 gpio_shift; |
| |
| if (AR_DEVID_7010(ah)) { |
| gpio_shift = gpio; |
| REG_RMW(ah, AR7010_GPIO_OE, |
| (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift), |
| (AR7010_GPIO_OE_MASK << gpio_shift)); |
| return; |
| } |
| |
| ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type); |
| gpio_shift = 2 * gpio; |
| REG_RMW(ah, |
| AR_GPIO_OE_OUT, |
| (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift), |
| (AR_GPIO_OE_OUT_DRV << gpio_shift)); |
| } |
| EXPORT_SYMBOL(ath9k_hw_cfg_output); |
| |
| void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val) |
| { |
| if (AR_DEVID_7010(ah)) { |
| val = val ? 0 : 1; |
| REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio), |
| AR_GPIO_BIT(gpio)); |
| return; |
| } |
| |
| if (AR_SREV_9271(ah)) |
| val = ~val; |
| |
| REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio), |
| AR_GPIO_BIT(gpio)); |
| } |
| EXPORT_SYMBOL(ath9k_hw_set_gpio); |
| |
| void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna) |
| { |
| REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7)); |
| } |
| EXPORT_SYMBOL(ath9k_hw_setantenna); |
| |
| /*********************/ |
| /* General Operation */ |
| /*********************/ |
| |
| u32 ath9k_hw_getrxfilter(struct ath_hw *ah) |
| { |
| u32 bits = REG_READ(ah, AR_RX_FILTER); |
| u32 phybits = REG_READ(ah, AR_PHY_ERR); |
| |
| if (phybits & AR_PHY_ERR_RADAR) |
| bits |= ATH9K_RX_FILTER_PHYRADAR; |
| if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING)) |
| bits |= ATH9K_RX_FILTER_PHYERR; |
| |
| return bits; |
| } |
| EXPORT_SYMBOL(ath9k_hw_getrxfilter); |
| |
| void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits) |
| { |
| u32 phybits; |
| |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) |
| bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER; |
| |
| REG_WRITE(ah, AR_RX_FILTER, bits); |
| |
| phybits = 0; |
| if (bits & ATH9K_RX_FILTER_PHYRADAR) |
| phybits |= AR_PHY_ERR_RADAR; |
| if (bits & ATH9K_RX_FILTER_PHYERR) |
| phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING; |
| REG_WRITE(ah, AR_PHY_ERR, phybits); |
| |
| if (phybits) |
| REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA); |
| else |
| REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA); |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| } |
| EXPORT_SYMBOL(ath9k_hw_setrxfilter); |
| |
| bool ath9k_hw_phy_disable(struct ath_hw *ah) |
| { |
| if (ath9k_hw_mci_is_enabled(ah)) |
| ar9003_mci_bt_gain_ctrl(ah); |
| |
| if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM)) |
| return false; |
| |
| ath9k_hw_init_pll(ah, NULL); |
| ah->htc_reset_init = true; |
| return true; |
| } |
| EXPORT_SYMBOL(ath9k_hw_phy_disable); |
| |
| bool ath9k_hw_disable(struct ath_hw *ah) |
| { |
| if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) |
| return false; |
| |
| if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD)) |
| return false; |
| |
| ath9k_hw_init_pll(ah, NULL); |
| return true; |
| } |
| EXPORT_SYMBOL(ath9k_hw_disable); |
| |
| static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan) |
| { |
| enum eeprom_param gain_param; |
| |
| if (IS_CHAN_2GHZ(chan)) |
| gain_param = EEP_ANTENNA_GAIN_2G; |
| else |
| gain_param = EEP_ANTENNA_GAIN_5G; |
| |
| return ah->eep_ops->get_eeprom(ah, gain_param); |
| } |
| |
| void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan, |
| bool test) |
| { |
| struct ath_regulatory *reg = ath9k_hw_regulatory(ah); |
| struct ieee80211_channel *channel; |
| int chan_pwr, new_pwr, max_gain; |
| int ant_gain, ant_reduction = 0; |
| |
| if (!chan) |
| return; |
| |
| channel = chan->chan; |
| chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER); |
| new_pwr = min_t(int, chan_pwr, reg->power_limit); |
| max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2; |
| |
| ant_gain = get_antenna_gain(ah, chan); |
| if (ant_gain > max_gain) |
| ant_reduction = ant_gain - max_gain; |
| |
| ah->eep_ops->set_txpower(ah, chan, |
| ath9k_regd_get_ctl(reg, chan), |
| ant_reduction, new_pwr, test); |
| } |
| |
| void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test) |
| { |
| struct ath_regulatory *reg = ath9k_hw_regulatory(ah); |
| struct ath9k_channel *chan = ah->curchan; |
| struct ieee80211_channel *channel = chan->chan; |
| |
| reg->power_limit = min_t(u32, limit, MAX_RATE_POWER); |
| if (test) |
| channel->max_power = MAX_RATE_POWER / 2; |
| |
| ath9k_hw_apply_txpower(ah, chan, test); |
| |
| if (test) |
| channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2); |
| } |
| EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit); |
| |
| void ath9k_hw_setopmode(struct ath_hw *ah) |
| { |
| ath9k_hw_set_operating_mode(ah, ah->opmode); |
| } |
| EXPORT_SYMBOL(ath9k_hw_setopmode); |
| |
| void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1) |
| { |
| REG_WRITE(ah, AR_MCAST_FIL0, filter0); |
| REG_WRITE(ah, AR_MCAST_FIL1, filter1); |
| } |
| EXPORT_SYMBOL(ath9k_hw_setmcastfilter); |
| |
| void ath9k_hw_write_associd(struct ath_hw *ah) |
| { |
| struct ath_common *common = ath9k_hw_common(ah); |
| |
| REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid)); |
| REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) | |
| ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S)); |
| } |
| EXPORT_SYMBOL(ath9k_hw_write_associd); |
| |
| #define ATH9K_MAX_TSF_READ 10 |
| |
| u64 ath9k_hw_gettsf64(struct ath_hw *ah) |
| { |
| u32 tsf_lower, tsf_upper1, tsf_upper2; |
| int i; |
| |
| tsf_upper1 = REG_READ(ah, AR_TSF_U32); |
| for (i = 0; i < ATH9K_MAX_TSF_READ; i++) { |
| tsf_lower = REG_READ(ah, AR_TSF_L32); |
| tsf_upper2 = REG_READ(ah, AR_TSF_U32); |
| if (tsf_upper2 == tsf_upper1) |
| break; |
| tsf_upper1 = tsf_upper2; |
| } |
| |
| WARN_ON( i == ATH9K_MAX_TSF_READ ); |
| |
| return (((u64)tsf_upper1 << 32) | tsf_lower); |
| } |
| EXPORT_SYMBOL(ath9k_hw_gettsf64); |
| |
| void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64) |
| { |
| REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff); |
| REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff); |
| } |
| EXPORT_SYMBOL(ath9k_hw_settsf64); |
| |
| void ath9k_hw_reset_tsf(struct ath_hw *ah) |
| { |
| if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0, |
| AH_TSF_WRITE_TIMEOUT)) |
| ath_dbg(ath9k_hw_common(ah), RESET, |
| "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n"); |
| |
| REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE); |
| } |
| EXPORT_SYMBOL(ath9k_hw_reset_tsf); |
| |
| void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set) |
| { |
| if (set) |
| ah->misc_mode |= AR_PCU_TX_ADD_TSF; |
| else |
| ah->misc_mode &= ~AR_PCU_TX_ADD_TSF; |
| } |
| EXPORT_SYMBOL(ath9k_hw_set_tsfadjust); |
| |
| void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan) |
| { |
| u32 macmode; |
| |
| if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca) |
| macmode = AR_2040_JOINED_RX_CLEAR; |
| else |
| macmode = 0; |
| |
| REG_WRITE(ah, AR_2040_MODE, macmode); |
| } |
| |
| /* HW Generic timers configuration */ |
| |
| static const struct ath_gen_timer_configuration gen_tmr_configuration[] = |
| { |
| {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, |
| {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, |
| {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, |
| {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, |
| {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, |
| {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, |
| {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, |
| {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, |
| {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001}, |
| {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4, |
| AR_NDP2_TIMER_MODE, 0x0002}, |
| {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4, |
| AR_NDP2_TIMER_MODE, 0x0004}, |
| {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4, |
| AR_NDP2_TIMER_MODE, 0x0008}, |
| {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4, |
| AR_NDP2_TIMER_MODE, 0x0010}, |
| {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4, |
| AR_NDP2_TIMER_MODE, 0x0020}, |
| {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4, |
| AR_NDP2_TIMER_MODE, 0x0040}, |
| {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4, |
| AR_NDP2_TIMER_MODE, 0x0080} |
| }; |
| |
| /* HW generic timer primitives */ |
| |
| u32 ath9k_hw_gettsf32(struct ath_hw *ah) |
| { |
| return REG_READ(ah, AR_TSF_L32); |
| } |
| EXPORT_SYMBOL(ath9k_hw_gettsf32); |
| |
| struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah, |
| void (*trigger)(void *), |
| void (*overflow)(void *), |
| void *arg, |
| u8 timer_index) |
| { |
| struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; |
| struct ath_gen_timer *timer; |
| |
| if ((timer_index < AR_FIRST_NDP_TIMER) || |
| (timer_index >= ATH_MAX_GEN_TIMER)) |
| return NULL; |
| |
| timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL); |
| if (timer == NULL) |
| return NULL; |
| |
| /* allocate a hardware generic timer slot */ |
| timer_table->timers[timer_index] = timer; |
| timer->index = timer_index; |
| timer->trigger = trigger; |
| timer->overflow = overflow; |
| timer->arg = arg; |
| |
| return timer; |
| } |
| EXPORT_SYMBOL(ath_gen_timer_alloc); |
| |
| void ath9k_hw_gen_timer_start(struct ath_hw *ah, |
| struct ath_gen_timer *timer, |
| u32 timer_next, |
| u32 timer_period) |
| { |
| struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; |
| u32 mask = 0; |
| |
| timer_table->timer_mask |= BIT(timer->index); |
| |
| /* |
| * Program generic timer registers |
| */ |
| REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr, |
| timer_next); |
| REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr, |
| timer_period); |
| REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr, |
| gen_tmr_configuration[timer->index].mode_mask); |
| |
| if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { |
| /* |
| * Starting from AR9462, each generic timer can select which tsf |
| * to use. But we still follow the old rule, 0 - 7 use tsf and |
| * 8 - 15 use tsf2. |
| */ |
| if ((timer->index < AR_GEN_TIMER_BANK_1_LEN)) |
| REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL, |
| (1 << timer->index)); |
| else |
| REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL, |
| (1 << timer->index)); |
| } |
| |
| if (timer->trigger) |
| mask |= SM(AR_GENTMR_BIT(timer->index), |
| AR_IMR_S5_GENTIMER_TRIG); |
| if (timer->overflow) |
| mask |= SM(AR_GENTMR_BIT(timer->index), |
| AR_IMR_S5_GENTIMER_THRESH); |
| |
| REG_SET_BIT(ah, AR_IMR_S5, mask); |
| |
| if ((ah->imask & ATH9K_INT_GENTIMER) == 0) { |
| ah->imask |= ATH9K_INT_GENTIMER; |
| ath9k_hw_set_interrupts(ah); |
| } |
| } |
| EXPORT_SYMBOL(ath9k_hw_gen_timer_start); |
| |
| void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer) |
| { |
| struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; |
| |
| /* Clear generic timer enable bits. */ |
| REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr, |
| gen_tmr_configuration[timer->index].mode_mask); |
| |
| if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { |
| /* |
| * Need to switch back to TSF if it was using TSF2. |
| */ |
| if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) { |
| REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL, |
| (1 << timer->index)); |
| } |
| } |
| |
| /* Disable both trigger and thresh interrupt masks */ |
| REG_CLR_BIT(ah, AR_IMR_S5, |
| (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) | |
| SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG))); |
| |
| timer_table->timer_mask &= ~BIT(timer->index); |
| |
| if (timer_table->timer_mask == 0) { |
| ah->imask &= ~ATH9K_INT_GENTIMER; |
| ath9k_hw_set_interrupts(ah); |
| } |
| } |
| EXPORT_SYMBOL(ath9k_hw_gen_timer_stop); |
| |
| void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer) |
| { |
| struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; |
| |
| /* free the hardware generic timer slot */ |
| timer_table->timers[timer->index] = NULL; |
| kfree(timer); |
| } |
| EXPORT_SYMBOL(ath_gen_timer_free); |
| |
| /* |
| * Generic Timer Interrupts handling |
| */ |
| void ath_gen_timer_isr(struct ath_hw *ah) |
| { |
| struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; |
| struct ath_gen_timer *timer; |
| unsigned long trigger_mask, thresh_mask; |
| unsigned int index; |
| |
| /* get hardware generic timer interrupt status */ |
| trigger_mask = ah->intr_gen_timer_trigger; |
| thresh_mask = ah->intr_gen_timer_thresh; |
| trigger_mask &= timer_table->timer_mask; |
| thresh_mask &= timer_table->timer_mask; |
| |
| for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) { |
| timer = timer_table->timers[index]; |
| if (!timer) |
| continue; |
| if (!timer->overflow) |
| continue; |
| |
| trigger_mask &= ~BIT(index); |
| timer->overflow(timer->arg); |
| } |
| |
| for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) { |
| timer = timer_table->timers[index]; |
| if (!timer) |
| continue; |
| if (!timer->trigger) |
| continue; |
| timer->trigger(timer->arg); |
| } |
| } |
| EXPORT_SYMBOL(ath_gen_timer_isr); |
| |
| /********/ |
| /* HTC */ |
| /********/ |
| |
| static struct { |
| u32 version; |
| const char * name; |
| } ath_mac_bb_names[] = { |
| /* Devices with external radios */ |
| { AR_SREV_VERSION_5416_PCI, "5416" }, |
| { AR_SREV_VERSION_5416_PCIE, "5418" }, |
| { AR_SREV_VERSION_9100, "9100" }, |
| { AR_SREV_VERSION_9160, "9160" }, |
| /* Single-chip solutions */ |
| { AR_SREV_VERSION_9280, "9280" }, |
| { AR_SREV_VERSION_9285, "9285" }, |
| { AR_SREV_VERSION_9287, "9287" }, |
| { AR_SREV_VERSION_9271, "9271" }, |
| { AR_SREV_VERSION_9300, "9300" }, |
| { AR_SREV_VERSION_9330, "9330" }, |
| { AR_SREV_VERSION_9340, "9340" }, |
| { AR_SREV_VERSION_9485, "9485" }, |
| { AR_SREV_VERSION_9462, "9462" }, |
| { AR_SREV_VERSION_9550, "9550" }, |
| { AR_SREV_VERSION_9565, "9565" }, |
| { AR_SREV_VERSION_9531, "9531" }, |
| }; |
| |
| /* For devices with external radios */ |
| static struct { |
| u16 version; |
| const char * name; |
| } ath_rf_names[] = { |
| { 0, "5133" }, |
| { AR_RAD5133_SREV_MAJOR, "5133" }, |
| { AR_RAD5122_SREV_MAJOR, "5122" }, |
| { AR_RAD2133_SREV_MAJOR, "2133" }, |
| { AR_RAD2122_SREV_MAJOR, "2122" } |
| }; |
| |
| /* |
| * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown. |
| */ |
| static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version) |
| { |
| int i; |
| |
| for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) { |
| if (ath_mac_bb_names[i].version == mac_bb_version) { |
| return ath_mac_bb_names[i].name; |
| } |
| } |
| |
| return "????"; |
| } |
| |
| /* |
| * Return the RF name. "????" is returned if the RF is unknown. |
| * Used for devices with external radios. |
| */ |
| static const char *ath9k_hw_rf_name(u16 rf_version) |
| { |
| int i; |
| |
| for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) { |
| if (ath_rf_names[i].version == rf_version) { |
| return ath_rf_names[i].name; |
| } |
| } |
| |
| return "????"; |
| } |
| |
| void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len) |
| { |
| int used; |
| |
| /* chipsets >= AR9280 are single-chip */ |
| if (AR_SREV_9280_20_OR_LATER(ah)) { |
| used = scnprintf(hw_name, len, |
| "Atheros AR%s Rev:%x", |
| ath9k_hw_mac_bb_name(ah->hw_version.macVersion), |
| ah->hw_version.macRev); |
| } |
| else { |
| used = scnprintf(hw_name, len, |
| "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x", |
| ath9k_hw_mac_bb_name(ah->hw_version.macVersion), |
| ah->hw_version.macRev, |
| ath9k_hw_rf_name((ah->hw_version.analog5GhzRev |
| & AR_RADIO_SREV_MAJOR)), |
| ah->hw_version.phyRev); |
| } |
| |
| hw_name[used] = '\0'; |
| } |
| EXPORT_SYMBOL(ath9k_hw_name); |