| /* |
| * drivers/net/gianfar.c |
| * |
| * Gianfar Ethernet Driver |
| * This driver is designed for the non-CPM ethernet controllers |
| * on the 85xx and 83xx family of integrated processors |
| * Based on 8260_io/fcc_enet.c |
| * |
| * Author: Andy Fleming |
| * Maintainer: Kumar Gala |
| * |
| * Copyright (c) 2002-2006 Freescale Semiconductor, Inc. |
| * Copyright (c) 2007 MontaVista Software, Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2 of the License, or (at your |
| * option) any later version. |
| * |
| * Gianfar: AKA Lambda Draconis, "Dragon" |
| * RA 11 31 24.2 |
| * Dec +69 19 52 |
| * V 3.84 |
| * B-V +1.62 |
| * |
| * Theory of operation |
| * |
| * The driver is initialized through platform_device. Structures which |
| * define the configuration needed by the board are defined in a |
| * board structure in arch/ppc/platforms (though I do not |
| * discount the possibility that other architectures could one |
| * day be supported. |
| * |
| * The Gianfar Ethernet Controller uses a ring of buffer |
| * descriptors. The beginning is indicated by a register |
| * pointing to the physical address of the start of the ring. |
| * The end is determined by a "wrap" bit being set in the |
| * last descriptor of the ring. |
| * |
| * When a packet is received, the RXF bit in the |
| * IEVENT register is set, triggering an interrupt when the |
| * corresponding bit in the IMASK register is also set (if |
| * interrupt coalescing is active, then the interrupt may not |
| * happen immediately, but will wait until either a set number |
| * of frames or amount of time have passed). In NAPI, the |
| * interrupt handler will signal there is work to be done, and |
| * exit. Without NAPI, the packet(s) will be handled |
| * immediately. Both methods will start at the last known empty |
| * descriptor, and process every subsequent descriptor until there |
| * are none left with data (NAPI will stop after a set number of |
| * packets to give time to other tasks, but will eventually |
| * process all the packets). The data arrives inside a |
| * pre-allocated skb, and so after the skb is passed up to the |
| * stack, a new skb must be allocated, and the address field in |
| * the buffer descriptor must be updated to indicate this new |
| * skb. |
| * |
| * When the kernel requests that a packet be transmitted, the |
| * driver starts where it left off last time, and points the |
| * descriptor at the buffer which was passed in. The driver |
| * then informs the DMA engine that there are packets ready to |
| * be transmitted. Once the controller is finished transmitting |
| * the packet, an interrupt may be triggered (under the same |
| * conditions as for reception, but depending on the TXF bit). |
| * The driver then cleans up the buffer. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/errno.h> |
| #include <linux/unistd.h> |
| #include <linux/slab.h> |
| #include <linux/interrupt.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/if_vlan.h> |
| #include <linux/spinlock.h> |
| #include <linux/mm.h> |
| #include <linux/platform_device.h> |
| #include <linux/ip.h> |
| #include <linux/tcp.h> |
| #include <linux/udp.h> |
| #include <linux/in.h> |
| |
| #include <asm/io.h> |
| #include <asm/irq.h> |
| #include <asm/uaccess.h> |
| #include <linux/module.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/crc32.h> |
| #include <linux/mii.h> |
| #include <linux/phy.h> |
| |
| #include "gianfar.h" |
| #include "gianfar_mii.h" |
| |
| #define TX_TIMEOUT (1*HZ) |
| #define SKB_ALLOC_TIMEOUT 1000000 |
| #undef BRIEF_GFAR_ERRORS |
| #undef VERBOSE_GFAR_ERRORS |
| |
| #ifdef CONFIG_GFAR_NAPI |
| #define RECEIVE(x) netif_receive_skb(x) |
| #else |
| #define RECEIVE(x) netif_rx(x) |
| #endif |
| |
| const char gfar_driver_name[] = "Gianfar Ethernet"; |
| const char gfar_driver_version[] = "1.3"; |
| |
| static int gfar_enet_open(struct net_device *dev); |
| static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev); |
| static void gfar_timeout(struct net_device *dev); |
| static int gfar_close(struct net_device *dev); |
| struct sk_buff *gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp); |
| static int gfar_set_mac_address(struct net_device *dev); |
| static int gfar_change_mtu(struct net_device *dev, int new_mtu); |
| static irqreturn_t gfar_error(int irq, void *dev_id); |
| static irqreturn_t gfar_transmit(int irq, void *dev_id); |
| static irqreturn_t gfar_interrupt(int irq, void *dev_id); |
| static void adjust_link(struct net_device *dev); |
| static void init_registers(struct net_device *dev); |
| static int init_phy(struct net_device *dev); |
| static int gfar_probe(struct platform_device *pdev); |
| static int gfar_remove(struct platform_device *pdev); |
| static void free_skb_resources(struct gfar_private *priv); |
| static void gfar_set_multi(struct net_device *dev); |
| static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr); |
| static void gfar_configure_serdes(struct net_device *dev); |
| extern int gfar_local_mdio_write(struct gfar_mii __iomem *regs, int mii_id, int regnum, u16 value); |
| extern int gfar_local_mdio_read(struct gfar_mii __iomem *regs, int mii_id, int regnum); |
| #ifdef CONFIG_GFAR_NAPI |
| static int gfar_poll(struct napi_struct *napi, int budget); |
| #endif |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| static void gfar_netpoll(struct net_device *dev); |
| #endif |
| int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit); |
| static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length); |
| static void gfar_vlan_rx_register(struct net_device *netdev, |
| struct vlan_group *grp); |
| void gfar_halt(struct net_device *dev); |
| void gfar_start(struct net_device *dev); |
| static void gfar_clear_exact_match(struct net_device *dev); |
| static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr); |
| |
| extern const struct ethtool_ops gfar_ethtool_ops; |
| |
| MODULE_AUTHOR("Freescale Semiconductor, Inc"); |
| MODULE_DESCRIPTION("Gianfar Ethernet Driver"); |
| MODULE_LICENSE("GPL"); |
| |
| /* Returns 1 if incoming frames use an FCB */ |
| static inline int gfar_uses_fcb(struct gfar_private *priv) |
| { |
| return (priv->vlan_enable || priv->rx_csum_enable); |
| } |
| |
| /* Set up the ethernet device structure, private data, |
| * and anything else we need before we start */ |
| static int gfar_probe(struct platform_device *pdev) |
| { |
| u32 tempval; |
| struct net_device *dev = NULL; |
| struct gfar_private *priv = NULL; |
| struct gianfar_platform_data *einfo; |
| struct resource *r; |
| int err = 0; |
| DECLARE_MAC_BUF(mac); |
| |
| einfo = (struct gianfar_platform_data *) pdev->dev.platform_data; |
| |
| if (NULL == einfo) { |
| printk(KERN_ERR "gfar %d: Missing additional data!\n", |
| pdev->id); |
| |
| return -ENODEV; |
| } |
| |
| /* Create an ethernet device instance */ |
| dev = alloc_etherdev(sizeof (*priv)); |
| |
| if (NULL == dev) |
| return -ENOMEM; |
| |
| priv = netdev_priv(dev); |
| priv->dev = dev; |
| |
| /* Set the info in the priv to the current info */ |
| priv->einfo = einfo; |
| |
| /* fill out IRQ fields */ |
| if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { |
| priv->interruptTransmit = platform_get_irq_byname(pdev, "tx"); |
| priv->interruptReceive = platform_get_irq_byname(pdev, "rx"); |
| priv->interruptError = platform_get_irq_byname(pdev, "error"); |
| if (priv->interruptTransmit < 0 || priv->interruptReceive < 0 || priv->interruptError < 0) |
| goto regs_fail; |
| } else { |
| priv->interruptTransmit = platform_get_irq(pdev, 0); |
| if (priv->interruptTransmit < 0) |
| goto regs_fail; |
| } |
| |
| /* get a pointer to the register memory */ |
| r = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| priv->regs = ioremap(r->start, sizeof (struct gfar)); |
| |
| if (NULL == priv->regs) { |
| err = -ENOMEM; |
| goto regs_fail; |
| } |
| |
| spin_lock_init(&priv->txlock); |
| spin_lock_init(&priv->rxlock); |
| |
| platform_set_drvdata(pdev, dev); |
| |
| /* Stop the DMA engine now, in case it was running before */ |
| /* (The firmware could have used it, and left it running). */ |
| /* To do this, we write Graceful Receive Stop and Graceful */ |
| /* Transmit Stop, and then wait until the corresponding bits */ |
| /* in IEVENT indicate the stops have completed. */ |
| tempval = gfar_read(&priv->regs->dmactrl); |
| tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); |
| gfar_write(&priv->regs->dmactrl, tempval); |
| |
| tempval = gfar_read(&priv->regs->dmactrl); |
| tempval |= (DMACTRL_GRS | DMACTRL_GTS); |
| gfar_write(&priv->regs->dmactrl, tempval); |
| |
| while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC))) |
| cpu_relax(); |
| |
| /* Reset MAC layer */ |
| gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET); |
| |
| tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); |
| gfar_write(&priv->regs->maccfg1, tempval); |
| |
| /* Initialize MACCFG2. */ |
| gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS); |
| |
| /* Initialize ECNTRL */ |
| gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS); |
| |
| /* Copy the station address into the dev structure, */ |
| memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN); |
| |
| /* Set the dev->base_addr to the gfar reg region */ |
| dev->base_addr = (unsigned long) (priv->regs); |
| |
| SET_NETDEV_DEV(dev, &pdev->dev); |
| |
| /* Fill in the dev structure */ |
| dev->open = gfar_enet_open; |
| dev->hard_start_xmit = gfar_start_xmit; |
| dev->tx_timeout = gfar_timeout; |
| dev->watchdog_timeo = TX_TIMEOUT; |
| #ifdef CONFIG_GFAR_NAPI |
| netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT); |
| #endif |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| dev->poll_controller = gfar_netpoll; |
| #endif |
| dev->stop = gfar_close; |
| dev->change_mtu = gfar_change_mtu; |
| dev->mtu = 1500; |
| dev->set_multicast_list = gfar_set_multi; |
| |
| dev->ethtool_ops = &gfar_ethtool_ops; |
| |
| if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) { |
| priv->rx_csum_enable = 1; |
| dev->features |= NETIF_F_IP_CSUM; |
| } else |
| priv->rx_csum_enable = 0; |
| |
| priv->vlgrp = NULL; |
| |
| if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) { |
| dev->vlan_rx_register = gfar_vlan_rx_register; |
| |
| dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; |
| |
| priv->vlan_enable = 1; |
| } |
| |
| if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) { |
| priv->extended_hash = 1; |
| priv->hash_width = 9; |
| |
| priv->hash_regs[0] = &priv->regs->igaddr0; |
| priv->hash_regs[1] = &priv->regs->igaddr1; |
| priv->hash_regs[2] = &priv->regs->igaddr2; |
| priv->hash_regs[3] = &priv->regs->igaddr3; |
| priv->hash_regs[4] = &priv->regs->igaddr4; |
| priv->hash_regs[5] = &priv->regs->igaddr5; |
| priv->hash_regs[6] = &priv->regs->igaddr6; |
| priv->hash_regs[7] = &priv->regs->igaddr7; |
| priv->hash_regs[8] = &priv->regs->gaddr0; |
| priv->hash_regs[9] = &priv->regs->gaddr1; |
| priv->hash_regs[10] = &priv->regs->gaddr2; |
| priv->hash_regs[11] = &priv->regs->gaddr3; |
| priv->hash_regs[12] = &priv->regs->gaddr4; |
| priv->hash_regs[13] = &priv->regs->gaddr5; |
| priv->hash_regs[14] = &priv->regs->gaddr6; |
| priv->hash_regs[15] = &priv->regs->gaddr7; |
| |
| } else { |
| priv->extended_hash = 0; |
| priv->hash_width = 8; |
| |
| priv->hash_regs[0] = &priv->regs->gaddr0; |
| priv->hash_regs[1] = &priv->regs->gaddr1; |
| priv->hash_regs[2] = &priv->regs->gaddr2; |
| priv->hash_regs[3] = &priv->regs->gaddr3; |
| priv->hash_regs[4] = &priv->regs->gaddr4; |
| priv->hash_regs[5] = &priv->regs->gaddr5; |
| priv->hash_regs[6] = &priv->regs->gaddr6; |
| priv->hash_regs[7] = &priv->regs->gaddr7; |
| } |
| |
| if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING) |
| priv->padding = DEFAULT_PADDING; |
| else |
| priv->padding = 0; |
| |
| if (dev->features & NETIF_F_IP_CSUM) |
| dev->hard_header_len += GMAC_FCB_LEN; |
| |
| priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE; |
| priv->tx_ring_size = DEFAULT_TX_RING_SIZE; |
| priv->rx_ring_size = DEFAULT_RX_RING_SIZE; |
| |
| priv->txcoalescing = DEFAULT_TX_COALESCE; |
| priv->txcount = DEFAULT_TXCOUNT; |
| priv->txtime = DEFAULT_TXTIME; |
| priv->rxcoalescing = DEFAULT_RX_COALESCE; |
| priv->rxcount = DEFAULT_RXCOUNT; |
| priv->rxtime = DEFAULT_RXTIME; |
| |
| /* Enable most messages by default */ |
| priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1; |
| |
| err = register_netdev(dev); |
| |
| if (err) { |
| printk(KERN_ERR "%s: Cannot register net device, aborting.\n", |
| dev->name); |
| goto register_fail; |
| } |
| |
| /* Create all the sysfs files */ |
| gfar_init_sysfs(dev); |
| |
| /* Print out the device info */ |
| printk(KERN_INFO DEVICE_NAME "%s\n", |
| dev->name, print_mac(mac, dev->dev_addr)); |
| |
| /* Even more device info helps when determining which kernel */ |
| /* provided which set of benchmarks. */ |
| #ifdef CONFIG_GFAR_NAPI |
| printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name); |
| #else |
| printk(KERN_INFO "%s: Running with NAPI disabled\n", dev->name); |
| #endif |
| printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n", |
| dev->name, priv->rx_ring_size, priv->tx_ring_size); |
| |
| return 0; |
| |
| register_fail: |
| iounmap(priv->regs); |
| regs_fail: |
| free_netdev(dev); |
| return err; |
| } |
| |
| static int gfar_remove(struct platform_device *pdev) |
| { |
| struct net_device *dev = platform_get_drvdata(pdev); |
| struct gfar_private *priv = netdev_priv(dev); |
| |
| platform_set_drvdata(pdev, NULL); |
| |
| iounmap(priv->regs); |
| free_netdev(dev); |
| |
| return 0; |
| } |
| |
| |
| /* Reads the controller's registers to determine what interface |
| * connects it to the PHY. |
| */ |
| static phy_interface_t gfar_get_interface(struct net_device *dev) |
| { |
| struct gfar_private *priv = netdev_priv(dev); |
| u32 ecntrl = gfar_read(&priv->regs->ecntrl); |
| |
| if (ecntrl & ECNTRL_SGMII_MODE) |
| return PHY_INTERFACE_MODE_SGMII; |
| |
| if (ecntrl & ECNTRL_TBI_MODE) { |
| if (ecntrl & ECNTRL_REDUCED_MODE) |
| return PHY_INTERFACE_MODE_RTBI; |
| else |
| return PHY_INTERFACE_MODE_TBI; |
| } |
| |
| if (ecntrl & ECNTRL_REDUCED_MODE) { |
| if (ecntrl & ECNTRL_REDUCED_MII_MODE) |
| return PHY_INTERFACE_MODE_RMII; |
| else { |
| phy_interface_t interface = priv->einfo->interface; |
| |
| /* |
| * This isn't autodetected right now, so it must |
| * be set by the device tree or platform code. |
| */ |
| if (interface == PHY_INTERFACE_MODE_RGMII_ID) |
| return PHY_INTERFACE_MODE_RGMII_ID; |
| |
| return PHY_INTERFACE_MODE_RGMII; |
| } |
| } |
| |
| if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) |
| return PHY_INTERFACE_MODE_GMII; |
| |
| return PHY_INTERFACE_MODE_MII; |
| } |
| |
| |
| /* Initializes driver's PHY state, and attaches to the PHY. |
| * Returns 0 on success. |
| */ |
| static int init_phy(struct net_device *dev) |
| { |
| struct gfar_private *priv = netdev_priv(dev); |
| uint gigabit_support = |
| priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ? |
| SUPPORTED_1000baseT_Full : 0; |
| struct phy_device *phydev; |
| char phy_id[BUS_ID_SIZE]; |
| phy_interface_t interface; |
| |
| priv->oldlink = 0; |
| priv->oldspeed = 0; |
| priv->oldduplex = -1; |
| |
| snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, priv->einfo->bus_id, priv->einfo->phy_id); |
| |
| interface = gfar_get_interface(dev); |
| |
| phydev = phy_connect(dev, phy_id, &adjust_link, 0, interface); |
| |
| if (interface == PHY_INTERFACE_MODE_SGMII) |
| gfar_configure_serdes(dev); |
| |
| if (IS_ERR(phydev)) { |
| printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name); |
| return PTR_ERR(phydev); |
| } |
| |
| /* Remove any features not supported by the controller */ |
| phydev->supported &= (GFAR_SUPPORTED | gigabit_support); |
| phydev->advertising = phydev->supported; |
| |
| priv->phydev = phydev; |
| |
| return 0; |
| } |
| |
| static void gfar_configure_serdes(struct net_device *dev) |
| { |
| struct gfar_private *priv = netdev_priv(dev); |
| struct gfar_mii __iomem *regs = |
| (void __iomem *)&priv->regs->gfar_mii_regs; |
| |
| /* Initialise TBI i/f to communicate with serdes (lynx phy) */ |
| |
| /* Single clk mode, mii mode off(for aerdes communication) */ |
| gfar_local_mdio_write(regs, TBIPA_VALUE, MII_TBICON, TBICON_CLK_SELECT); |
| |
| /* Supported pause and full-duplex, no half-duplex */ |
| gfar_local_mdio_write(regs, TBIPA_VALUE, MII_ADVERTISE, |
| ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | |
| ADVERTISE_1000XPSE_ASYM); |
| |
| /* ANEG enable, restart ANEG, full duplex mode, speed[1] set */ |
| gfar_local_mdio_write(regs, TBIPA_VALUE, MII_BMCR, BMCR_ANENABLE | |
| BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000); |
| } |
| |
| static void init_registers(struct net_device *dev) |
| { |
| struct gfar_private *priv = netdev_priv(dev); |
| |
| /* Clear IEVENT */ |
| gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR); |
| |
| /* Initialize IMASK */ |
| gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR); |
| |
| /* Init hash registers to zero */ |
| gfar_write(&priv->regs->igaddr0, 0); |
| gfar_write(&priv->regs->igaddr1, 0); |
| gfar_write(&priv->regs->igaddr2, 0); |
| gfar_write(&priv->regs->igaddr3, 0); |
| gfar_write(&priv->regs->igaddr4, 0); |
| gfar_write(&priv->regs->igaddr5, 0); |
| gfar_write(&priv->regs->igaddr6, 0); |
| gfar_write(&priv->regs->igaddr7, 0); |
| |
| gfar_write(&priv->regs->gaddr0, 0); |
| gfar_write(&priv->regs->gaddr1, 0); |
| gfar_write(&priv->regs->gaddr2, 0); |
| gfar_write(&priv->regs->gaddr3, 0); |
| gfar_write(&priv->regs->gaddr4, 0); |
| gfar_write(&priv->regs->gaddr5, 0); |
| gfar_write(&priv->regs->gaddr6, 0); |
| gfar_write(&priv->regs->gaddr7, 0); |
| |
| /* Zero out the rmon mib registers if it has them */ |
| if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { |
| memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib)); |
| |
| /* Mask off the CAM interrupts */ |
| gfar_write(&priv->regs->rmon.cam1, 0xffffffff); |
| gfar_write(&priv->regs->rmon.cam2, 0xffffffff); |
| } |
| |
| /* Initialize the max receive buffer length */ |
| gfar_write(&priv->regs->mrblr, priv->rx_buffer_size); |
| |
| /* Initialize the Minimum Frame Length Register */ |
| gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS); |
| |
| /* Assign the TBI an address which won't conflict with the PHYs */ |
| gfar_write(&priv->regs->tbipa, TBIPA_VALUE); |
| } |
| |
| |
| /* Halt the receive and transmit queues */ |
| void gfar_halt(struct net_device *dev) |
| { |
| struct gfar_private *priv = netdev_priv(dev); |
| struct gfar __iomem *regs = priv->regs; |
| u32 tempval; |
| |
| /* Mask all interrupts */ |
| gfar_write(®s->imask, IMASK_INIT_CLEAR); |
| |
| /* Clear all interrupts */ |
| gfar_write(®s->ievent, IEVENT_INIT_CLEAR); |
| |
| /* Stop the DMA, and wait for it to stop */ |
| tempval = gfar_read(&priv->regs->dmactrl); |
| if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) |
| != (DMACTRL_GRS | DMACTRL_GTS)) { |
| tempval |= (DMACTRL_GRS | DMACTRL_GTS); |
| gfar_write(&priv->regs->dmactrl, tempval); |
| |
| while (!(gfar_read(&priv->regs->ievent) & |
| (IEVENT_GRSC | IEVENT_GTSC))) |
| cpu_relax(); |
| } |
| |
| /* Disable Rx and Tx */ |
| tempval = gfar_read(®s->maccfg1); |
| tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN); |
| gfar_write(®s->maccfg1, tempval); |
| } |
| |
| void stop_gfar(struct net_device *dev) |
| { |
| struct gfar_private *priv = netdev_priv(dev); |
| struct gfar __iomem *regs = priv->regs; |
| unsigned long flags; |
| |
| phy_stop(priv->phydev); |
| |
| /* Lock it down */ |
| spin_lock_irqsave(&priv->txlock, flags); |
| spin_lock(&priv->rxlock); |
| |
| gfar_halt(dev); |
| |
| spin_unlock(&priv->rxlock); |
| spin_unlock_irqrestore(&priv->txlock, flags); |
| |
| /* Free the IRQs */ |
| if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { |
| free_irq(priv->interruptError, dev); |
| free_irq(priv->interruptTransmit, dev); |
| free_irq(priv->interruptReceive, dev); |
| } else { |
| free_irq(priv->interruptTransmit, dev); |
| } |
| |
| free_skb_resources(priv); |
| |
| dma_free_coherent(&dev->dev, |
| sizeof(struct txbd8)*priv->tx_ring_size |
| + sizeof(struct rxbd8)*priv->rx_ring_size, |
| priv->tx_bd_base, |
| gfar_read(®s->tbase0)); |
| } |
| |
| /* If there are any tx skbs or rx skbs still around, free them. |
| * Then free tx_skbuff and rx_skbuff */ |
| static void free_skb_resources(struct gfar_private *priv) |
| { |
| struct rxbd8 *rxbdp; |
| struct txbd8 *txbdp; |
| int i; |
| |
| /* Go through all the buffer descriptors and free their data buffers */ |
| txbdp = priv->tx_bd_base; |
| |
| for (i = 0; i < priv->tx_ring_size; i++) { |
| |
| if (priv->tx_skbuff[i]) { |
| dma_unmap_single(&priv->dev->dev, txbdp->bufPtr, |
| txbdp->length, |
| DMA_TO_DEVICE); |
| dev_kfree_skb_any(priv->tx_skbuff[i]); |
| priv->tx_skbuff[i] = NULL; |
| } |
| } |
| |
| kfree(priv->tx_skbuff); |
| |
| rxbdp = priv->rx_bd_base; |
| |
| /* rx_skbuff is not guaranteed to be allocated, so only |
| * free it and its contents if it is allocated */ |
| if(priv->rx_skbuff != NULL) { |
| for (i = 0; i < priv->rx_ring_size; i++) { |
| if (priv->rx_skbuff[i]) { |
| dma_unmap_single(&priv->dev->dev, rxbdp->bufPtr, |
| priv->rx_buffer_size, |
| DMA_FROM_DEVICE); |
| |
| dev_kfree_skb_any(priv->rx_skbuff[i]); |
| priv->rx_skbuff[i] = NULL; |
| } |
| |
| rxbdp->status = 0; |
| rxbdp->length = 0; |
| rxbdp->bufPtr = 0; |
| |
| rxbdp++; |
| } |
| |
| kfree(priv->rx_skbuff); |
| } |
| } |
| |
| void gfar_start(struct net_device *dev) |
| { |
| struct gfar_private *priv = netdev_priv(dev); |
| struct gfar __iomem *regs = priv->regs; |
| u32 tempval; |
| |
| /* Enable Rx and Tx in MACCFG1 */ |
| tempval = gfar_read(®s->maccfg1); |
| tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN); |
| gfar_write(®s->maccfg1, tempval); |
| |
| /* Initialize DMACTRL to have WWR and WOP */ |
| tempval = gfar_read(&priv->regs->dmactrl); |
| tempval |= DMACTRL_INIT_SETTINGS; |
| gfar_write(&priv->regs->dmactrl, tempval); |
| |
| /* Make sure we aren't stopped */ |
| tempval = gfar_read(&priv->regs->dmactrl); |
| tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); |
| gfar_write(&priv->regs->dmactrl, tempval); |
| |
| /* Clear THLT/RHLT, so that the DMA starts polling now */ |
| gfar_write(®s->tstat, TSTAT_CLEAR_THALT); |
| gfar_write(®s->rstat, RSTAT_CLEAR_RHALT); |
| |
| /* Unmask the interrupts we look for */ |
| gfar_write(®s->imask, IMASK_DEFAULT); |
| } |
| |
| /* Bring the controller up and running */ |
| int startup_gfar(struct net_device *dev) |
| { |
| struct txbd8 *txbdp; |
| struct rxbd8 *rxbdp; |
| dma_addr_t addr = 0; |
| unsigned long vaddr; |
| int i; |
| struct gfar_private *priv = netdev_priv(dev); |
| struct gfar __iomem *regs = priv->regs; |
| int err = 0; |
| u32 rctrl = 0; |
| u32 attrs = 0; |
| |
| gfar_write(®s->imask, IMASK_INIT_CLEAR); |
| |
| /* Allocate memory for the buffer descriptors */ |
| vaddr = (unsigned long) dma_alloc_coherent(&dev->dev, |
| sizeof (struct txbd8) * priv->tx_ring_size + |
| sizeof (struct rxbd8) * priv->rx_ring_size, |
| &addr, GFP_KERNEL); |
| |
| if (vaddr == 0) { |
| if (netif_msg_ifup(priv)) |
| printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n", |
| dev->name); |
| return -ENOMEM; |
| } |
| |
| priv->tx_bd_base = (struct txbd8 *) vaddr; |
| |
| /* enet DMA only understands physical addresses */ |
| gfar_write(®s->tbase0, addr); |
| |
| /* Start the rx descriptor ring where the tx ring leaves off */ |
| addr = addr + sizeof (struct txbd8) * priv->tx_ring_size; |
| vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size; |
| priv->rx_bd_base = (struct rxbd8 *) vaddr; |
| gfar_write(®s->rbase0, addr); |
| |
| /* Setup the skbuff rings */ |
| priv->tx_skbuff = |
| (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) * |
| priv->tx_ring_size, GFP_KERNEL); |
| |
| if (NULL == priv->tx_skbuff) { |
| if (netif_msg_ifup(priv)) |
| printk(KERN_ERR "%s: Could not allocate tx_skbuff\n", |
| dev->name); |
| err = -ENOMEM; |
| goto tx_skb_fail; |
| } |
| |
| for (i = 0; i < priv->tx_ring_size; i++) |
| priv->tx_skbuff[i] = NULL; |
| |
| priv->rx_skbuff = |
| (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) * |
| priv->rx_ring_size, GFP_KERNEL); |
| |
| if (NULL == priv->rx_skbuff) { |
| if (netif_msg_ifup(priv)) |
| printk(KERN_ERR "%s: Could not allocate rx_skbuff\n", |
| dev->name); |
| err = -ENOMEM; |
| goto rx_skb_fail; |
| } |
| |
| for (i = 0; i < priv->rx_ring_size; i++) |
| priv->rx_skbuff[i] = NULL; |
| |
| /* Initialize some variables in our dev structure */ |
| priv->dirty_tx = priv->cur_tx = priv->tx_bd_base; |
| priv->cur_rx = priv->rx_bd_base; |
| priv->skb_curtx = priv->skb_dirtytx = 0; |
| priv->skb_currx = 0; |
| |
| /* Initialize Transmit Descriptor Ring */ |
| txbdp = priv->tx_bd_base; |
| for (i = 0; i < priv->tx_ring_size; i++) { |
| txbdp->status = 0; |
| txbdp->length = 0; |
| txbdp->bufPtr = 0; |
| txbdp++; |
| } |
| |
| /* Set the last descriptor in the ring to indicate wrap */ |
| txbdp--; |
| txbdp->status |= TXBD_WRAP; |
| |
| rxbdp = priv->rx_bd_base; |
| for (i = 0; i < priv->rx_ring_size; i++) { |
| struct sk_buff *skb = NULL; |
| |
| rxbdp->status = 0; |
| |
| skb = gfar_new_skb(dev, rxbdp); |
| |
| priv->rx_skbuff[i] = skb; |
| |
| rxbdp++; |
| } |
| |
| /* Set the last descriptor in the ring to wrap */ |
| rxbdp--; |
| rxbdp->status |= RXBD_WRAP; |
| |
| /* If the device has multiple interrupts, register for |
| * them. Otherwise, only register for the one */ |
| if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { |
| /* Install our interrupt handlers for Error, |
| * Transmit, and Receive */ |
| if (request_irq(priv->interruptError, gfar_error, |
| 0, "enet_error", dev) < 0) { |
| if (netif_msg_intr(priv)) |
| printk(KERN_ERR "%s: Can't get IRQ %d\n", |
| dev->name, priv->interruptError); |
| |
| err = -1; |
| goto err_irq_fail; |
| } |
| |
| if (request_irq(priv->interruptTransmit, gfar_transmit, |
| 0, "enet_tx", dev) < 0) { |
| if (netif_msg_intr(priv)) |
| printk(KERN_ERR "%s: Can't get IRQ %d\n", |
| dev->name, priv->interruptTransmit); |
| |
| err = -1; |
| |
| goto tx_irq_fail; |
| } |
| |
| if (request_irq(priv->interruptReceive, gfar_receive, |
| 0, "enet_rx", dev) < 0) { |
| if (netif_msg_intr(priv)) |
| printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n", |
| dev->name, priv->interruptReceive); |
| |
| err = -1; |
| goto rx_irq_fail; |
| } |
| } else { |
| if (request_irq(priv->interruptTransmit, gfar_interrupt, |
| 0, "gfar_interrupt", dev) < 0) { |
| if (netif_msg_intr(priv)) |
| printk(KERN_ERR "%s: Can't get IRQ %d\n", |
| dev->name, priv->interruptError); |
| |
| err = -1; |
| goto err_irq_fail; |
| } |
| } |
| |
| phy_start(priv->phydev); |
| |
| /* Configure the coalescing support */ |
| if (priv->txcoalescing) |
| gfar_write(®s->txic, |
| mk_ic_value(priv->txcount, priv->txtime)); |
| else |
| gfar_write(®s->txic, 0); |
| |
| if (priv->rxcoalescing) |
| gfar_write(®s->rxic, |
| mk_ic_value(priv->rxcount, priv->rxtime)); |
| else |
| gfar_write(®s->rxic, 0); |
| |
| if (priv->rx_csum_enable) |
| rctrl |= RCTRL_CHECKSUMMING; |
| |
| if (priv->extended_hash) { |
| rctrl |= RCTRL_EXTHASH; |
| |
| gfar_clear_exact_match(dev); |
| rctrl |= RCTRL_EMEN; |
| } |
| |
| if (priv->vlan_enable) |
| rctrl |= RCTRL_VLAN; |
| |
| if (priv->padding) { |
| rctrl &= ~RCTRL_PAL_MASK; |
| rctrl |= RCTRL_PADDING(priv->padding); |
| } |
| |
| /* Init rctrl based on our settings */ |
| gfar_write(&priv->regs->rctrl, rctrl); |
| |
| if (dev->features & NETIF_F_IP_CSUM) |
| gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM); |
| |
| /* Set the extraction length and index */ |
| attrs = ATTRELI_EL(priv->rx_stash_size) | |
| ATTRELI_EI(priv->rx_stash_index); |
| |
| gfar_write(&priv->regs->attreli, attrs); |
| |
| /* Start with defaults, and add stashing or locking |
| * depending on the approprate variables */ |
| attrs = ATTR_INIT_SETTINGS; |
| |
| if (priv->bd_stash_en) |
| attrs |= ATTR_BDSTASH; |
| |
| if (priv->rx_stash_size != 0) |
| attrs |= ATTR_BUFSTASH; |
| |
| gfar_write(&priv->regs->attr, attrs); |
| |
| gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold); |
| gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve); |
| gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off); |
| |
| /* Start the controller */ |
| gfar_start(dev); |
| |
| return 0; |
| |
| rx_irq_fail: |
| free_irq(priv->interruptTransmit, dev); |
| tx_irq_fail: |
| free_irq(priv->interruptError, dev); |
| err_irq_fail: |
| rx_skb_fail: |
| free_skb_resources(priv); |
| tx_skb_fail: |
| dma_free_coherent(&dev->dev, |
| sizeof(struct txbd8)*priv->tx_ring_size |
| + sizeof(struct rxbd8)*priv->rx_ring_size, |
| priv->tx_bd_base, |
| gfar_read(®s->tbase0)); |
| |
| return err; |
| } |
| |
| /* Called when something needs to use the ethernet device */ |
| /* Returns 0 for success. */ |
| static int gfar_enet_open(struct net_device *dev) |
| { |
| #ifdef CONFIG_GFAR_NAPI |
| struct gfar_private *priv = netdev_priv(dev); |
| #endif |
| int err; |
| |
| #ifdef CONFIG_GFAR_NAPI |
| napi_enable(&priv->napi); |
| #endif |
| |
| /* Initialize a bunch of registers */ |
| init_registers(dev); |
| |
| gfar_set_mac_address(dev); |
| |
| err = init_phy(dev); |
| |
| if(err) { |
| #ifdef CONFIG_GFAR_NAPI |
| napi_disable(&priv->napi); |
| #endif |
| return err; |
| } |
| |
| err = startup_gfar(dev); |
| if (err) { |
| #ifdef CONFIG_GFAR_NAPI |
| napi_disable(&priv->napi); |
| #endif |
| return err; |
| } |
| |
| netif_start_queue(dev); |
| |
| return err; |
| } |
| |
| static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp) |
| { |
| struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN); |
| |
| memset(fcb, 0, GMAC_FCB_LEN); |
| |
| return fcb; |
| } |
| |
| static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb) |
| { |
| u8 flags = 0; |
| |
| /* If we're here, it's a IP packet with a TCP or UDP |
| * payload. We set it to checksum, using a pseudo-header |
| * we provide |
| */ |
| flags = TXFCB_DEFAULT; |
| |
| /* Tell the controller what the protocol is */ |
| /* And provide the already calculated phcs */ |
| if (ip_hdr(skb)->protocol == IPPROTO_UDP) { |
| flags |= TXFCB_UDP; |
| fcb->phcs = udp_hdr(skb)->check; |
| } else |
| fcb->phcs = tcp_hdr(skb)->check; |
| |
| /* l3os is the distance between the start of the |
| * frame (skb->data) and the start of the IP hdr. |
| * l4os is the distance between the start of the |
| * l3 hdr and the l4 hdr */ |
| fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN); |
| fcb->l4os = skb_network_header_len(skb); |
| |
| fcb->flags = flags; |
| } |
| |
| void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb) |
| { |
| fcb->flags |= TXFCB_VLN; |
| fcb->vlctl = vlan_tx_tag_get(skb); |
| } |
| |
| /* This is called by the kernel when a frame is ready for transmission. */ |
| /* It is pointed to by the dev->hard_start_xmit function pointer */ |
| static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct gfar_private *priv = netdev_priv(dev); |
| struct txfcb *fcb = NULL; |
| struct txbd8 *txbdp; |
| u16 status; |
| unsigned long flags; |
| |
| /* Update transmit stats */ |
| dev->stats.tx_bytes += skb->len; |
| |
| /* Lock priv now */ |
| spin_lock_irqsave(&priv->txlock, flags); |
| |
| /* Point at the first free tx descriptor */ |
| txbdp = priv->cur_tx; |
| |
| /* Clear all but the WRAP status flags */ |
| status = txbdp->status & TXBD_WRAP; |
| |
| /* Set up checksumming */ |
| if (likely((dev->features & NETIF_F_IP_CSUM) |
| && (CHECKSUM_PARTIAL == skb->ip_summed))) { |
| fcb = gfar_add_fcb(skb, txbdp); |
| status |= TXBD_TOE; |
| gfar_tx_checksum(skb, fcb); |
| } |
| |
| if (priv->vlan_enable && |
| unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) { |
| if (unlikely(NULL == fcb)) { |
| fcb = gfar_add_fcb(skb, txbdp); |
| status |= TXBD_TOE; |
| } |
| |
| gfar_tx_vlan(skb, fcb); |
| } |
| |
| /* Set buffer length and pointer */ |
| txbdp->length = skb->len; |
| txbdp->bufPtr = dma_map_single(&dev->dev, skb->data, |
| skb->len, DMA_TO_DEVICE); |
| |
| /* Save the skb pointer so we can free it later */ |
| priv->tx_skbuff[priv->skb_curtx] = skb; |
| |
| /* Update the current skb pointer (wrapping if this was the last) */ |
| priv->skb_curtx = |
| (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size); |
| |
| /* Flag the BD as interrupt-causing */ |
| status |= TXBD_INTERRUPT; |
| |
| /* Flag the BD as ready to go, last in frame, and */ |
| /* in need of CRC */ |
| status |= (TXBD_READY | TXBD_LAST | TXBD_CRC); |
| |
| dev->trans_start = jiffies; |
| |
| /* The powerpc-specific eieio() is used, as wmb() has too strong |
| * semantics (it requires synchronization between cacheable and |
| * uncacheable mappings, which eieio doesn't provide and which we |
| * don't need), thus requiring a more expensive sync instruction. At |
| * some point, the set of architecture-independent barrier functions |
| * should be expanded to include weaker barriers. |
| */ |
| |
| eieio(); |
| txbdp->status = status; |
| |
| /* If this was the last BD in the ring, the next one */ |
| /* is at the beginning of the ring */ |
| if (txbdp->status & TXBD_WRAP) |
| txbdp = priv->tx_bd_base; |
| else |
| txbdp++; |
| |
| /* If the next BD still needs to be cleaned up, then the bds |
| are full. We need to tell the kernel to stop sending us stuff. */ |
| if (txbdp == priv->dirty_tx) { |
| netif_stop_queue(dev); |
| |
| dev->stats.tx_fifo_errors++; |
| } |
| |
| /* Update the current txbd to the next one */ |
| priv->cur_tx = txbdp; |
| |
| /* Tell the DMA to go go go */ |
| gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT); |
| |
| /* Unlock priv */ |
| spin_unlock_irqrestore(&priv->txlock, flags); |
| |
| return 0; |
| } |
| |
| /* Stops the kernel queue, and halts the controller */ |
| static int gfar_close(struct net_device *dev) |
| { |
| struct gfar_private *priv = netdev_priv(dev); |
| |
| #ifdef CONFIG_GFAR_NAPI |
| napi_disable(&priv->napi); |
| #endif |
| |
| stop_gfar(dev); |
| |
| /* Disconnect from the PHY */ |
| phy_disconnect(priv->phydev); |
| priv->phydev = NULL; |
| |
| netif_stop_queue(dev); |
| |
| return 0; |
| } |
| |
| /* Changes the mac address if the controller is not running. */ |
| int gfar_set_mac_address(struct net_device *dev) |
| { |
| gfar_set_mac_for_addr(dev, 0, dev->dev_addr); |
| |
| return 0; |
| } |
| |
| |
| /* Enables and disables VLAN insertion/extraction */ |
| static void gfar_vlan_rx_register(struct net_device *dev, |
| struct vlan_group *grp) |
| { |
| struct gfar_private *priv = netdev_priv(dev); |
| unsigned long flags; |
| u32 tempval; |
| |
| spin_lock_irqsave(&priv->rxlock, flags); |
| |
| priv->vlgrp = grp; |
| |
| if (grp) { |
| /* Enable VLAN tag insertion */ |
| tempval = gfar_read(&priv->regs->tctrl); |
| tempval |= TCTRL_VLINS; |
| |
| gfar_write(&priv->regs->tctrl, tempval); |
| |
| /* Enable VLAN tag extraction */ |
| tempval = gfar_read(&priv->regs->rctrl); |
| tempval |= RCTRL_VLEX; |
| gfar_write(&priv->regs->rctrl, tempval); |
| } else { |
| /* Disable VLAN tag insertion */ |
| tempval = gfar_read(&priv->regs->tctrl); |
| tempval &= ~TCTRL_VLINS; |
| gfar_write(&priv->regs->tctrl, tempval); |
| |
| /* Disable VLAN tag extraction */ |
| tempval = gfar_read(&priv->regs->rctrl); |
| tempval &= ~RCTRL_VLEX; |
| gfar_write(&priv->regs->rctrl, tempval); |
| } |
| |
| spin_unlock_irqrestore(&priv->rxlock, flags); |
| } |
| |
| static int gfar_change_mtu(struct net_device *dev, int new_mtu) |
| { |
| int tempsize, tempval; |
| struct gfar_private *priv = netdev_priv(dev); |
| int oldsize = priv->rx_buffer_size; |
| int frame_size = new_mtu + ETH_HLEN; |
| |
| if (priv->vlan_enable) |
| frame_size += VLAN_ETH_HLEN; |
| |
| if (gfar_uses_fcb(priv)) |
| frame_size += GMAC_FCB_LEN; |
| |
| frame_size += priv->padding; |
| |
| if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) { |
| if (netif_msg_drv(priv)) |
| printk(KERN_ERR "%s: Invalid MTU setting\n", |
| dev->name); |
| return -EINVAL; |
| } |
| |
| tempsize = |
| (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) + |
| INCREMENTAL_BUFFER_SIZE; |
| |
| /* Only stop and start the controller if it isn't already |
| * stopped, and we changed something */ |
| if ((oldsize != tempsize) && (dev->flags & IFF_UP)) |
| stop_gfar(dev); |
| |
| priv->rx_buffer_size = tempsize; |
| |
| dev->mtu = new_mtu; |
| |
| gfar_write(&priv->regs->mrblr, priv->rx_buffer_size); |
| gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size); |
| |
| /* If the mtu is larger than the max size for standard |
| * ethernet frames (ie, a jumbo frame), then set maccfg2 |
| * to allow huge frames, and to check the length */ |
| tempval = gfar_read(&priv->regs->maccfg2); |
| |
| if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE) |
| tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK); |
| else |
| tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK); |
| |
| gfar_write(&priv->regs->maccfg2, tempval); |
| |
| if ((oldsize != tempsize) && (dev->flags & IFF_UP)) |
| startup_gfar(dev); |
| |
| return 0; |
| } |
| |
| /* gfar_timeout gets called when a packet has not been |
| * transmitted after a set amount of time. |
| * For now, assume that clearing out all the structures, and |
| * starting over will fix the problem. */ |
| static void gfar_timeout(struct net_device *dev) |
| { |
| dev->stats.tx_errors++; |
| |
| if (dev->flags & IFF_UP) { |
| stop_gfar(dev); |
| startup_gfar(dev); |
| } |
| |
| netif_schedule(dev); |
| } |
| |
| /* Interrupt Handler for Transmit complete */ |
| static irqreturn_t gfar_transmit(int irq, void *dev_id) |
| { |
| struct net_device *dev = (struct net_device *) dev_id; |
| struct gfar_private *priv = netdev_priv(dev); |
| struct txbd8 *bdp; |
| |
| /* Clear IEVENT */ |
| gfar_write(&priv->regs->ievent, IEVENT_TX_MASK); |
| |
| /* Lock priv */ |
| spin_lock(&priv->txlock); |
| bdp = priv->dirty_tx; |
| while ((bdp->status & TXBD_READY) == 0) { |
| /* If dirty_tx and cur_tx are the same, then either the */ |
| /* ring is empty or full now (it could only be full in the beginning, */ |
| /* obviously). If it is empty, we are done. */ |
| if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0)) |
| break; |
| |
| dev->stats.tx_packets++; |
| |
| /* Deferred means some collisions occurred during transmit, */ |
| /* but we eventually sent the packet. */ |
| if (bdp->status & TXBD_DEF) |
| dev->stats.collisions++; |
| |
| /* Free the sk buffer associated with this TxBD */ |
| dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]); |
| priv->tx_skbuff[priv->skb_dirtytx] = NULL; |
| priv->skb_dirtytx = |
| (priv->skb_dirtytx + |
| 1) & TX_RING_MOD_MASK(priv->tx_ring_size); |
| |
| /* update bdp to point at next bd in the ring (wrapping if necessary) */ |
| if (bdp->status & TXBD_WRAP) |
| bdp = priv->tx_bd_base; |
| else |
| bdp++; |
| |
| /* Move dirty_tx to be the next bd */ |
| priv->dirty_tx = bdp; |
| |
| /* We freed a buffer, so now we can restart transmission */ |
| if (netif_queue_stopped(dev)) |
| netif_wake_queue(dev); |
| } /* while ((bdp->status & TXBD_READY) == 0) */ |
| |
| /* If we are coalescing the interrupts, reset the timer */ |
| /* Otherwise, clear it */ |
| if (priv->txcoalescing) |
| gfar_write(&priv->regs->txic, |
| mk_ic_value(priv->txcount, priv->txtime)); |
| else |
| gfar_write(&priv->regs->txic, 0); |
| |
| spin_unlock(&priv->txlock); |
| |
| return IRQ_HANDLED; |
| } |
| |
| struct sk_buff * gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp) |
| { |
| unsigned int alignamount; |
| struct gfar_private *priv = netdev_priv(dev); |
| struct sk_buff *skb = NULL; |
| unsigned int timeout = SKB_ALLOC_TIMEOUT; |
| |
| /* We have to allocate the skb, so keep trying till we succeed */ |
| while ((!skb) && timeout--) |
| skb = dev_alloc_skb(priv->rx_buffer_size + RXBUF_ALIGNMENT); |
| |
| if (NULL == skb) |
| return NULL; |
| |
| alignamount = RXBUF_ALIGNMENT - |
| (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)); |
| |
| /* We need the data buffer to be aligned properly. We will reserve |
| * as many bytes as needed to align the data properly |
| */ |
| skb_reserve(skb, alignamount); |
| |
| bdp->bufPtr = dma_map_single(&dev->dev, skb->data, |
| priv->rx_buffer_size, DMA_FROM_DEVICE); |
| |
| bdp->length = 0; |
| |
| /* Mark the buffer empty */ |
| eieio(); |
| bdp->status |= (RXBD_EMPTY | RXBD_INTERRUPT); |
| |
| return skb; |
| } |
| |
| static inline void count_errors(unsigned short status, struct net_device *dev) |
| { |
| struct gfar_private *priv = netdev_priv(dev); |
| struct net_device_stats *stats = &dev->stats; |
| struct gfar_extra_stats *estats = &priv->extra_stats; |
| |
| /* If the packet was truncated, none of the other errors |
| * matter */ |
| if (status & RXBD_TRUNCATED) { |
| stats->rx_length_errors++; |
| |
| estats->rx_trunc++; |
| |
| return; |
| } |
| /* Count the errors, if there were any */ |
| if (status & (RXBD_LARGE | RXBD_SHORT)) { |
| stats->rx_length_errors++; |
| |
| if (status & RXBD_LARGE) |
| estats->rx_large++; |
| else |
| estats->rx_short++; |
| } |
| if (status & RXBD_NONOCTET) { |
| stats->rx_frame_errors++; |
| estats->rx_nonoctet++; |
| } |
| if (status & RXBD_CRCERR) { |
| estats->rx_crcerr++; |
| stats->rx_crc_errors++; |
| } |
| if (status & RXBD_OVERRUN) { |
| estats->rx_overrun++; |
| stats->rx_crc_errors++; |
| } |
| } |
| |
| irqreturn_t gfar_receive(int irq, void *dev_id) |
| { |
| struct net_device *dev = (struct net_device *) dev_id; |
| struct gfar_private *priv = netdev_priv(dev); |
| #ifdef CONFIG_GFAR_NAPI |
| u32 tempval; |
| #else |
| unsigned long flags; |
| #endif |
| |
| /* Clear IEVENT, so rx interrupt isn't called again |
| * because of this interrupt */ |
| gfar_write(&priv->regs->ievent, IEVENT_RX_MASK); |
| |
| /* support NAPI */ |
| #ifdef CONFIG_GFAR_NAPI |
| if (netif_rx_schedule_prep(dev, &priv->napi)) { |
| tempval = gfar_read(&priv->regs->imask); |
| tempval &= IMASK_RX_DISABLED; |
| gfar_write(&priv->regs->imask, tempval); |
| |
| __netif_rx_schedule(dev, &priv->napi); |
| } else { |
| if (netif_msg_rx_err(priv)) |
| printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n", |
| dev->name, gfar_read(&priv->regs->ievent), |
| gfar_read(&priv->regs->imask)); |
| } |
| #else |
| |
| spin_lock_irqsave(&priv->rxlock, flags); |
| gfar_clean_rx_ring(dev, priv->rx_ring_size); |
| |
| /* If we are coalescing interrupts, update the timer */ |
| /* Otherwise, clear it */ |
| if (priv->rxcoalescing) |
| gfar_write(&priv->regs->rxic, |
| mk_ic_value(priv->rxcount, priv->rxtime)); |
| else |
| gfar_write(&priv->regs->rxic, 0); |
| |
| spin_unlock_irqrestore(&priv->rxlock, flags); |
| #endif |
| |
| return IRQ_HANDLED; |
| } |
| |
| static inline int gfar_rx_vlan(struct sk_buff *skb, |
| struct vlan_group *vlgrp, unsigned short vlctl) |
| { |
| #ifdef CONFIG_GFAR_NAPI |
| return vlan_hwaccel_receive_skb(skb, vlgrp, vlctl); |
| #else |
| return vlan_hwaccel_rx(skb, vlgrp, vlctl); |
| #endif |
| } |
| |
| static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb) |
| { |
| /* If valid headers were found, and valid sums |
| * were verified, then we tell the kernel that no |
| * checksumming is necessary. Otherwise, it is */ |
| if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU)) |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| else |
| skb->ip_summed = CHECKSUM_NONE; |
| } |
| |
| |
| static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb) |
| { |
| struct rxfcb *fcb = (struct rxfcb *)skb->data; |
| |
| /* Remove the FCB from the skb */ |
| skb_pull(skb, GMAC_FCB_LEN); |
| |
| return fcb; |
| } |
| |
| /* gfar_process_frame() -- handle one incoming packet if skb |
| * isn't NULL. */ |
| static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, |
| int length) |
| { |
| struct gfar_private *priv = netdev_priv(dev); |
| struct rxfcb *fcb = NULL; |
| |
| if (NULL == skb) { |
| if (netif_msg_rx_err(priv)) |
| printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name); |
| dev->stats.rx_dropped++; |
| priv->extra_stats.rx_skbmissing++; |
| } else { |
| int ret; |
| |
| /* Prep the skb for the packet */ |
| skb_put(skb, length); |
| |
| /* Grab the FCB if there is one */ |
| if (gfar_uses_fcb(priv)) |
| fcb = gfar_get_fcb(skb); |
| |
| /* Remove the padded bytes, if there are any */ |
| if (priv->padding) |
| skb_pull(skb, priv->padding); |
| |
| if (priv->rx_csum_enable) |
| gfar_rx_checksum(skb, fcb); |
| |
| /* Tell the skb what kind of packet this is */ |
| skb->protocol = eth_type_trans(skb, dev); |
| |
| /* Send the packet up the stack */ |
| if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN))) |
| ret = gfar_rx_vlan(skb, priv->vlgrp, fcb->vlctl); |
| else |
| ret = RECEIVE(skb); |
| |
| if (NET_RX_DROP == ret) |
| priv->extra_stats.kernel_dropped++; |
| } |
| |
| return 0; |
| } |
| |
| /* gfar_clean_rx_ring() -- Processes each frame in the rx ring |
| * until the budget/quota has been reached. Returns the number |
| * of frames handled |
| */ |
| int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit) |
| { |
| struct rxbd8 *bdp; |
| struct sk_buff *skb; |
| u16 pkt_len; |
| int howmany = 0; |
| struct gfar_private *priv = netdev_priv(dev); |
| |
| /* Get the first full descriptor */ |
| bdp = priv->cur_rx; |
| |
| while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) { |
| rmb(); |
| skb = priv->rx_skbuff[priv->skb_currx]; |
| |
| if (!(bdp->status & |
| (RXBD_LARGE | RXBD_SHORT | RXBD_NONOCTET |
| | RXBD_CRCERR | RXBD_OVERRUN | RXBD_TRUNCATED))) { |
| /* Increment the number of packets */ |
| dev->stats.rx_packets++; |
| howmany++; |
| |
| /* Remove the FCS from the packet length */ |
| pkt_len = bdp->length - 4; |
| |
| gfar_process_frame(dev, skb, pkt_len); |
| |
| dev->stats.rx_bytes += pkt_len; |
| } else { |
| count_errors(bdp->status, dev); |
| |
| if (skb) |
| dev_kfree_skb_any(skb); |
| |
| priv->rx_skbuff[priv->skb_currx] = NULL; |
| } |
| |
| dev->last_rx = jiffies; |
| |
| /* Clear the status flags for this buffer */ |
| bdp->status &= ~RXBD_STATS; |
| |
| /* Add another skb for the future */ |
| skb = gfar_new_skb(dev, bdp); |
| priv->rx_skbuff[priv->skb_currx] = skb; |
| |
| /* Update to the next pointer */ |
| if (bdp->status & RXBD_WRAP) |
| bdp = priv->rx_bd_base; |
| else |
| bdp++; |
| |
| /* update to point at the next skb */ |
| priv->skb_currx = |
| (priv->skb_currx + |
| 1) & RX_RING_MOD_MASK(priv->rx_ring_size); |
| |
| } |
| |
| /* Update the current rxbd pointer to be the next one */ |
| priv->cur_rx = bdp; |
| |
| return howmany; |
| } |
| |
| #ifdef CONFIG_GFAR_NAPI |
| static int gfar_poll(struct napi_struct *napi, int budget) |
| { |
| struct gfar_private *priv = container_of(napi, struct gfar_private, napi); |
| struct net_device *dev = priv->dev; |
| int howmany; |
| |
| howmany = gfar_clean_rx_ring(dev, budget); |
| |
| if (howmany < budget) { |
| netif_rx_complete(dev, napi); |
| |
| /* Clear the halt bit in RSTAT */ |
| gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT); |
| |
| gfar_write(&priv->regs->imask, IMASK_DEFAULT); |
| |
| /* If we are coalescing interrupts, update the timer */ |
| /* Otherwise, clear it */ |
| if (priv->rxcoalescing) |
| gfar_write(&priv->regs->rxic, |
| mk_ic_value(priv->rxcount, priv->rxtime)); |
| else |
| gfar_write(&priv->regs->rxic, 0); |
| } |
| |
| return howmany; |
| } |
| #endif |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| /* |
| * Polling 'interrupt' - used by things like netconsole to send skbs |
| * without having to re-enable interrupts. It's not called while |
| * the interrupt routine is executing. |
| */ |
| static void gfar_netpoll(struct net_device *dev) |
| { |
| struct gfar_private *priv = netdev_priv(dev); |
| |
| /* If the device has multiple interrupts, run tx/rx */ |
| if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { |
| disable_irq(priv->interruptTransmit); |
| disable_irq(priv->interruptReceive); |
| disable_irq(priv->interruptError); |
| gfar_interrupt(priv->interruptTransmit, dev); |
| enable_irq(priv->interruptError); |
| enable_irq(priv->interruptReceive); |
| enable_irq(priv->interruptTransmit); |
| } else { |
| disable_irq(priv->interruptTransmit); |
| gfar_interrupt(priv->interruptTransmit, dev); |
| enable_irq(priv->interruptTransmit); |
| } |
| } |
| #endif |
| |
| /* The interrupt handler for devices with one interrupt */ |
| static irqreturn_t gfar_interrupt(int irq, void *dev_id) |
| { |
| struct net_device *dev = dev_id; |
| struct gfar_private *priv = netdev_priv(dev); |
| |
| /* Save ievent for future reference */ |
| u32 events = gfar_read(&priv->regs->ievent); |
| |
| /* Check for reception */ |
| if (events & IEVENT_RX_MASK) |
| gfar_receive(irq, dev_id); |
| |
| /* Check for transmit completion */ |
| if (events & IEVENT_TX_MASK) |
| gfar_transmit(irq, dev_id); |
| |
| /* Check for errors */ |
| if (events & IEVENT_ERR_MASK) |
| gfar_error(irq, dev_id); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* Called every time the controller might need to be made |
| * aware of new link state. The PHY code conveys this |
| * information through variables in the phydev structure, and this |
| * function converts those variables into the appropriate |
| * register values, and can bring down the device if needed. |
| */ |
| static void adjust_link(struct net_device *dev) |
| { |
| struct gfar_private *priv = netdev_priv(dev); |
| struct gfar __iomem *regs = priv->regs; |
| unsigned long flags; |
| struct phy_device *phydev = priv->phydev; |
| int new_state = 0; |
| |
| spin_lock_irqsave(&priv->txlock, flags); |
| if (phydev->link) { |
| u32 tempval = gfar_read(®s->maccfg2); |
| u32 ecntrl = gfar_read(®s->ecntrl); |
| |
| /* Now we make sure that we can be in full duplex mode. |
| * If not, we operate in half-duplex mode. */ |
| if (phydev->duplex != priv->oldduplex) { |
| new_state = 1; |
| if (!(phydev->duplex)) |
| tempval &= ~(MACCFG2_FULL_DUPLEX); |
| else |
| tempval |= MACCFG2_FULL_DUPLEX; |
| |
| priv->oldduplex = phydev->duplex; |
| } |
| |
| if (phydev->speed != priv->oldspeed) { |
| new_state = 1; |
| switch (phydev->speed) { |
| case 1000: |
| tempval = |
| ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII); |
| break; |
| case 100: |
| case 10: |
| tempval = |
| ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII); |
| |
| /* Reduced mode distinguishes |
| * between 10 and 100 */ |
| if (phydev->speed == SPEED_100) |
| ecntrl |= ECNTRL_R100; |
| else |
| ecntrl &= ~(ECNTRL_R100); |
| break; |
| default: |
| if (netif_msg_link(priv)) |
| printk(KERN_WARNING |
| "%s: Ack! Speed (%d) is not 10/100/1000!\n", |
| dev->name, phydev->speed); |
| break; |
| } |
| |
| priv->oldspeed = phydev->speed; |
| } |
| |
| gfar_write(®s->maccfg2, tempval); |
| gfar_write(®s->ecntrl, ecntrl); |
| |
| if (!priv->oldlink) { |
| new_state = 1; |
| priv->oldlink = 1; |
| netif_schedule(dev); |
| } |
| } else if (priv->oldlink) { |
| new_state = 1; |
| priv->oldlink = 0; |
| priv->oldspeed = 0; |
| priv->oldduplex = -1; |
| } |
| |
| if (new_state && netif_msg_link(priv)) |
| phy_print_status(phydev); |
| |
| spin_unlock_irqrestore(&priv->txlock, flags); |
| } |
| |
| /* Update the hash table based on the current list of multicast |
| * addresses we subscribe to. Also, change the promiscuity of |
| * the device based on the flags (this function is called |
| * whenever dev->flags is changed */ |
| static void gfar_set_multi(struct net_device *dev) |
| { |
| struct dev_mc_list *mc_ptr; |
| struct gfar_private *priv = netdev_priv(dev); |
| struct gfar __iomem *regs = priv->regs; |
| u32 tempval; |
| |
| if(dev->flags & IFF_PROMISC) { |
| /* Set RCTRL to PROM */ |
| tempval = gfar_read(®s->rctrl); |
| tempval |= RCTRL_PROM; |
| gfar_write(®s->rctrl, tempval); |
| } else { |
| /* Set RCTRL to not PROM */ |
| tempval = gfar_read(®s->rctrl); |
| tempval &= ~(RCTRL_PROM); |
| gfar_write(®s->rctrl, tempval); |
| } |
| |
| if(dev->flags & IFF_ALLMULTI) { |
| /* Set the hash to rx all multicast frames */ |
| gfar_write(®s->igaddr0, 0xffffffff); |
| gfar_write(®s->igaddr1, 0xffffffff); |
| gfar_write(®s->igaddr2, 0xffffffff); |
| gfar_write(®s->igaddr3, 0xffffffff); |
| gfar_write(®s->igaddr4, 0xffffffff); |
| gfar_write(®s->igaddr5, 0xffffffff); |
| gfar_write(®s->igaddr6, 0xffffffff); |
| gfar_write(®s->igaddr7, 0xffffffff); |
| gfar_write(®s->gaddr0, 0xffffffff); |
| gfar_write(®s->gaddr1, 0xffffffff); |
| gfar_write(®s->gaddr2, 0xffffffff); |
| gfar_write(®s->gaddr3, 0xffffffff); |
| gfar_write(®s->gaddr4, 0xffffffff); |
| gfar_write(®s->gaddr5, 0xffffffff); |
| gfar_write(®s->gaddr6, 0xffffffff); |
| gfar_write(®s->gaddr7, 0xffffffff); |
| } else { |
| int em_num; |
| int idx; |
| |
| /* zero out the hash */ |
| gfar_write(®s->igaddr0, 0x0); |
| gfar_write(®s->igaddr1, 0x0); |
| gfar_write(®s->igaddr2, 0x0); |
| gfar_write(®s->igaddr3, 0x0); |
| gfar_write(®s->igaddr4, 0x0); |
| gfar_write(®s->igaddr5, 0x0); |
| gfar_write(®s->igaddr6, 0x0); |
| gfar_write(®s->igaddr7, 0x0); |
| gfar_write(®s->gaddr0, 0x0); |
| gfar_write(®s->gaddr1, 0x0); |
| gfar_write(®s->gaddr2, 0x0); |
| gfar_write(®s->gaddr3, 0x0); |
| gfar_write(®s->gaddr4, 0x0); |
| gfar_write(®s->gaddr5, 0x0); |
| gfar_write(®s->gaddr6, 0x0); |
| gfar_write(®s->gaddr7, 0x0); |
| |
| /* If we have extended hash tables, we need to |
| * clear the exact match registers to prepare for |
| * setting them */ |
| if (priv->extended_hash) { |
| em_num = GFAR_EM_NUM + 1; |
| gfar_clear_exact_match(dev); |
| idx = 1; |
| } else { |
| idx = 0; |
| em_num = 0; |
| } |
| |
| if(dev->mc_count == 0) |
| return; |
| |
| /* Parse the list, and set the appropriate bits */ |
| for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) { |
| if (idx < em_num) { |
| gfar_set_mac_for_addr(dev, idx, |
| mc_ptr->dmi_addr); |
| idx++; |
| } else |
| gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr); |
| } |
| } |
| |
| return; |
| } |
| |
| |
| /* Clears each of the exact match registers to zero, so they |
| * don't interfere with normal reception */ |
| static void gfar_clear_exact_match(struct net_device *dev) |
| { |
| int idx; |
| u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0}; |
| |
| for(idx = 1;idx < GFAR_EM_NUM + 1;idx++) |
| gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr); |
| } |
| |
| /* Set the appropriate hash bit for the given addr */ |
| /* The algorithm works like so: |
| * 1) Take the Destination Address (ie the multicast address), and |
| * do a CRC on it (little endian), and reverse the bits of the |
| * result. |
| * 2) Use the 8 most significant bits as a hash into a 256-entry |
| * table. The table is controlled through 8 32-bit registers: |
| * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is |
| * gaddr7. This means that the 3 most significant bits in the |
| * hash index which gaddr register to use, and the 5 other bits |
| * indicate which bit (assuming an IBM numbering scheme, which |
| * for PowerPC (tm) is usually the case) in the register holds |
| * the entry. */ |
| static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr) |
| { |
| u32 tempval; |
| struct gfar_private *priv = netdev_priv(dev); |
| u32 result = ether_crc(MAC_ADDR_LEN, addr); |
| int width = priv->hash_width; |
| u8 whichbit = (result >> (32 - width)) & 0x1f; |
| u8 whichreg = result >> (32 - width + 5); |
| u32 value = (1 << (31-whichbit)); |
| |
| tempval = gfar_read(priv->hash_regs[whichreg]); |
| tempval |= value; |
| gfar_write(priv->hash_regs[whichreg], tempval); |
| |
| return; |
| } |
| |
| |
| /* There are multiple MAC Address register pairs on some controllers |
| * This function sets the numth pair to a given address |
| */ |
| static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr) |
| { |
| struct gfar_private *priv = netdev_priv(dev); |
| int idx; |
| char tmpbuf[MAC_ADDR_LEN]; |
| u32 tempval; |
| u32 __iomem *macptr = &priv->regs->macstnaddr1; |
| |
| macptr += num*2; |
| |
| /* Now copy it into the mac registers backwards, cuz */ |
| /* little endian is silly */ |
| for (idx = 0; idx < MAC_ADDR_LEN; idx++) |
| tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx]; |
| |
| gfar_write(macptr, *((u32 *) (tmpbuf))); |
| |
| tempval = *((u32 *) (tmpbuf + 4)); |
| |
| gfar_write(macptr+1, tempval); |
| } |
| |
| /* GFAR error interrupt handler */ |
| static irqreturn_t gfar_error(int irq, void *dev_id) |
| { |
| struct net_device *dev = dev_id; |
| struct gfar_private *priv = netdev_priv(dev); |
| |
| /* Save ievent for future reference */ |
| u32 events = gfar_read(&priv->regs->ievent); |
| |
| /* Clear IEVENT */ |
| gfar_write(&priv->regs->ievent, IEVENT_ERR_MASK); |
| |
| /* Hmm... */ |
| if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv)) |
| printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n", |
| dev->name, events, gfar_read(&priv->regs->imask)); |
| |
| /* Update the error counters */ |
| if (events & IEVENT_TXE) { |
| dev->stats.tx_errors++; |
| |
| if (events & IEVENT_LC) |
| dev->stats.tx_window_errors++; |
| if (events & IEVENT_CRL) |
| dev->stats.tx_aborted_errors++; |
| if (events & IEVENT_XFUN) { |
| if (netif_msg_tx_err(priv)) |
| printk(KERN_DEBUG "%s: TX FIFO underrun, " |
| "packet dropped.\n", dev->name); |
| dev->stats.tx_dropped++; |
| priv->extra_stats.tx_underrun++; |
| |
| /* Reactivate the Tx Queues */ |
| gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT); |
| } |
| if (netif_msg_tx_err(priv)) |
| printk(KERN_DEBUG "%s: Transmit Error\n", dev->name); |
| } |
| if (events & IEVENT_BSY) { |
| dev->stats.rx_errors++; |
| priv->extra_stats.rx_bsy++; |
| |
| gfar_receive(irq, dev_id); |
| |
| #ifndef CONFIG_GFAR_NAPI |
| /* Clear the halt bit in RSTAT */ |
| gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT); |
| #endif |
| |
| if (netif_msg_rx_err(priv)) |
| printk(KERN_DEBUG "%s: busy error (rstat: %x)\n", |
| dev->name, gfar_read(&priv->regs->rstat)); |
| } |
| if (events & IEVENT_BABR) { |
| dev->stats.rx_errors++; |
| priv->extra_stats.rx_babr++; |
| |
| if (netif_msg_rx_err(priv)) |
| printk(KERN_DEBUG "%s: babbling RX error\n", dev->name); |
| } |
| if (events & IEVENT_EBERR) { |
| priv->extra_stats.eberr++; |
| if (netif_msg_rx_err(priv)) |
| printk(KERN_DEBUG "%s: bus error\n", dev->name); |
| } |
| if ((events & IEVENT_RXC) && netif_msg_rx_status(priv)) |
| printk(KERN_DEBUG "%s: control frame\n", dev->name); |
| |
| if (events & IEVENT_BABT) { |
| priv->extra_stats.tx_babt++; |
| if (netif_msg_tx_err(priv)) |
| printk(KERN_DEBUG "%s: babbling TX error\n", dev->name); |
| } |
| return IRQ_HANDLED; |
| } |
| |
| /* Structure for a device driver */ |
| static struct platform_driver gfar_driver = { |
| .probe = gfar_probe, |
| .remove = gfar_remove, |
| .driver = { |
| .name = "fsl-gianfar", |
| }, |
| }; |
| |
| static int __init gfar_init(void) |
| { |
| int err = gfar_mdio_init(); |
| |
| if (err) |
| return err; |
| |
| err = platform_driver_register(&gfar_driver); |
| |
| if (err) |
| gfar_mdio_exit(); |
| |
| return err; |
| } |
| |
| static void __exit gfar_exit(void) |
| { |
| platform_driver_unregister(&gfar_driver); |
| gfar_mdio_exit(); |
| } |
| |
| module_init(gfar_init); |
| module_exit(gfar_exit); |
| |