virtio-scsi: introduce multiqueue support

This patch adds queue steering to virtio-scsi.  When a target is sent
multiple requests, we always drive them to the same queue so that FIFO
processing order is kept.  However, if a target was idle, we can choose
a queue arbitrarily.  In this case the queue is chosen according to the
current VCPU, so the driver expects the number of request queues to be
equal to the number of VCPUs.  This makes it easy and fast to select
the queue, and also lets the driver optimize the IRQ affinity for the
virtqueues (each virtqueue's affinity is set to the CPU that "owns"
the queue).

The speedup comes from improving cache locality and giving CPU affinity
to the virtqueues, which is why this scheme was selected.  Assuming that
the thread that is sending requests to the device is I/O-bound, it is
likely to be sleeping at the time the ISR is executed, and thus executing
the ISR on the same processor that sent the requests is cheap.

However, the kernel will not execute the ISR on the "best" processor
unless you explicitly set the affinity.  This is because in practice
you will have many such I/O-bound processes and thus many otherwise
idle processors.  Then the kernel will execute the ISR on a random
processor, rather than the one that is sending requests to the device.

The alternative to per-CPU virtqueues is per-target virtqueues.  To
achieve the same locality, we could dynamically choose the virtqueue's
affinity based on the CPU of the last task that sent a request.  This
is less appealing because we do not set the affinity directly---we only
provide a hint to the irqbalanced running in userspace.  Dynamically
changing the affinity only works if the userspace applies the hint
fast enough.

Cc: linux-scsi@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Wanlong Gao <gaowanlong@cn.fujitsu.com>
Reviewed-by: Asias He <asias@redhat.com>
Tested-by: Venkatesh Srinivas <venkateshs@google.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
1 file changed