blob: 718cf77e345ad0b4e288a2750c5f96f21f14f75e [file] [log] [blame]
/*
* drivers/net/gianfar.c
*
* Gianfar Ethernet Driver
* This driver is designed for the non-CPM ethernet controllers
* on the 85xx and 83xx family of integrated processors
* Based on 8260_io/fcc_enet.c
*
* Author: Andy Fleming
* Maintainer: Kumar Gala
*
* Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
* Copyright (c) 2007 MontaVista Software, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* Gianfar: AKA Lambda Draconis, "Dragon"
* RA 11 31 24.2
* Dec +69 19 52
* V 3.84
* B-V +1.62
*
* Theory of operation
*
* The driver is initialized through platform_device. Structures which
* define the configuration needed by the board are defined in a
* board structure in arch/ppc/platforms (though I do not
* discount the possibility that other architectures could one
* day be supported.
*
* The Gianfar Ethernet Controller uses a ring of buffer
* descriptors. The beginning is indicated by a register
* pointing to the physical address of the start of the ring.
* The end is determined by a "wrap" bit being set in the
* last descriptor of the ring.
*
* When a packet is received, the RXF bit in the
* IEVENT register is set, triggering an interrupt when the
* corresponding bit in the IMASK register is also set (if
* interrupt coalescing is active, then the interrupt may not
* happen immediately, but will wait until either a set number
* of frames or amount of time have passed). In NAPI, the
* interrupt handler will signal there is work to be done, and
* exit. Without NAPI, the packet(s) will be handled
* immediately. Both methods will start at the last known empty
* descriptor, and process every subsequent descriptor until there
* are none left with data (NAPI will stop after a set number of
* packets to give time to other tasks, but will eventually
* process all the packets). The data arrives inside a
* pre-allocated skb, and so after the skb is passed up to the
* stack, a new skb must be allocated, and the address field in
* the buffer descriptor must be updated to indicate this new
* skb.
*
* When the kernel requests that a packet be transmitted, the
* driver starts where it left off last time, and points the
* descriptor at the buffer which was passed in. The driver
* then informs the DMA engine that there are packets ready to
* be transmitted. Once the controller is finished transmitting
* the packet, an interrupt may be triggered (under the same
* conditions as for reception, but depending on the TXF bit).
* The driver then cleans up the buffer.
*/
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/unistd.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/if_vlan.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/platform_device.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/in.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/phy.h>
#include "gianfar.h"
#include "gianfar_mii.h"
#define TX_TIMEOUT (1*HZ)
#define SKB_ALLOC_TIMEOUT 1000000
#undef BRIEF_GFAR_ERRORS
#undef VERBOSE_GFAR_ERRORS
#ifdef CONFIG_GFAR_NAPI
#define RECEIVE(x) netif_receive_skb(x)
#else
#define RECEIVE(x) netif_rx(x)
#endif
const char gfar_driver_name[] = "Gianfar Ethernet";
const char gfar_driver_version[] = "1.3";
static int gfar_enet_open(struct net_device *dev);
static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
static void gfar_timeout(struct net_device *dev);
static int gfar_close(struct net_device *dev);
struct sk_buff *gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp);
static int gfar_set_mac_address(struct net_device *dev);
static int gfar_change_mtu(struct net_device *dev, int new_mtu);
static irqreturn_t gfar_error(int irq, void *dev_id);
static irqreturn_t gfar_transmit(int irq, void *dev_id);
static irqreturn_t gfar_interrupt(int irq, void *dev_id);
static void adjust_link(struct net_device *dev);
static void init_registers(struct net_device *dev);
static int init_phy(struct net_device *dev);
static int gfar_probe(struct platform_device *pdev);
static int gfar_remove(struct platform_device *pdev);
static void free_skb_resources(struct gfar_private *priv);
static void gfar_set_multi(struct net_device *dev);
static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
static void gfar_configure_serdes(struct net_device *dev);
extern int gfar_local_mdio_write(struct gfar_mii __iomem *regs, int mii_id, int regnum, u16 value);
extern int gfar_local_mdio_read(struct gfar_mii __iomem *regs, int mii_id, int regnum);
#ifdef CONFIG_GFAR_NAPI
static int gfar_poll(struct napi_struct *napi, int budget);
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER
static void gfar_netpoll(struct net_device *dev);
#endif
int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
static void gfar_vlan_rx_register(struct net_device *netdev,
struct vlan_group *grp);
void gfar_halt(struct net_device *dev);
void gfar_start(struct net_device *dev);
static void gfar_clear_exact_match(struct net_device *dev);
static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
extern const struct ethtool_ops gfar_ethtool_ops;
MODULE_AUTHOR("Freescale Semiconductor, Inc");
MODULE_DESCRIPTION("Gianfar Ethernet Driver");
MODULE_LICENSE("GPL");
/* Returns 1 if incoming frames use an FCB */
static inline int gfar_uses_fcb(struct gfar_private *priv)
{
return (priv->vlan_enable || priv->rx_csum_enable);
}
/* Set up the ethernet device structure, private data,
* and anything else we need before we start */
static int gfar_probe(struct platform_device *pdev)
{
u32 tempval;
struct net_device *dev = NULL;
struct gfar_private *priv = NULL;
struct gianfar_platform_data *einfo;
struct resource *r;
int err = 0;
DECLARE_MAC_BUF(mac);
einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
if (NULL == einfo) {
printk(KERN_ERR "gfar %d: Missing additional data!\n",
pdev->id);
return -ENODEV;
}
/* Create an ethernet device instance */
dev = alloc_etherdev(sizeof (*priv));
if (NULL == dev)
return -ENOMEM;
priv = netdev_priv(dev);
priv->dev = dev;
/* Set the info in the priv to the current info */
priv->einfo = einfo;
/* fill out IRQ fields */
if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
priv->interruptError = platform_get_irq_byname(pdev, "error");
if (priv->interruptTransmit < 0 || priv->interruptReceive < 0 || priv->interruptError < 0)
goto regs_fail;
} else {
priv->interruptTransmit = platform_get_irq(pdev, 0);
if (priv->interruptTransmit < 0)
goto regs_fail;
}
/* get a pointer to the register memory */
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
priv->regs = ioremap(r->start, sizeof (struct gfar));
if (NULL == priv->regs) {
err = -ENOMEM;
goto regs_fail;
}
spin_lock_init(&priv->txlock);
spin_lock_init(&priv->rxlock);
platform_set_drvdata(pdev, dev);
/* Stop the DMA engine now, in case it was running before */
/* (The firmware could have used it, and left it running). */
/* To do this, we write Graceful Receive Stop and Graceful */
/* Transmit Stop, and then wait until the corresponding bits */
/* in IEVENT indicate the stops have completed. */
tempval = gfar_read(&priv->regs->dmactrl);
tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
gfar_write(&priv->regs->dmactrl, tempval);
tempval = gfar_read(&priv->regs->dmactrl);
tempval |= (DMACTRL_GRS | DMACTRL_GTS);
gfar_write(&priv->regs->dmactrl, tempval);
while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
cpu_relax();
/* Reset MAC layer */
gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
gfar_write(&priv->regs->maccfg1, tempval);
/* Initialize MACCFG2. */
gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
/* Initialize ECNTRL */
gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
/* Copy the station address into the dev structure, */
memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
/* Set the dev->base_addr to the gfar reg region */
dev->base_addr = (unsigned long) (priv->regs);
SET_NETDEV_DEV(dev, &pdev->dev);
/* Fill in the dev structure */
dev->open = gfar_enet_open;
dev->hard_start_xmit = gfar_start_xmit;
dev->tx_timeout = gfar_timeout;
dev->watchdog_timeo = TX_TIMEOUT;
#ifdef CONFIG_GFAR_NAPI
netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER
dev->poll_controller = gfar_netpoll;
#endif
dev->stop = gfar_close;
dev->change_mtu = gfar_change_mtu;
dev->mtu = 1500;
dev->set_multicast_list = gfar_set_multi;
dev->ethtool_ops = &gfar_ethtool_ops;
if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
priv->rx_csum_enable = 1;
dev->features |= NETIF_F_IP_CSUM;
} else
priv->rx_csum_enable = 0;
priv->vlgrp = NULL;
if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
dev->vlan_rx_register = gfar_vlan_rx_register;
dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
priv->vlan_enable = 1;
}
if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
priv->extended_hash = 1;
priv->hash_width = 9;
priv->hash_regs[0] = &priv->regs->igaddr0;
priv->hash_regs[1] = &priv->regs->igaddr1;
priv->hash_regs[2] = &priv->regs->igaddr2;
priv->hash_regs[3] = &priv->regs->igaddr3;
priv->hash_regs[4] = &priv->regs->igaddr4;
priv->hash_regs[5] = &priv->regs->igaddr5;
priv->hash_regs[6] = &priv->regs->igaddr6;
priv->hash_regs[7] = &priv->regs->igaddr7;
priv->hash_regs[8] = &priv->regs->gaddr0;
priv->hash_regs[9] = &priv->regs->gaddr1;
priv->hash_regs[10] = &priv->regs->gaddr2;
priv->hash_regs[11] = &priv->regs->gaddr3;
priv->hash_regs[12] = &priv->regs->gaddr4;
priv->hash_regs[13] = &priv->regs->gaddr5;
priv->hash_regs[14] = &priv->regs->gaddr6;
priv->hash_regs[15] = &priv->regs->gaddr7;
} else {
priv->extended_hash = 0;
priv->hash_width = 8;
priv->hash_regs[0] = &priv->regs->gaddr0;
priv->hash_regs[1] = &priv->regs->gaddr1;
priv->hash_regs[2] = &priv->regs->gaddr2;
priv->hash_regs[3] = &priv->regs->gaddr3;
priv->hash_regs[4] = &priv->regs->gaddr4;
priv->hash_regs[5] = &priv->regs->gaddr5;
priv->hash_regs[6] = &priv->regs->gaddr6;
priv->hash_regs[7] = &priv->regs->gaddr7;
}
if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
priv->padding = DEFAULT_PADDING;
else
priv->padding = 0;
if (dev->features & NETIF_F_IP_CSUM)
dev->hard_header_len += GMAC_FCB_LEN;
priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
priv->txcoalescing = DEFAULT_TX_COALESCE;
priv->txcount = DEFAULT_TXCOUNT;
priv->txtime = DEFAULT_TXTIME;
priv->rxcoalescing = DEFAULT_RX_COALESCE;
priv->rxcount = DEFAULT_RXCOUNT;
priv->rxtime = DEFAULT_RXTIME;
/* Enable most messages by default */
priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
err = register_netdev(dev);
if (err) {
printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
dev->name);
goto register_fail;
}
/* Create all the sysfs files */
gfar_init_sysfs(dev);
/* Print out the device info */
printk(KERN_INFO DEVICE_NAME "%s\n",
dev->name, print_mac(mac, dev->dev_addr));
/* Even more device info helps when determining which kernel */
/* provided which set of benchmarks. */
#ifdef CONFIG_GFAR_NAPI
printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
#else
printk(KERN_INFO "%s: Running with NAPI disabled\n", dev->name);
#endif
printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
dev->name, priv->rx_ring_size, priv->tx_ring_size);
return 0;
register_fail:
iounmap(priv->regs);
regs_fail:
free_netdev(dev);
return err;
}
static int gfar_remove(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
struct gfar_private *priv = netdev_priv(dev);
platform_set_drvdata(pdev, NULL);
iounmap(priv->regs);
free_netdev(dev);
return 0;
}
/* Reads the controller's registers to determine what interface
* connects it to the PHY.
*/
static phy_interface_t gfar_get_interface(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
u32 ecntrl = gfar_read(&priv->regs->ecntrl);
if (ecntrl & ECNTRL_SGMII_MODE)
return PHY_INTERFACE_MODE_SGMII;
if (ecntrl & ECNTRL_TBI_MODE) {
if (ecntrl & ECNTRL_REDUCED_MODE)
return PHY_INTERFACE_MODE_RTBI;
else
return PHY_INTERFACE_MODE_TBI;
}
if (ecntrl & ECNTRL_REDUCED_MODE) {
if (ecntrl & ECNTRL_REDUCED_MII_MODE)
return PHY_INTERFACE_MODE_RMII;
else {
phy_interface_t interface = priv->einfo->interface;
/*
* This isn't autodetected right now, so it must
* be set by the device tree or platform code.
*/
if (interface == PHY_INTERFACE_MODE_RGMII_ID)
return PHY_INTERFACE_MODE_RGMII_ID;
return PHY_INTERFACE_MODE_RGMII;
}
}
if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
return PHY_INTERFACE_MODE_GMII;
return PHY_INTERFACE_MODE_MII;
}
/* Initializes driver's PHY state, and attaches to the PHY.
* Returns 0 on success.
*/
static int init_phy(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
uint gigabit_support =
priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
SUPPORTED_1000baseT_Full : 0;
struct phy_device *phydev;
char phy_id[BUS_ID_SIZE];
phy_interface_t interface;
priv->oldlink = 0;
priv->oldspeed = 0;
priv->oldduplex = -1;
snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, priv->einfo->bus_id, priv->einfo->phy_id);
interface = gfar_get_interface(dev);
phydev = phy_connect(dev, phy_id, &adjust_link, 0, interface);
if (interface == PHY_INTERFACE_MODE_SGMII)
gfar_configure_serdes(dev);
if (IS_ERR(phydev)) {
printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
return PTR_ERR(phydev);
}
/* Remove any features not supported by the controller */
phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
phydev->advertising = phydev->supported;
priv->phydev = phydev;
return 0;
}
static void gfar_configure_serdes(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar_mii __iomem *regs =
(void __iomem *)&priv->regs->gfar_mii_regs;
/* Initialise TBI i/f to communicate with serdes (lynx phy) */
/* Single clk mode, mii mode off(for aerdes communication) */
gfar_local_mdio_write(regs, TBIPA_VALUE, MII_TBICON, TBICON_CLK_SELECT);
/* Supported pause and full-duplex, no half-duplex */
gfar_local_mdio_write(regs, TBIPA_VALUE, MII_ADVERTISE,
ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
ADVERTISE_1000XPSE_ASYM);
/* ANEG enable, restart ANEG, full duplex mode, speed[1] set */
gfar_local_mdio_write(regs, TBIPA_VALUE, MII_BMCR, BMCR_ANENABLE |
BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
}
static void init_registers(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
/* Clear IEVENT */
gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
/* Initialize IMASK */
gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
/* Init hash registers to zero */
gfar_write(&priv->regs->igaddr0, 0);
gfar_write(&priv->regs->igaddr1, 0);
gfar_write(&priv->regs->igaddr2, 0);
gfar_write(&priv->regs->igaddr3, 0);
gfar_write(&priv->regs->igaddr4, 0);
gfar_write(&priv->regs->igaddr5, 0);
gfar_write(&priv->regs->igaddr6, 0);
gfar_write(&priv->regs->igaddr7, 0);
gfar_write(&priv->regs->gaddr0, 0);
gfar_write(&priv->regs->gaddr1, 0);
gfar_write(&priv->regs->gaddr2, 0);
gfar_write(&priv->regs->gaddr3, 0);
gfar_write(&priv->regs->gaddr4, 0);
gfar_write(&priv->regs->gaddr5, 0);
gfar_write(&priv->regs->gaddr6, 0);
gfar_write(&priv->regs->gaddr7, 0);
/* Zero out the rmon mib registers if it has them */
if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
/* Mask off the CAM interrupts */
gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
}
/* Initialize the max receive buffer length */
gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
/* Initialize the Minimum Frame Length Register */
gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
/* Assign the TBI an address which won't conflict with the PHYs */
gfar_write(&priv->regs->tbipa, TBIPA_VALUE);
}
/* Halt the receive and transmit queues */
void gfar_halt(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->regs;
u32 tempval;
/* Mask all interrupts */
gfar_write(&regs->imask, IMASK_INIT_CLEAR);
/* Clear all interrupts */
gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
/* Stop the DMA, and wait for it to stop */
tempval = gfar_read(&priv->regs->dmactrl);
if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
!= (DMACTRL_GRS | DMACTRL_GTS)) {
tempval |= (DMACTRL_GRS | DMACTRL_GTS);
gfar_write(&priv->regs->dmactrl, tempval);
while (!(gfar_read(&priv->regs->ievent) &
(IEVENT_GRSC | IEVENT_GTSC)))
cpu_relax();
}
/* Disable Rx and Tx */
tempval = gfar_read(&regs->maccfg1);
tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
gfar_write(&regs->maccfg1, tempval);
}
void stop_gfar(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->regs;
unsigned long flags;
phy_stop(priv->phydev);
/* Lock it down */
spin_lock_irqsave(&priv->txlock, flags);
spin_lock(&priv->rxlock);
gfar_halt(dev);
spin_unlock(&priv->rxlock);
spin_unlock_irqrestore(&priv->txlock, flags);
/* Free the IRQs */
if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
free_irq(priv->interruptError, dev);
free_irq(priv->interruptTransmit, dev);
free_irq(priv->interruptReceive, dev);
} else {
free_irq(priv->interruptTransmit, dev);
}
free_skb_resources(priv);
dma_free_coherent(&dev->dev,
sizeof(struct txbd8)*priv->tx_ring_size
+ sizeof(struct rxbd8)*priv->rx_ring_size,
priv->tx_bd_base,
gfar_read(&regs->tbase0));
}
/* If there are any tx skbs or rx skbs still around, free them.
* Then free tx_skbuff and rx_skbuff */
static void free_skb_resources(struct gfar_private *priv)
{
struct rxbd8 *rxbdp;
struct txbd8 *txbdp;
int i;
/* Go through all the buffer descriptors and free their data buffers */
txbdp = priv->tx_bd_base;
for (i = 0; i < priv->tx_ring_size; i++) {
if (priv->tx_skbuff[i]) {
dma_unmap_single(&priv->dev->dev, txbdp->bufPtr,
txbdp->length,
DMA_TO_DEVICE);
dev_kfree_skb_any(priv->tx_skbuff[i]);
priv->tx_skbuff[i] = NULL;
}
}
kfree(priv->tx_skbuff);
rxbdp = priv->rx_bd_base;
/* rx_skbuff is not guaranteed to be allocated, so only
* free it and its contents if it is allocated */
if(priv->rx_skbuff != NULL) {
for (i = 0; i < priv->rx_ring_size; i++) {
if (priv->rx_skbuff[i]) {
dma_unmap_single(&priv->dev->dev, rxbdp->bufPtr,
priv->rx_buffer_size,
DMA_FROM_DEVICE);
dev_kfree_skb_any(priv->rx_skbuff[i]);
priv->rx_skbuff[i] = NULL;
}
rxbdp->status = 0;
rxbdp->length = 0;
rxbdp->bufPtr = 0;
rxbdp++;
}
kfree(priv->rx_skbuff);
}
}
void gfar_start(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->regs;
u32 tempval;
/* Enable Rx and Tx in MACCFG1 */
tempval = gfar_read(&regs->maccfg1);
tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
gfar_write(&regs->maccfg1, tempval);
/* Initialize DMACTRL to have WWR and WOP */
tempval = gfar_read(&priv->regs->dmactrl);
tempval |= DMACTRL_INIT_SETTINGS;
gfar_write(&priv->regs->dmactrl, tempval);
/* Make sure we aren't stopped */
tempval = gfar_read(&priv->regs->dmactrl);
tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
gfar_write(&priv->regs->dmactrl, tempval);
/* Clear THLT/RHLT, so that the DMA starts polling now */
gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
/* Unmask the interrupts we look for */
gfar_write(&regs->imask, IMASK_DEFAULT);
}
/* Bring the controller up and running */
int startup_gfar(struct net_device *dev)
{
struct txbd8 *txbdp;
struct rxbd8 *rxbdp;
dma_addr_t addr = 0;
unsigned long vaddr;
int i;
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->regs;
int err = 0;
u32 rctrl = 0;
u32 attrs = 0;
gfar_write(&regs->imask, IMASK_INIT_CLEAR);
/* Allocate memory for the buffer descriptors */
vaddr = (unsigned long) dma_alloc_coherent(&dev->dev,
sizeof (struct txbd8) * priv->tx_ring_size +
sizeof (struct rxbd8) * priv->rx_ring_size,
&addr, GFP_KERNEL);
if (vaddr == 0) {
if (netif_msg_ifup(priv))
printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
dev->name);
return -ENOMEM;
}
priv->tx_bd_base = (struct txbd8 *) vaddr;
/* enet DMA only understands physical addresses */
gfar_write(&regs->tbase0, addr);
/* Start the rx descriptor ring where the tx ring leaves off */
addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
priv->rx_bd_base = (struct rxbd8 *) vaddr;
gfar_write(&regs->rbase0, addr);
/* Setup the skbuff rings */
priv->tx_skbuff =
(struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
priv->tx_ring_size, GFP_KERNEL);
if (NULL == priv->tx_skbuff) {
if (netif_msg_ifup(priv))
printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
dev->name);
err = -ENOMEM;
goto tx_skb_fail;
}
for (i = 0; i < priv->tx_ring_size; i++)
priv->tx_skbuff[i] = NULL;
priv->rx_skbuff =
(struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
priv->rx_ring_size, GFP_KERNEL);
if (NULL == priv->rx_skbuff) {
if (netif_msg_ifup(priv))
printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
dev->name);
err = -ENOMEM;
goto rx_skb_fail;
}
for (i = 0; i < priv->rx_ring_size; i++)
priv->rx_skbuff[i] = NULL;
/* Initialize some variables in our dev structure */
priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
priv->cur_rx = priv->rx_bd_base;
priv->skb_curtx = priv->skb_dirtytx = 0;
priv->skb_currx = 0;
/* Initialize Transmit Descriptor Ring */
txbdp = priv->tx_bd_base;
for (i = 0; i < priv->tx_ring_size; i++) {
txbdp->status = 0;
txbdp->length = 0;
txbdp->bufPtr = 0;
txbdp++;
}
/* Set the last descriptor in the ring to indicate wrap */
txbdp--;
txbdp->status |= TXBD_WRAP;
rxbdp = priv->rx_bd_base;
for (i = 0; i < priv->rx_ring_size; i++) {
struct sk_buff *skb = NULL;
rxbdp->status = 0;
skb = gfar_new_skb(dev, rxbdp);
priv->rx_skbuff[i] = skb;
rxbdp++;
}
/* Set the last descriptor in the ring to wrap */
rxbdp--;
rxbdp->status |= RXBD_WRAP;
/* If the device has multiple interrupts, register for
* them. Otherwise, only register for the one */
if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
/* Install our interrupt handlers for Error,
* Transmit, and Receive */
if (request_irq(priv->interruptError, gfar_error,
0, "enet_error", dev) < 0) {
if (netif_msg_intr(priv))
printk(KERN_ERR "%s: Can't get IRQ %d\n",
dev->name, priv->interruptError);
err = -1;
goto err_irq_fail;
}
if (request_irq(priv->interruptTransmit, gfar_transmit,
0, "enet_tx", dev) < 0) {
if (netif_msg_intr(priv))
printk(KERN_ERR "%s: Can't get IRQ %d\n",
dev->name, priv->interruptTransmit);
err = -1;
goto tx_irq_fail;
}
if (request_irq(priv->interruptReceive, gfar_receive,
0, "enet_rx", dev) < 0) {
if (netif_msg_intr(priv))
printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
dev->name, priv->interruptReceive);
err = -1;
goto rx_irq_fail;
}
} else {
if (request_irq(priv->interruptTransmit, gfar_interrupt,
0, "gfar_interrupt", dev) < 0) {
if (netif_msg_intr(priv))
printk(KERN_ERR "%s: Can't get IRQ %d\n",
dev->name, priv->interruptError);
err = -1;
goto err_irq_fail;
}
}
phy_start(priv->phydev);
/* Configure the coalescing support */
if (priv->txcoalescing)
gfar_write(&regs->txic,
mk_ic_value(priv->txcount, priv->txtime));
else
gfar_write(&regs->txic, 0);
if (priv->rxcoalescing)
gfar_write(&regs->rxic,
mk_ic_value(priv->rxcount, priv->rxtime));
else
gfar_write(&regs->rxic, 0);
if (priv->rx_csum_enable)
rctrl |= RCTRL_CHECKSUMMING;
if (priv->extended_hash) {
rctrl |= RCTRL_EXTHASH;
gfar_clear_exact_match(dev);
rctrl |= RCTRL_EMEN;
}
if (priv->vlan_enable)
rctrl |= RCTRL_VLAN;
if (priv->padding) {
rctrl &= ~RCTRL_PAL_MASK;
rctrl |= RCTRL_PADDING(priv->padding);
}
/* Init rctrl based on our settings */
gfar_write(&priv->regs->rctrl, rctrl);
if (dev->features & NETIF_F_IP_CSUM)
gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
/* Set the extraction length and index */
attrs = ATTRELI_EL(priv->rx_stash_size) |
ATTRELI_EI(priv->rx_stash_index);
gfar_write(&priv->regs->attreli, attrs);
/* Start with defaults, and add stashing or locking
* depending on the approprate variables */
attrs = ATTR_INIT_SETTINGS;
if (priv->bd_stash_en)
attrs |= ATTR_BDSTASH;
if (priv->rx_stash_size != 0)
attrs |= ATTR_BUFSTASH;
gfar_write(&priv->regs->attr, attrs);
gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
/* Start the controller */
gfar_start(dev);
return 0;
rx_irq_fail:
free_irq(priv->interruptTransmit, dev);
tx_irq_fail:
free_irq(priv->interruptError, dev);
err_irq_fail:
rx_skb_fail:
free_skb_resources(priv);
tx_skb_fail:
dma_free_coherent(&dev->dev,
sizeof(struct txbd8)*priv->tx_ring_size
+ sizeof(struct rxbd8)*priv->rx_ring_size,
priv->tx_bd_base,
gfar_read(&regs->tbase0));
return err;
}
/* Called when something needs to use the ethernet device */
/* Returns 0 for success. */
static int gfar_enet_open(struct net_device *dev)
{
#ifdef CONFIG_GFAR_NAPI
struct gfar_private *priv = netdev_priv(dev);
#endif
int err;
#ifdef CONFIG_GFAR_NAPI
napi_enable(&priv->napi);
#endif
/* Initialize a bunch of registers */
init_registers(dev);
gfar_set_mac_address(dev);
err = init_phy(dev);
if(err) {
#ifdef CONFIG_GFAR_NAPI
napi_disable(&priv->napi);
#endif
return err;
}
err = startup_gfar(dev);
if (err) {
#ifdef CONFIG_GFAR_NAPI
napi_disable(&priv->napi);
#endif
return err;
}
netif_start_queue(dev);
return err;
}
static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
{
struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
memset(fcb, 0, GMAC_FCB_LEN);
return fcb;
}
static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
{
u8 flags = 0;
/* If we're here, it's a IP packet with a TCP or UDP
* payload. We set it to checksum, using a pseudo-header
* we provide
*/
flags = TXFCB_DEFAULT;
/* Tell the controller what the protocol is */
/* And provide the already calculated phcs */
if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
flags |= TXFCB_UDP;
fcb->phcs = udp_hdr(skb)->check;
} else
fcb->phcs = tcp_hdr(skb)->check;
/* l3os is the distance between the start of the
* frame (skb->data) and the start of the IP hdr.
* l4os is the distance between the start of the
* l3 hdr and the l4 hdr */
fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
fcb->l4os = skb_network_header_len(skb);
fcb->flags = flags;
}
void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
{
fcb->flags |= TXFCB_VLN;
fcb->vlctl = vlan_tx_tag_get(skb);
}
/* This is called by the kernel when a frame is ready for transmission. */
/* It is pointed to by the dev->hard_start_xmit function pointer */
static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct txfcb *fcb = NULL;
struct txbd8 *txbdp;
u16 status;
unsigned long flags;
/* Update transmit stats */
dev->stats.tx_bytes += skb->len;
/* Lock priv now */
spin_lock_irqsave(&priv->txlock, flags);
/* Point at the first free tx descriptor */
txbdp = priv->cur_tx;
/* Clear all but the WRAP status flags */
status = txbdp->status & TXBD_WRAP;
/* Set up checksumming */
if (likely((dev->features & NETIF_F_IP_CSUM)
&& (CHECKSUM_PARTIAL == skb->ip_summed))) {
fcb = gfar_add_fcb(skb, txbdp);
status |= TXBD_TOE;
gfar_tx_checksum(skb, fcb);
}
if (priv->vlan_enable &&
unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
if (unlikely(NULL == fcb)) {
fcb = gfar_add_fcb(skb, txbdp);
status |= TXBD_TOE;
}
gfar_tx_vlan(skb, fcb);
}
/* Set buffer length and pointer */
txbdp->length = skb->len;
txbdp->bufPtr = dma_map_single(&dev->dev, skb->data,
skb->len, DMA_TO_DEVICE);
/* Save the skb pointer so we can free it later */
priv->tx_skbuff[priv->skb_curtx] = skb;
/* Update the current skb pointer (wrapping if this was the last) */
priv->skb_curtx =
(priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
/* Flag the BD as interrupt-causing */
status |= TXBD_INTERRUPT;
/* Flag the BD as ready to go, last in frame, and */
/* in need of CRC */
status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
dev->trans_start = jiffies;
/* The powerpc-specific eieio() is used, as wmb() has too strong
* semantics (it requires synchronization between cacheable and
* uncacheable mappings, which eieio doesn't provide and which we
* don't need), thus requiring a more expensive sync instruction. At
* some point, the set of architecture-independent barrier functions
* should be expanded to include weaker barriers.
*/
eieio();
txbdp->status = status;
/* If this was the last BD in the ring, the next one */
/* is at the beginning of the ring */
if (txbdp->status & TXBD_WRAP)
txbdp = priv->tx_bd_base;
else
txbdp++;
/* If the next BD still needs to be cleaned up, then the bds
are full. We need to tell the kernel to stop sending us stuff. */
if (txbdp == priv->dirty_tx) {
netif_stop_queue(dev);
dev->stats.tx_fifo_errors++;
}
/* Update the current txbd to the next one */
priv->cur_tx = txbdp;
/* Tell the DMA to go go go */
gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
/* Unlock priv */
spin_unlock_irqrestore(&priv->txlock, flags);
return 0;
}
/* Stops the kernel queue, and halts the controller */
static int gfar_close(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
#ifdef CONFIG_GFAR_NAPI
napi_disable(&priv->napi);
#endif
stop_gfar(dev);
/* Disconnect from the PHY */
phy_disconnect(priv->phydev);
priv->phydev = NULL;
netif_stop_queue(dev);
return 0;
}
/* Changes the mac address if the controller is not running. */
int gfar_set_mac_address(struct net_device *dev)
{
gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
return 0;
}
/* Enables and disables VLAN insertion/extraction */
static void gfar_vlan_rx_register(struct net_device *dev,
struct vlan_group *grp)
{
struct gfar_private *priv = netdev_priv(dev);
unsigned long flags;
u32 tempval;
spin_lock_irqsave(&priv->rxlock, flags);
priv->vlgrp = grp;
if (grp) {
/* Enable VLAN tag insertion */
tempval = gfar_read(&priv->regs->tctrl);
tempval |= TCTRL_VLINS;
gfar_write(&priv->regs->tctrl, tempval);
/* Enable VLAN tag extraction */
tempval = gfar_read(&priv->regs->rctrl);
tempval |= RCTRL_VLEX;
gfar_write(&priv->regs->rctrl, tempval);
} else {
/* Disable VLAN tag insertion */
tempval = gfar_read(&priv->regs->tctrl);
tempval &= ~TCTRL_VLINS;
gfar_write(&priv->regs->tctrl, tempval);
/* Disable VLAN tag extraction */
tempval = gfar_read(&priv->regs->rctrl);
tempval &= ~RCTRL_VLEX;
gfar_write(&priv->regs->rctrl, tempval);
}
spin_unlock_irqrestore(&priv->rxlock, flags);
}
static int gfar_change_mtu(struct net_device *dev, int new_mtu)
{
int tempsize, tempval;
struct gfar_private *priv = netdev_priv(dev);
int oldsize = priv->rx_buffer_size;
int frame_size = new_mtu + ETH_HLEN;
if (priv->vlan_enable)
frame_size += VLAN_ETH_HLEN;
if (gfar_uses_fcb(priv))
frame_size += GMAC_FCB_LEN;
frame_size += priv->padding;
if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
if (netif_msg_drv(priv))
printk(KERN_ERR "%s: Invalid MTU setting\n",
dev->name);
return -EINVAL;
}
tempsize =
(frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
INCREMENTAL_BUFFER_SIZE;
/* Only stop and start the controller if it isn't already
* stopped, and we changed something */
if ((oldsize != tempsize) && (dev->flags & IFF_UP))
stop_gfar(dev);
priv->rx_buffer_size = tempsize;
dev->mtu = new_mtu;
gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
/* If the mtu is larger than the max size for standard
* ethernet frames (ie, a jumbo frame), then set maccfg2
* to allow huge frames, and to check the length */
tempval = gfar_read(&priv->regs->maccfg2);
if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
else
tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
gfar_write(&priv->regs->maccfg2, tempval);
if ((oldsize != tempsize) && (dev->flags & IFF_UP))
startup_gfar(dev);
return 0;
}
/* gfar_timeout gets called when a packet has not been
* transmitted after a set amount of time.
* For now, assume that clearing out all the structures, and
* starting over will fix the problem. */
static void gfar_timeout(struct net_device *dev)
{
dev->stats.tx_errors++;
if (dev->flags & IFF_UP) {
stop_gfar(dev);
startup_gfar(dev);
}
netif_schedule(dev);
}
/* Interrupt Handler for Transmit complete */
static irqreturn_t gfar_transmit(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *) dev_id;
struct gfar_private *priv = netdev_priv(dev);
struct txbd8 *bdp;
/* Clear IEVENT */
gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
/* Lock priv */
spin_lock(&priv->txlock);
bdp = priv->dirty_tx;
while ((bdp->status & TXBD_READY) == 0) {
/* If dirty_tx and cur_tx are the same, then either the */
/* ring is empty or full now (it could only be full in the beginning, */
/* obviously). If it is empty, we are done. */
if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
break;
dev->stats.tx_packets++;
/* Deferred means some collisions occurred during transmit, */
/* but we eventually sent the packet. */
if (bdp->status & TXBD_DEF)
dev->stats.collisions++;
/* Free the sk buffer associated with this TxBD */
dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
priv->tx_skbuff[priv->skb_dirtytx] = NULL;
priv->skb_dirtytx =
(priv->skb_dirtytx +
1) & TX_RING_MOD_MASK(priv->tx_ring_size);
/* update bdp to point at next bd in the ring (wrapping if necessary) */
if (bdp->status & TXBD_WRAP)
bdp = priv->tx_bd_base;
else
bdp++;
/* Move dirty_tx to be the next bd */
priv->dirty_tx = bdp;
/* We freed a buffer, so now we can restart transmission */
if (netif_queue_stopped(dev))
netif_wake_queue(dev);
} /* while ((bdp->status & TXBD_READY) == 0) */
/* If we are coalescing the interrupts, reset the timer */
/* Otherwise, clear it */
if (priv->txcoalescing)
gfar_write(&priv->regs->txic,
mk_ic_value(priv->txcount, priv->txtime));
else
gfar_write(&priv->regs->txic, 0);
spin_unlock(&priv->txlock);
return IRQ_HANDLED;
}
struct sk_buff * gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp)
{
unsigned int alignamount;
struct gfar_private *priv = netdev_priv(dev);
struct sk_buff *skb = NULL;
unsigned int timeout = SKB_ALLOC_TIMEOUT;
/* We have to allocate the skb, so keep trying till we succeed */
while ((!skb) && timeout--)
skb = dev_alloc_skb(priv->rx_buffer_size + RXBUF_ALIGNMENT);
if (NULL == skb)
return NULL;
alignamount = RXBUF_ALIGNMENT -
(((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
/* We need the data buffer to be aligned properly. We will reserve
* as many bytes as needed to align the data properly
*/
skb_reserve(skb, alignamount);
bdp->bufPtr = dma_map_single(&dev->dev, skb->data,
priv->rx_buffer_size, DMA_FROM_DEVICE);
bdp->length = 0;
/* Mark the buffer empty */
eieio();
bdp->status |= (RXBD_EMPTY | RXBD_INTERRUPT);
return skb;
}
static inline void count_errors(unsigned short status, struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct net_device_stats *stats = &dev->stats;
struct gfar_extra_stats *estats = &priv->extra_stats;
/* If the packet was truncated, none of the other errors
* matter */
if (status & RXBD_TRUNCATED) {
stats->rx_length_errors++;
estats->rx_trunc++;
return;
}
/* Count the errors, if there were any */
if (status & (RXBD_LARGE | RXBD_SHORT)) {
stats->rx_length_errors++;
if (status & RXBD_LARGE)
estats->rx_large++;
else
estats->rx_short++;
}
if (status & RXBD_NONOCTET) {
stats->rx_frame_errors++;
estats->rx_nonoctet++;
}
if (status & RXBD_CRCERR) {
estats->rx_crcerr++;
stats->rx_crc_errors++;
}
if (status & RXBD_OVERRUN) {
estats->rx_overrun++;
stats->rx_crc_errors++;
}
}
irqreturn_t gfar_receive(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *) dev_id;
struct gfar_private *priv = netdev_priv(dev);
#ifdef CONFIG_GFAR_NAPI
u32 tempval;
#else
unsigned long flags;
#endif
/* Clear IEVENT, so rx interrupt isn't called again
* because of this interrupt */
gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
/* support NAPI */
#ifdef CONFIG_GFAR_NAPI
if (netif_rx_schedule_prep(dev, &priv->napi)) {
tempval = gfar_read(&priv->regs->imask);
tempval &= IMASK_RX_DISABLED;
gfar_write(&priv->regs->imask, tempval);
__netif_rx_schedule(dev, &priv->napi);
} else {
if (netif_msg_rx_err(priv))
printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
dev->name, gfar_read(&priv->regs->ievent),
gfar_read(&priv->regs->imask));
}
#else
spin_lock_irqsave(&priv->rxlock, flags);
gfar_clean_rx_ring(dev, priv->rx_ring_size);
/* If we are coalescing interrupts, update the timer */
/* Otherwise, clear it */
if (priv->rxcoalescing)
gfar_write(&priv->regs->rxic,
mk_ic_value(priv->rxcount, priv->rxtime));
else
gfar_write(&priv->regs->rxic, 0);
spin_unlock_irqrestore(&priv->rxlock, flags);
#endif
return IRQ_HANDLED;
}
static inline int gfar_rx_vlan(struct sk_buff *skb,
struct vlan_group *vlgrp, unsigned short vlctl)
{
#ifdef CONFIG_GFAR_NAPI
return vlan_hwaccel_receive_skb(skb, vlgrp, vlctl);
#else
return vlan_hwaccel_rx(skb, vlgrp, vlctl);
#endif
}
static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
{
/* If valid headers were found, and valid sums
* were verified, then we tell the kernel that no
* checksumming is necessary. Otherwise, it is */
if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb->ip_summed = CHECKSUM_NONE;
}
static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
{
struct rxfcb *fcb = (struct rxfcb *)skb->data;
/* Remove the FCB from the skb */
skb_pull(skb, GMAC_FCB_LEN);
return fcb;
}
/* gfar_process_frame() -- handle one incoming packet if skb
* isn't NULL. */
static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
int length)
{
struct gfar_private *priv = netdev_priv(dev);
struct rxfcb *fcb = NULL;
if (NULL == skb) {
if (netif_msg_rx_err(priv))
printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
dev->stats.rx_dropped++;
priv->extra_stats.rx_skbmissing++;
} else {
int ret;
/* Prep the skb for the packet */
skb_put(skb, length);
/* Grab the FCB if there is one */
if (gfar_uses_fcb(priv))
fcb = gfar_get_fcb(skb);
/* Remove the padded bytes, if there are any */
if (priv->padding)
skb_pull(skb, priv->padding);
if (priv->rx_csum_enable)
gfar_rx_checksum(skb, fcb);
/* Tell the skb what kind of packet this is */
skb->protocol = eth_type_trans(skb, dev);
/* Send the packet up the stack */
if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
ret = gfar_rx_vlan(skb, priv->vlgrp, fcb->vlctl);
else
ret = RECEIVE(skb);
if (NET_RX_DROP == ret)
priv->extra_stats.kernel_dropped++;
}
return 0;
}
/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
* until the budget/quota has been reached. Returns the number
* of frames handled
*/
int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
{
struct rxbd8 *bdp;
struct sk_buff *skb;
u16 pkt_len;
int howmany = 0;
struct gfar_private *priv = netdev_priv(dev);
/* Get the first full descriptor */
bdp = priv->cur_rx;
while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
rmb();
skb = priv->rx_skbuff[priv->skb_currx];
if (!(bdp->status &
(RXBD_LARGE | RXBD_SHORT | RXBD_NONOCTET
| RXBD_CRCERR | RXBD_OVERRUN | RXBD_TRUNCATED))) {
/* Increment the number of packets */
dev->stats.rx_packets++;
howmany++;
/* Remove the FCS from the packet length */
pkt_len = bdp->length - 4;
gfar_process_frame(dev, skb, pkt_len);
dev->stats.rx_bytes += pkt_len;
} else {
count_errors(bdp->status, dev);
if (skb)
dev_kfree_skb_any(skb);
priv->rx_skbuff[priv->skb_currx] = NULL;
}
dev->last_rx = jiffies;
/* Clear the status flags for this buffer */
bdp->status &= ~RXBD_STATS;
/* Add another skb for the future */
skb = gfar_new_skb(dev, bdp);
priv->rx_skbuff[priv->skb_currx] = skb;
/* Update to the next pointer */
if (bdp->status & RXBD_WRAP)
bdp = priv->rx_bd_base;
else
bdp++;
/* update to point at the next skb */
priv->skb_currx =
(priv->skb_currx +
1) & RX_RING_MOD_MASK(priv->rx_ring_size);
}
/* Update the current rxbd pointer to be the next one */
priv->cur_rx = bdp;
return howmany;
}
#ifdef CONFIG_GFAR_NAPI
static int gfar_poll(struct napi_struct *napi, int budget)
{
struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
struct net_device *dev = priv->dev;
int howmany;
howmany = gfar_clean_rx_ring(dev, budget);
if (howmany < budget) {
netif_rx_complete(dev, napi);
/* Clear the halt bit in RSTAT */
gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
gfar_write(&priv->regs->imask, IMASK_DEFAULT);
/* If we are coalescing interrupts, update the timer */
/* Otherwise, clear it */
if (priv->rxcoalescing)
gfar_write(&priv->regs->rxic,
mk_ic_value(priv->rxcount, priv->rxtime));
else
gfar_write(&priv->regs->rxic, 0);
}
return howmany;
}
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER
/*
* Polling 'interrupt' - used by things like netconsole to send skbs
* without having to re-enable interrupts. It's not called while
* the interrupt routine is executing.
*/
static void gfar_netpoll(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
/* If the device has multiple interrupts, run tx/rx */
if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
disable_irq(priv->interruptTransmit);
disable_irq(priv->interruptReceive);
disable_irq(priv->interruptError);
gfar_interrupt(priv->interruptTransmit, dev);
enable_irq(priv->interruptError);
enable_irq(priv->interruptReceive);
enable_irq(priv->interruptTransmit);
} else {
disable_irq(priv->interruptTransmit);
gfar_interrupt(priv->interruptTransmit, dev);
enable_irq(priv->interruptTransmit);
}
}
#endif
/* The interrupt handler for devices with one interrupt */
static irqreturn_t gfar_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct gfar_private *priv = netdev_priv(dev);
/* Save ievent for future reference */
u32 events = gfar_read(&priv->regs->ievent);
/* Check for reception */
if (events & IEVENT_RX_MASK)
gfar_receive(irq, dev_id);
/* Check for transmit completion */
if (events & IEVENT_TX_MASK)
gfar_transmit(irq, dev_id);
/* Check for errors */
if (events & IEVENT_ERR_MASK)
gfar_error(irq, dev_id);
return IRQ_HANDLED;
}
/* Called every time the controller might need to be made
* aware of new link state. The PHY code conveys this
* information through variables in the phydev structure, and this
* function converts those variables into the appropriate
* register values, and can bring down the device if needed.
*/
static void adjust_link(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->regs;
unsigned long flags;
struct phy_device *phydev = priv->phydev;
int new_state = 0;
spin_lock_irqsave(&priv->txlock, flags);
if (phydev->link) {
u32 tempval = gfar_read(&regs->maccfg2);
u32 ecntrl = gfar_read(&regs->ecntrl);
/* Now we make sure that we can be in full duplex mode.
* If not, we operate in half-duplex mode. */
if (phydev->duplex != priv->oldduplex) {
new_state = 1;
if (!(phydev->duplex))
tempval &= ~(MACCFG2_FULL_DUPLEX);
else
tempval |= MACCFG2_FULL_DUPLEX;
priv->oldduplex = phydev->duplex;
}
if (phydev->speed != priv->oldspeed) {
new_state = 1;
switch (phydev->speed) {
case 1000:
tempval =
((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
break;
case 100:
case 10:
tempval =
((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
/* Reduced mode distinguishes
* between 10 and 100 */
if (phydev->speed == SPEED_100)
ecntrl |= ECNTRL_R100;
else
ecntrl &= ~(ECNTRL_R100);
break;
default:
if (netif_msg_link(priv))
printk(KERN_WARNING
"%s: Ack! Speed (%d) is not 10/100/1000!\n",
dev->name, phydev->speed);
break;
}
priv->oldspeed = phydev->speed;
}
gfar_write(&regs->maccfg2, tempval);
gfar_write(&regs->ecntrl, ecntrl);
if (!priv->oldlink) {
new_state = 1;
priv->oldlink = 1;
netif_schedule(dev);
}
} else if (priv->oldlink) {
new_state = 1;
priv->oldlink = 0;
priv->oldspeed = 0;
priv->oldduplex = -1;
}
if (new_state && netif_msg_link(priv))
phy_print_status(phydev);
spin_unlock_irqrestore(&priv->txlock, flags);
}
/* Update the hash table based on the current list of multicast
* addresses we subscribe to. Also, change the promiscuity of
* the device based on the flags (this function is called
* whenever dev->flags is changed */
static void gfar_set_multi(struct net_device *dev)
{
struct dev_mc_list *mc_ptr;
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->regs;
u32 tempval;
if(dev->flags & IFF_PROMISC) {
/* Set RCTRL to PROM */
tempval = gfar_read(&regs->rctrl);
tempval |= RCTRL_PROM;
gfar_write(&regs->rctrl, tempval);
} else {
/* Set RCTRL to not PROM */
tempval = gfar_read(&regs->rctrl);
tempval &= ~(RCTRL_PROM);
gfar_write(&regs->rctrl, tempval);
}
if(dev->flags & IFF_ALLMULTI) {
/* Set the hash to rx all multicast frames */
gfar_write(&regs->igaddr0, 0xffffffff);
gfar_write(&regs->igaddr1, 0xffffffff);
gfar_write(&regs->igaddr2, 0xffffffff);
gfar_write(&regs->igaddr3, 0xffffffff);
gfar_write(&regs->igaddr4, 0xffffffff);
gfar_write(&regs->igaddr5, 0xffffffff);
gfar_write(&regs->igaddr6, 0xffffffff);
gfar_write(&regs->igaddr7, 0xffffffff);
gfar_write(&regs->gaddr0, 0xffffffff);
gfar_write(&regs->gaddr1, 0xffffffff);
gfar_write(&regs->gaddr2, 0xffffffff);
gfar_write(&regs->gaddr3, 0xffffffff);
gfar_write(&regs->gaddr4, 0xffffffff);
gfar_write(&regs->gaddr5, 0xffffffff);
gfar_write(&regs->gaddr6, 0xffffffff);
gfar_write(&regs->gaddr7, 0xffffffff);
} else {
int em_num;
int idx;
/* zero out the hash */
gfar_write(&regs->igaddr0, 0x0);
gfar_write(&regs->igaddr1, 0x0);
gfar_write(&regs->igaddr2, 0x0);
gfar_write(&regs->igaddr3, 0x0);
gfar_write(&regs->igaddr4, 0x0);
gfar_write(&regs->igaddr5, 0x0);
gfar_write(&regs->igaddr6, 0x0);
gfar_write(&regs->igaddr7, 0x0);
gfar_write(&regs->gaddr0, 0x0);
gfar_write(&regs->gaddr1, 0x0);
gfar_write(&regs->gaddr2, 0x0);
gfar_write(&regs->gaddr3, 0x0);
gfar_write(&regs->gaddr4, 0x0);
gfar_write(&regs->gaddr5, 0x0);
gfar_write(&regs->gaddr6, 0x0);
gfar_write(&regs->gaddr7, 0x0);
/* If we have extended hash tables, we need to
* clear the exact match registers to prepare for
* setting them */
if (priv->extended_hash) {
em_num = GFAR_EM_NUM + 1;
gfar_clear_exact_match(dev);
idx = 1;
} else {
idx = 0;
em_num = 0;
}
if(dev->mc_count == 0)
return;
/* Parse the list, and set the appropriate bits */
for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
if (idx < em_num) {
gfar_set_mac_for_addr(dev, idx,
mc_ptr->dmi_addr);
idx++;
} else
gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
}
}
return;
}
/* Clears each of the exact match registers to zero, so they
* don't interfere with normal reception */
static void gfar_clear_exact_match(struct net_device *dev)
{
int idx;
u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
}
/* Set the appropriate hash bit for the given addr */
/* The algorithm works like so:
* 1) Take the Destination Address (ie the multicast address), and
* do a CRC on it (little endian), and reverse the bits of the
* result.
* 2) Use the 8 most significant bits as a hash into a 256-entry
* table. The table is controlled through 8 32-bit registers:
* gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
* gaddr7. This means that the 3 most significant bits in the
* hash index which gaddr register to use, and the 5 other bits
* indicate which bit (assuming an IBM numbering scheme, which
* for PowerPC (tm) is usually the case) in the register holds
* the entry. */
static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
{
u32 tempval;
struct gfar_private *priv = netdev_priv(dev);
u32 result = ether_crc(MAC_ADDR_LEN, addr);
int width = priv->hash_width;
u8 whichbit = (result >> (32 - width)) & 0x1f;
u8 whichreg = result >> (32 - width + 5);
u32 value = (1 << (31-whichbit));
tempval = gfar_read(priv->hash_regs[whichreg]);
tempval |= value;
gfar_write(priv->hash_regs[whichreg], tempval);
return;
}
/* There are multiple MAC Address register pairs on some controllers
* This function sets the numth pair to a given address
*/
static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
{
struct gfar_private *priv = netdev_priv(dev);
int idx;
char tmpbuf[MAC_ADDR_LEN];
u32 tempval;
u32 __iomem *macptr = &priv->regs->macstnaddr1;
macptr += num*2;
/* Now copy it into the mac registers backwards, cuz */
/* little endian is silly */
for (idx = 0; idx < MAC_ADDR_LEN; idx++)
tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
gfar_write(macptr, *((u32 *) (tmpbuf)));
tempval = *((u32 *) (tmpbuf + 4));
gfar_write(macptr+1, tempval);
}
/* GFAR error interrupt handler */
static irqreturn_t gfar_error(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct gfar_private *priv = netdev_priv(dev);
/* Save ievent for future reference */
u32 events = gfar_read(&priv->regs->ievent);
/* Clear IEVENT */
gfar_write(&priv->regs->ievent, IEVENT_ERR_MASK);
/* Hmm... */
if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
dev->name, events, gfar_read(&priv->regs->imask));
/* Update the error counters */
if (events & IEVENT_TXE) {
dev->stats.tx_errors++;
if (events & IEVENT_LC)
dev->stats.tx_window_errors++;
if (events & IEVENT_CRL)
dev->stats.tx_aborted_errors++;
if (events & IEVENT_XFUN) {
if (netif_msg_tx_err(priv))
printk(KERN_DEBUG "%s: TX FIFO underrun, "
"packet dropped.\n", dev->name);
dev->stats.tx_dropped++;
priv->extra_stats.tx_underrun++;
/* Reactivate the Tx Queues */
gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
}
if (netif_msg_tx_err(priv))
printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
}
if (events & IEVENT_BSY) {
dev->stats.rx_errors++;
priv->extra_stats.rx_bsy++;
gfar_receive(irq, dev_id);
#ifndef CONFIG_GFAR_NAPI
/* Clear the halt bit in RSTAT */
gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
#endif
if (netif_msg_rx_err(priv))
printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
dev->name, gfar_read(&priv->regs->rstat));
}
if (events & IEVENT_BABR) {
dev->stats.rx_errors++;
priv->extra_stats.rx_babr++;
if (netif_msg_rx_err(priv))
printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
}
if (events & IEVENT_EBERR) {
priv->extra_stats.eberr++;
if (netif_msg_rx_err(priv))
printk(KERN_DEBUG "%s: bus error\n", dev->name);
}
if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
printk(KERN_DEBUG "%s: control frame\n", dev->name);
if (events & IEVENT_BABT) {
priv->extra_stats.tx_babt++;
if (netif_msg_tx_err(priv))
printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
}
return IRQ_HANDLED;
}
/* Structure for a device driver */
static struct platform_driver gfar_driver = {
.probe = gfar_probe,
.remove = gfar_remove,
.driver = {
.name = "fsl-gianfar",
},
};
static int __init gfar_init(void)
{
int err = gfar_mdio_init();
if (err)
return err;
err = platform_driver_register(&gfar_driver);
if (err)
gfar_mdio_exit();
return err;
}
static void __exit gfar_exit(void)
{
platform_driver_unregister(&gfar_driver);
gfar_mdio_exit();
}
module_init(gfar_init);
module_exit(gfar_exit);