| /* |
| * Copyright 2007 Dave Airlied |
| * All Rights Reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| */ |
| /* |
| * Authors: Dave Airlied <airlied@linux.ie> |
| * Ben Skeggs <darktama@iinet.net.au> |
| * Jeremy Kolb <jkolb@brandeis.edu> |
| */ |
| |
| #include <linux/dma-mapping.h> |
| #include <linux/swiotlb.h> |
| |
| #include "nouveau_drm.h" |
| #include "nouveau_dma.h" |
| #include "nouveau_fence.h" |
| |
| #include "nouveau_bo.h" |
| #include "nouveau_ttm.h" |
| #include "nouveau_gem.h" |
| |
| /* |
| * NV10-NV40 tiling helpers |
| */ |
| |
| static void |
| nv10_bo_update_tile_region(struct drm_device *dev, struct nouveau_drm_tile *reg, |
| u32 addr, u32 size, u32 pitch, u32 flags) |
| { |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| int i = reg - drm->tile.reg; |
| struct nvkm_fb *pfb = nvxx_fb(&drm->device); |
| struct nvkm_fb_tile *tile = &pfb->tile.region[i]; |
| struct nvkm_engine *engine; |
| |
| nouveau_fence_unref(®->fence); |
| |
| if (tile->pitch) |
| pfb->tile.fini(pfb, i, tile); |
| |
| if (pitch) |
| pfb->tile.init(pfb, i, addr, size, pitch, flags, tile); |
| |
| pfb->tile.prog(pfb, i, tile); |
| |
| if ((engine = nvkm_engine(pfb, NVDEV_ENGINE_GR))) |
| engine->tile_prog(engine, i); |
| if ((engine = nvkm_engine(pfb, NVDEV_ENGINE_MPEG))) |
| engine->tile_prog(engine, i); |
| } |
| |
| static struct nouveau_drm_tile * |
| nv10_bo_get_tile_region(struct drm_device *dev, int i) |
| { |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| struct nouveau_drm_tile *tile = &drm->tile.reg[i]; |
| |
| spin_lock(&drm->tile.lock); |
| |
| if (!tile->used && |
| (!tile->fence || nouveau_fence_done(tile->fence))) |
| tile->used = true; |
| else |
| tile = NULL; |
| |
| spin_unlock(&drm->tile.lock); |
| return tile; |
| } |
| |
| static void |
| nv10_bo_put_tile_region(struct drm_device *dev, struct nouveau_drm_tile *tile, |
| struct fence *fence) |
| { |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| |
| if (tile) { |
| spin_lock(&drm->tile.lock); |
| tile->fence = (struct nouveau_fence *)fence_get(fence); |
| tile->used = false; |
| spin_unlock(&drm->tile.lock); |
| } |
| } |
| |
| static struct nouveau_drm_tile * |
| nv10_bo_set_tiling(struct drm_device *dev, u32 addr, |
| u32 size, u32 pitch, u32 flags) |
| { |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| struct nvkm_fb *pfb = nvxx_fb(&drm->device); |
| struct nouveau_drm_tile *tile, *found = NULL; |
| int i; |
| |
| for (i = 0; i < pfb->tile.regions; i++) { |
| tile = nv10_bo_get_tile_region(dev, i); |
| |
| if (pitch && !found) { |
| found = tile; |
| continue; |
| |
| } else if (tile && pfb->tile.region[i].pitch) { |
| /* Kill an unused tile region. */ |
| nv10_bo_update_tile_region(dev, tile, 0, 0, 0, 0); |
| } |
| |
| nv10_bo_put_tile_region(dev, tile, NULL); |
| } |
| |
| if (found) |
| nv10_bo_update_tile_region(dev, found, addr, size, |
| pitch, flags); |
| return found; |
| } |
| |
| static void |
| nouveau_bo_del_ttm(struct ttm_buffer_object *bo) |
| { |
| struct nouveau_drm *drm = nouveau_bdev(bo->bdev); |
| struct drm_device *dev = drm->dev; |
| struct nouveau_bo *nvbo = nouveau_bo(bo); |
| |
| if (unlikely(nvbo->gem.filp)) |
| DRM_ERROR("bo %p still attached to GEM object\n", bo); |
| WARN_ON(nvbo->pin_refcnt > 0); |
| nv10_bo_put_tile_region(dev, nvbo->tile, NULL); |
| kfree(nvbo); |
| } |
| |
| static void |
| nouveau_bo_fixup_align(struct nouveau_bo *nvbo, u32 flags, |
| int *align, int *size) |
| { |
| struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); |
| struct nvif_device *device = &drm->device; |
| |
| if (device->info.family < NV_DEVICE_INFO_V0_TESLA) { |
| if (nvbo->tile_mode) { |
| if (device->info.chipset >= 0x40) { |
| *align = 65536; |
| *size = roundup(*size, 64 * nvbo->tile_mode); |
| |
| } else if (device->info.chipset >= 0x30) { |
| *align = 32768; |
| *size = roundup(*size, 64 * nvbo->tile_mode); |
| |
| } else if (device->info.chipset >= 0x20) { |
| *align = 16384; |
| *size = roundup(*size, 64 * nvbo->tile_mode); |
| |
| } else if (device->info.chipset >= 0x10) { |
| *align = 16384; |
| *size = roundup(*size, 32 * nvbo->tile_mode); |
| } |
| } |
| } else { |
| *size = roundup(*size, (1 << nvbo->page_shift)); |
| *align = max((1 << nvbo->page_shift), *align); |
| } |
| |
| *size = roundup(*size, PAGE_SIZE); |
| } |
| |
| int |
| nouveau_bo_new(struct drm_device *dev, int size, int align, |
| uint32_t flags, uint32_t tile_mode, uint32_t tile_flags, |
| struct sg_table *sg, struct reservation_object *robj, |
| struct nouveau_bo **pnvbo) |
| { |
| struct nouveau_drm *drm = nouveau_drm(dev); |
| struct nouveau_bo *nvbo; |
| size_t acc_size; |
| int ret; |
| int type = ttm_bo_type_device; |
| int lpg_shift = 12; |
| int max_size; |
| |
| if (drm->client.vm) |
| lpg_shift = drm->client.vm->mmu->lpg_shift; |
| max_size = INT_MAX & ~((1 << lpg_shift) - 1); |
| |
| if (size <= 0 || size > max_size) { |
| NV_WARN(drm, "skipped size %x\n", (u32)size); |
| return -EINVAL; |
| } |
| |
| if (sg) |
| type = ttm_bo_type_sg; |
| |
| nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL); |
| if (!nvbo) |
| return -ENOMEM; |
| INIT_LIST_HEAD(&nvbo->head); |
| INIT_LIST_HEAD(&nvbo->entry); |
| INIT_LIST_HEAD(&nvbo->vma_list); |
| nvbo->tile_mode = tile_mode; |
| nvbo->tile_flags = tile_flags; |
| nvbo->bo.bdev = &drm->ttm.bdev; |
| |
| if (!nv_device_is_cpu_coherent(nvxx_device(&drm->device))) |
| nvbo->force_coherent = flags & TTM_PL_FLAG_UNCACHED; |
| |
| nvbo->page_shift = 12; |
| if (drm->client.vm) { |
| if (!(flags & TTM_PL_FLAG_TT) && size > 256 * 1024) |
| nvbo->page_shift = drm->client.vm->mmu->lpg_shift; |
| } |
| |
| nouveau_bo_fixup_align(nvbo, flags, &align, &size); |
| nvbo->bo.mem.num_pages = size >> PAGE_SHIFT; |
| nouveau_bo_placement_set(nvbo, flags, 0); |
| |
| acc_size = ttm_bo_dma_acc_size(&drm->ttm.bdev, size, |
| sizeof(struct nouveau_bo)); |
| |
| ret = ttm_bo_init(&drm->ttm.bdev, &nvbo->bo, size, |
| type, &nvbo->placement, |
| align >> PAGE_SHIFT, false, NULL, acc_size, sg, |
| robj, nouveau_bo_del_ttm); |
| if (ret) { |
| /* ttm will call nouveau_bo_del_ttm if it fails.. */ |
| return ret; |
| } |
| |
| *pnvbo = nvbo; |
| return 0; |
| } |
| |
| static void |
| set_placement_list(struct ttm_place *pl, unsigned *n, uint32_t type, uint32_t flags) |
| { |
| *n = 0; |
| |
| if (type & TTM_PL_FLAG_VRAM) |
| pl[(*n)++].flags = TTM_PL_FLAG_VRAM | flags; |
| if (type & TTM_PL_FLAG_TT) |
| pl[(*n)++].flags = TTM_PL_FLAG_TT | flags; |
| if (type & TTM_PL_FLAG_SYSTEM) |
| pl[(*n)++].flags = TTM_PL_FLAG_SYSTEM | flags; |
| } |
| |
| static void |
| set_placement_range(struct nouveau_bo *nvbo, uint32_t type) |
| { |
| struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); |
| u32 vram_pages = drm->device.info.ram_size >> PAGE_SHIFT; |
| unsigned i, fpfn, lpfn; |
| |
| if (drm->device.info.family == NV_DEVICE_INFO_V0_CELSIUS && |
| nvbo->tile_mode && (type & TTM_PL_FLAG_VRAM) && |
| nvbo->bo.mem.num_pages < vram_pages / 4) { |
| /* |
| * Make sure that the color and depth buffers are handled |
| * by independent memory controller units. Up to a 9x |
| * speed up when alpha-blending and depth-test are enabled |
| * at the same time. |
| */ |
| if (nvbo->tile_flags & NOUVEAU_GEM_TILE_ZETA) { |
| fpfn = vram_pages / 2; |
| lpfn = ~0; |
| } else { |
| fpfn = 0; |
| lpfn = vram_pages / 2; |
| } |
| for (i = 0; i < nvbo->placement.num_placement; ++i) { |
| nvbo->placements[i].fpfn = fpfn; |
| nvbo->placements[i].lpfn = lpfn; |
| } |
| for (i = 0; i < nvbo->placement.num_busy_placement; ++i) { |
| nvbo->busy_placements[i].fpfn = fpfn; |
| nvbo->busy_placements[i].lpfn = lpfn; |
| } |
| } |
| } |
| |
| void |
| nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t type, uint32_t busy) |
| { |
| struct ttm_placement *pl = &nvbo->placement; |
| uint32_t flags = (nvbo->force_coherent ? TTM_PL_FLAG_UNCACHED : |
| TTM_PL_MASK_CACHING) | |
| (nvbo->pin_refcnt ? TTM_PL_FLAG_NO_EVICT : 0); |
| |
| pl->placement = nvbo->placements; |
| set_placement_list(nvbo->placements, &pl->num_placement, |
| type, flags); |
| |
| pl->busy_placement = nvbo->busy_placements; |
| set_placement_list(nvbo->busy_placements, &pl->num_busy_placement, |
| type | busy, flags); |
| |
| set_placement_range(nvbo, type); |
| } |
| |
| int |
| nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t memtype, bool contig) |
| { |
| struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); |
| struct ttm_buffer_object *bo = &nvbo->bo; |
| bool force = false, evict = false; |
| int ret; |
| |
| ret = ttm_bo_reserve(bo, false, false, false, NULL); |
| if (ret) |
| return ret; |
| |
| if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA && |
| memtype == TTM_PL_FLAG_VRAM && contig) { |
| if (nvbo->tile_flags & NOUVEAU_GEM_TILE_NONCONTIG) { |
| if (bo->mem.mem_type == TTM_PL_VRAM) { |
| struct nvkm_mem *mem = bo->mem.mm_node; |
| if (!list_is_singular(&mem->regions)) |
| evict = true; |
| } |
| nvbo->tile_flags &= ~NOUVEAU_GEM_TILE_NONCONTIG; |
| force = true; |
| } |
| } |
| |
| if (nvbo->pin_refcnt) { |
| if (!(memtype & (1 << bo->mem.mem_type)) || evict) { |
| NV_ERROR(drm, "bo %p pinned elsewhere: " |
| "0x%08x vs 0x%08x\n", bo, |
| 1 << bo->mem.mem_type, memtype); |
| ret = -EBUSY; |
| } |
| nvbo->pin_refcnt++; |
| goto out; |
| } |
| |
| if (evict) { |
| nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_TT, 0); |
| ret = nouveau_bo_validate(nvbo, false, false); |
| if (ret) |
| goto out; |
| } |
| |
| nvbo->pin_refcnt++; |
| nouveau_bo_placement_set(nvbo, memtype, 0); |
| |
| /* drop pin_refcnt temporarily, so we don't trip the assertion |
| * in nouveau_bo_move() that makes sure we're not trying to |
| * move a pinned buffer |
| */ |
| nvbo->pin_refcnt--; |
| ret = nouveau_bo_validate(nvbo, false, false); |
| if (ret) |
| goto out; |
| nvbo->pin_refcnt++; |
| |
| switch (bo->mem.mem_type) { |
| case TTM_PL_VRAM: |
| drm->gem.vram_available -= bo->mem.size; |
| break; |
| case TTM_PL_TT: |
| drm->gem.gart_available -= bo->mem.size; |
| break; |
| default: |
| break; |
| } |
| |
| out: |
| if (force && ret) |
| nvbo->tile_flags |= NOUVEAU_GEM_TILE_NONCONTIG; |
| ttm_bo_unreserve(bo); |
| return ret; |
| } |
| |
| int |
| nouveau_bo_unpin(struct nouveau_bo *nvbo) |
| { |
| struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); |
| struct ttm_buffer_object *bo = &nvbo->bo; |
| int ret, ref; |
| |
| ret = ttm_bo_reserve(bo, false, false, false, NULL); |
| if (ret) |
| return ret; |
| |
| ref = --nvbo->pin_refcnt; |
| WARN_ON_ONCE(ref < 0); |
| if (ref) |
| goto out; |
| |
| nouveau_bo_placement_set(nvbo, bo->mem.placement, 0); |
| |
| ret = nouveau_bo_validate(nvbo, false, false); |
| if (ret == 0) { |
| switch (bo->mem.mem_type) { |
| case TTM_PL_VRAM: |
| drm->gem.vram_available += bo->mem.size; |
| break; |
| case TTM_PL_TT: |
| drm->gem.gart_available += bo->mem.size; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| out: |
| ttm_bo_unreserve(bo); |
| return ret; |
| } |
| |
| int |
| nouveau_bo_map(struct nouveau_bo *nvbo) |
| { |
| int ret; |
| |
| ret = ttm_bo_reserve(&nvbo->bo, false, false, false, NULL); |
| if (ret) |
| return ret; |
| |
| /* |
| * TTM buffers allocated using the DMA API already have a mapping, let's |
| * use it instead. |
| */ |
| if (!nvbo->force_coherent) |
| ret = ttm_bo_kmap(&nvbo->bo, 0, nvbo->bo.mem.num_pages, |
| &nvbo->kmap); |
| |
| ttm_bo_unreserve(&nvbo->bo); |
| return ret; |
| } |
| |
| void |
| nouveau_bo_unmap(struct nouveau_bo *nvbo) |
| { |
| if (!nvbo) |
| return; |
| |
| /* |
| * TTM buffers allocated using the DMA API already had a coherent |
| * mapping which we used, no need to unmap. |
| */ |
| if (!nvbo->force_coherent) |
| ttm_bo_kunmap(&nvbo->kmap); |
| } |
| |
| void |
| nouveau_bo_sync_for_device(struct nouveau_bo *nvbo) |
| { |
| struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); |
| struct nvkm_device *device = nvxx_device(&drm->device); |
| struct ttm_dma_tt *ttm_dma = (struct ttm_dma_tt *)nvbo->bo.ttm; |
| int i; |
| |
| if (!ttm_dma) |
| return; |
| |
| /* Don't waste time looping if the object is coherent */ |
| if (nvbo->force_coherent) |
| return; |
| |
| for (i = 0; i < ttm_dma->ttm.num_pages; i++) |
| dma_sync_single_for_device(nv_device_base(device), |
| ttm_dma->dma_address[i], PAGE_SIZE, DMA_TO_DEVICE); |
| } |
| |
| void |
| nouveau_bo_sync_for_cpu(struct nouveau_bo *nvbo) |
| { |
| struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev); |
| struct nvkm_device *device = nvxx_device(&drm->device); |
| struct ttm_dma_tt *ttm_dma = (struct ttm_dma_tt *)nvbo->bo.ttm; |
| int i; |
| |
| if (!ttm_dma) |
| return; |
| |
| /* Don't waste time looping if the object is coherent */ |
| if (nvbo->force_coherent) |
| return; |
| |
| for (i = 0; i < ttm_dma->ttm.num_pages; i++) |
| dma_sync_single_for_cpu(nv_device_base(device), |
| ttm_dma->dma_address[i], PAGE_SIZE, DMA_FROM_DEVICE); |
| } |
| |
| int |
| nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible, |
| bool no_wait_gpu) |
| { |
| int ret; |
| |
| ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement, |
| interruptible, no_wait_gpu); |
| if (ret) |
| return ret; |
| |
| nouveau_bo_sync_for_device(nvbo); |
| |
| return 0; |
| } |
| |
| static inline void * |
| _nouveau_bo_mem_index(struct nouveau_bo *nvbo, unsigned index, void *mem, u8 sz) |
| { |
| struct ttm_dma_tt *dma_tt; |
| u8 *m = mem; |
| |
| index *= sz; |
| |
| if (m) { |
| /* kmap'd address, return the corresponding offset */ |
| m += index; |
| } else { |
| /* DMA-API mapping, lookup the right address */ |
| dma_tt = (struct ttm_dma_tt *)nvbo->bo.ttm; |
| m = dma_tt->cpu_address[index / PAGE_SIZE]; |
| m += index % PAGE_SIZE; |
| } |
| |
| return m; |
| } |
| #define nouveau_bo_mem_index(o, i, m) _nouveau_bo_mem_index(o, i, m, sizeof(*m)) |
| |
| void |
| nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val) |
| { |
| bool is_iomem; |
| u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem); |
| |
| mem = nouveau_bo_mem_index(nvbo, index, mem); |
| |
| if (is_iomem) |
| iowrite16_native(val, (void __force __iomem *)mem); |
| else |
| *mem = val; |
| } |
| |
| u32 |
| nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index) |
| { |
| bool is_iomem; |
| u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem); |
| |
| mem = nouveau_bo_mem_index(nvbo, index, mem); |
| |
| if (is_iomem) |
| return ioread32_native((void __force __iomem *)mem); |
| else |
| return *mem; |
| } |
| |
| void |
| nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val) |
| { |
| bool is_iomem; |
| u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem); |
| |
| mem = nouveau_bo_mem_index(nvbo, index, mem); |
| |
| if (is_iomem) |
| iowrite32_native(val, (void __force __iomem *)mem); |
| else |
| *mem = val; |
| } |
| |
| static struct ttm_tt * |
| nouveau_ttm_tt_create(struct ttm_bo_device *bdev, unsigned long size, |
| uint32_t page_flags, struct page *dummy_read) |
| { |
| #if __OS_HAS_AGP |
| struct nouveau_drm *drm = nouveau_bdev(bdev); |
| struct drm_device *dev = drm->dev; |
| |
| if (drm->agp.stat == ENABLED) { |
| return ttm_agp_tt_create(bdev, dev->agp->bridge, size, |
| page_flags, dummy_read); |
| } |
| #endif |
| |
| return nouveau_sgdma_create_ttm(bdev, size, page_flags, dummy_read); |
| } |
| |
| static int |
| nouveau_bo_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags) |
| { |
| /* We'll do this from user space. */ |
| return 0; |
| } |
| |
| static int |
| nouveau_bo_init_mem_type(struct ttm_bo_device *bdev, uint32_t type, |
| struct ttm_mem_type_manager *man) |
| { |
| struct nouveau_drm *drm = nouveau_bdev(bdev); |
| |
| switch (type) { |
| case TTM_PL_SYSTEM: |
| man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; |
| man->available_caching = TTM_PL_MASK_CACHING; |
| man->default_caching = TTM_PL_FLAG_CACHED; |
| break; |
| case TTM_PL_VRAM: |
| man->flags = TTM_MEMTYPE_FLAG_FIXED | |
| TTM_MEMTYPE_FLAG_MAPPABLE; |
| man->available_caching = TTM_PL_FLAG_UNCACHED | |
| TTM_PL_FLAG_WC; |
| man->default_caching = TTM_PL_FLAG_WC; |
| |
| if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA) { |
| /* Some BARs do not support being ioremapped WC */ |
| if (nvxx_bar(&drm->device)->iomap_uncached) { |
| man->available_caching = TTM_PL_FLAG_UNCACHED; |
| man->default_caching = TTM_PL_FLAG_UNCACHED; |
| } |
| |
| man->func = &nouveau_vram_manager; |
| man->io_reserve_fastpath = false; |
| man->use_io_reserve_lru = true; |
| } else { |
| man->func = &ttm_bo_manager_func; |
| } |
| break; |
| case TTM_PL_TT: |
| if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA) |
| man->func = &nouveau_gart_manager; |
| else |
| if (drm->agp.stat != ENABLED) |
| man->func = &nv04_gart_manager; |
| else |
| man->func = &ttm_bo_manager_func; |
| |
| if (drm->agp.stat == ENABLED) { |
| man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; |
| man->available_caching = TTM_PL_FLAG_UNCACHED | |
| TTM_PL_FLAG_WC; |
| man->default_caching = TTM_PL_FLAG_WC; |
| } else { |
| man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | |
| TTM_MEMTYPE_FLAG_CMA; |
| man->available_caching = TTM_PL_MASK_CACHING; |
| man->default_caching = TTM_PL_FLAG_CACHED; |
| } |
| |
| break; |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static void |
| nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl) |
| { |
| struct nouveau_bo *nvbo = nouveau_bo(bo); |
| |
| switch (bo->mem.mem_type) { |
| case TTM_PL_VRAM: |
| nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_TT, |
| TTM_PL_FLAG_SYSTEM); |
| break; |
| default: |
| nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_SYSTEM, 0); |
| break; |
| } |
| |
| *pl = nvbo->placement; |
| } |
| |
| |
| static int |
| nve0_bo_move_init(struct nouveau_channel *chan, u32 handle) |
| { |
| int ret = RING_SPACE(chan, 2); |
| if (ret == 0) { |
| BEGIN_NVC0(chan, NvSubCopy, 0x0000, 1); |
| OUT_RING (chan, handle & 0x0000ffff); |
| FIRE_RING (chan); |
| } |
| return ret; |
| } |
| |
| static int |
| nve0_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo, |
| struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem) |
| { |
| struct nvkm_mem *node = old_mem->mm_node; |
| int ret = RING_SPACE(chan, 10); |
| if (ret == 0) { |
| BEGIN_NVC0(chan, NvSubCopy, 0x0400, 8); |
| OUT_RING (chan, upper_32_bits(node->vma[0].offset)); |
| OUT_RING (chan, lower_32_bits(node->vma[0].offset)); |
| OUT_RING (chan, upper_32_bits(node->vma[1].offset)); |
| OUT_RING (chan, lower_32_bits(node->vma[1].offset)); |
| OUT_RING (chan, PAGE_SIZE); |
| OUT_RING (chan, PAGE_SIZE); |
| OUT_RING (chan, PAGE_SIZE); |
| OUT_RING (chan, new_mem->num_pages); |
| BEGIN_IMC0(chan, NvSubCopy, 0x0300, 0x0386); |
| } |
| return ret; |
| } |
| |
| static int |
| nvc0_bo_move_init(struct nouveau_channel *chan, u32 handle) |
| { |
| int ret = RING_SPACE(chan, 2); |
| if (ret == 0) { |
| BEGIN_NVC0(chan, NvSubCopy, 0x0000, 1); |
| OUT_RING (chan, handle); |
| } |
| return ret; |
| } |
| |
| static int |
| nvc0_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo, |
| struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem) |
| { |
| struct nvkm_mem *node = old_mem->mm_node; |
| u64 src_offset = node->vma[0].offset; |
| u64 dst_offset = node->vma[1].offset; |
| u32 page_count = new_mem->num_pages; |
| int ret; |
| |
| page_count = new_mem->num_pages; |
| while (page_count) { |
| int line_count = (page_count > 8191) ? 8191 : page_count; |
| |
| ret = RING_SPACE(chan, 11); |
| if (ret) |
| return ret; |
| |
| BEGIN_NVC0(chan, NvSubCopy, 0x030c, 8); |
| OUT_RING (chan, upper_32_bits(src_offset)); |
| OUT_RING (chan, lower_32_bits(src_offset)); |
| OUT_RING (chan, upper_32_bits(dst_offset)); |
| OUT_RING (chan, lower_32_bits(dst_offset)); |
| OUT_RING (chan, PAGE_SIZE); |
| OUT_RING (chan, PAGE_SIZE); |
| OUT_RING (chan, PAGE_SIZE); |
| OUT_RING (chan, line_count); |
| BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1); |
| OUT_RING (chan, 0x00000110); |
| |
| page_count -= line_count; |
| src_offset += (PAGE_SIZE * line_count); |
| dst_offset += (PAGE_SIZE * line_count); |
| } |
| |
| return 0; |
| } |
| |
| static int |
| nvc0_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo, |
| struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem) |
| { |
| struct nvkm_mem *node = old_mem->mm_node; |
| u64 src_offset = node->vma[0].offset; |
| u64 dst_offset = node->vma[1].offset; |
| u32 page_count = new_mem->num_pages; |
| int ret; |
| |
| page_count = new_mem->num_pages; |
| while (page_count) { |
| int line_count = (page_count > 2047) ? 2047 : page_count; |
| |
| ret = RING_SPACE(chan, 12); |
| if (ret) |
| return ret; |
| |
| BEGIN_NVC0(chan, NvSubCopy, 0x0238, 2); |
| OUT_RING (chan, upper_32_bits(dst_offset)); |
| OUT_RING (chan, lower_32_bits(dst_offset)); |
| BEGIN_NVC0(chan, NvSubCopy, 0x030c, 6); |
| OUT_RING (chan, upper_32_bits(src_offset)); |
| OUT_RING (chan, lower_32_bits(src_offset)); |
| OUT_RING (chan, PAGE_SIZE); /* src_pitch */ |
| OUT_RING (chan, PAGE_SIZE); /* dst_pitch */ |
| OUT_RING (chan, PAGE_SIZE); /* line_length */ |
| OUT_RING (chan, line_count); |
| BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1); |
| OUT_RING (chan, 0x00100110); |
| |
| page_count -= line_count; |
| src_offset += (PAGE_SIZE * line_count); |
| dst_offset += (PAGE_SIZE * line_count); |
| } |
| |
| return 0; |
| } |
| |
| static int |
| nva3_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo, |
| struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem) |
| { |
| struct nvkm_mem *node = old_mem->mm_node; |
| u64 src_offset = node->vma[0].offset; |
| u64 dst_offset = node->vma[1].offset; |
| u32 page_count = new_mem->num_pages; |
| int ret; |
| |
| page_count = new_mem->num_pages; |
| while (page_count) { |
| int line_count = (page_count > 8191) ? 8191 : page_count; |
| |
| ret = RING_SPACE(chan, 11); |
| if (ret) |
| return ret; |
| |
| BEGIN_NV04(chan, NvSubCopy, 0x030c, 8); |
| OUT_RING (chan, upper_32_bits(src_offset)); |
| OUT_RING (chan, lower_32_bits(src_offset)); |
| OUT_RING (chan, upper_32_bits(dst_offset)); |
| OUT_RING (chan, lower_32_bits(dst_offset)); |
| OUT_RING (chan, PAGE_SIZE); |
| OUT_RING (chan, PAGE_SIZE); |
| OUT_RING (chan, PAGE_SIZE); |
| OUT_RING (chan, line_count); |
| BEGIN_NV04(chan, NvSubCopy, 0x0300, 1); |
| OUT_RING (chan, 0x00000110); |
| |
| page_count -= line_count; |
| src_offset += (PAGE_SIZE * line_count); |
| dst_offset += (PAGE_SIZE * line_count); |
| } |
| |
| return 0; |
| } |
| |
| static int |
| nv98_bo_move_exec(struct nouveau_channel *chan, struct ttm_buffer_object *bo, |
| struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem) |
| { |
| struct nvkm_mem *node = old_mem->mm_node; |
| int ret = RING_SPACE(chan, 7); |
| if (ret == 0) { |
| BEGIN_NV04(chan, NvSubCopy, 0x0320, 6); |
| OUT_RING (chan, upper_32_bits(node->vma[0].offset)); |
| OUT_RING (chan, lower_32_bits(node->vma[0].offset)); |
| OUT_RING (chan, upper_32_bits(node->vma[1].offset)); |
| OUT_RING (chan, lower_32_bits(node->vma[1].offset)); |
| OUT_RING (chan, 0x00000000 /* COPY */); |
| OUT_RING (chan, new_mem->num_pages << PAGE_SHIFT); |
| } |
| return ret; |
| } |
| |
| static int |
| nv84_bo_move_exec(struct nouveau_channel *chan, struct ttm_buffer_object *bo, |
| struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem) |
| { |
| struct nvkm_mem *node = old_mem->mm_node; |
| int ret = RING_SPACE(chan, 7); |
| if (ret == 0) { |
| BEGIN_NV04(chan, NvSubCopy, 0x0304, 6); |
| OUT_RING (chan, new_mem->num_pages << PAGE_SHIFT); |
| OUT_RING (chan, upper_32_bits(node->vma[0].offset)); |
| OUT_RING (chan, lower_32_bits(node->vma[0].offset)); |
| OUT_RING (chan, upper_32_bits(node->vma[1].offset)); |
| OUT_RING (chan, lower_32_bits(node->vma[1].offset)); |
| OUT_RING (chan, 0x00000000 /* MODE_COPY, QUERY_NONE */); |
| } |
| return ret; |
| } |
| |
| static int |
| nv50_bo_move_init(struct nouveau_channel *chan, u32 handle) |
| { |
| int ret = RING_SPACE(chan, 6); |
| if (ret == 0) { |
| BEGIN_NV04(chan, NvSubCopy, 0x0000, 1); |
| OUT_RING (chan, handle); |
| BEGIN_NV04(chan, NvSubCopy, 0x0180, 3); |
| OUT_RING (chan, chan->drm->ntfy.handle); |
| OUT_RING (chan, chan->vram.handle); |
| OUT_RING (chan, chan->vram.handle); |
| } |
| |
| return ret; |
| } |
| |
| static int |
| nv50_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo, |
| struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem) |
| { |
| struct nvkm_mem *node = old_mem->mm_node; |
| u64 length = (new_mem->num_pages << PAGE_SHIFT); |
| u64 src_offset = node->vma[0].offset; |
| u64 dst_offset = node->vma[1].offset; |
| int src_tiled = !!node->memtype; |
| int dst_tiled = !!((struct nvkm_mem *)new_mem->mm_node)->memtype; |
| int ret; |
| |
| while (length) { |
| u32 amount, stride, height; |
| |
| ret = RING_SPACE(chan, 18 + 6 * (src_tiled + dst_tiled)); |
| if (ret) |
| return ret; |
| |
| amount = min(length, (u64)(4 * 1024 * 1024)); |
| stride = 16 * 4; |
| height = amount / stride; |
| |
| if (src_tiled) { |
| BEGIN_NV04(chan, NvSubCopy, 0x0200, 7); |
| OUT_RING (chan, 0); |
| OUT_RING (chan, 0); |
| OUT_RING (chan, stride); |
| OUT_RING (chan, height); |
| OUT_RING (chan, 1); |
| OUT_RING (chan, 0); |
| OUT_RING (chan, 0); |
| } else { |
| BEGIN_NV04(chan, NvSubCopy, 0x0200, 1); |
| OUT_RING (chan, 1); |
| } |
| if (dst_tiled) { |
| BEGIN_NV04(chan, NvSubCopy, 0x021c, 7); |
| OUT_RING (chan, 0); |
| OUT_RING (chan, 0); |
| OUT_RING (chan, stride); |
| OUT_RING (chan, height); |
| OUT_RING (chan, 1); |
| OUT_RING (chan, 0); |
| OUT_RING (chan, 0); |
| } else { |
| BEGIN_NV04(chan, NvSubCopy, 0x021c, 1); |
| OUT_RING (chan, 1); |
| } |
| |
| BEGIN_NV04(chan, NvSubCopy, 0x0238, 2); |
| OUT_RING (chan, upper_32_bits(src_offset)); |
| OUT_RING (chan, upper_32_bits(dst_offset)); |
| BEGIN_NV04(chan, NvSubCopy, 0x030c, 8); |
| OUT_RING (chan, lower_32_bits(src_offset)); |
| OUT_RING (chan, lower_32_bits(dst_offset)); |
| OUT_RING (chan, stride); |
| OUT_RING (chan, stride); |
| OUT_RING (chan, stride); |
| OUT_RING (chan, height); |
| OUT_RING (chan, 0x00000101); |
| OUT_RING (chan, 0x00000000); |
| BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_NOP, 1); |
| OUT_RING (chan, 0); |
| |
| length -= amount; |
| src_offset += amount; |
| dst_offset += amount; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| nv04_bo_move_init(struct nouveau_channel *chan, u32 handle) |
| { |
| int ret = RING_SPACE(chan, 4); |
| if (ret == 0) { |
| BEGIN_NV04(chan, NvSubCopy, 0x0000, 1); |
| OUT_RING (chan, handle); |
| BEGIN_NV04(chan, NvSubCopy, 0x0180, 1); |
| OUT_RING (chan, chan->drm->ntfy.handle); |
| } |
| |
| return ret; |
| } |
| |
| static inline uint32_t |
| nouveau_bo_mem_ctxdma(struct ttm_buffer_object *bo, |
| struct nouveau_channel *chan, struct ttm_mem_reg *mem) |
| { |
| if (mem->mem_type == TTM_PL_TT) |
| return NvDmaTT; |
| return chan->vram.handle; |
| } |
| |
| static int |
| nv04_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo, |
| struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem) |
| { |
| u32 src_offset = old_mem->start << PAGE_SHIFT; |
| u32 dst_offset = new_mem->start << PAGE_SHIFT; |
| u32 page_count = new_mem->num_pages; |
| int ret; |
| |
| ret = RING_SPACE(chan, 3); |
| if (ret) |
| return ret; |
| |
| BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_DMA_SOURCE, 2); |
| OUT_RING (chan, nouveau_bo_mem_ctxdma(bo, chan, old_mem)); |
| OUT_RING (chan, nouveau_bo_mem_ctxdma(bo, chan, new_mem)); |
| |
| page_count = new_mem->num_pages; |
| while (page_count) { |
| int line_count = (page_count > 2047) ? 2047 : page_count; |
| |
| ret = RING_SPACE(chan, 11); |
| if (ret) |
| return ret; |
| |
| BEGIN_NV04(chan, NvSubCopy, |
| NV_MEMORY_TO_MEMORY_FORMAT_OFFSET_IN, 8); |
| OUT_RING (chan, src_offset); |
| OUT_RING (chan, dst_offset); |
| OUT_RING (chan, PAGE_SIZE); /* src_pitch */ |
| OUT_RING (chan, PAGE_SIZE); /* dst_pitch */ |
| OUT_RING (chan, PAGE_SIZE); /* line_length */ |
| OUT_RING (chan, line_count); |
| OUT_RING (chan, 0x00000101); |
| OUT_RING (chan, 0x00000000); |
| BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_NOP, 1); |
| OUT_RING (chan, 0); |
| |
| page_count -= line_count; |
| src_offset += (PAGE_SIZE * line_count); |
| dst_offset += (PAGE_SIZE * line_count); |
| } |
| |
| return 0; |
| } |
| |
| static int |
| nouveau_bo_move_prep(struct nouveau_drm *drm, struct ttm_buffer_object *bo, |
| struct ttm_mem_reg *mem) |
| { |
| struct nvkm_mem *old_node = bo->mem.mm_node; |
| struct nvkm_mem *new_node = mem->mm_node; |
| u64 size = (u64)mem->num_pages << PAGE_SHIFT; |
| int ret; |
| |
| ret = nvkm_vm_get(drm->client.vm, size, old_node->page_shift, |
| NV_MEM_ACCESS_RW, &old_node->vma[0]); |
| if (ret) |
| return ret; |
| |
| ret = nvkm_vm_get(drm->client.vm, size, new_node->page_shift, |
| NV_MEM_ACCESS_RW, &old_node->vma[1]); |
| if (ret) { |
| nvkm_vm_put(&old_node->vma[0]); |
| return ret; |
| } |
| |
| nvkm_vm_map(&old_node->vma[0], old_node); |
| nvkm_vm_map(&old_node->vma[1], new_node); |
| return 0; |
| } |
| |
| static int |
| nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict, bool intr, |
| bool no_wait_gpu, struct ttm_mem_reg *new_mem) |
| { |
| struct nouveau_drm *drm = nouveau_bdev(bo->bdev); |
| struct nouveau_channel *chan = drm->ttm.chan; |
| struct nouveau_cli *cli = (void *)nvif_client(&chan->device->base); |
| struct nouveau_fence *fence; |
| int ret; |
| |
| /* create temporary vmas for the transfer and attach them to the |
| * old nvkm_mem node, these will get cleaned up after ttm has |
| * destroyed the ttm_mem_reg |
| */ |
| if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA) { |
| ret = nouveau_bo_move_prep(drm, bo, new_mem); |
| if (ret) |
| return ret; |
| } |
| |
| mutex_lock_nested(&cli->mutex, SINGLE_DEPTH_NESTING); |
| ret = nouveau_fence_sync(nouveau_bo(bo), chan, true, intr); |
| if (ret == 0) { |
| ret = drm->ttm.move(chan, bo, &bo->mem, new_mem); |
| if (ret == 0) { |
| ret = nouveau_fence_new(chan, false, &fence); |
| if (ret == 0) { |
| ret = ttm_bo_move_accel_cleanup(bo, |
| &fence->base, |
| evict, |
| no_wait_gpu, |
| new_mem); |
| nouveau_fence_unref(&fence); |
| } |
| } |
| } |
| mutex_unlock(&cli->mutex); |
| return ret; |
| } |
| |
| void |
| nouveau_bo_move_init(struct nouveau_drm *drm) |
| { |
| static const struct { |
| const char *name; |
| int engine; |
| u32 oclass; |
| int (*exec)(struct nouveau_channel *, |
| struct ttm_buffer_object *, |
| struct ttm_mem_reg *, struct ttm_mem_reg *); |
| int (*init)(struct nouveau_channel *, u32 handle); |
| } _methods[] = { |
| { "COPY", 4, 0xb0b5, nve0_bo_move_copy, nve0_bo_move_init }, |
| { "GRCE", 0, 0xb0b5, nve0_bo_move_copy, nvc0_bo_move_init }, |
| { "COPY", 4, 0xa0b5, nve0_bo_move_copy, nve0_bo_move_init }, |
| { "GRCE", 0, 0xa0b5, nve0_bo_move_copy, nvc0_bo_move_init }, |
| { "COPY1", 5, 0x90b8, nvc0_bo_move_copy, nvc0_bo_move_init }, |
| { "COPY0", 4, 0x90b5, nvc0_bo_move_copy, nvc0_bo_move_init }, |
| { "COPY", 0, 0x85b5, nva3_bo_move_copy, nv50_bo_move_init }, |
| { "CRYPT", 0, 0x74c1, nv84_bo_move_exec, nv50_bo_move_init }, |
| { "M2MF", 0, 0x9039, nvc0_bo_move_m2mf, nvc0_bo_move_init }, |
| { "M2MF", 0, 0x5039, nv50_bo_move_m2mf, nv50_bo_move_init }, |
| { "M2MF", 0, 0x0039, nv04_bo_move_m2mf, nv04_bo_move_init }, |
| {}, |
| { "CRYPT", 0, 0x88b4, nv98_bo_move_exec, nv50_bo_move_init }, |
| }, *mthd = _methods; |
| const char *name = "CPU"; |
| int ret; |
| |
| do { |
| struct nouveau_channel *chan; |
| |
| if (mthd->engine) |
| chan = drm->cechan; |
| else |
| chan = drm->channel; |
| if (chan == NULL) |
| continue; |
| |
| ret = nvif_object_init(chan->object, NULL, |
| mthd->oclass | (mthd->engine << 16), |
| mthd->oclass, NULL, 0, |
| &drm->ttm.copy); |
| if (ret == 0) { |
| ret = mthd->init(chan, drm->ttm.copy.handle); |
| if (ret) { |
| nvif_object_fini(&drm->ttm.copy); |
| continue; |
| } |
| |
| drm->ttm.move = mthd->exec; |
| drm->ttm.chan = chan; |
| name = mthd->name; |
| break; |
| } |
| } while ((++mthd)->exec); |
| |
| NV_INFO(drm, "MM: using %s for buffer copies\n", name); |
| } |
| |
| static int |
| nouveau_bo_move_flipd(struct ttm_buffer_object *bo, bool evict, bool intr, |
| bool no_wait_gpu, struct ttm_mem_reg *new_mem) |
| { |
| struct ttm_place placement_memtype = { |
| .fpfn = 0, |
| .lpfn = 0, |
| .flags = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING |
| }; |
| struct ttm_placement placement; |
| struct ttm_mem_reg tmp_mem; |
| int ret; |
| |
| placement.num_placement = placement.num_busy_placement = 1; |
| placement.placement = placement.busy_placement = &placement_memtype; |
| |
| tmp_mem = *new_mem; |
| tmp_mem.mm_node = NULL; |
| ret = ttm_bo_mem_space(bo, &placement, &tmp_mem, intr, no_wait_gpu); |
| if (ret) |
| return ret; |
| |
| ret = ttm_tt_bind(bo->ttm, &tmp_mem); |
| if (ret) |
| goto out; |
| |
| ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_gpu, &tmp_mem); |
| if (ret) |
| goto out; |
| |
| ret = ttm_bo_move_ttm(bo, true, no_wait_gpu, new_mem); |
| out: |
| ttm_bo_mem_put(bo, &tmp_mem); |
| return ret; |
| } |
| |
| static int |
| nouveau_bo_move_flips(struct ttm_buffer_object *bo, bool evict, bool intr, |
| bool no_wait_gpu, struct ttm_mem_reg *new_mem) |
| { |
| struct ttm_place placement_memtype = { |
| .fpfn = 0, |
| .lpfn = 0, |
| .flags = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING |
| }; |
| struct ttm_placement placement; |
| struct ttm_mem_reg tmp_mem; |
| int ret; |
| |
| placement.num_placement = placement.num_busy_placement = 1; |
| placement.placement = placement.busy_placement = &placement_memtype; |
| |
| tmp_mem = *new_mem; |
| tmp_mem.mm_node = NULL; |
| ret = ttm_bo_mem_space(bo, &placement, &tmp_mem, intr, no_wait_gpu); |
| if (ret) |
| return ret; |
| |
| ret = ttm_bo_move_ttm(bo, true, no_wait_gpu, &tmp_mem); |
| if (ret) |
| goto out; |
| |
| ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_gpu, new_mem); |
| if (ret) |
| goto out; |
| |
| out: |
| ttm_bo_mem_put(bo, &tmp_mem); |
| return ret; |
| } |
| |
| static void |
| nouveau_bo_move_ntfy(struct ttm_buffer_object *bo, struct ttm_mem_reg *new_mem) |
| { |
| struct nouveau_bo *nvbo = nouveau_bo(bo); |
| struct nvkm_vma *vma; |
| |
| /* ttm can now (stupidly) pass the driver bos it didn't create... */ |
| if (bo->destroy != nouveau_bo_del_ttm) |
| return; |
| |
| list_for_each_entry(vma, &nvbo->vma_list, head) { |
| if (new_mem && new_mem->mem_type != TTM_PL_SYSTEM && |
| (new_mem->mem_type == TTM_PL_VRAM || |
| nvbo->page_shift != vma->vm->mmu->lpg_shift)) { |
| nvkm_vm_map(vma, new_mem->mm_node); |
| } else { |
| nvkm_vm_unmap(vma); |
| } |
| } |
| } |
| |
| static int |
| nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_mem_reg *new_mem, |
| struct nouveau_drm_tile **new_tile) |
| { |
| struct nouveau_drm *drm = nouveau_bdev(bo->bdev); |
| struct drm_device *dev = drm->dev; |
| struct nouveau_bo *nvbo = nouveau_bo(bo); |
| u64 offset = new_mem->start << PAGE_SHIFT; |
| |
| *new_tile = NULL; |
| if (new_mem->mem_type != TTM_PL_VRAM) |
| return 0; |
| |
| if (drm->device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) { |
| *new_tile = nv10_bo_set_tiling(dev, offset, new_mem->size, |
| nvbo->tile_mode, |
| nvbo->tile_flags); |
| } |
| |
| return 0; |
| } |
| |
| static void |
| nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo, |
| struct nouveau_drm_tile *new_tile, |
| struct nouveau_drm_tile **old_tile) |
| { |
| struct nouveau_drm *drm = nouveau_bdev(bo->bdev); |
| struct drm_device *dev = drm->dev; |
| struct fence *fence = reservation_object_get_excl(bo->resv); |
| |
| nv10_bo_put_tile_region(dev, *old_tile, fence); |
| *old_tile = new_tile; |
| } |
| |
| static int |
| nouveau_bo_move(struct ttm_buffer_object *bo, bool evict, bool intr, |
| bool no_wait_gpu, struct ttm_mem_reg *new_mem) |
| { |
| struct nouveau_drm *drm = nouveau_bdev(bo->bdev); |
| struct nouveau_bo *nvbo = nouveau_bo(bo); |
| struct ttm_mem_reg *old_mem = &bo->mem; |
| struct nouveau_drm_tile *new_tile = NULL; |
| int ret = 0; |
| |
| if (nvbo->pin_refcnt) |
| NV_WARN(drm, "Moving pinned object %p!\n", nvbo); |
| |
| if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA) { |
| ret = nouveau_bo_vm_bind(bo, new_mem, &new_tile); |
| if (ret) |
| return ret; |
| } |
| |
| /* Fake bo copy. */ |
| if (old_mem->mem_type == TTM_PL_SYSTEM && !bo->ttm) { |
| BUG_ON(bo->mem.mm_node != NULL); |
| bo->mem = *new_mem; |
| new_mem->mm_node = NULL; |
| goto out; |
| } |
| |
| /* Hardware assisted copy. */ |
| if (drm->ttm.move) { |
| if (new_mem->mem_type == TTM_PL_SYSTEM) |
| ret = nouveau_bo_move_flipd(bo, evict, intr, |
| no_wait_gpu, new_mem); |
| else if (old_mem->mem_type == TTM_PL_SYSTEM) |
| ret = nouveau_bo_move_flips(bo, evict, intr, |
| no_wait_gpu, new_mem); |
| else |
| ret = nouveau_bo_move_m2mf(bo, evict, intr, |
| no_wait_gpu, new_mem); |
| if (!ret) |
| goto out; |
| } |
| |
| /* Fallback to software copy. */ |
| ret = ttm_bo_wait(bo, true, intr, no_wait_gpu); |
| if (ret == 0) |
| ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, new_mem); |
| |
| out: |
| if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA) { |
| if (ret) |
| nouveau_bo_vm_cleanup(bo, NULL, &new_tile); |
| else |
| nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile); |
| } |
| |
| return ret; |
| } |
| |
| static int |
| nouveau_bo_verify_access(struct ttm_buffer_object *bo, struct file *filp) |
| { |
| struct nouveau_bo *nvbo = nouveau_bo(bo); |
| |
| return drm_vma_node_verify_access(&nvbo->gem.vma_node, filp); |
| } |
| |
| static int |
| nouveau_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) |
| { |
| struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; |
| struct nouveau_drm *drm = nouveau_bdev(bdev); |
| struct nvkm_mem *node = mem->mm_node; |
| int ret; |
| |
| mem->bus.addr = NULL; |
| mem->bus.offset = 0; |
| mem->bus.size = mem->num_pages << PAGE_SHIFT; |
| mem->bus.base = 0; |
| mem->bus.is_iomem = false; |
| if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE)) |
| return -EINVAL; |
| switch (mem->mem_type) { |
| case TTM_PL_SYSTEM: |
| /* System memory */ |
| return 0; |
| case TTM_PL_TT: |
| #if __OS_HAS_AGP |
| if (drm->agp.stat == ENABLED) { |
| mem->bus.offset = mem->start << PAGE_SHIFT; |
| mem->bus.base = drm->agp.base; |
| mem->bus.is_iomem = !drm->dev->agp->cant_use_aperture; |
| } |
| #endif |
| if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA || !node->memtype) |
| /* untiled */ |
| break; |
| /* fallthrough, tiled memory */ |
| case TTM_PL_VRAM: |
| mem->bus.offset = mem->start << PAGE_SHIFT; |
| mem->bus.base = nv_device_resource_start(nvxx_device(&drm->device), 1); |
| mem->bus.is_iomem = true; |
| if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA) { |
| struct nvkm_bar *bar = nvxx_bar(&drm->device); |
| |
| ret = bar->umap(bar, node, NV_MEM_ACCESS_RW, |
| &node->bar_vma); |
| if (ret) |
| return ret; |
| |
| mem->bus.offset = node->bar_vma.offset; |
| } |
| break; |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static void |
| nouveau_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) |
| { |
| struct nouveau_drm *drm = nouveau_bdev(bdev); |
| struct nvkm_bar *bar = nvxx_bar(&drm->device); |
| struct nvkm_mem *node = mem->mm_node; |
| |
| if (!node->bar_vma.node) |
| return; |
| |
| bar->unmap(bar, &node->bar_vma); |
| } |
| |
| static int |
| nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo) |
| { |
| struct nouveau_drm *drm = nouveau_bdev(bo->bdev); |
| struct nouveau_bo *nvbo = nouveau_bo(bo); |
| struct nvif_device *device = &drm->device; |
| u32 mappable = nv_device_resource_len(nvxx_device(device), 1) >> PAGE_SHIFT; |
| int i, ret; |
| |
| /* as long as the bo isn't in vram, and isn't tiled, we've got |
| * nothing to do here. |
| */ |
| if (bo->mem.mem_type != TTM_PL_VRAM) { |
| if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA || |
| !nouveau_bo_tile_layout(nvbo)) |
| return 0; |
| |
| if (bo->mem.mem_type == TTM_PL_SYSTEM) { |
| nouveau_bo_placement_set(nvbo, TTM_PL_TT, 0); |
| |
| ret = nouveau_bo_validate(nvbo, false, false); |
| if (ret) |
| return ret; |
| } |
| return 0; |
| } |
| |
| /* make sure bo is in mappable vram */ |
| if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA || |
| bo->mem.start + bo->mem.num_pages < mappable) |
| return 0; |
| |
| for (i = 0; i < nvbo->placement.num_placement; ++i) { |
| nvbo->placements[i].fpfn = 0; |
| nvbo->placements[i].lpfn = mappable; |
| } |
| |
| for (i = 0; i < nvbo->placement.num_busy_placement; ++i) { |
| nvbo->busy_placements[i].fpfn = 0; |
| nvbo->busy_placements[i].lpfn = mappable; |
| } |
| |
| nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_VRAM, 0); |
| return nouveau_bo_validate(nvbo, false, false); |
| } |
| |
| static int |
| nouveau_ttm_tt_populate(struct ttm_tt *ttm) |
| { |
| struct ttm_dma_tt *ttm_dma = (void *)ttm; |
| struct nouveau_drm *drm; |
| struct nvkm_device *device; |
| struct drm_device *dev; |
| struct device *pdev; |
| unsigned i; |
| int r; |
| bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); |
| |
| if (ttm->state != tt_unpopulated) |
| return 0; |
| |
| if (slave && ttm->sg) { |
| /* make userspace faulting work */ |
| drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, |
| ttm_dma->dma_address, ttm->num_pages); |
| ttm->state = tt_unbound; |
| return 0; |
| } |
| |
| drm = nouveau_bdev(ttm->bdev); |
| device = nvxx_device(&drm->device); |
| dev = drm->dev; |
| pdev = nv_device_base(device); |
| |
| /* |
| * Objects matching this condition have been marked as force_coherent, |
| * so use the DMA API for them. |
| */ |
| if (!nv_device_is_cpu_coherent(device) && |
| ttm->caching_state == tt_uncached) |
| return ttm_dma_populate(ttm_dma, dev->dev); |
| |
| #if __OS_HAS_AGP |
| if (drm->agp.stat == ENABLED) { |
| return ttm_agp_tt_populate(ttm); |
| } |
| #endif |
| |
| #ifdef CONFIG_SWIOTLB |
| if (swiotlb_nr_tbl()) { |
| return ttm_dma_populate((void *)ttm, dev->dev); |
| } |
| #endif |
| |
| r = ttm_pool_populate(ttm); |
| if (r) { |
| return r; |
| } |
| |
| for (i = 0; i < ttm->num_pages; i++) { |
| dma_addr_t addr; |
| |
| addr = dma_map_page(pdev, ttm->pages[i], 0, PAGE_SIZE, |
| DMA_BIDIRECTIONAL); |
| |
| if (dma_mapping_error(pdev, addr)) { |
| while (--i) { |
| dma_unmap_page(pdev, ttm_dma->dma_address[i], |
| PAGE_SIZE, DMA_BIDIRECTIONAL); |
| ttm_dma->dma_address[i] = 0; |
| } |
| ttm_pool_unpopulate(ttm); |
| return -EFAULT; |
| } |
| |
| ttm_dma->dma_address[i] = addr; |
| } |
| return 0; |
| } |
| |
| static void |
| nouveau_ttm_tt_unpopulate(struct ttm_tt *ttm) |
| { |
| struct ttm_dma_tt *ttm_dma = (void *)ttm; |
| struct nouveau_drm *drm; |
| struct nvkm_device *device; |
| struct drm_device *dev; |
| struct device *pdev; |
| unsigned i; |
| bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); |
| |
| if (slave) |
| return; |
| |
| drm = nouveau_bdev(ttm->bdev); |
| device = nvxx_device(&drm->device); |
| dev = drm->dev; |
| pdev = nv_device_base(device); |
| |
| /* |
| * Objects matching this condition have been marked as force_coherent, |
| * so use the DMA API for them. |
| */ |
| if (!nv_device_is_cpu_coherent(device) && |
| ttm->caching_state == tt_uncached) { |
| ttm_dma_unpopulate(ttm_dma, dev->dev); |
| return; |
| } |
| |
| #if __OS_HAS_AGP |
| if (drm->agp.stat == ENABLED) { |
| ttm_agp_tt_unpopulate(ttm); |
| return; |
| } |
| #endif |
| |
| #ifdef CONFIG_SWIOTLB |
| if (swiotlb_nr_tbl()) { |
| ttm_dma_unpopulate((void *)ttm, dev->dev); |
| return; |
| } |
| #endif |
| |
| for (i = 0; i < ttm->num_pages; i++) { |
| if (ttm_dma->dma_address[i]) { |
| dma_unmap_page(pdev, ttm_dma->dma_address[i], PAGE_SIZE, |
| DMA_BIDIRECTIONAL); |
| } |
| } |
| |
| ttm_pool_unpopulate(ttm); |
| } |
| |
| void |
| nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence, bool exclusive) |
| { |
| struct reservation_object *resv = nvbo->bo.resv; |
| |
| if (exclusive) |
| reservation_object_add_excl_fence(resv, &fence->base); |
| else if (fence) |
| reservation_object_add_shared_fence(resv, &fence->base); |
| } |
| |
| struct ttm_bo_driver nouveau_bo_driver = { |
| .ttm_tt_create = &nouveau_ttm_tt_create, |
| .ttm_tt_populate = &nouveau_ttm_tt_populate, |
| .ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate, |
| .invalidate_caches = nouveau_bo_invalidate_caches, |
| .init_mem_type = nouveau_bo_init_mem_type, |
| .evict_flags = nouveau_bo_evict_flags, |
| .move_notify = nouveau_bo_move_ntfy, |
| .move = nouveau_bo_move, |
| .verify_access = nouveau_bo_verify_access, |
| .fault_reserve_notify = &nouveau_ttm_fault_reserve_notify, |
| .io_mem_reserve = &nouveau_ttm_io_mem_reserve, |
| .io_mem_free = &nouveau_ttm_io_mem_free, |
| }; |
| |
| struct nvkm_vma * |
| nouveau_bo_vma_find(struct nouveau_bo *nvbo, struct nvkm_vm *vm) |
| { |
| struct nvkm_vma *vma; |
| list_for_each_entry(vma, &nvbo->vma_list, head) { |
| if (vma->vm == vm) |
| return vma; |
| } |
| |
| return NULL; |
| } |
| |
| int |
| nouveau_bo_vma_add(struct nouveau_bo *nvbo, struct nvkm_vm *vm, |
| struct nvkm_vma *vma) |
| { |
| const u32 size = nvbo->bo.mem.num_pages << PAGE_SHIFT; |
| int ret; |
| |
| ret = nvkm_vm_get(vm, size, nvbo->page_shift, |
| NV_MEM_ACCESS_RW, vma); |
| if (ret) |
| return ret; |
| |
| if ( nvbo->bo.mem.mem_type != TTM_PL_SYSTEM && |
| (nvbo->bo.mem.mem_type == TTM_PL_VRAM || |
| nvbo->page_shift != vma->vm->mmu->lpg_shift)) |
| nvkm_vm_map(vma, nvbo->bo.mem.mm_node); |
| |
| list_add_tail(&vma->head, &nvbo->vma_list); |
| vma->refcount = 1; |
| return 0; |
| } |
| |
| void |
| nouveau_bo_vma_del(struct nouveau_bo *nvbo, struct nvkm_vma *vma) |
| { |
| if (vma->node) { |
| if (nvbo->bo.mem.mem_type != TTM_PL_SYSTEM) |
| nvkm_vm_unmap(vma); |
| nvkm_vm_put(vma); |
| list_del(&vma->head); |
| } |
| } |