| /* |
| * Driver for Marvell PPv2 network controller for Armada 375 SoC. |
| * |
| * Copyright (C) 2014 Marvell |
| * |
| * Marcin Wojtas <mw@semihalf.com> |
| * |
| * This file is licensed under the terms of the GNU General Public |
| * License version 2. This program is licensed "as is" without any |
| * warranty of any kind, whether express or implied. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/platform_device.h> |
| #include <linux/skbuff.h> |
| #include <linux/inetdevice.h> |
| #include <linux/mbus.h> |
| #include <linux/module.h> |
| #include <linux/interrupt.h> |
| #include <linux/cpumask.h> |
| #include <linux/of.h> |
| #include <linux/of_irq.h> |
| #include <linux/of_mdio.h> |
| #include <linux/of_net.h> |
| #include <linux/of_address.h> |
| #include <linux/of_device.h> |
| #include <linux/phy.h> |
| #include <linux/clk.h> |
| #include <linux/hrtimer.h> |
| #include <linux/ktime.h> |
| #include <uapi/linux/ppp_defs.h> |
| #include <net/ip.h> |
| #include <net/ipv6.h> |
| |
| /* RX Fifo Registers */ |
| #define MVPP2_RX_DATA_FIFO_SIZE_REG(port) (0x00 + 4 * (port)) |
| #define MVPP2_RX_ATTR_FIFO_SIZE_REG(port) (0x20 + 4 * (port)) |
| #define MVPP2_RX_MIN_PKT_SIZE_REG 0x60 |
| #define MVPP2_RX_FIFO_INIT_REG 0x64 |
| |
| /* RX DMA Top Registers */ |
| #define MVPP2_RX_CTRL_REG(port) (0x140 + 4 * (port)) |
| #define MVPP2_RX_LOW_LATENCY_PKT_SIZE(s) (((s) & 0xfff) << 16) |
| #define MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK BIT(31) |
| #define MVPP2_POOL_BUF_SIZE_REG(pool) (0x180 + 4 * (pool)) |
| #define MVPP2_POOL_BUF_SIZE_OFFSET 5 |
| #define MVPP2_RXQ_CONFIG_REG(rxq) (0x800 + 4 * (rxq)) |
| #define MVPP2_SNOOP_PKT_SIZE_MASK 0x1ff |
| #define MVPP2_SNOOP_BUF_HDR_MASK BIT(9) |
| #define MVPP2_RXQ_POOL_SHORT_OFFS 20 |
| #define MVPP21_RXQ_POOL_SHORT_MASK 0x700000 |
| #define MVPP22_RXQ_POOL_SHORT_MASK 0xf00000 |
| #define MVPP2_RXQ_POOL_LONG_OFFS 24 |
| #define MVPP21_RXQ_POOL_LONG_MASK 0x7000000 |
| #define MVPP22_RXQ_POOL_LONG_MASK 0xf000000 |
| #define MVPP2_RXQ_PACKET_OFFSET_OFFS 28 |
| #define MVPP2_RXQ_PACKET_OFFSET_MASK 0x70000000 |
| #define MVPP2_RXQ_DISABLE_MASK BIT(31) |
| |
| /* Parser Registers */ |
| #define MVPP2_PRS_INIT_LOOKUP_REG 0x1000 |
| #define MVPP2_PRS_PORT_LU_MAX 0xf |
| #define MVPP2_PRS_PORT_LU_MASK(port) (0xff << ((port) * 4)) |
| #define MVPP2_PRS_PORT_LU_VAL(port, val) ((val) << ((port) * 4)) |
| #define MVPP2_PRS_INIT_OFFS_REG(port) (0x1004 + ((port) & 4)) |
| #define MVPP2_PRS_INIT_OFF_MASK(port) (0x3f << (((port) % 4) * 8)) |
| #define MVPP2_PRS_INIT_OFF_VAL(port, val) ((val) << (((port) % 4) * 8)) |
| #define MVPP2_PRS_MAX_LOOP_REG(port) (0x100c + ((port) & 4)) |
| #define MVPP2_PRS_MAX_LOOP_MASK(port) (0xff << (((port) % 4) * 8)) |
| #define MVPP2_PRS_MAX_LOOP_VAL(port, val) ((val) << (((port) % 4) * 8)) |
| #define MVPP2_PRS_TCAM_IDX_REG 0x1100 |
| #define MVPP2_PRS_TCAM_DATA_REG(idx) (0x1104 + (idx) * 4) |
| #define MVPP2_PRS_TCAM_INV_MASK BIT(31) |
| #define MVPP2_PRS_SRAM_IDX_REG 0x1200 |
| #define MVPP2_PRS_SRAM_DATA_REG(idx) (0x1204 + (idx) * 4) |
| #define MVPP2_PRS_TCAM_CTRL_REG 0x1230 |
| #define MVPP2_PRS_TCAM_EN_MASK BIT(0) |
| |
| /* Classifier Registers */ |
| #define MVPP2_CLS_MODE_REG 0x1800 |
| #define MVPP2_CLS_MODE_ACTIVE_MASK BIT(0) |
| #define MVPP2_CLS_PORT_WAY_REG 0x1810 |
| #define MVPP2_CLS_PORT_WAY_MASK(port) (1 << (port)) |
| #define MVPP2_CLS_LKP_INDEX_REG 0x1814 |
| #define MVPP2_CLS_LKP_INDEX_WAY_OFFS 6 |
| #define MVPP2_CLS_LKP_TBL_REG 0x1818 |
| #define MVPP2_CLS_LKP_TBL_RXQ_MASK 0xff |
| #define MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK BIT(25) |
| #define MVPP2_CLS_FLOW_INDEX_REG 0x1820 |
| #define MVPP2_CLS_FLOW_TBL0_REG 0x1824 |
| #define MVPP2_CLS_FLOW_TBL1_REG 0x1828 |
| #define MVPP2_CLS_FLOW_TBL2_REG 0x182c |
| #define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port) (0x1980 + ((port) * 4)) |
| #define MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS 3 |
| #define MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK 0x7 |
| #define MVPP2_CLS_SWFWD_P2HQ_REG(port) (0x19b0 + ((port) * 4)) |
| #define MVPP2_CLS_SWFWD_PCTRL_REG 0x19d0 |
| #define MVPP2_CLS_SWFWD_PCTRL_MASK(port) (1 << (port)) |
| |
| /* Descriptor Manager Top Registers */ |
| #define MVPP2_RXQ_NUM_REG 0x2040 |
| #define MVPP2_RXQ_DESC_ADDR_REG 0x2044 |
| #define MVPP22_DESC_ADDR_OFFS 8 |
| #define MVPP2_RXQ_DESC_SIZE_REG 0x2048 |
| #define MVPP2_RXQ_DESC_SIZE_MASK 0x3ff0 |
| #define MVPP2_RXQ_STATUS_UPDATE_REG(rxq) (0x3000 + 4 * (rxq)) |
| #define MVPP2_RXQ_NUM_PROCESSED_OFFSET 0 |
| #define MVPP2_RXQ_NUM_NEW_OFFSET 16 |
| #define MVPP2_RXQ_STATUS_REG(rxq) (0x3400 + 4 * (rxq)) |
| #define MVPP2_RXQ_OCCUPIED_MASK 0x3fff |
| #define MVPP2_RXQ_NON_OCCUPIED_OFFSET 16 |
| #define MVPP2_RXQ_NON_OCCUPIED_MASK 0x3fff0000 |
| #define MVPP2_RXQ_THRESH_REG 0x204c |
| #define MVPP2_OCCUPIED_THRESH_OFFSET 0 |
| #define MVPP2_OCCUPIED_THRESH_MASK 0x3fff |
| #define MVPP2_RXQ_INDEX_REG 0x2050 |
| #define MVPP2_TXQ_NUM_REG 0x2080 |
| #define MVPP2_TXQ_DESC_ADDR_REG 0x2084 |
| #define MVPP2_TXQ_DESC_SIZE_REG 0x2088 |
| #define MVPP2_TXQ_DESC_SIZE_MASK 0x3ff0 |
| #define MVPP2_AGGR_TXQ_UPDATE_REG 0x2090 |
| #define MVPP2_TXQ_INDEX_REG 0x2098 |
| #define MVPP2_TXQ_PREF_BUF_REG 0x209c |
| #define MVPP2_PREF_BUF_PTR(desc) ((desc) & 0xfff) |
| #define MVPP2_PREF_BUF_SIZE_4 (BIT(12) | BIT(13)) |
| #define MVPP2_PREF_BUF_SIZE_16 (BIT(12) | BIT(14)) |
| #define MVPP2_PREF_BUF_THRESH(val) ((val) << 17) |
| #define MVPP2_TXQ_DRAIN_EN_MASK BIT(31) |
| #define MVPP2_TXQ_PENDING_REG 0x20a0 |
| #define MVPP2_TXQ_PENDING_MASK 0x3fff |
| #define MVPP2_TXQ_INT_STATUS_REG 0x20a4 |
| #define MVPP2_TXQ_SENT_REG(txq) (0x3c00 + 4 * (txq)) |
| #define MVPP2_TRANSMITTED_COUNT_OFFSET 16 |
| #define MVPP2_TRANSMITTED_COUNT_MASK 0x3fff0000 |
| #define MVPP2_TXQ_RSVD_REQ_REG 0x20b0 |
| #define MVPP2_TXQ_RSVD_REQ_Q_OFFSET 16 |
| #define MVPP2_TXQ_RSVD_RSLT_REG 0x20b4 |
| #define MVPP2_TXQ_RSVD_RSLT_MASK 0x3fff |
| #define MVPP2_TXQ_RSVD_CLR_REG 0x20b8 |
| #define MVPP2_TXQ_RSVD_CLR_OFFSET 16 |
| #define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu) (0x2100 + 4 * (cpu)) |
| #define MVPP22_AGGR_TXQ_DESC_ADDR_OFFS 8 |
| #define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu) (0x2140 + 4 * (cpu)) |
| #define MVPP2_AGGR_TXQ_DESC_SIZE_MASK 0x3ff0 |
| #define MVPP2_AGGR_TXQ_STATUS_REG(cpu) (0x2180 + 4 * (cpu)) |
| #define MVPP2_AGGR_TXQ_PENDING_MASK 0x3fff |
| #define MVPP2_AGGR_TXQ_INDEX_REG(cpu) (0x21c0 + 4 * (cpu)) |
| |
| /* MBUS bridge registers */ |
| #define MVPP2_WIN_BASE(w) (0x4000 + ((w) << 2)) |
| #define MVPP2_WIN_SIZE(w) (0x4020 + ((w) << 2)) |
| #define MVPP2_WIN_REMAP(w) (0x4040 + ((w) << 2)) |
| #define MVPP2_BASE_ADDR_ENABLE 0x4060 |
| |
| /* AXI Bridge Registers */ |
| #define MVPP22_AXI_BM_WR_ATTR_REG 0x4100 |
| #define MVPP22_AXI_BM_RD_ATTR_REG 0x4104 |
| #define MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG 0x4110 |
| #define MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG 0x4114 |
| #define MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG 0x4118 |
| #define MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG 0x411c |
| #define MVPP22_AXI_RX_DATA_WR_ATTR_REG 0x4120 |
| #define MVPP22_AXI_TX_DATA_RD_ATTR_REG 0x4130 |
| #define MVPP22_AXI_RD_NORMAL_CODE_REG 0x4150 |
| #define MVPP22_AXI_RD_SNOOP_CODE_REG 0x4154 |
| #define MVPP22_AXI_WR_NORMAL_CODE_REG 0x4160 |
| #define MVPP22_AXI_WR_SNOOP_CODE_REG 0x4164 |
| |
| /* Values for AXI Bridge registers */ |
| #define MVPP22_AXI_ATTR_CACHE_OFFS 0 |
| #define MVPP22_AXI_ATTR_DOMAIN_OFFS 12 |
| |
| #define MVPP22_AXI_CODE_CACHE_OFFS 0 |
| #define MVPP22_AXI_CODE_DOMAIN_OFFS 4 |
| |
| #define MVPP22_AXI_CODE_CACHE_NON_CACHE 0x3 |
| #define MVPP22_AXI_CODE_CACHE_WR_CACHE 0x7 |
| #define MVPP22_AXI_CODE_CACHE_RD_CACHE 0xb |
| |
| #define MVPP22_AXI_CODE_DOMAIN_OUTER_DOM 2 |
| #define MVPP22_AXI_CODE_DOMAIN_SYSTEM 3 |
| |
| /* Interrupt Cause and Mask registers */ |
| #define MVPP2_ISR_RX_THRESHOLD_REG(rxq) (0x5200 + 4 * (rxq)) |
| #define MVPP2_MAX_ISR_RX_THRESHOLD 0xfffff0 |
| #define MVPP21_ISR_RXQ_GROUP_REG(rxq) (0x5400 + 4 * (rxq)) |
| |
| #define MVPP22_ISR_RXQ_GROUP_INDEX_REG 0x5400 |
| #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf |
| #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK 0x380 |
| #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET 7 |
| |
| #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf |
| #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK 0x380 |
| |
| #define MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG 0x5404 |
| #define MVPP22_ISR_RXQ_SUB_GROUP_STARTQ_MASK 0x1f |
| #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_MASK 0xf00 |
| #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET 8 |
| |
| #define MVPP2_ISR_ENABLE_REG(port) (0x5420 + 4 * (port)) |
| #define MVPP2_ISR_ENABLE_INTERRUPT(mask) ((mask) & 0xffff) |
| #define MVPP2_ISR_DISABLE_INTERRUPT(mask) (((mask) << 16) & 0xffff0000) |
| #define MVPP2_ISR_RX_TX_CAUSE_REG(port) (0x5480 + 4 * (port)) |
| #define MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff |
| #define MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK 0xff0000 |
| #define MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK BIT(24) |
| #define MVPP2_CAUSE_FCS_ERR_MASK BIT(25) |
| #define MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK BIT(26) |
| #define MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK BIT(29) |
| #define MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK BIT(30) |
| #define MVPP2_CAUSE_MISC_SUM_MASK BIT(31) |
| #define MVPP2_ISR_RX_TX_MASK_REG(port) (0x54a0 + 4 * (port)) |
| #define MVPP2_ISR_PON_RX_TX_MASK_REG 0x54bc |
| #define MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff |
| #define MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK 0x3fc00000 |
| #define MVPP2_PON_CAUSE_MISC_SUM_MASK BIT(31) |
| #define MVPP2_ISR_MISC_CAUSE_REG 0x55b0 |
| |
| /* Buffer Manager registers */ |
| #define MVPP2_BM_POOL_BASE_REG(pool) (0x6000 + ((pool) * 4)) |
| #define MVPP2_BM_POOL_BASE_ADDR_MASK 0xfffff80 |
| #define MVPP2_BM_POOL_SIZE_REG(pool) (0x6040 + ((pool) * 4)) |
| #define MVPP2_BM_POOL_SIZE_MASK 0xfff0 |
| #define MVPP2_BM_POOL_READ_PTR_REG(pool) (0x6080 + ((pool) * 4)) |
| #define MVPP2_BM_POOL_GET_READ_PTR_MASK 0xfff0 |
| #define MVPP2_BM_POOL_PTRS_NUM_REG(pool) (0x60c0 + ((pool) * 4)) |
| #define MVPP2_BM_POOL_PTRS_NUM_MASK 0xfff0 |
| #define MVPP2_BM_BPPI_READ_PTR_REG(pool) (0x6100 + ((pool) * 4)) |
| #define MVPP2_BM_BPPI_PTRS_NUM_REG(pool) (0x6140 + ((pool) * 4)) |
| #define MVPP2_BM_BPPI_PTR_NUM_MASK 0x7ff |
| #define MVPP2_BM_BPPI_PREFETCH_FULL_MASK BIT(16) |
| #define MVPP2_BM_POOL_CTRL_REG(pool) (0x6200 + ((pool) * 4)) |
| #define MVPP2_BM_START_MASK BIT(0) |
| #define MVPP2_BM_STOP_MASK BIT(1) |
| #define MVPP2_BM_STATE_MASK BIT(4) |
| #define MVPP2_BM_LOW_THRESH_OFFS 8 |
| #define MVPP2_BM_LOW_THRESH_MASK 0x7f00 |
| #define MVPP2_BM_LOW_THRESH_VALUE(val) ((val) << \ |
| MVPP2_BM_LOW_THRESH_OFFS) |
| #define MVPP2_BM_HIGH_THRESH_OFFS 16 |
| #define MVPP2_BM_HIGH_THRESH_MASK 0x7f0000 |
| #define MVPP2_BM_HIGH_THRESH_VALUE(val) ((val) << \ |
| MVPP2_BM_HIGH_THRESH_OFFS) |
| #define MVPP2_BM_INTR_CAUSE_REG(pool) (0x6240 + ((pool) * 4)) |
| #define MVPP2_BM_RELEASED_DELAY_MASK BIT(0) |
| #define MVPP2_BM_ALLOC_FAILED_MASK BIT(1) |
| #define MVPP2_BM_BPPE_EMPTY_MASK BIT(2) |
| #define MVPP2_BM_BPPE_FULL_MASK BIT(3) |
| #define MVPP2_BM_AVAILABLE_BP_LOW_MASK BIT(4) |
| #define MVPP2_BM_INTR_MASK_REG(pool) (0x6280 + ((pool) * 4)) |
| #define MVPP2_BM_PHY_ALLOC_REG(pool) (0x6400 + ((pool) * 4)) |
| #define MVPP2_BM_PHY_ALLOC_GRNTD_MASK BIT(0) |
| #define MVPP2_BM_VIRT_ALLOC_REG 0x6440 |
| #define MVPP22_BM_ADDR_HIGH_ALLOC 0x6444 |
| #define MVPP22_BM_ADDR_HIGH_PHYS_MASK 0xff |
| #define MVPP22_BM_ADDR_HIGH_VIRT_MASK 0xff00 |
| #define MVPP22_BM_ADDR_HIGH_VIRT_SHIFT 8 |
| #define MVPP2_BM_PHY_RLS_REG(pool) (0x6480 + ((pool) * 4)) |
| #define MVPP2_BM_PHY_RLS_MC_BUFF_MASK BIT(0) |
| #define MVPP2_BM_PHY_RLS_PRIO_EN_MASK BIT(1) |
| #define MVPP2_BM_PHY_RLS_GRNTD_MASK BIT(2) |
| #define MVPP2_BM_VIRT_RLS_REG 0x64c0 |
| #define MVPP22_BM_ADDR_HIGH_RLS_REG 0x64c4 |
| #define MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK 0xff |
| #define MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK 0xff00 |
| #define MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT 8 |
| |
| /* TX Scheduler registers */ |
| #define MVPP2_TXP_SCHED_PORT_INDEX_REG 0x8000 |
| #define MVPP2_TXP_SCHED_Q_CMD_REG 0x8004 |
| #define MVPP2_TXP_SCHED_ENQ_MASK 0xff |
| #define MVPP2_TXP_SCHED_DISQ_OFFSET 8 |
| #define MVPP2_TXP_SCHED_CMD_1_REG 0x8010 |
| #define MVPP2_TXP_SCHED_PERIOD_REG 0x8018 |
| #define MVPP2_TXP_SCHED_MTU_REG 0x801c |
| #define MVPP2_TXP_MTU_MAX 0x7FFFF |
| #define MVPP2_TXP_SCHED_REFILL_REG 0x8020 |
| #define MVPP2_TXP_REFILL_TOKENS_ALL_MASK 0x7ffff |
| #define MVPP2_TXP_REFILL_PERIOD_ALL_MASK 0x3ff00000 |
| #define MVPP2_TXP_REFILL_PERIOD_MASK(v) ((v) << 20) |
| #define MVPP2_TXP_SCHED_TOKEN_SIZE_REG 0x8024 |
| #define MVPP2_TXP_TOKEN_SIZE_MAX 0xffffffff |
| #define MVPP2_TXQ_SCHED_REFILL_REG(q) (0x8040 + ((q) << 2)) |
| #define MVPP2_TXQ_REFILL_TOKENS_ALL_MASK 0x7ffff |
| #define MVPP2_TXQ_REFILL_PERIOD_ALL_MASK 0x3ff00000 |
| #define MVPP2_TXQ_REFILL_PERIOD_MASK(v) ((v) << 20) |
| #define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q) (0x8060 + ((q) << 2)) |
| #define MVPP2_TXQ_TOKEN_SIZE_MAX 0x7fffffff |
| #define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q) (0x8080 + ((q) << 2)) |
| #define MVPP2_TXQ_TOKEN_CNTR_MAX 0xffffffff |
| |
| /* TX general registers */ |
| #define MVPP2_TX_SNOOP_REG 0x8800 |
| #define MVPP2_TX_PORT_FLUSH_REG 0x8810 |
| #define MVPP2_TX_PORT_FLUSH_MASK(port) (1 << (port)) |
| |
| /* LMS registers */ |
| #define MVPP2_SRC_ADDR_MIDDLE 0x24 |
| #define MVPP2_SRC_ADDR_HIGH 0x28 |
| #define MVPP2_PHY_AN_CFG0_REG 0x34 |
| #define MVPP2_PHY_AN_STOP_SMI0_MASK BIT(7) |
| #define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG 0x305c |
| #define MVPP2_EXT_GLOBAL_CTRL_DEFAULT 0x27 |
| |
| /* Per-port registers */ |
| #define MVPP2_GMAC_CTRL_0_REG 0x0 |
| #define MVPP2_GMAC_PORT_EN_MASK BIT(0) |
| #define MVPP2_GMAC_MAX_RX_SIZE_OFFS 2 |
| #define MVPP2_GMAC_MAX_RX_SIZE_MASK 0x7ffc |
| #define MVPP2_GMAC_MIB_CNTR_EN_MASK BIT(15) |
| #define MVPP2_GMAC_CTRL_1_REG 0x4 |
| #define MVPP2_GMAC_PERIODIC_XON_EN_MASK BIT(1) |
| #define MVPP2_GMAC_GMII_LB_EN_MASK BIT(5) |
| #define MVPP2_GMAC_PCS_LB_EN_BIT 6 |
| #define MVPP2_GMAC_PCS_LB_EN_MASK BIT(6) |
| #define MVPP2_GMAC_SA_LOW_OFFS 7 |
| #define MVPP2_GMAC_CTRL_2_REG 0x8 |
| #define MVPP2_GMAC_INBAND_AN_MASK BIT(0) |
| #define MVPP2_GMAC_PCS_ENABLE_MASK BIT(3) |
| #define MVPP2_GMAC_PORT_RGMII_MASK BIT(4) |
| #define MVPP2_GMAC_PORT_RESET_MASK BIT(6) |
| #define MVPP2_GMAC_AUTONEG_CONFIG 0xc |
| #define MVPP2_GMAC_FORCE_LINK_DOWN BIT(0) |
| #define MVPP2_GMAC_FORCE_LINK_PASS BIT(1) |
| #define MVPP2_GMAC_CONFIG_MII_SPEED BIT(5) |
| #define MVPP2_GMAC_CONFIG_GMII_SPEED BIT(6) |
| #define MVPP2_GMAC_AN_SPEED_EN BIT(7) |
| #define MVPP2_GMAC_FC_ADV_EN BIT(9) |
| #define MVPP2_GMAC_CONFIG_FULL_DUPLEX BIT(12) |
| #define MVPP2_GMAC_AN_DUPLEX_EN BIT(13) |
| #define MVPP2_GMAC_PORT_FIFO_CFG_1_REG 0x1c |
| #define MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS 6 |
| #define MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK 0x1fc0 |
| #define MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v) (((v) << 6) & \ |
| MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK) |
| #define MVPP22_GMAC_CTRL_4_REG 0x90 |
| #define MVPP22_CTRL4_EXT_PIN_GMII_SEL BIT(0) |
| #define MVPP22_CTRL4_DP_CLK_SEL BIT(5) |
| #define MVPP22_CTRL4_SYNC_BYPASS BIT(6) |
| #define MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE BIT(7) |
| |
| /* Per-port XGMAC registers. PPv2.2 only, only for GOP port 0, |
| * relative to port->base. |
| */ |
| #define MVPP22_XLG_CTRL3_REG 0x11c |
| #define MVPP22_XLG_CTRL3_MACMODESELECT_MASK (7 << 13) |
| #define MVPP22_XLG_CTRL3_MACMODESELECT_GMAC (0 << 13) |
| |
| /* SMI registers. PPv2.2 only, relative to priv->iface_base. */ |
| #define MVPP22_SMI_MISC_CFG_REG 0x1204 |
| #define MVPP22_SMI_POLLING_EN BIT(10) |
| |
| #define MVPP22_GMAC_BASE(port) (0x7000 + (port) * 0x1000 + 0xe00) |
| |
| #define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff |
| |
| /* Descriptor ring Macros */ |
| #define MVPP2_QUEUE_NEXT_DESC(q, index) \ |
| (((index) < (q)->last_desc) ? ((index) + 1) : 0) |
| |
| /* Various constants */ |
| |
| /* Coalescing */ |
| #define MVPP2_TXDONE_COAL_PKTS_THRESH 15 |
| #define MVPP2_TXDONE_HRTIMER_PERIOD_NS 1000000UL |
| #define MVPP2_RX_COAL_PKTS 32 |
| #define MVPP2_RX_COAL_USEC 100 |
| |
| /* The two bytes Marvell header. Either contains a special value used |
| * by Marvell switches when a specific hardware mode is enabled (not |
| * supported by this driver) or is filled automatically by zeroes on |
| * the RX side. Those two bytes being at the front of the Ethernet |
| * header, they allow to have the IP header aligned on a 4 bytes |
| * boundary automatically: the hardware skips those two bytes on its |
| * own. |
| */ |
| #define MVPP2_MH_SIZE 2 |
| #define MVPP2_ETH_TYPE_LEN 2 |
| #define MVPP2_PPPOE_HDR_SIZE 8 |
| #define MVPP2_VLAN_TAG_LEN 4 |
| |
| /* Lbtd 802.3 type */ |
| #define MVPP2_IP_LBDT_TYPE 0xfffa |
| |
| #define MVPP2_TX_CSUM_MAX_SIZE 9800 |
| |
| /* Timeout constants */ |
| #define MVPP2_TX_DISABLE_TIMEOUT_MSEC 1000 |
| #define MVPP2_TX_PENDING_TIMEOUT_MSEC 1000 |
| |
| #define MVPP2_TX_MTU_MAX 0x7ffff |
| |
| /* Maximum number of T-CONTs of PON port */ |
| #define MVPP2_MAX_TCONT 16 |
| |
| /* Maximum number of supported ports */ |
| #define MVPP2_MAX_PORTS 4 |
| |
| /* Maximum number of TXQs used by single port */ |
| #define MVPP2_MAX_TXQ 8 |
| |
| /* Dfault number of RXQs in use */ |
| #define MVPP2_DEFAULT_RXQ 4 |
| |
| /* Max number of Rx descriptors */ |
| #define MVPP2_MAX_RXD 128 |
| |
| /* Max number of Tx descriptors */ |
| #define MVPP2_MAX_TXD 1024 |
| |
| /* Amount of Tx descriptors that can be reserved at once by CPU */ |
| #define MVPP2_CPU_DESC_CHUNK 64 |
| |
| /* Max number of Tx descriptors in each aggregated queue */ |
| #define MVPP2_AGGR_TXQ_SIZE 256 |
| |
| /* Descriptor aligned size */ |
| #define MVPP2_DESC_ALIGNED_SIZE 32 |
| |
| /* Descriptor alignment mask */ |
| #define MVPP2_TX_DESC_ALIGN (MVPP2_DESC_ALIGNED_SIZE - 1) |
| |
| /* RX FIFO constants */ |
| #define MVPP2_RX_FIFO_PORT_DATA_SIZE 0x2000 |
| #define MVPP2_RX_FIFO_PORT_ATTR_SIZE 0x80 |
| #define MVPP2_RX_FIFO_PORT_MIN_PKT 0x80 |
| |
| /* RX buffer constants */ |
| #define MVPP2_SKB_SHINFO_SIZE \ |
| SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) |
| |
| #define MVPP2_RX_PKT_SIZE(mtu) \ |
| ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \ |
| ETH_HLEN + ETH_FCS_LEN, cache_line_size()) |
| |
| #define MVPP2_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD) |
| #define MVPP2_RX_TOTAL_SIZE(buf_size) ((buf_size) + MVPP2_SKB_SHINFO_SIZE) |
| #define MVPP2_RX_MAX_PKT_SIZE(total_size) \ |
| ((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE) |
| |
| #define MVPP2_BIT_TO_BYTE(bit) ((bit) / 8) |
| |
| /* IPv6 max L3 address size */ |
| #define MVPP2_MAX_L3_ADDR_SIZE 16 |
| |
| /* Port flags */ |
| #define MVPP2_F_LOOPBACK BIT(0) |
| |
| /* Marvell tag types */ |
| enum mvpp2_tag_type { |
| MVPP2_TAG_TYPE_NONE = 0, |
| MVPP2_TAG_TYPE_MH = 1, |
| MVPP2_TAG_TYPE_DSA = 2, |
| MVPP2_TAG_TYPE_EDSA = 3, |
| MVPP2_TAG_TYPE_VLAN = 4, |
| MVPP2_TAG_TYPE_LAST = 5 |
| }; |
| |
| /* Parser constants */ |
| #define MVPP2_PRS_TCAM_SRAM_SIZE 256 |
| #define MVPP2_PRS_TCAM_WORDS 6 |
| #define MVPP2_PRS_SRAM_WORDS 4 |
| #define MVPP2_PRS_FLOW_ID_SIZE 64 |
| #define MVPP2_PRS_FLOW_ID_MASK 0x3f |
| #define MVPP2_PRS_TCAM_ENTRY_INVALID 1 |
| #define MVPP2_PRS_TCAM_DSA_TAGGED_BIT BIT(5) |
| #define MVPP2_PRS_IPV4_HEAD 0x40 |
| #define MVPP2_PRS_IPV4_HEAD_MASK 0xf0 |
| #define MVPP2_PRS_IPV4_MC 0xe0 |
| #define MVPP2_PRS_IPV4_MC_MASK 0xf0 |
| #define MVPP2_PRS_IPV4_BC_MASK 0xff |
| #define MVPP2_PRS_IPV4_IHL 0x5 |
| #define MVPP2_PRS_IPV4_IHL_MASK 0xf |
| #define MVPP2_PRS_IPV6_MC 0xff |
| #define MVPP2_PRS_IPV6_MC_MASK 0xff |
| #define MVPP2_PRS_IPV6_HOP_MASK 0xff |
| #define MVPP2_PRS_TCAM_PROTO_MASK 0xff |
| #define MVPP2_PRS_TCAM_PROTO_MASK_L 0x3f |
| #define MVPP2_PRS_DBL_VLANS_MAX 100 |
| |
| /* Tcam structure: |
| * - lookup ID - 4 bits |
| * - port ID - 1 byte |
| * - additional information - 1 byte |
| * - header data - 8 bytes |
| * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0). |
| */ |
| #define MVPP2_PRS_AI_BITS 8 |
| #define MVPP2_PRS_PORT_MASK 0xff |
| #define MVPP2_PRS_LU_MASK 0xf |
| #define MVPP2_PRS_TCAM_DATA_BYTE(offs) \ |
| (((offs) - ((offs) % 2)) * 2 + ((offs) % 2)) |
| #define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs) \ |
| (((offs) * 2) - ((offs) % 2) + 2) |
| #define MVPP2_PRS_TCAM_AI_BYTE 16 |
| #define MVPP2_PRS_TCAM_PORT_BYTE 17 |
| #define MVPP2_PRS_TCAM_LU_BYTE 20 |
| #define MVPP2_PRS_TCAM_EN_OFFS(offs) ((offs) + 2) |
| #define MVPP2_PRS_TCAM_INV_WORD 5 |
| /* Tcam entries ID */ |
| #define MVPP2_PE_DROP_ALL 0 |
| #define MVPP2_PE_FIRST_FREE_TID 1 |
| #define MVPP2_PE_LAST_FREE_TID (MVPP2_PRS_TCAM_SRAM_SIZE - 31) |
| #define MVPP2_PE_IP6_EXT_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 30) |
| #define MVPP2_PE_MAC_MC_IP6 (MVPP2_PRS_TCAM_SRAM_SIZE - 29) |
| #define MVPP2_PE_IP6_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 28) |
| #define MVPP2_PE_IP4_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 27) |
| #define MVPP2_PE_LAST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 26) |
| #define MVPP2_PE_FIRST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 19) |
| #define MVPP2_PE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 18) |
| #define MVPP2_PE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 17) |
| #define MVPP2_PE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 16) |
| #define MVPP2_PE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 15) |
| #define MVPP2_PE_ETYPE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 14) |
| #define MVPP2_PE_ETYPE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 13) |
| #define MVPP2_PE_ETYPE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 12) |
| #define MVPP2_PE_ETYPE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 11) |
| #define MVPP2_PE_MH_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 10) |
| #define MVPP2_PE_DSA_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 9) |
| #define MVPP2_PE_IP6_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 8) |
| #define MVPP2_PE_IP4_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 7) |
| #define MVPP2_PE_ETH_TYPE_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 6) |
| #define MVPP2_PE_VLAN_DBL (MVPP2_PRS_TCAM_SRAM_SIZE - 5) |
| #define MVPP2_PE_VLAN_NONE (MVPP2_PRS_TCAM_SRAM_SIZE - 4) |
| #define MVPP2_PE_MAC_MC_ALL (MVPP2_PRS_TCAM_SRAM_SIZE - 3) |
| #define MVPP2_PE_MAC_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 2) |
| #define MVPP2_PE_MAC_NON_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 1) |
| |
| /* Sram structure |
| * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0). |
| */ |
| #define MVPP2_PRS_SRAM_RI_OFFS 0 |
| #define MVPP2_PRS_SRAM_RI_WORD 0 |
| #define MVPP2_PRS_SRAM_RI_CTRL_OFFS 32 |
| #define MVPP2_PRS_SRAM_RI_CTRL_WORD 1 |
| #define MVPP2_PRS_SRAM_RI_CTRL_BITS 32 |
| #define MVPP2_PRS_SRAM_SHIFT_OFFS 64 |
| #define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT 72 |
| #define MVPP2_PRS_SRAM_UDF_OFFS 73 |
| #define MVPP2_PRS_SRAM_UDF_BITS 8 |
| #define MVPP2_PRS_SRAM_UDF_MASK 0xff |
| #define MVPP2_PRS_SRAM_UDF_SIGN_BIT 81 |
| #define MVPP2_PRS_SRAM_UDF_TYPE_OFFS 82 |
| #define MVPP2_PRS_SRAM_UDF_TYPE_MASK 0x7 |
| #define MVPP2_PRS_SRAM_UDF_TYPE_L3 1 |
| #define MVPP2_PRS_SRAM_UDF_TYPE_L4 4 |
| #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS 85 |
| #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK 0x3 |
| #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD 1 |
| #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD 2 |
| #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD 3 |
| #define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS 87 |
| #define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS 2 |
| #define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK 0x3 |
| #define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD 0 |
| #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD 2 |
| #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD 3 |
| #define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS 89 |
| #define MVPP2_PRS_SRAM_AI_OFFS 90 |
| #define MVPP2_PRS_SRAM_AI_CTRL_OFFS 98 |
| #define MVPP2_PRS_SRAM_AI_CTRL_BITS 8 |
| #define MVPP2_PRS_SRAM_AI_MASK 0xff |
| #define MVPP2_PRS_SRAM_NEXT_LU_OFFS 106 |
| #define MVPP2_PRS_SRAM_NEXT_LU_MASK 0xf |
| #define MVPP2_PRS_SRAM_LU_DONE_BIT 110 |
| #define MVPP2_PRS_SRAM_LU_GEN_BIT 111 |
| |
| /* Sram result info bits assignment */ |
| #define MVPP2_PRS_RI_MAC_ME_MASK 0x1 |
| #define MVPP2_PRS_RI_DSA_MASK 0x2 |
| #define MVPP2_PRS_RI_VLAN_MASK (BIT(2) | BIT(3)) |
| #define MVPP2_PRS_RI_VLAN_NONE 0x0 |
| #define MVPP2_PRS_RI_VLAN_SINGLE BIT(2) |
| #define MVPP2_PRS_RI_VLAN_DOUBLE BIT(3) |
| #define MVPP2_PRS_RI_VLAN_TRIPLE (BIT(2) | BIT(3)) |
| #define MVPP2_PRS_RI_CPU_CODE_MASK 0x70 |
| #define MVPP2_PRS_RI_CPU_CODE_RX_SPEC BIT(4) |
| #define MVPP2_PRS_RI_L2_CAST_MASK (BIT(9) | BIT(10)) |
| #define MVPP2_PRS_RI_L2_UCAST 0x0 |
| #define MVPP2_PRS_RI_L2_MCAST BIT(9) |
| #define MVPP2_PRS_RI_L2_BCAST BIT(10) |
| #define MVPP2_PRS_RI_PPPOE_MASK 0x800 |
| #define MVPP2_PRS_RI_L3_PROTO_MASK (BIT(12) | BIT(13) | BIT(14)) |
| #define MVPP2_PRS_RI_L3_UN 0x0 |
| #define MVPP2_PRS_RI_L3_IP4 BIT(12) |
| #define MVPP2_PRS_RI_L3_IP4_OPT BIT(13) |
| #define MVPP2_PRS_RI_L3_IP4_OTHER (BIT(12) | BIT(13)) |
| #define MVPP2_PRS_RI_L3_IP6 BIT(14) |
| #define MVPP2_PRS_RI_L3_IP6_EXT (BIT(12) | BIT(14)) |
| #define MVPP2_PRS_RI_L3_ARP (BIT(13) | BIT(14)) |
| #define MVPP2_PRS_RI_L3_ADDR_MASK (BIT(15) | BIT(16)) |
| #define MVPP2_PRS_RI_L3_UCAST 0x0 |
| #define MVPP2_PRS_RI_L3_MCAST BIT(15) |
| #define MVPP2_PRS_RI_L3_BCAST (BIT(15) | BIT(16)) |
| #define MVPP2_PRS_RI_IP_FRAG_MASK 0x20000 |
| #define MVPP2_PRS_RI_UDF3_MASK 0x300000 |
| #define MVPP2_PRS_RI_UDF3_RX_SPECIAL BIT(21) |
| #define MVPP2_PRS_RI_L4_PROTO_MASK 0x1c00000 |
| #define MVPP2_PRS_RI_L4_TCP BIT(22) |
| #define MVPP2_PRS_RI_L4_UDP BIT(23) |
| #define MVPP2_PRS_RI_L4_OTHER (BIT(22) | BIT(23)) |
| #define MVPP2_PRS_RI_UDF7_MASK 0x60000000 |
| #define MVPP2_PRS_RI_UDF7_IP6_LITE BIT(29) |
| #define MVPP2_PRS_RI_DROP_MASK 0x80000000 |
| |
| /* Sram additional info bits assignment */ |
| #define MVPP2_PRS_IPV4_DIP_AI_BIT BIT(0) |
| #define MVPP2_PRS_IPV6_NO_EXT_AI_BIT BIT(0) |
| #define MVPP2_PRS_IPV6_EXT_AI_BIT BIT(1) |
| #define MVPP2_PRS_IPV6_EXT_AH_AI_BIT BIT(2) |
| #define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT BIT(3) |
| #define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT BIT(4) |
| #define MVPP2_PRS_SINGLE_VLAN_AI 0 |
| #define MVPP2_PRS_DBL_VLAN_AI_BIT BIT(7) |
| |
| /* DSA/EDSA type */ |
| #define MVPP2_PRS_TAGGED true |
| #define MVPP2_PRS_UNTAGGED false |
| #define MVPP2_PRS_EDSA true |
| #define MVPP2_PRS_DSA false |
| |
| /* MAC entries, shadow udf */ |
| enum mvpp2_prs_udf { |
| MVPP2_PRS_UDF_MAC_DEF, |
| MVPP2_PRS_UDF_MAC_RANGE, |
| MVPP2_PRS_UDF_L2_DEF, |
| MVPP2_PRS_UDF_L2_DEF_COPY, |
| MVPP2_PRS_UDF_L2_USER, |
| }; |
| |
| /* Lookup ID */ |
| enum mvpp2_prs_lookup { |
| MVPP2_PRS_LU_MH, |
| MVPP2_PRS_LU_MAC, |
| MVPP2_PRS_LU_DSA, |
| MVPP2_PRS_LU_VLAN, |
| MVPP2_PRS_LU_L2, |
| MVPP2_PRS_LU_PPPOE, |
| MVPP2_PRS_LU_IP4, |
| MVPP2_PRS_LU_IP6, |
| MVPP2_PRS_LU_FLOWS, |
| MVPP2_PRS_LU_LAST, |
| }; |
| |
| /* L3 cast enum */ |
| enum mvpp2_prs_l3_cast { |
| MVPP2_PRS_L3_UNI_CAST, |
| MVPP2_PRS_L3_MULTI_CAST, |
| MVPP2_PRS_L3_BROAD_CAST |
| }; |
| |
| /* Classifier constants */ |
| #define MVPP2_CLS_FLOWS_TBL_SIZE 512 |
| #define MVPP2_CLS_FLOWS_TBL_DATA_WORDS 3 |
| #define MVPP2_CLS_LKP_TBL_SIZE 64 |
| |
| /* BM constants */ |
| #define MVPP2_BM_POOLS_NUM 8 |
| #define MVPP2_BM_LONG_BUF_NUM 1024 |
| #define MVPP2_BM_SHORT_BUF_NUM 2048 |
| #define MVPP2_BM_POOL_SIZE_MAX (16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4) |
| #define MVPP2_BM_POOL_PTR_ALIGN 128 |
| #define MVPP2_BM_SWF_LONG_POOL(port) ((port > 2) ? 2 : port) |
| #define MVPP2_BM_SWF_SHORT_POOL 3 |
| |
| /* BM cookie (32 bits) definition */ |
| #define MVPP2_BM_COOKIE_POOL_OFFS 8 |
| #define MVPP2_BM_COOKIE_CPU_OFFS 24 |
| |
| /* BM short pool packet size |
| * These value assure that for SWF the total number |
| * of bytes allocated for each buffer will be 512 |
| */ |
| #define MVPP2_BM_SHORT_PKT_SIZE MVPP2_RX_MAX_PKT_SIZE(512) |
| |
| #define MVPP21_ADDR_SPACE_SZ 0 |
| #define MVPP22_ADDR_SPACE_SZ SZ_64K |
| |
| #define MVPP2_MAX_CPUS 4 |
| |
| enum mvpp2_bm_type { |
| MVPP2_BM_FREE, |
| MVPP2_BM_SWF_LONG, |
| MVPP2_BM_SWF_SHORT |
| }; |
| |
| /* Definitions */ |
| |
| /* Shared Packet Processor resources */ |
| struct mvpp2 { |
| /* Shared registers' base addresses */ |
| void __iomem *lms_base; |
| void __iomem *iface_base; |
| |
| /* On PPv2.2, each CPU can access the base register through a |
| * separate address space, each 64 KB apart from each |
| * other. |
| */ |
| void __iomem *cpu_base[MVPP2_MAX_CPUS]; |
| |
| /* Common clocks */ |
| struct clk *pp_clk; |
| struct clk *gop_clk; |
| struct clk *mg_clk; |
| |
| /* List of pointers to port structures */ |
| struct mvpp2_port **port_list; |
| |
| /* Aggregated TXQs */ |
| struct mvpp2_tx_queue *aggr_txqs; |
| |
| /* BM pools */ |
| struct mvpp2_bm_pool *bm_pools; |
| |
| /* PRS shadow table */ |
| struct mvpp2_prs_shadow *prs_shadow; |
| /* PRS auxiliary table for double vlan entries control */ |
| bool *prs_double_vlans; |
| |
| /* Tclk value */ |
| u32 tclk; |
| |
| /* HW version */ |
| enum { MVPP21, MVPP22 } hw_version; |
| |
| /* Maximum number of RXQs per port */ |
| unsigned int max_port_rxqs; |
| }; |
| |
| struct mvpp2_pcpu_stats { |
| struct u64_stats_sync syncp; |
| u64 rx_packets; |
| u64 rx_bytes; |
| u64 tx_packets; |
| u64 tx_bytes; |
| }; |
| |
| /* Per-CPU port control */ |
| struct mvpp2_port_pcpu { |
| struct hrtimer tx_done_timer; |
| bool timer_scheduled; |
| /* Tasklet for egress finalization */ |
| struct tasklet_struct tx_done_tasklet; |
| }; |
| |
| struct mvpp2_port { |
| u8 id; |
| |
| /* Index of the port from the "group of ports" complex point |
| * of view |
| */ |
| int gop_id; |
| |
| int irq; |
| |
| struct mvpp2 *priv; |
| |
| /* Per-port registers' base address */ |
| void __iomem *base; |
| |
| struct mvpp2_rx_queue **rxqs; |
| struct mvpp2_tx_queue **txqs; |
| struct net_device *dev; |
| |
| int pkt_size; |
| |
| u32 pending_cause_rx; |
| struct napi_struct napi; |
| |
| /* Per-CPU port control */ |
| struct mvpp2_port_pcpu __percpu *pcpu; |
| |
| /* Flags */ |
| unsigned long flags; |
| |
| u16 tx_ring_size; |
| u16 rx_ring_size; |
| struct mvpp2_pcpu_stats __percpu *stats; |
| |
| phy_interface_t phy_interface; |
| struct device_node *phy_node; |
| unsigned int link; |
| unsigned int duplex; |
| unsigned int speed; |
| |
| struct mvpp2_bm_pool *pool_long; |
| struct mvpp2_bm_pool *pool_short; |
| |
| /* Index of first port's physical RXQ */ |
| u8 first_rxq; |
| }; |
| |
| /* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the |
| * layout of the transmit and reception DMA descriptors, and their |
| * layout is therefore defined by the hardware design |
| */ |
| |
| #define MVPP2_TXD_L3_OFF_SHIFT 0 |
| #define MVPP2_TXD_IP_HLEN_SHIFT 8 |
| #define MVPP2_TXD_L4_CSUM_FRAG BIT(13) |
| #define MVPP2_TXD_L4_CSUM_NOT BIT(14) |
| #define MVPP2_TXD_IP_CSUM_DISABLE BIT(15) |
| #define MVPP2_TXD_PADDING_DISABLE BIT(23) |
| #define MVPP2_TXD_L4_UDP BIT(24) |
| #define MVPP2_TXD_L3_IP6 BIT(26) |
| #define MVPP2_TXD_L_DESC BIT(28) |
| #define MVPP2_TXD_F_DESC BIT(29) |
| |
| #define MVPP2_RXD_ERR_SUMMARY BIT(15) |
| #define MVPP2_RXD_ERR_CODE_MASK (BIT(13) | BIT(14)) |
| #define MVPP2_RXD_ERR_CRC 0x0 |
| #define MVPP2_RXD_ERR_OVERRUN BIT(13) |
| #define MVPP2_RXD_ERR_RESOURCE (BIT(13) | BIT(14)) |
| #define MVPP2_RXD_BM_POOL_ID_OFFS 16 |
| #define MVPP2_RXD_BM_POOL_ID_MASK (BIT(16) | BIT(17) | BIT(18)) |
| #define MVPP2_RXD_HWF_SYNC BIT(21) |
| #define MVPP2_RXD_L4_CSUM_OK BIT(22) |
| #define MVPP2_RXD_IP4_HEADER_ERR BIT(24) |
| #define MVPP2_RXD_L4_TCP BIT(25) |
| #define MVPP2_RXD_L4_UDP BIT(26) |
| #define MVPP2_RXD_L3_IP4 BIT(28) |
| #define MVPP2_RXD_L3_IP6 BIT(30) |
| #define MVPP2_RXD_BUF_HDR BIT(31) |
| |
| /* HW TX descriptor for PPv2.1 */ |
| struct mvpp21_tx_desc { |
| u32 command; /* Options used by HW for packet transmitting.*/ |
| u8 packet_offset; /* the offset from the buffer beginning */ |
| u8 phys_txq; /* destination queue ID */ |
| u16 data_size; /* data size of transmitted packet in bytes */ |
| u32 buf_dma_addr; /* physical addr of transmitted buffer */ |
| u32 buf_cookie; /* cookie for access to TX buffer in tx path */ |
| u32 reserved1[3]; /* hw_cmd (for future use, BM, PON, PNC) */ |
| u32 reserved2; /* reserved (for future use) */ |
| }; |
| |
| /* HW RX descriptor for PPv2.1 */ |
| struct mvpp21_rx_desc { |
| u32 status; /* info about received packet */ |
| u16 reserved1; /* parser_info (for future use, PnC) */ |
| u16 data_size; /* size of received packet in bytes */ |
| u32 buf_dma_addr; /* physical address of the buffer */ |
| u32 buf_cookie; /* cookie for access to RX buffer in rx path */ |
| u16 reserved2; /* gem_port_id (for future use, PON) */ |
| u16 reserved3; /* csum_l4 (for future use, PnC) */ |
| u8 reserved4; /* bm_qset (for future use, BM) */ |
| u8 reserved5; |
| u16 reserved6; /* classify_info (for future use, PnC) */ |
| u32 reserved7; /* flow_id (for future use, PnC) */ |
| u32 reserved8; |
| }; |
| |
| /* HW TX descriptor for PPv2.2 */ |
| struct mvpp22_tx_desc { |
| u32 command; |
| u8 packet_offset; |
| u8 phys_txq; |
| u16 data_size; |
| u64 reserved1; |
| u64 buf_dma_addr_ptp; |
| u64 buf_cookie_misc; |
| }; |
| |
| /* HW RX descriptor for PPv2.2 */ |
| struct mvpp22_rx_desc { |
| u32 status; |
| u16 reserved1; |
| u16 data_size; |
| u32 reserved2; |
| u32 reserved3; |
| u64 buf_dma_addr_key_hash; |
| u64 buf_cookie_misc; |
| }; |
| |
| /* Opaque type used by the driver to manipulate the HW TX and RX |
| * descriptors |
| */ |
| struct mvpp2_tx_desc { |
| union { |
| struct mvpp21_tx_desc pp21; |
| struct mvpp22_tx_desc pp22; |
| }; |
| }; |
| |
| struct mvpp2_rx_desc { |
| union { |
| struct mvpp21_rx_desc pp21; |
| struct mvpp22_rx_desc pp22; |
| }; |
| }; |
| |
| struct mvpp2_txq_pcpu_buf { |
| /* Transmitted SKB */ |
| struct sk_buff *skb; |
| |
| /* Physical address of transmitted buffer */ |
| dma_addr_t dma; |
| |
| /* Size transmitted */ |
| size_t size; |
| }; |
| |
| /* Per-CPU Tx queue control */ |
| struct mvpp2_txq_pcpu { |
| int cpu; |
| |
| /* Number of Tx DMA descriptors in the descriptor ring */ |
| int size; |
| |
| /* Number of currently used Tx DMA descriptor in the |
| * descriptor ring |
| */ |
| int count; |
| |
| /* Number of Tx DMA descriptors reserved for each CPU */ |
| int reserved_num; |
| |
| /* Infos about transmitted buffers */ |
| struct mvpp2_txq_pcpu_buf *buffs; |
| |
| /* Index of last TX DMA descriptor that was inserted */ |
| int txq_put_index; |
| |
| /* Index of the TX DMA descriptor to be cleaned up */ |
| int txq_get_index; |
| }; |
| |
| struct mvpp2_tx_queue { |
| /* Physical number of this Tx queue */ |
| u8 id; |
| |
| /* Logical number of this Tx queue */ |
| u8 log_id; |
| |
| /* Number of Tx DMA descriptors in the descriptor ring */ |
| int size; |
| |
| /* Number of currently used Tx DMA descriptor in the descriptor ring */ |
| int count; |
| |
| /* Per-CPU control of physical Tx queues */ |
| struct mvpp2_txq_pcpu __percpu *pcpu; |
| |
| u32 done_pkts_coal; |
| |
| /* Virtual address of thex Tx DMA descriptors array */ |
| struct mvpp2_tx_desc *descs; |
| |
| /* DMA address of the Tx DMA descriptors array */ |
| dma_addr_t descs_dma; |
| |
| /* Index of the last Tx DMA descriptor */ |
| int last_desc; |
| |
| /* Index of the next Tx DMA descriptor to process */ |
| int next_desc_to_proc; |
| }; |
| |
| struct mvpp2_rx_queue { |
| /* RX queue number, in the range 0-31 for physical RXQs */ |
| u8 id; |
| |
| /* Num of rx descriptors in the rx descriptor ring */ |
| int size; |
| |
| u32 pkts_coal; |
| u32 time_coal; |
| |
| /* Virtual address of the RX DMA descriptors array */ |
| struct mvpp2_rx_desc *descs; |
| |
| /* DMA address of the RX DMA descriptors array */ |
| dma_addr_t descs_dma; |
| |
| /* Index of the last RX DMA descriptor */ |
| int last_desc; |
| |
| /* Index of the next RX DMA descriptor to process */ |
| int next_desc_to_proc; |
| |
| /* ID of port to which physical RXQ is mapped */ |
| int port; |
| |
| /* Port's logic RXQ number to which physical RXQ is mapped */ |
| int logic_rxq; |
| }; |
| |
| union mvpp2_prs_tcam_entry { |
| u32 word[MVPP2_PRS_TCAM_WORDS]; |
| u8 byte[MVPP2_PRS_TCAM_WORDS * 4]; |
| }; |
| |
| union mvpp2_prs_sram_entry { |
| u32 word[MVPP2_PRS_SRAM_WORDS]; |
| u8 byte[MVPP2_PRS_SRAM_WORDS * 4]; |
| }; |
| |
| struct mvpp2_prs_entry { |
| u32 index; |
| union mvpp2_prs_tcam_entry tcam; |
| union mvpp2_prs_sram_entry sram; |
| }; |
| |
| struct mvpp2_prs_shadow { |
| bool valid; |
| bool finish; |
| |
| /* Lookup ID */ |
| int lu; |
| |
| /* User defined offset */ |
| int udf; |
| |
| /* Result info */ |
| u32 ri; |
| u32 ri_mask; |
| }; |
| |
| struct mvpp2_cls_flow_entry { |
| u32 index; |
| u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS]; |
| }; |
| |
| struct mvpp2_cls_lookup_entry { |
| u32 lkpid; |
| u32 way; |
| u32 data; |
| }; |
| |
| struct mvpp2_bm_pool { |
| /* Pool number in the range 0-7 */ |
| int id; |
| enum mvpp2_bm_type type; |
| |
| /* Buffer Pointers Pool External (BPPE) size */ |
| int size; |
| /* BPPE size in bytes */ |
| int size_bytes; |
| /* Number of buffers for this pool */ |
| int buf_num; |
| /* Pool buffer size */ |
| int buf_size; |
| /* Packet size */ |
| int pkt_size; |
| int frag_size; |
| |
| /* BPPE virtual base address */ |
| u32 *virt_addr; |
| /* BPPE DMA base address */ |
| dma_addr_t dma_addr; |
| |
| /* Ports using BM pool */ |
| u32 port_map; |
| }; |
| |
| /* Static declaractions */ |
| |
| /* Number of RXQs used by single port */ |
| static int rxq_number = MVPP2_DEFAULT_RXQ; |
| /* Number of TXQs used by single port */ |
| static int txq_number = MVPP2_MAX_TXQ; |
| |
| #define MVPP2_DRIVER_NAME "mvpp2" |
| #define MVPP2_DRIVER_VERSION "1.0" |
| |
| /* Utility/helper methods */ |
| |
| static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data) |
| { |
| writel(data, priv->cpu_base[0] + offset); |
| } |
| |
| static u32 mvpp2_read(struct mvpp2 *priv, u32 offset) |
| { |
| return readl(priv->cpu_base[0] + offset); |
| } |
| |
| /* These accessors should be used to access: |
| * |
| * - per-CPU registers, where each CPU has its own copy of the |
| * register. |
| * |
| * MVPP2_BM_VIRT_ALLOC_REG |
| * MVPP2_BM_ADDR_HIGH_ALLOC |
| * MVPP22_BM_ADDR_HIGH_RLS_REG |
| * MVPP2_BM_VIRT_RLS_REG |
| * MVPP2_ISR_RX_TX_CAUSE_REG |
| * MVPP2_ISR_RX_TX_MASK_REG |
| * MVPP2_TXQ_NUM_REG |
| * MVPP2_AGGR_TXQ_UPDATE_REG |
| * MVPP2_TXQ_RSVD_REQ_REG |
| * MVPP2_TXQ_RSVD_RSLT_REG |
| * MVPP2_TXQ_SENT_REG |
| * MVPP2_RXQ_NUM_REG |
| * |
| * - global registers that must be accessed through a specific CPU |
| * window, because they are related to an access to a per-CPU |
| * register |
| * |
| * MVPP2_BM_PHY_ALLOC_REG (related to MVPP2_BM_VIRT_ALLOC_REG) |
| * MVPP2_BM_PHY_RLS_REG (related to MVPP2_BM_VIRT_RLS_REG) |
| * MVPP2_RXQ_THRESH_REG (related to MVPP2_RXQ_NUM_REG) |
| * MVPP2_RXQ_DESC_ADDR_REG (related to MVPP2_RXQ_NUM_REG) |
| * MVPP2_RXQ_DESC_SIZE_REG (related to MVPP2_RXQ_NUM_REG) |
| * MVPP2_RXQ_INDEX_REG (related to MVPP2_RXQ_NUM_REG) |
| * MVPP2_TXQ_PENDING_REG (related to MVPP2_TXQ_NUM_REG) |
| * MVPP2_TXQ_DESC_ADDR_REG (related to MVPP2_TXQ_NUM_REG) |
| * MVPP2_TXQ_DESC_SIZE_REG (related to MVPP2_TXQ_NUM_REG) |
| * MVPP2_TXQ_INDEX_REG (related to MVPP2_TXQ_NUM_REG) |
| * MVPP2_TXQ_PENDING_REG (related to MVPP2_TXQ_NUM_REG) |
| * MVPP2_TXQ_PREF_BUF_REG (related to MVPP2_TXQ_NUM_REG) |
| * MVPP2_TXQ_PREF_BUF_REG (related to MVPP2_TXQ_NUM_REG) |
| */ |
| static void mvpp2_percpu_write(struct mvpp2 *priv, int cpu, |
| u32 offset, u32 data) |
| { |
| writel(data, priv->cpu_base[cpu] + offset); |
| } |
| |
| static u32 mvpp2_percpu_read(struct mvpp2 *priv, int cpu, |
| u32 offset) |
| { |
| return readl(priv->cpu_base[cpu] + offset); |
| } |
| |
| static dma_addr_t mvpp2_txdesc_dma_addr_get(struct mvpp2_port *port, |
| struct mvpp2_tx_desc *tx_desc) |
| { |
| if (port->priv->hw_version == MVPP21) |
| return tx_desc->pp21.buf_dma_addr; |
| else |
| return tx_desc->pp22.buf_dma_addr_ptp & GENMASK_ULL(40, 0); |
| } |
| |
| static void mvpp2_txdesc_dma_addr_set(struct mvpp2_port *port, |
| struct mvpp2_tx_desc *tx_desc, |
| dma_addr_t dma_addr) |
| { |
| if (port->priv->hw_version == MVPP21) { |
| tx_desc->pp21.buf_dma_addr = dma_addr; |
| } else { |
| u64 val = (u64)dma_addr; |
| |
| tx_desc->pp22.buf_dma_addr_ptp &= ~GENMASK_ULL(40, 0); |
| tx_desc->pp22.buf_dma_addr_ptp |= val; |
| } |
| } |
| |
| static size_t mvpp2_txdesc_size_get(struct mvpp2_port *port, |
| struct mvpp2_tx_desc *tx_desc) |
| { |
| if (port->priv->hw_version == MVPP21) |
| return tx_desc->pp21.data_size; |
| else |
| return tx_desc->pp22.data_size; |
| } |
| |
| static void mvpp2_txdesc_size_set(struct mvpp2_port *port, |
| struct mvpp2_tx_desc *tx_desc, |
| size_t size) |
| { |
| if (port->priv->hw_version == MVPP21) |
| tx_desc->pp21.data_size = size; |
| else |
| tx_desc->pp22.data_size = size; |
| } |
| |
| static void mvpp2_txdesc_txq_set(struct mvpp2_port *port, |
| struct mvpp2_tx_desc *tx_desc, |
| unsigned int txq) |
| { |
| if (port->priv->hw_version == MVPP21) |
| tx_desc->pp21.phys_txq = txq; |
| else |
| tx_desc->pp22.phys_txq = txq; |
| } |
| |
| static void mvpp2_txdesc_cmd_set(struct mvpp2_port *port, |
| struct mvpp2_tx_desc *tx_desc, |
| unsigned int command) |
| { |
| if (port->priv->hw_version == MVPP21) |
| tx_desc->pp21.command = command; |
| else |
| tx_desc->pp22.command = command; |
| } |
| |
| static void mvpp2_txdesc_offset_set(struct mvpp2_port *port, |
| struct mvpp2_tx_desc *tx_desc, |
| unsigned int offset) |
| { |
| if (port->priv->hw_version == MVPP21) |
| tx_desc->pp21.packet_offset = offset; |
| else |
| tx_desc->pp22.packet_offset = offset; |
| } |
| |
| static unsigned int mvpp2_txdesc_offset_get(struct mvpp2_port *port, |
| struct mvpp2_tx_desc *tx_desc) |
| { |
| if (port->priv->hw_version == MVPP21) |
| return tx_desc->pp21.packet_offset; |
| else |
| return tx_desc->pp22.packet_offset; |
| } |
| |
| static dma_addr_t mvpp2_rxdesc_dma_addr_get(struct mvpp2_port *port, |
| struct mvpp2_rx_desc *rx_desc) |
| { |
| if (port->priv->hw_version == MVPP21) |
| return rx_desc->pp21.buf_dma_addr; |
| else |
| return rx_desc->pp22.buf_dma_addr_key_hash & GENMASK_ULL(40, 0); |
| } |
| |
| static unsigned long mvpp2_rxdesc_cookie_get(struct mvpp2_port *port, |
| struct mvpp2_rx_desc *rx_desc) |
| { |
| if (port->priv->hw_version == MVPP21) |
| return rx_desc->pp21.buf_cookie; |
| else |
| return rx_desc->pp22.buf_cookie_misc & GENMASK_ULL(40, 0); |
| } |
| |
| static size_t mvpp2_rxdesc_size_get(struct mvpp2_port *port, |
| struct mvpp2_rx_desc *rx_desc) |
| { |
| if (port->priv->hw_version == MVPP21) |
| return rx_desc->pp21.data_size; |
| else |
| return rx_desc->pp22.data_size; |
| } |
| |
| static u32 mvpp2_rxdesc_status_get(struct mvpp2_port *port, |
| struct mvpp2_rx_desc *rx_desc) |
| { |
| if (port->priv->hw_version == MVPP21) |
| return rx_desc->pp21.status; |
| else |
| return rx_desc->pp22.status; |
| } |
| |
| static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu) |
| { |
| txq_pcpu->txq_get_index++; |
| if (txq_pcpu->txq_get_index == txq_pcpu->size) |
| txq_pcpu->txq_get_index = 0; |
| } |
| |
| static void mvpp2_txq_inc_put(struct mvpp2_port *port, |
| struct mvpp2_txq_pcpu *txq_pcpu, |
| struct sk_buff *skb, |
| struct mvpp2_tx_desc *tx_desc) |
| { |
| struct mvpp2_txq_pcpu_buf *tx_buf = |
| txq_pcpu->buffs + txq_pcpu->txq_put_index; |
| tx_buf->skb = skb; |
| tx_buf->size = mvpp2_txdesc_size_get(port, tx_desc); |
| tx_buf->dma = mvpp2_txdesc_dma_addr_get(port, tx_desc) + |
| mvpp2_txdesc_offset_get(port, tx_desc); |
| txq_pcpu->txq_put_index++; |
| if (txq_pcpu->txq_put_index == txq_pcpu->size) |
| txq_pcpu->txq_put_index = 0; |
| } |
| |
| /* Get number of physical egress port */ |
| static inline int mvpp2_egress_port(struct mvpp2_port *port) |
| { |
| return MVPP2_MAX_TCONT + port->id; |
| } |
| |
| /* Get number of physical TXQ */ |
| static inline int mvpp2_txq_phys(int port, int txq) |
| { |
| return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq; |
| } |
| |
| /* Parser configuration routines */ |
| |
| /* Update parser tcam and sram hw entries */ |
| static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe) |
| { |
| int i; |
| |
| if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1) |
| return -EINVAL; |
| |
| /* Clear entry invalidation bit */ |
| pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK; |
| |
| /* Write tcam index - indirect access */ |
| mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index); |
| for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++) |
| mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]); |
| |
| /* Write sram index - indirect access */ |
| mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index); |
| for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++) |
| mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]); |
| |
| return 0; |
| } |
| |
| /* Read tcam entry from hw */ |
| static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe) |
| { |
| int i; |
| |
| if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1) |
| return -EINVAL; |
| |
| /* Write tcam index - indirect access */ |
| mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index); |
| |
| pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv, |
| MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD)); |
| if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK) |
| return MVPP2_PRS_TCAM_ENTRY_INVALID; |
| |
| for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++) |
| pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i)); |
| |
| /* Write sram index - indirect access */ |
| mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index); |
| for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++) |
| pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i)); |
| |
| return 0; |
| } |
| |
| /* Invalidate tcam hw entry */ |
| static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index) |
| { |
| /* Write index - indirect access */ |
| mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index); |
| mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD), |
| MVPP2_PRS_TCAM_INV_MASK); |
| } |
| |
| /* Enable shadow table entry and set its lookup ID */ |
| static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu) |
| { |
| priv->prs_shadow[index].valid = true; |
| priv->prs_shadow[index].lu = lu; |
| } |
| |
| /* Update ri fields in shadow table entry */ |
| static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index, |
| unsigned int ri, unsigned int ri_mask) |
| { |
| priv->prs_shadow[index].ri_mask = ri_mask; |
| priv->prs_shadow[index].ri = ri; |
| } |
| |
| /* Update lookup field in tcam sw entry */ |
| static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu) |
| { |
| int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE); |
| |
| pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu; |
| pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK; |
| } |
| |
| /* Update mask for single port in tcam sw entry */ |
| static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe, |
| unsigned int port, bool add) |
| { |
| int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE); |
| |
| if (add) |
| pe->tcam.byte[enable_off] &= ~(1 << port); |
| else |
| pe->tcam.byte[enable_off] |= 1 << port; |
| } |
| |
| /* Update port map in tcam sw entry */ |
| static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe, |
| unsigned int ports) |
| { |
| unsigned char port_mask = MVPP2_PRS_PORT_MASK; |
| int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE); |
| |
| pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0; |
| pe->tcam.byte[enable_off] &= ~port_mask; |
| pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK; |
| } |
| |
| /* Obtain port map from tcam sw entry */ |
| static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe) |
| { |
| int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE); |
| |
| return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK; |
| } |
| |
| /* Set byte of data and its enable bits in tcam sw entry */ |
| static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe, |
| unsigned int offs, unsigned char byte, |
| unsigned char enable) |
| { |
| pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte; |
| pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable; |
| } |
| |
| /* Get byte of data and its enable bits from tcam sw entry */ |
| static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe, |
| unsigned int offs, unsigned char *byte, |
| unsigned char *enable) |
| { |
| *byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)]; |
| *enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)]; |
| } |
| |
| /* Compare tcam data bytes with a pattern */ |
| static bool mvpp2_prs_tcam_data_cmp(struct mvpp2_prs_entry *pe, int offs, |
| u16 data) |
| { |
| int off = MVPP2_PRS_TCAM_DATA_BYTE(offs); |
| u16 tcam_data; |
| |
| tcam_data = (8 << pe->tcam.byte[off + 1]) | pe->tcam.byte[off]; |
| if (tcam_data != data) |
| return false; |
| return true; |
| } |
| |
| /* Update ai bits in tcam sw entry */ |
| static void mvpp2_prs_tcam_ai_update(struct mvpp2_prs_entry *pe, |
| unsigned int bits, unsigned int enable) |
| { |
| int i, ai_idx = MVPP2_PRS_TCAM_AI_BYTE; |
| |
| for (i = 0; i < MVPP2_PRS_AI_BITS; i++) { |
| |
| if (!(enable & BIT(i))) |
| continue; |
| |
| if (bits & BIT(i)) |
| pe->tcam.byte[ai_idx] |= 1 << i; |
| else |
| pe->tcam.byte[ai_idx] &= ~(1 << i); |
| } |
| |
| pe->tcam.byte[MVPP2_PRS_TCAM_EN_OFFS(ai_idx)] |= enable; |
| } |
| |
| /* Get ai bits from tcam sw entry */ |
| static int mvpp2_prs_tcam_ai_get(struct mvpp2_prs_entry *pe) |
| { |
| return pe->tcam.byte[MVPP2_PRS_TCAM_AI_BYTE]; |
| } |
| |
| /* Set ethertype in tcam sw entry */ |
| static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset, |
| unsigned short ethertype) |
| { |
| mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff); |
| mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff); |
| } |
| |
| /* Set bits in sram sw entry */ |
| static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num, |
| int val) |
| { |
| pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8)); |
| } |
| |
| /* Clear bits in sram sw entry */ |
| static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num, |
| int val) |
| { |
| pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8)); |
| } |
| |
| /* Update ri bits in sram sw entry */ |
| static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe, |
| unsigned int bits, unsigned int mask) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) { |
| int ri_off = MVPP2_PRS_SRAM_RI_OFFS; |
| |
| if (!(mask & BIT(i))) |
| continue; |
| |
| if (bits & BIT(i)) |
| mvpp2_prs_sram_bits_set(pe, ri_off + i, 1); |
| else |
| mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1); |
| |
| mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1); |
| } |
| } |
| |
| /* Obtain ri bits from sram sw entry */ |
| static int mvpp2_prs_sram_ri_get(struct mvpp2_prs_entry *pe) |
| { |
| return pe->sram.word[MVPP2_PRS_SRAM_RI_WORD]; |
| } |
| |
| /* Update ai bits in sram sw entry */ |
| static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe, |
| unsigned int bits, unsigned int mask) |
| { |
| unsigned int i; |
| int ai_off = MVPP2_PRS_SRAM_AI_OFFS; |
| |
| for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) { |
| |
| if (!(mask & BIT(i))) |
| continue; |
| |
| if (bits & BIT(i)) |
| mvpp2_prs_sram_bits_set(pe, ai_off + i, 1); |
| else |
| mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1); |
| |
| mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1); |
| } |
| } |
| |
| /* Read ai bits from sram sw entry */ |
| static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe) |
| { |
| u8 bits; |
| int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS); |
| int ai_en_off = ai_off + 1; |
| int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8; |
| |
| bits = (pe->sram.byte[ai_off] >> ai_shift) | |
| (pe->sram.byte[ai_en_off] << (8 - ai_shift)); |
| |
| return bits; |
| } |
| |
| /* In sram sw entry set lookup ID field of the tcam key to be used in the next |
| * lookup interation |
| */ |
| static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe, |
| unsigned int lu) |
| { |
| int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS; |
| |
| mvpp2_prs_sram_bits_clear(pe, sram_next_off, |
| MVPP2_PRS_SRAM_NEXT_LU_MASK); |
| mvpp2_prs_sram_bits_set(pe, sram_next_off, lu); |
| } |
| |
| /* In the sram sw entry set sign and value of the next lookup offset |
| * and the offset value generated to the classifier |
| */ |
| static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift, |
| unsigned int op) |
| { |
| /* Set sign */ |
| if (shift < 0) { |
| mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1); |
| shift = 0 - shift; |
| } else { |
| mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1); |
| } |
| |
| /* Set value */ |
| pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] = |
| (unsigned char)shift; |
| |
| /* Reset and set operation */ |
| mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, |
| MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK); |
| mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op); |
| |
| /* Set base offset as current */ |
| mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1); |
| } |
| |
| /* In the sram sw entry set sign and value of the user defined offset |
| * generated to the classifier |
| */ |
| static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe, |
| unsigned int type, int offset, |
| unsigned int op) |
| { |
| /* Set sign */ |
| if (offset < 0) { |
| mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1); |
| offset = 0 - offset; |
| } else { |
| mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1); |
| } |
| |
| /* Set value */ |
| mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS, |
| MVPP2_PRS_SRAM_UDF_MASK); |
| mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset); |
| pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS + |
| MVPP2_PRS_SRAM_UDF_BITS)] &= |
| ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8))); |
| pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS + |
| MVPP2_PRS_SRAM_UDF_BITS)] |= |
| (offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8))); |
| |
| /* Set offset type */ |
| mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, |
| MVPP2_PRS_SRAM_UDF_TYPE_MASK); |
| mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type); |
| |
| /* Set offset operation */ |
| mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, |
| MVPP2_PRS_SRAM_OP_SEL_UDF_MASK); |
| mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op); |
| |
| pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS + |
| MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &= |
| ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >> |
| (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8))); |
| |
| pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS + |
| MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |= |
| (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8))); |
| |
| /* Set base offset as current */ |
| mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1); |
| } |
| |
| /* Find parser flow entry */ |
| static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow) |
| { |
| struct mvpp2_prs_entry *pe; |
| int tid; |
| |
| pe = kzalloc(sizeof(*pe), GFP_KERNEL); |
| if (!pe) |
| return NULL; |
| mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS); |
| |
| /* Go through the all entires with MVPP2_PRS_LU_FLOWS */ |
| for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) { |
| u8 bits; |
| |
| if (!priv->prs_shadow[tid].valid || |
| priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS) |
| continue; |
| |
| pe->index = tid; |
| mvpp2_prs_hw_read(priv, pe); |
| bits = mvpp2_prs_sram_ai_get(pe); |
| |
| /* Sram store classification lookup ID in AI bits [5:0] */ |
| if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow) |
| return pe; |
| } |
| kfree(pe); |
| |
| return NULL; |
| } |
| |
| /* Return first free tcam index, seeking from start to end */ |
| static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start, |
| unsigned char end) |
| { |
| int tid; |
| |
| if (start > end) |
| swap(start, end); |
| |
| if (end >= MVPP2_PRS_TCAM_SRAM_SIZE) |
| end = MVPP2_PRS_TCAM_SRAM_SIZE - 1; |
| |
| for (tid = start; tid <= end; tid++) { |
| if (!priv->prs_shadow[tid].valid) |
| return tid; |
| } |
| |
| return -EINVAL; |
| } |
| |
| /* Enable/disable dropping all mac da's */ |
| static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add) |
| { |
| struct mvpp2_prs_entry pe; |
| |
| if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) { |
| /* Entry exist - update port only */ |
| pe.index = MVPP2_PE_DROP_ALL; |
| mvpp2_prs_hw_read(priv, &pe); |
| } else { |
| /* Entry doesn't exist - create new */ |
| memset(&pe, 0, sizeof(pe)); |
| mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC); |
| pe.index = MVPP2_PE_DROP_ALL; |
| |
| /* Non-promiscuous mode for all ports - DROP unknown packets */ |
| mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK, |
| MVPP2_PRS_RI_DROP_MASK); |
| |
| mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); |
| |
| /* Update shadow table */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC); |
| |
| /* Mask all ports */ |
| mvpp2_prs_tcam_port_map_set(&pe, 0); |
| } |
| |
| /* Update port mask */ |
| mvpp2_prs_tcam_port_set(&pe, port, add); |
| |
| mvpp2_prs_hw_write(priv, &pe); |
| } |
| |
| /* Set port to promiscuous mode */ |
| static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add) |
| { |
| struct mvpp2_prs_entry pe; |
| |
| /* Promiscuous mode - Accept unknown packets */ |
| |
| if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) { |
| /* Entry exist - update port only */ |
| pe.index = MVPP2_PE_MAC_PROMISCUOUS; |
| mvpp2_prs_hw_read(priv, &pe); |
| } else { |
| /* Entry doesn't exist - create new */ |
| memset(&pe, 0, sizeof(pe)); |
| mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC); |
| pe.index = MVPP2_PE_MAC_PROMISCUOUS; |
| |
| /* Continue - set next lookup */ |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA); |
| |
| /* Set result info bits */ |
| mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST, |
| MVPP2_PRS_RI_L2_CAST_MASK); |
| |
| /* Shift to ethertype */ |
| mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN, |
| MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); |
| |
| /* Mask all ports */ |
| mvpp2_prs_tcam_port_map_set(&pe, 0); |
| |
| /* Update shadow table */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC); |
| } |
| |
| /* Update port mask */ |
| mvpp2_prs_tcam_port_set(&pe, port, add); |
| |
| mvpp2_prs_hw_write(priv, &pe); |
| } |
| |
| /* Accept multicast */ |
| static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index, |
| bool add) |
| { |
| struct mvpp2_prs_entry pe; |
| unsigned char da_mc; |
| |
| /* Ethernet multicast address first byte is |
| * 0x01 for IPv4 and 0x33 for IPv6 |
| */ |
| da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33; |
| |
| if (priv->prs_shadow[index].valid) { |
| /* Entry exist - update port only */ |
| pe.index = index; |
| mvpp2_prs_hw_read(priv, &pe); |
| } else { |
| /* Entry doesn't exist - create new */ |
| memset(&pe, 0, sizeof(pe)); |
| mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC); |
| pe.index = index; |
| |
| /* Continue - set next lookup */ |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA); |
| |
| /* Set result info bits */ |
| mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST, |
| MVPP2_PRS_RI_L2_CAST_MASK); |
| |
| /* Update tcam entry data first byte */ |
| mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff); |
| |
| /* Shift to ethertype */ |
| mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN, |
| MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); |
| |
| /* Mask all ports */ |
| mvpp2_prs_tcam_port_map_set(&pe, 0); |
| |
| /* Update shadow table */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC); |
| } |
| |
| /* Update port mask */ |
| mvpp2_prs_tcam_port_set(&pe, port, add); |
| |
| mvpp2_prs_hw_write(priv, &pe); |
| } |
| |
| /* Set entry for dsa packets */ |
| static void mvpp2_prs_dsa_tag_set(struct mvpp2 *priv, int port, bool add, |
| bool tagged, bool extend) |
| { |
| struct mvpp2_prs_entry pe; |
| int tid, shift; |
| |
| if (extend) { |
| tid = tagged ? MVPP2_PE_EDSA_TAGGED : MVPP2_PE_EDSA_UNTAGGED; |
| shift = 8; |
| } else { |
| tid = tagged ? MVPP2_PE_DSA_TAGGED : MVPP2_PE_DSA_UNTAGGED; |
| shift = 4; |
| } |
| |
| if (priv->prs_shadow[tid].valid) { |
| /* Entry exist - update port only */ |
| pe.index = tid; |
| mvpp2_prs_hw_read(priv, &pe); |
| } else { |
| /* Entry doesn't exist - create new */ |
| memset(&pe, 0, sizeof(pe)); |
| mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA); |
| pe.index = tid; |
| |
| /* Shift 4 bytes if DSA tag or 8 bytes in case of EDSA tag*/ |
| mvpp2_prs_sram_shift_set(&pe, shift, |
| MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); |
| |
| /* Update shadow table */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA); |
| |
| if (tagged) { |
| /* Set tagged bit in DSA tag */ |
| mvpp2_prs_tcam_data_byte_set(&pe, 0, |
| MVPP2_PRS_TCAM_DSA_TAGGED_BIT, |
| MVPP2_PRS_TCAM_DSA_TAGGED_BIT); |
| /* Clear all ai bits for next iteration */ |
| mvpp2_prs_sram_ai_update(&pe, 0, |
| MVPP2_PRS_SRAM_AI_MASK); |
| /* If packet is tagged continue check vlans */ |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN); |
| } else { |
| /* Set result info bits to 'no vlans' */ |
| mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE, |
| MVPP2_PRS_RI_VLAN_MASK); |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2); |
| } |
| |
| /* Mask all ports */ |
| mvpp2_prs_tcam_port_map_set(&pe, 0); |
| } |
| |
| /* Update port mask */ |
| mvpp2_prs_tcam_port_set(&pe, port, add); |
| |
| mvpp2_prs_hw_write(priv, &pe); |
| } |
| |
| /* Set entry for dsa ethertype */ |
| static void mvpp2_prs_dsa_tag_ethertype_set(struct mvpp2 *priv, int port, |
| bool add, bool tagged, bool extend) |
| { |
| struct mvpp2_prs_entry pe; |
| int tid, shift, port_mask; |
| |
| if (extend) { |
| tid = tagged ? MVPP2_PE_ETYPE_EDSA_TAGGED : |
| MVPP2_PE_ETYPE_EDSA_UNTAGGED; |
| port_mask = 0; |
| shift = 8; |
| } else { |
| tid = tagged ? MVPP2_PE_ETYPE_DSA_TAGGED : |
| MVPP2_PE_ETYPE_DSA_UNTAGGED; |
| port_mask = MVPP2_PRS_PORT_MASK; |
| shift = 4; |
| } |
| |
| if (priv->prs_shadow[tid].valid) { |
| /* Entry exist - update port only */ |
| pe.index = tid; |
| mvpp2_prs_hw_read(priv, &pe); |
| } else { |
| /* Entry doesn't exist - create new */ |
| memset(&pe, 0, sizeof(pe)); |
| mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA); |
| pe.index = tid; |
| |
| /* Set ethertype */ |
| mvpp2_prs_match_etype(&pe, 0, ETH_P_EDSA); |
| mvpp2_prs_match_etype(&pe, 2, 0); |
| |
| mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DSA_MASK, |
| MVPP2_PRS_RI_DSA_MASK); |
| /* Shift ethertype + 2 byte reserved + tag*/ |
| mvpp2_prs_sram_shift_set(&pe, 2 + MVPP2_ETH_TYPE_LEN + shift, |
| MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); |
| |
| /* Update shadow table */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA); |
| |
| if (tagged) { |
| /* Set tagged bit in DSA tag */ |
| mvpp2_prs_tcam_data_byte_set(&pe, |
| MVPP2_ETH_TYPE_LEN + 2 + 3, |
| MVPP2_PRS_TCAM_DSA_TAGGED_BIT, |
| MVPP2_PRS_TCAM_DSA_TAGGED_BIT); |
| /* Clear all ai bits for next iteration */ |
| mvpp2_prs_sram_ai_update(&pe, 0, |
| MVPP2_PRS_SRAM_AI_MASK); |
| /* If packet is tagged continue check vlans */ |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN); |
| } else { |
| /* Set result info bits to 'no vlans' */ |
| mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE, |
| MVPP2_PRS_RI_VLAN_MASK); |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2); |
| } |
| /* Mask/unmask all ports, depending on dsa type */ |
| mvpp2_prs_tcam_port_map_set(&pe, port_mask); |
| } |
| |
| /* Update port mask */ |
| mvpp2_prs_tcam_port_set(&pe, port, add); |
| |
| mvpp2_prs_hw_write(priv, &pe); |
| } |
| |
| /* Search for existing single/triple vlan entry */ |
| static struct mvpp2_prs_entry *mvpp2_prs_vlan_find(struct mvpp2 *priv, |
| unsigned short tpid, int ai) |
| { |
| struct mvpp2_prs_entry *pe; |
| int tid; |
| |
| pe = kzalloc(sizeof(*pe), GFP_KERNEL); |
| if (!pe) |
| return NULL; |
| mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN); |
| |
| /* Go through the all entries with MVPP2_PRS_LU_VLAN */ |
| for (tid = MVPP2_PE_FIRST_FREE_TID; |
| tid <= MVPP2_PE_LAST_FREE_TID; tid++) { |
| unsigned int ri_bits, ai_bits; |
| bool match; |
| |
| if (!priv->prs_shadow[tid].valid || |
| priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN) |
| continue; |
| |
| pe->index = tid; |
| |
| mvpp2_prs_hw_read(priv, pe); |
| match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid)); |
| if (!match) |
| continue; |
| |
| /* Get vlan type */ |
| ri_bits = mvpp2_prs_sram_ri_get(pe); |
| ri_bits &= MVPP2_PRS_RI_VLAN_MASK; |
| |
| /* Get current ai value from tcam */ |
| ai_bits = mvpp2_prs_tcam_ai_get(pe); |
| /* Clear double vlan bit */ |
| ai_bits &= ~MVPP2_PRS_DBL_VLAN_AI_BIT; |
| |
| if (ai != ai_bits) |
| continue; |
| |
| if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE || |
| ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE) |
| return pe; |
| } |
| kfree(pe); |
| |
| return NULL; |
| } |
| |
| /* Add/update single/triple vlan entry */ |
| static int mvpp2_prs_vlan_add(struct mvpp2 *priv, unsigned short tpid, int ai, |
| unsigned int port_map) |
| { |
| struct mvpp2_prs_entry *pe; |
| int tid_aux, tid; |
| int ret = 0; |
| |
| pe = mvpp2_prs_vlan_find(priv, tpid, ai); |
| |
| if (!pe) { |
| /* Create new tcam entry */ |
| tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_LAST_FREE_TID, |
| MVPP2_PE_FIRST_FREE_TID); |
| if (tid < 0) |
| return tid; |
| |
| pe = kzalloc(sizeof(*pe), GFP_KERNEL); |
| if (!pe) |
| return -ENOMEM; |
| |
| /* Get last double vlan tid */ |
| for (tid_aux = MVPP2_PE_LAST_FREE_TID; |
| tid_aux >= MVPP2_PE_FIRST_FREE_TID; tid_aux--) { |
| unsigned int ri_bits; |
| |
| if (!priv->prs_shadow[tid_aux].valid || |
| priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN) |
| continue; |
| |
| pe->index = tid_aux; |
| mvpp2_prs_hw_read(priv, pe); |
| ri_bits = mvpp2_prs_sram_ri_get(pe); |
| if ((ri_bits & MVPP2_PRS_RI_VLAN_MASK) == |
| MVPP2_PRS_RI_VLAN_DOUBLE) |
| break; |
| } |
| |
| if (tid <= tid_aux) { |
| ret = -EINVAL; |
| goto free_pe; |
| } |
| |
| memset(pe, 0, sizeof(*pe)); |
| mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN); |
| pe->index = tid; |
| |
| mvpp2_prs_match_etype(pe, 0, tpid); |
| |
| mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_L2); |
| /* Shift 4 bytes - skip 1 vlan tag */ |
| mvpp2_prs_sram_shift_set(pe, MVPP2_VLAN_TAG_LEN, |
| MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); |
| /* Clear all ai bits for next iteration */ |
| mvpp2_prs_sram_ai_update(pe, 0, MVPP2_PRS_SRAM_AI_MASK); |
| |
| if (ai == MVPP2_PRS_SINGLE_VLAN_AI) { |
| mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_SINGLE, |
| MVPP2_PRS_RI_VLAN_MASK); |
| } else { |
| ai |= MVPP2_PRS_DBL_VLAN_AI_BIT; |
| mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_TRIPLE, |
| MVPP2_PRS_RI_VLAN_MASK); |
| } |
| mvpp2_prs_tcam_ai_update(pe, ai, MVPP2_PRS_SRAM_AI_MASK); |
| |
| mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN); |
| } |
| /* Update ports' mask */ |
| mvpp2_prs_tcam_port_map_set(pe, port_map); |
| |
| mvpp2_prs_hw_write(priv, pe); |
| free_pe: |
| kfree(pe); |
| |
| return ret; |
| } |
| |
| /* Get first free double vlan ai number */ |
| static int mvpp2_prs_double_vlan_ai_free_get(struct mvpp2 *priv) |
| { |
| int i; |
| |
| for (i = 1; i < MVPP2_PRS_DBL_VLANS_MAX; i++) { |
| if (!priv->prs_double_vlans[i]) |
| return i; |
| } |
| |
| return -EINVAL; |
| } |
| |
| /* Search for existing double vlan entry */ |
| static struct mvpp2_prs_entry *mvpp2_prs_double_vlan_find(struct mvpp2 *priv, |
| unsigned short tpid1, |
| unsigned short tpid2) |
| { |
| struct mvpp2_prs_entry *pe; |
| int tid; |
| |
| pe = kzalloc(sizeof(*pe), GFP_KERNEL); |
| if (!pe) |
| return NULL; |
| mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN); |
| |
| /* Go through the all entries with MVPP2_PRS_LU_VLAN */ |
| for (tid = MVPP2_PE_FIRST_FREE_TID; |
| tid <= MVPP2_PE_LAST_FREE_TID; tid++) { |
| unsigned int ri_mask; |
| bool match; |
| |
| if (!priv->prs_shadow[tid].valid || |
| priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN) |
| continue; |
| |
| pe->index = tid; |
| mvpp2_prs_hw_read(priv, pe); |
| |
| match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid1)) |
| && mvpp2_prs_tcam_data_cmp(pe, 4, swab16(tpid2)); |
| |
| if (!match) |
| continue; |
| |
| ri_mask = mvpp2_prs_sram_ri_get(pe) & MVPP2_PRS_RI_VLAN_MASK; |
| if (ri_mask == MVPP2_PRS_RI_VLAN_DOUBLE) |
| return pe; |
| } |
| kfree(pe); |
| |
| return NULL; |
| } |
| |
| /* Add or update double vlan entry */ |
| static int mvpp2_prs_double_vlan_add(struct mvpp2 *priv, unsigned short tpid1, |
| unsigned short tpid2, |
| unsigned int port_map) |
| { |
| struct mvpp2_prs_entry *pe; |
| int tid_aux, tid, ai, ret = 0; |
| |
| pe = mvpp2_prs_double_vlan_find(priv, tpid1, tpid2); |
| |
| if (!pe) { |
| /* Create new tcam entry */ |
| tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, |
| MVPP2_PE_LAST_FREE_TID); |
| if (tid < 0) |
| return tid; |
| |
| pe = kzalloc(sizeof(*pe), GFP_KERNEL); |
| if (!pe) |
| return -ENOMEM; |
| |
| /* Set ai value for new double vlan entry */ |
| ai = mvpp2_prs_double_vlan_ai_free_get(priv); |
| if (ai < 0) { |
| ret = ai; |
| goto free_pe; |
| } |
| |
| /* Get first single/triple vlan tid */ |
| for (tid_aux = MVPP2_PE_FIRST_FREE_TID; |
| tid_aux <= MVPP2_PE_LAST_FREE_TID; tid_aux++) { |
| unsigned int ri_bits; |
| |
| if (!priv->prs_shadow[tid_aux].valid || |
| priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN) |
| continue; |
| |
| pe->index = tid_aux; |
| mvpp2_prs_hw_read(priv, pe); |
| ri_bits = mvpp2_prs_sram_ri_get(pe); |
| ri_bits &= MVPP2_PRS_RI_VLAN_MASK; |
| if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE || |
| ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE) |
| break; |
| } |
| |
| if (tid >= tid_aux) { |
| ret = -ERANGE; |
| goto free_pe; |
| } |
| |
| memset(pe, 0, sizeof(*pe)); |
| mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN); |
| pe->index = tid; |
| |
| priv->prs_double_vlans[ai] = true; |
| |
| mvpp2_prs_match_etype(pe, 0, tpid1); |
| mvpp2_prs_match_etype(pe, 4, tpid2); |
| |
| mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_VLAN); |
| /* Shift 8 bytes - skip 2 vlan tags */ |
| mvpp2_prs_sram_shift_set(pe, 2 * MVPP2_VLAN_TAG_LEN, |
| MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); |
| mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_DOUBLE, |
| MVPP2_PRS_RI_VLAN_MASK); |
| mvpp2_prs_sram_ai_update(pe, ai | MVPP2_PRS_DBL_VLAN_AI_BIT, |
| MVPP2_PRS_SRAM_AI_MASK); |
| |
| mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN); |
| } |
| |
| /* Update ports' mask */ |
| mvpp2_prs_tcam_port_map_set(pe, port_map); |
| mvpp2_prs_hw_write(priv, pe); |
| free_pe: |
| kfree(pe); |
| return ret; |
| } |
| |
| /* IPv4 header parsing for fragmentation and L4 offset */ |
| static int mvpp2_prs_ip4_proto(struct mvpp2 *priv, unsigned short proto, |
| unsigned int ri, unsigned int ri_mask) |
| { |
| struct mvpp2_prs_entry pe; |
| int tid; |
| |
| if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) && |
| (proto != IPPROTO_IGMP)) |
| return -EINVAL; |
| |
| /* Fragmented packet */ |
| tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, |
| MVPP2_PE_LAST_FREE_TID); |
| if (tid < 0) |
| return tid; |
| |
| memset(&pe, 0, sizeof(pe)); |
| mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4); |
| pe.index = tid; |
| |
| /* Set next lu to IPv4 */ |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4); |
| mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); |
| /* Set L4 offset */ |
| mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4, |
| sizeof(struct iphdr) - 4, |
| MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); |
| mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT, |
| MVPP2_PRS_IPV4_DIP_AI_BIT); |
| mvpp2_prs_sram_ri_update(&pe, ri | MVPP2_PRS_RI_IP_FRAG_MASK, |
| ri_mask | MVPP2_PRS_RI_IP_FRAG_MASK); |
| |
| mvpp2_prs_tcam_data_byte_set(&pe, 5, proto, MVPP2_PRS_TCAM_PROTO_MASK); |
| mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT); |
| /* Unmask all ports */ |
| mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); |
| |
| /* Update shadow table and hw entry */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4); |
| mvpp2_prs_hw_write(priv, &pe); |
| |
| /* Not fragmented packet */ |
| tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, |
| MVPP2_PE_LAST_FREE_TID); |
| if (tid < 0) |
| return tid; |
| |
| pe.index = tid; |
| /* Clear ri before updating */ |
| pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0; |
| pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0; |
| mvpp2_prs_sram_ri_update(&pe, ri, ri_mask); |
| |
| mvpp2_prs_tcam_data_byte_set(&pe, 2, 0x00, MVPP2_PRS_TCAM_PROTO_MASK_L); |
| mvpp2_prs_tcam_data_byte_set(&pe, 3, 0x00, MVPP2_PRS_TCAM_PROTO_MASK); |
| |
| /* Update shadow table and hw entry */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4); |
| mvpp2_prs_hw_write(priv, &pe); |
| |
| return 0; |
| } |
| |
| /* IPv4 L3 multicast or broadcast */ |
| static int mvpp2_prs_ip4_cast(struct mvpp2 *priv, unsigned short l3_cast) |
| { |
| struct mvpp2_prs_entry pe; |
| int mask, tid; |
| |
| tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, |
| MVPP2_PE_LAST_FREE_TID); |
| if (tid < 0) |
| return tid; |
| |
| memset(&pe, 0, sizeof(pe)); |
| mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4); |
| pe.index = tid; |
| |
| switch (l3_cast) { |
| case MVPP2_PRS_L3_MULTI_CAST: |
| mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV4_MC, |
| MVPP2_PRS_IPV4_MC_MASK); |
| mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST, |
| MVPP2_PRS_RI_L3_ADDR_MASK); |
| break; |
| case MVPP2_PRS_L3_BROAD_CAST: |
| mask = MVPP2_PRS_IPV4_BC_MASK; |
| mvpp2_prs_tcam_data_byte_set(&pe, 0, mask, mask); |
| mvpp2_prs_tcam_data_byte_set(&pe, 1, mask, mask); |
| mvpp2_prs_tcam_data_byte_set(&pe, 2, mask, mask); |
| mvpp2_prs_tcam_data_byte_set(&pe, 3, mask, mask); |
| mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_BCAST, |
| MVPP2_PRS_RI_L3_ADDR_MASK); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* Finished: go to flowid generation */ |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); |
| mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); |
| |
| mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT, |
| MVPP2_PRS_IPV4_DIP_AI_BIT); |
| /* Unmask all ports */ |
| mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); |
| |
| /* Update shadow table and hw entry */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4); |
| mvpp2_prs_hw_write(priv, &pe); |
| |
| return 0; |
| } |
| |
| /* Set entries for protocols over IPv6 */ |
| static int mvpp2_prs_ip6_proto(struct mvpp2 *priv, unsigned short proto, |
| unsigned int ri, unsigned int ri_mask) |
| { |
| struct mvpp2_prs_entry pe; |
| int tid; |
| |
| if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) && |
| (proto != IPPROTO_ICMPV6) && (proto != IPPROTO_IPIP)) |
| return -EINVAL; |
| |
| tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, |
| MVPP2_PE_LAST_FREE_TID); |
| if (tid < 0) |
| return tid; |
| |
| memset(&pe, 0, sizeof(pe)); |
| mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6); |
| pe.index = tid; |
| |
| /* Finished: go to flowid generation */ |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); |
| mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); |
| mvpp2_prs_sram_ri_update(&pe, ri, ri_mask); |
| mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4, |
| sizeof(struct ipv6hdr) - 6, |
| MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); |
| |
| mvpp2_prs_tcam_data_byte_set(&pe, 0, proto, MVPP2_PRS_TCAM_PROTO_MASK); |
| mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT, |
| MVPP2_PRS_IPV6_NO_EXT_AI_BIT); |
| /* Unmask all ports */ |
| mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); |
| |
| /* Write HW */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6); |
| mvpp2_prs_hw_write(priv, &pe); |
| |
| return 0; |
| } |
| |
| /* IPv6 L3 multicast entry */ |
| static int mvpp2_prs_ip6_cast(struct mvpp2 *priv, unsigned short l3_cast) |
| { |
| struct mvpp2_prs_entry pe; |
| int tid; |
| |
| if (l3_cast != MVPP2_PRS_L3_MULTI_CAST) |
| return -EINVAL; |
| |
| tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, |
| MVPP2_PE_LAST_FREE_TID); |
| if (tid < 0) |
| return tid; |
| |
| memset(&pe, 0, sizeof(pe)); |
| mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6); |
| pe.index = tid; |
| |
| /* Finished: go to flowid generation */ |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6); |
| mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST, |
| MVPP2_PRS_RI_L3_ADDR_MASK); |
| mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT, |
| MVPP2_PRS_IPV6_NO_EXT_AI_BIT); |
| /* Shift back to IPv6 NH */ |
| mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); |
| |
| mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV6_MC, |
| MVPP2_PRS_IPV6_MC_MASK); |
| mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT); |
| /* Unmask all ports */ |
| mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); |
| |
| /* Update shadow table and hw entry */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6); |
| mvpp2_prs_hw_write(priv, &pe); |
| |
| return 0; |
| } |
| |
| /* Parser per-port initialization */ |
| static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first, |
| int lu_max, int offset) |
| { |
| u32 val; |
| |
| /* Set lookup ID */ |
| val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG); |
| val &= ~MVPP2_PRS_PORT_LU_MASK(port); |
| val |= MVPP2_PRS_PORT_LU_VAL(port, lu_first); |
| mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val); |
| |
| /* Set maximum number of loops for packet received from port */ |
| val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port)); |
| val &= ~MVPP2_PRS_MAX_LOOP_MASK(port); |
| val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max); |
| mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val); |
| |
| /* Set initial offset for packet header extraction for the first |
| * searching loop |
| */ |
| val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port)); |
| val &= ~MVPP2_PRS_INIT_OFF_MASK(port); |
| val |= MVPP2_PRS_INIT_OFF_VAL(port, offset); |
| mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val); |
| } |
| |
| /* Default flow entries initialization for all ports */ |
| static void mvpp2_prs_def_flow_init(struct mvpp2 *priv) |
| { |
| struct mvpp2_prs_entry pe; |
| int port; |
| |
| for (port = 0; port < MVPP2_MAX_PORTS; port++) { |
| memset(&pe, 0, sizeof(pe)); |
| mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS); |
| pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port; |
| |
| /* Mask all ports */ |
| mvpp2_prs_tcam_port_map_set(&pe, 0); |
| |
| /* Set flow ID*/ |
| mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK); |
| mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1); |
| |
| /* Update shadow table and hw entry */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS); |
| mvpp2_prs_hw_write(priv, &pe); |
| } |
| } |
| |
| /* Set default entry for Marvell Header field */ |
| static void mvpp2_prs_mh_init(struct mvpp2 *priv) |
| { |
| struct mvpp2_prs_entry pe; |
| |
| memset(&pe, 0, sizeof(pe)); |
| |
| pe.index = MVPP2_PE_MH_DEFAULT; |
| mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH); |
| mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE, |
| MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC); |
| |
| /* Unmask all ports */ |
| mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); |
| |
| /* Update shadow table and hw entry */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH); |
| mvpp2_prs_hw_write(priv, &pe); |
| } |
| |
| /* Set default entires (place holder) for promiscuous, non-promiscuous and |
| * multicast MAC addresses |
| */ |
| static void mvpp2_prs_mac_init(struct mvpp2 *priv) |
| { |
| struct mvpp2_prs_entry pe; |
| |
| memset(&pe, 0, sizeof(pe)); |
| |
| /* Non-promiscuous mode for all ports - DROP unknown packets */ |
| pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS; |
| mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC); |
| |
| mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK, |
| MVPP2_PRS_RI_DROP_MASK); |
| mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); |
| |
| /* Unmask all ports */ |
| mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); |
| |
| /* Update shadow table and hw entry */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC); |
| mvpp2_prs_hw_write(priv, &pe); |
| |
| /* place holders only - no ports */ |
| mvpp2_prs_mac_drop_all_set(priv, 0, false); |
| mvpp2_prs_mac_promisc_set(priv, 0, false); |
| mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false); |
| mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false); |
| } |
| |
| /* Set default entries for various types of dsa packets */ |
| static void mvpp2_prs_dsa_init(struct mvpp2 *priv) |
| { |
| struct mvpp2_prs_entry pe; |
| |
| /* None tagged EDSA entry - place holder */ |
| mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED, |
| MVPP2_PRS_EDSA); |
| |
| /* Tagged EDSA entry - place holder */ |
| mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA); |
| |
| /* None tagged DSA entry - place holder */ |
| mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED, |
| MVPP2_PRS_DSA); |
| |
| /* Tagged DSA entry - place holder */ |
| mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_DSA); |
| |
| /* None tagged EDSA ethertype entry - place holder*/ |
| mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false, |
| MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA); |
| |
| /* Tagged EDSA ethertype entry - place holder*/ |
| mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false, |
| MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA); |
| |
| /* None tagged DSA ethertype entry */ |
| mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true, |
| MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA); |
| |
| /* Tagged DSA ethertype entry */ |
| mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true, |
| MVPP2_PRS_TAGGED, MVPP2_PRS_DSA); |
| |
| /* Set default entry, in case DSA or EDSA tag not found */ |
| memset(&pe, 0, sizeof(pe)); |
| mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA); |
| pe.index = MVPP2_PE_DSA_DEFAULT; |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN); |
| |
| /* Shift 0 bytes */ |
| mvpp2_prs_sram_shift_set(&pe, 0, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC); |
| |
| /* Clear all sram ai bits for next iteration */ |
| mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK); |
| |
| /* Unmask all ports */ |
| mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); |
| |
| mvpp2_prs_hw_write(priv, &pe); |
| } |
| |
| /* Match basic ethertypes */ |
| static int mvpp2_prs_etype_init(struct mvpp2 *priv) |
| { |
| struct mvpp2_prs_entry pe; |
| int tid; |
| |
| /* Ethertype: PPPoE */ |
| tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, |
| MVPP2_PE_LAST_FREE_TID); |
| if (tid < 0) |
| return tid; |
| |
| memset(&pe, 0, sizeof(pe)); |
| mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); |
| pe.index = tid; |
| |
| mvpp2_prs_match_etype(&pe, 0, ETH_P_PPP_SES); |
| |
| mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE, |
| MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE); |
| mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK, |
| MVPP2_PRS_RI_PPPOE_MASK); |
| |
| /* Update shadow table and hw entry */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); |
| priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; |
| priv->prs_shadow[pe.index].finish = false; |
| mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK, |
| MVPP2_PRS_RI_PPPOE_MASK); |
| mvpp2_prs_hw_write(priv, &pe); |
| |
| /* Ethertype: ARP */ |
| tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, |
| MVPP2_PE_LAST_FREE_TID); |
| if (tid < 0) |
| return tid; |
| |
| memset(&pe, 0, sizeof(pe)); |
| mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); |
| pe.index = tid; |
| |
| mvpp2_prs_match_etype(&pe, 0, ETH_P_ARP); |
| |
| /* Generate flow in the next iteration*/ |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); |
| mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); |
| mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP, |
| MVPP2_PRS_RI_L3_PROTO_MASK); |
| /* Set L3 offset */ |
| mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, |
| MVPP2_ETH_TYPE_LEN, |
| MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); |
| |
| /* Update shadow table and hw entry */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); |
| priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; |
| priv->prs_shadow[pe.index].finish = true; |
| mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP, |
| MVPP2_PRS_RI_L3_PROTO_MASK); |
| mvpp2_prs_hw_write(priv, &pe); |
| |
| /* Ethertype: LBTD */ |
| tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, |
| MVPP2_PE_LAST_FREE_TID); |
| if (tid < 0) |
| return tid; |
| |
| memset(&pe, 0, sizeof(pe)); |
| mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); |
| pe.index = tid; |
| |
| mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE); |
| |
| /* Generate flow in the next iteration*/ |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); |
| mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); |
| mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC | |
| MVPP2_PRS_RI_UDF3_RX_SPECIAL, |
| MVPP2_PRS_RI_CPU_CODE_MASK | |
| MVPP2_PRS_RI_UDF3_MASK); |
| /* Set L3 offset */ |
| mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, |
| MVPP2_ETH_TYPE_LEN, |
| MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); |
| |
| /* Update shadow table and hw entry */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); |
| priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; |
| priv->prs_shadow[pe.index].finish = true; |
| mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC | |
| MVPP2_PRS_RI_UDF3_RX_SPECIAL, |
| MVPP2_PRS_RI_CPU_CODE_MASK | |
| MVPP2_PRS_RI_UDF3_MASK); |
| mvpp2_prs_hw_write(priv, &pe); |
| |
| /* Ethertype: IPv4 without options */ |
| tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, |
| MVPP2_PE_LAST_FREE_TID); |
| if (tid < 0) |
| return tid; |
| |
| memset(&pe, 0, sizeof(pe)); |
| mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); |
| pe.index = tid; |
| |
| mvpp2_prs_match_etype(&pe, 0, ETH_P_IP); |
| mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN, |
| MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL, |
| MVPP2_PRS_IPV4_HEAD_MASK | |
| MVPP2_PRS_IPV4_IHL_MASK); |
| |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4); |
| mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4, |
| MVPP2_PRS_RI_L3_PROTO_MASK); |
| /* Skip eth_type + 4 bytes of IP header */ |
| mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4, |
| MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); |
| /* Set L3 offset */ |
| mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, |
| MVPP2_ETH_TYPE_LEN, |
| MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); |
| |
| /* Update shadow table and hw entry */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); |
| priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; |
| priv->prs_shadow[pe.index].finish = false; |
| mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4, |
| MVPP2_PRS_RI_L3_PROTO_MASK); |
| mvpp2_prs_hw_write(priv, &pe); |
| |
| /* Ethertype: IPv4 with options */ |
| tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, |
| MVPP2_PE_LAST_FREE_TID); |
| if (tid < 0) |
| return tid; |
| |
| pe.index = tid; |
| |
| /* Clear tcam data before updating */ |
| pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0; |
| pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0; |
| |
| mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN, |
| MVPP2_PRS_IPV4_HEAD, |
| MVPP2_PRS_IPV4_HEAD_MASK); |
| |
| /* Clear ri before updating */ |
| pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0; |
| pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0; |
| mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT, |
| MVPP2_PRS_RI_L3_PROTO_MASK); |
| |
| /* Update shadow table and hw entry */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); |
| priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; |
| priv->prs_shadow[pe.index].finish = false; |
| mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT, |
| MVPP2_PRS_RI_L3_PROTO_MASK); |
| mvpp2_prs_hw_write(priv, &pe); |
| |
| /* Ethertype: IPv6 without options */ |
| tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, |
| MVPP2_PE_LAST_FREE_TID); |
| if (tid < 0) |
| return tid; |
| |
| memset(&pe, 0, sizeof(pe)); |
| mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); |
| pe.index = tid; |
| |
| mvpp2_prs_match_etype(&pe, 0, ETH_P_IPV6); |
| |
| /* Skip DIP of IPV6 header */ |
| mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 + |
| MVPP2_MAX_L3_ADDR_SIZE, |
| MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6); |
| mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6, |
| MVPP2_PRS_RI_L3_PROTO_MASK); |
| /* Set L3 offset */ |
| mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, |
| MVPP2_ETH_TYPE_LEN, |
| MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); |
| |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); |
| priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; |
| priv->prs_shadow[pe.index].finish = false; |
| mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6, |
| MVPP2_PRS_RI_L3_PROTO_MASK); |
| mvpp2_prs_hw_write(priv, &pe); |
| |
| /* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */ |
| memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); |
| mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); |
| pe.index = MVPP2_PE_ETH_TYPE_UN; |
| |
| /* Unmask all ports */ |
| mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); |
| |
| /* Generate flow in the next iteration*/ |
| mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); |
| mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN, |
| MVPP2_PRS_RI_L3_PROTO_MASK); |
| /* Set L3 offset even it's unknown L3 */ |
| mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, |
| MVPP2_ETH_TYPE_LEN, |
| MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); |
| |
| /* Update shadow table and hw entry */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); |
| priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; |
| priv->prs_shadow[pe.index].finish = true; |
| mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN, |
| MVPP2_PRS_RI_L3_PROTO_MASK); |
| mvpp2_prs_hw_write(priv, &pe); |
| |
| return 0; |
| } |
| |
| /* Configure vlan entries and detect up to 2 successive VLAN tags. |
| * Possible options: |
| * 0x8100, 0x88A8 |
| * 0x8100, 0x8100 |
| * 0x8100 |
| * 0x88A8 |
| */ |
| static int mvpp2_prs_vlan_init(struct platform_device *pdev, struct mvpp2 *priv) |
| { |
| struct mvpp2_prs_entry pe; |
| int err; |
| |
| priv->prs_double_vlans = devm_kcalloc(&pdev->dev, sizeof(bool), |
| MVPP2_PRS_DBL_VLANS_MAX, |
| GFP_KERNEL); |
| if (!priv->prs_double_vlans) |
| return -ENOMEM; |
| |
| /* Double VLAN: 0x8100, 0x88A8 */ |
| err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021AD, |
| MVPP2_PRS_PORT_MASK); |
| if (err) |
| return err; |
| |
| /* Double VLAN: 0x8100, 0x8100 */ |
| err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021Q, |
| MVPP2_PRS_PORT_MASK); |
| if (err) |
| return err; |
| |
| /* Single VLAN: 0x88a8 */ |
| err = mvpp2_prs_vlan_add(priv, ETH_P_8021AD, MVPP2_PRS_SINGLE_VLAN_AI, |
| MVPP2_PRS_PORT_MASK); |
| if (err) |
| return err; |
| |
| /* Single VLAN: 0x8100 */ |
| err = mvpp2_prs_vlan_add(priv, ETH_P_8021Q, MVPP2_PRS_SINGLE_VLAN_AI, |
| MVPP2_PRS_PORT_MASK); |
| if (err) |
| return err; |
| |
| /* Set default double vlan entry */ |
| memset(&pe, 0, sizeof(pe)); |
| mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN); |
| pe.index = MVPP2_PE_VLAN_DBL; |
| |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2); |
| /* Clear ai for next iterations */ |
| mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK); |
| mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_DOUBLE, |
| MVPP2_PRS_RI_VLAN_MASK); |
| |
| mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_DBL_VLAN_AI_BIT, |
| MVPP2_PRS_DBL_VLAN_AI_BIT); |
| /* Unmask all ports */ |
| mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); |
| |
| /* Update shadow table and hw entry */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN); |
| mvpp2_prs_hw_write(priv, &pe); |
| |
| /* Set default vlan none entry */ |
| memset(&pe, 0, sizeof(pe)); |
| mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN); |
| pe.index = MVPP2_PE_VLAN_NONE; |
| |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2); |
| mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE, |
| MVPP2_PRS_RI_VLAN_MASK); |
| |
| /* Unmask all ports */ |
| mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); |
| |
| /* Update shadow table and hw entry */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN); |
| mvpp2_prs_hw_write(priv, &pe); |
| |
| return 0; |
| } |
| |
| /* Set entries for PPPoE ethertype */ |
| static int mvpp2_prs_pppoe_init(struct mvpp2 *priv) |
| { |
| struct mvpp2_prs_entry pe; |
| int tid; |
| |
| /* IPv4 over PPPoE with options */ |
| tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, |
| MVPP2_PE_LAST_FREE_TID); |
| if (tid < 0) |
| return tid; |
| |
| memset(&pe, 0, sizeof(pe)); |
| mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE); |
| pe.index = tid; |
| |
| mvpp2_prs_match_etype(&pe, 0, PPP_IP); |
| |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4); |
| mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT, |
| MVPP2_PRS_RI_L3_PROTO_MASK); |
| /* Skip eth_type + 4 bytes of IP header */ |
| mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4, |
| MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); |
| /* Set L3 offset */ |
| mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, |
| MVPP2_ETH_TYPE_LEN, |
| MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); |
| |
| /* Update shadow table and hw entry */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE); |
| mvpp2_prs_hw_write(priv, &pe); |
| |
| /* IPv4 over PPPoE without options */ |
| tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, |
| MVPP2_PE_LAST_FREE_TID); |
| if (tid < 0) |
| return tid; |
| |
| pe.index = tid; |
| |
| mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN, |
| MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL, |
| MVPP2_PRS_IPV4_HEAD_MASK | |
| MVPP2_PRS_IPV4_IHL_MASK); |
| |
| /* Clear ri before updating */ |
| pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0; |
| pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0; |
| mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4, |
| MVPP2_PRS_RI_L3_PROTO_MASK); |
| |
| /* Update shadow table and hw entry */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE); |
| mvpp2_prs_hw_write(priv, &pe); |
| |
| /* IPv6 over PPPoE */ |
| tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, |
| MVPP2_PE_LAST_FREE_TID); |
| if (tid < 0) |
| return tid; |
| |
| memset(&pe, 0, sizeof(pe)); |
| mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE); |
| pe.index = tid; |
| |
| mvpp2_prs_match_etype(&pe, 0, PPP_IPV6); |
| |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6); |
| mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6, |
| MVPP2_PRS_RI_L3_PROTO_MASK); |
| /* Skip eth_type + 4 bytes of IPv6 header */ |
| mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4, |
| MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); |
| /* Set L3 offset */ |
| mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, |
| MVPP2_ETH_TYPE_LEN, |
| MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); |
| |
| /* Update shadow table and hw entry */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE); |
| mvpp2_prs_hw_write(priv, &pe); |
| |
| /* Non-IP over PPPoE */ |
| tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, |
| MVPP2_PE_LAST_FREE_TID); |
| if (tid < 0) |
| return tid; |
| |
| memset(&pe, 0, sizeof(pe)); |
| mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE); |
| pe.index = tid; |
| |
| mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN, |
| MVPP2_PRS_RI_L3_PROTO_MASK); |
| |
| /* Finished: go to flowid generation */ |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); |
| mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); |
| /* Set L3 offset even if it's unknown L3 */ |
| mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, |
| MVPP2_ETH_TYPE_LEN, |
| MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); |
| |
| /* Update shadow table and hw entry */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE); |
| mvpp2_prs_hw_write(priv, &pe); |
| |
| return 0; |
| } |
| |
| /* Initialize entries for IPv4 */ |
| static int mvpp2_prs_ip4_init(struct mvpp2 *priv) |
| { |
| struct mvpp2_prs_entry pe; |
| int err; |
| |
| /* Set entries for TCP, UDP and IGMP over IPv4 */ |
| err = mvpp2_prs_ip4_proto(priv, IPPROTO_TCP, MVPP2_PRS_RI_L4_TCP, |
| MVPP2_PRS_RI_L4_PROTO_MASK); |
| if (err) |
| return err; |
| |
| err = mvpp2_prs_ip4_proto(priv, IPPROTO_UDP, MVPP2_PRS_RI_L4_UDP, |
| MVPP2_PRS_RI_L4_PROTO_MASK); |
| if (err) |
| return err; |
| |
| err = mvpp2_prs_ip4_proto(priv, IPPROTO_IGMP, |
| MVPP2_PRS_RI_CPU_CODE_RX_SPEC | |
| MVPP2_PRS_RI_UDF3_RX_SPECIAL, |
| MVPP2_PRS_RI_CPU_CODE_MASK | |
| MVPP2_PRS_RI_UDF3_MASK); |
| if (err) |
| return err; |
| |
| /* IPv4 Broadcast */ |
| err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_BROAD_CAST); |
| if (err) |
| return err; |
| |
| /* IPv4 Multicast */ |
| err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_MULTI_CAST); |
| if (err) |
| return err; |
| |
| /* Default IPv4 entry for unknown protocols */ |
| memset(&pe, 0, sizeof(pe)); |
| mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4); |
| pe.index = MVPP2_PE_IP4_PROTO_UN; |
| |
| /* Set next lu to IPv4 */ |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4); |
| mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); |
| /* Set L4 offset */ |
| mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4, |
| sizeof(struct iphdr) - 4, |
| MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); |
| mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT, |
| MVPP2_PRS_IPV4_DIP_AI_BIT); |
| mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER, |
| MVPP2_PRS_RI_L4_PROTO_MASK); |
| |
| mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT); |
| /* Unmask all ports */ |
| mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); |
| |
| /* Update shadow table and hw entry */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4); |
| mvpp2_prs_hw_write(priv, &pe); |
| |
| /* Default IPv4 entry for unicast address */ |
| memset(&pe, 0, sizeof(pe)); |
| mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4); |
| pe.index = MVPP2_PE_IP4_ADDR_UN; |
| |
| /* Finished: go to flowid generation */ |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); |
| mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); |
| mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST, |
| MVPP2_PRS_RI_L3_ADDR_MASK); |
| |
| mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT, |
| MVPP2_PRS_IPV4_DIP_AI_BIT); |
| /* Unmask all ports */ |
| mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); |
| |
| /* Update shadow table and hw entry */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4); |
| mvpp2_prs_hw_write(priv, &pe); |
| |
| return 0; |
| } |
| |
| /* Initialize entries for IPv6 */ |
| static int mvpp2_prs_ip6_init(struct mvpp2 *priv) |
| { |
| struct mvpp2_prs_entry pe; |
| int tid, err; |
| |
| /* Set entries for TCP, UDP and ICMP over IPv6 */ |
| err = mvpp2_prs_ip6_proto(priv, IPPROTO_TCP, |
| MVPP2_PRS_RI_L4_TCP, |
| MVPP2_PRS_RI_L4_PROTO_MASK); |
| if (err) |
| return err; |
| |
| err = mvpp2_prs_ip6_proto(priv, IPPROTO_UDP, |
| MVPP2_PRS_RI_L4_UDP, |
| MVPP2_PRS_RI_L4_PROTO_MASK); |
| if (err) |
| return err; |
| |
| err = mvpp2_prs_ip6_proto(priv, IPPROTO_ICMPV6, |
| MVPP2_PRS_RI_CPU_CODE_RX_SPEC | |
| MVPP2_PRS_RI_UDF3_RX_SPECIAL, |
| MVPP2_PRS_RI_CPU_CODE_MASK | |
| MVPP2_PRS_RI_UDF3_MASK); |
| if (err) |
| return err; |
| |
| /* IPv4 is the last header. This is similar case as 6-TCP or 17-UDP */ |
| /* Result Info: UDF7=1, DS lite */ |
| err = mvpp2_prs_ip6_proto(priv, IPPROTO_IPIP, |
| MVPP2_PRS_RI_UDF7_IP6_LITE, |
| MVPP2_PRS_RI_UDF7_MASK); |
| if (err) |
| return err; |
| |
| /* IPv6 multicast */ |
| err = mvpp2_prs_ip6_cast(priv, MVPP2_PRS_L3_MULTI_CAST); |
| if (err) |
| return err; |
| |
| /* Entry for checking hop limit */ |
| tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, |
| MVPP2_PE_LAST_FREE_TID); |
| if (tid < 0) |
| return tid; |
| |
| memset(&pe, 0, sizeof(pe)); |
| mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6); |
| pe.index = tid; |
| |
| /* Finished: go to flowid generation */ |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); |
| mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); |
| mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN | |
| MVPP2_PRS_RI_DROP_MASK, |
| MVPP2_PRS_RI_L3_PROTO_MASK | |
| MVPP2_PRS_RI_DROP_MASK); |
| |
| mvpp2_prs_tcam_data_byte_set(&pe, 1, 0x00, MVPP2_PRS_IPV6_HOP_MASK); |
| mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT, |
| MVPP2_PRS_IPV6_NO_EXT_AI_BIT); |
| |
| /* Update shadow table and hw entry */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4); |
| mvpp2_prs_hw_write(priv, &pe); |
| |
| /* Default IPv6 entry for unknown protocols */ |
| memset(&pe, 0, sizeof(pe)); |
| mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6); |
| pe.index = MVPP2_PE_IP6_PROTO_UN; |
| |
| /* Finished: go to flowid generation */ |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); |
| mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); |
| mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER, |
| MVPP2_PRS_RI_L4_PROTO_MASK); |
| /* Set L4 offset relatively to our current place */ |
| mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4, |
| sizeof(struct ipv6hdr) - 4, |
| MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); |
| |
| mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT, |
| MVPP2_PRS_IPV6_NO_EXT_AI_BIT); |
| /* Unmask all ports */ |
| mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); |
| |
| /* Update shadow table and hw entry */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4); |
| mvpp2_prs_hw_write(priv, &pe); |
| |
| /* Default IPv6 entry for unknown ext protocols */ |
| memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); |
| mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6); |
| pe.index = MVPP2_PE_IP6_EXT_PROTO_UN; |
| |
| /* Finished: go to flowid generation */ |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); |
| mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); |
| mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER, |
| MVPP2_PRS_RI_L4_PROTO_MASK); |
| |
| mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_EXT_AI_BIT, |
| MVPP2_PRS_IPV6_EXT_AI_BIT); |
| /* Unmask all ports */ |
| mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); |
| |
| /* Update shadow table and hw entry */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4); |
| mvpp2_prs_hw_write(priv, &pe); |
| |
| /* Default IPv6 entry for unicast address */ |
| memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); |
| mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6); |
| pe.index = MVPP2_PE_IP6_ADDR_UN; |
| |
| /* Finished: go to IPv6 again */ |
| mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6); |
| mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST, |
| MVPP2_PRS_RI_L3_ADDR_MASK); |
| mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT, |
| MVPP2_PRS_IPV6_NO_EXT_AI_BIT); |
| /* Shift back to IPV6 NH */ |
| mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); |
| |
| mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT); |
| /* Unmask all ports */ |
| mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); |
| |
| /* Update shadow table and hw entry */ |
| mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6); |
| mvpp2_prs_hw_write(priv, &pe); |
| |
| return 0; |
| } |
| |
| /* Parser default initialization */ |
| static int mvpp2_prs_default_init(struct platform_device *pdev, |
| struct mvpp2 *priv) |
| { |
| int err, index, i; |
| |
| /* Enable tcam table */ |
| mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK); |
| |
| /* Clear all tcam and sram entries */ |
| for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) { |
| mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index); |
| for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++) |
| mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0); |
| |
| mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index); |
| for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++) |
| mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0); |
| } |
| |
| /* Invalidate all tcam entries */ |
| for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) |
| mvpp2_prs_hw_inv(priv, index); |
| |
| priv->prs_shadow = devm_kcalloc(&pdev->dev, MVPP2_PRS_TCAM_SRAM_SIZE, |
| sizeof(*priv->prs_shadow), |
| GFP_KERNEL); |
| if (!priv->prs_shadow) |
| return -ENOMEM; |
| |
| /* Always start from lookup = 0 */ |
| for (index = 0; index < MVPP2_MAX_PORTS; index++) |
| mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH, |
| MVPP2_PRS_PORT_LU_MAX, 0); |
| |
| mvpp2_prs_def_flow_init(priv); |
| |
| mvpp2_prs_mh_init(priv); |
| |
| mvpp2_prs_mac_init(priv); |
| |
| mvpp2_prs_dsa_init(priv); |
| |
| err = mvpp2_prs_etype_init(priv); |
| if (err) |
| return err; |
| |
| err = mvpp2_prs_vlan_init(pdev, priv); |
| if (err) |
| return err; |
| |
| err = mvpp2_prs_pppoe_init(priv); |
| if (err) |
| return err; |
| |
| err = mvpp2_prs_ip6_init(priv); |
| if (err) |
| return err; |
| |
| err = mvpp2_prs_ip4_init(priv); |
| if (err) |
| return err; |
| |
| return 0; |
| } |
| |
| /* Compare MAC DA with tcam entry data */ |
| static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe, |
| const u8 *da, unsigned char *mask) |
| { |
| unsigned char tcam_byte, tcam_mask; |
| int index; |
| |
| for (index = 0; index < ETH_ALEN; index++) { |
| mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask); |
| if (tcam_mask != mask[index]) |
| return false; |
| |
| if ((tcam_mask & tcam_byte) != (da[index] & mask[index])) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Find tcam entry with matched pair <MAC DA, port> */ |
| static struct mvpp2_prs_entry * |
| mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da, |
| unsigned char *mask, int udf_type) |
| { |
| struct mvpp2_prs_entry *pe; |
| int tid; |
| |
| pe = kzalloc(sizeof(*pe), GFP_KERNEL); |
| if (!pe) |
| return NULL; |
| mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC); |
| |
| /* Go through the all entires with MVPP2_PRS_LU_MAC */ |
| for (tid = MVPP2_PE_FIRST_FREE_TID; |
| tid <= MVPP2_PE_LAST_FREE_TID; tid++) { |
| unsigned int entry_pmap; |
| |
| if (!priv->prs_shadow[tid].valid || |
| (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) || |
| (priv->prs_shadow[tid].udf != udf_type)) |
| continue; |
| |
| pe->index = tid; |
| mvpp2_prs_hw_read(priv, pe); |
| entry_pmap = mvpp2_prs_tcam_port_map_get(pe); |
| |
| if (mvpp2_prs_mac_range_equals(pe, da, mask) && |
| entry_pmap == pmap) |
| return pe; |
| } |
| kfree(pe); |
| |
| return NULL; |
| } |
| |
| /* Update parser's mac da entry */ |
| static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port, |
| const u8 *da, bool add) |
| { |
| struct mvpp2_prs_entry *pe; |
| unsigned int pmap, len, ri; |
| unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; |
| int tid; |
| |
| /* Scan TCAM and see if entry with this <MAC DA, port> already exist */ |
| pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask, |
| MVPP2_PRS_UDF_MAC_DEF); |
| |
| /* No such entry */ |
| if (!pe) { |
| if (!add) |
| return 0; |
| |
| /* Create new TCAM entry */ |
| /* Find first range mac entry*/ |
| for (tid = MVPP2_PE_FIRST_FREE_TID; |
| tid <= MVPP2_PE_LAST_FREE_TID; tid++) |
| if (priv->prs_shadow[tid].valid && |
| (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) && |
| (priv->prs_shadow[tid].udf == |
| MVPP2_PRS_UDF_MAC_RANGE)) |
| break; |
| |
| /* Go through the all entries from first to last */ |
| tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, |
| tid - 1); |
| if (tid < 0) |
| return tid; |
| |
| pe = kzalloc(sizeof(*pe), GFP_KERNEL); |
| if (!pe) |
| return -ENOMEM; |
| mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC); |
| pe->index = tid; |
| |
| /* Mask all ports */ |
| mvpp2_prs_tcam_port_map_set(pe, 0); |
| } |
| |
| /* Update port mask */ |
| mvpp2_prs_tcam_port_set(pe, port, add); |
| |
| /* Invalidate the entry if no ports are left enabled */ |
| pmap = mvpp2_prs_tcam_port_map_get(pe); |
| if (pmap == 0) { |
| if (add) { |
| kfree(pe); |
| return -EINVAL; |
| } |
| mvpp2_prs_hw_inv(priv, pe->index); |
| priv->prs_shadow[pe->index].valid = false; |
| kfree(pe); |
| return 0; |
| } |
| |
| /* Continue - set next lookup */ |
| mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA); |
| |
| /* Set match on DA */ |
| len = ETH_ALEN; |
| while (len--) |
| mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff); |
| |
| /* Set result info bits */ |
| if (is_broadcast_ether_addr(da)) |
| ri = MVPP2_PRS_RI_L2_BCAST; |
| else if (is_multicast_ether_addr(da)) |
| ri = MVPP2_PRS_RI_L2_MCAST; |
| else |
| ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK; |
| |
| mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK | |
| MVPP2_PRS_RI_MAC_ME_MASK); |
| mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK | |
| MVPP2_PRS_RI_MAC_ME_MASK); |
| |
| /* Shift to ethertype */ |
| mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN, |
| MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); |
| |
| /* Update shadow table and hw entry */ |
| priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF; |
| mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC); |
| mvpp2_prs_hw_write(priv, pe); |
| |
| kfree(pe); |
| |
| return 0; |
| } |
| |
| static int mvpp2_prs_update_mac_da(struct net_device *dev, const u8 *da) |
| { |
| struct mvpp2_port *port = netdev_priv(dev); |
| int err; |
| |
| /* Remove old parser entry */ |
| err = mvpp2_prs_mac_da_accept(port->priv, port->id, dev->dev_addr, |
| false); |
| if (err) |
| return err; |
| |
| /* Add new parser entry */ |
| err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true); |
| if (err) |
| return err; |
| |
| /* Set addr in the device */ |
| ether_addr_copy(dev->dev_addr, da); |
| |
| return 0; |
| } |
| |
| /* Delete all port's multicast simple (not range) entries */ |
| static void mvpp2_prs_mcast_del_all(struct mvpp2 *priv, int port) |
| { |
| struct mvpp2_prs_entry pe; |
| int index, tid; |
| |
| for (tid = MVPP2_PE_FIRST_FREE_TID; |
| tid <= MVPP2_PE_LAST_FREE_TID; tid++) { |
| unsigned char da[ETH_ALEN], da_mask[ETH_ALEN]; |
| |
| if (!priv->prs_shadow[tid].valid || |
| (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) || |
| (priv->prs_shadow[tid].udf != MVPP2_PRS_UDF_MAC_DEF)) |
| continue; |
| |
| /* Only simple mac entries */ |
| pe.index = tid; |
| mvpp2_prs_hw_read(priv, &pe); |
| |
| /* Read mac addr from entry */ |
| for (index = 0; index < ETH_ALEN; index++) |
| mvpp2_prs_tcam_data_byte_get(&pe, index, &da[index], |
| &da_mask[index]); |
| |
| if (is_multicast_ether_addr(da) && !is_broadcast_ether_addr(da)) |
| /* Delete this entry */ |
| mvpp2_prs_mac_da_accept(priv, port, da, false); |
| } |
| } |
| |
| static int mvpp2_prs_tag_mode_set(struct mvpp2 *priv, int port, int type) |
| { |
| switch (type) { |
| case MVPP2_TAG_TYPE_EDSA: |
| /* Add port to EDSA entries */ |
| mvpp2_prs_dsa_tag_set(priv, port, true, |
| MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA); |
| mvpp2_prs_dsa_tag_set(priv, port, true, |
| MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA); |
| /* Remove port from DSA entries */ |
| mvpp2_prs_dsa_tag_set(priv, port, false, |
| MVPP2_PRS_TAGGED, MVPP2_PRS_DSA); |
| mvpp2_prs_dsa_tag_set(priv, port, false, |
| MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA); |
| break; |
| |
| case MVPP2_TAG_TYPE_DSA: |
| /* Add port to DSA entries */ |
| mvpp2_prs_dsa_tag_set(priv, port, true, |
| MVPP2_PRS_TAGGED, MVPP2_PRS_DSA); |
| mvpp2_prs_dsa_tag_set(priv, port, true, |
| MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA); |
| /* Remove port from EDSA entries */ |
| mvpp2_prs_dsa_tag_set(priv, port, false, |
| MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA); |
| mvpp2_prs_dsa_tag_set(priv, port, false, |
| MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA); |
| break; |
| |
| case MVPP2_TAG_TYPE_MH: |
| case MVPP2_TAG_TYPE_NONE: |
| /* Remove port form EDSA and DSA entries */ |
| mvpp2_prs_dsa_tag_set(priv, port, false, |
| MVPP2_PRS_TAGGED, MVPP2_PRS_DSA); |
| mvpp2_prs_dsa_tag_set(priv, port, false, |
| MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA); |
| mvpp2_prs_dsa_tag_set(priv, port, false, |
| MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA); |
| mvpp2_prs_dsa_tag_set(priv, port, false, |
| MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA); |
| break; |
| |
| default: |
| if ((type < 0) || (type > MVPP2_TAG_TYPE_EDSA)) |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* Set prs flow for the port */ |
| static int mvpp2_prs_def_flow(struct mvpp2_port *port) |
| { |
| struct mvpp2_prs_entry *pe; |
| int tid; |
| |
| pe = mvpp2_prs_flow_find(port->priv, port->id); |
| |
| /* Such entry not exist */ |
| if (!pe) { |
| /* Go through the all entires from last to first */ |
| tid = mvpp2_prs_tcam_first_free(port->priv, |
| MVPP2_PE_LAST_FREE_TID, |
| MVPP2_PE_FIRST_FREE_TID); |
| if (tid < 0) |
| return tid; |
| |
| pe = kzalloc(sizeof(*pe), GFP_KERNEL); |
| if (!pe) |
| return -ENOMEM; |
| |
| mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS); |
| pe->index = tid; |
| |
| /* Set flow ID*/ |
| mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK); |
| mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1); |
| |
| /* Update shadow table */ |
| mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS); |
| } |
| |
| mvpp2_prs_tcam_port_map_set(pe, (1 << port->id)); |
| mvpp2_prs_hw_write(port->priv, pe); |
| kfree(pe); |
| |
| return 0; |
| } |
| |
| /* Classifier configuration routines */ |
| |
| /* Update classification flow table registers */ |
| static void mvpp2_cls_flow_write(struct mvpp2 *priv, |
| struct mvpp2_cls_flow_entry *fe) |
| { |
| mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index); |
| mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]); |
| mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]); |
| mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]); |
| } |
| |
| /* Update classification lookup table register */ |
| static void mvpp2_cls_lookup_write(struct mvpp2 *priv, |
| struct mvpp2_cls_lookup_entry *le) |
| { |
| u32 val; |
| |
| val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid; |
| mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val); |
| mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data); |
| } |
| |
| /* Classifier default initialization */ |
| static void mvpp2_cls_init(struct mvpp2 *priv) |
| { |
| struct mvpp2_cls_lookup_entry le; |
| struct mvpp2_cls_flow_entry fe; |
| int index; |
| |
| /* Enable classifier */ |
| mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK); |
| |
| /* Clear classifier flow table */ |
| memset(&fe.data, 0, sizeof(fe.data)); |
| for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) { |
| fe.index = index; |
| mvpp2_cls_flow_write(priv, &fe); |
| } |
| |
| /* Clear classifier lookup table */ |
| le.data = 0; |
| for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) { |
| le.lkpid = index; |
| le.way = 0; |
| mvpp2_cls_lookup_write(priv, &le); |
| |
| le.way = 1; |
| mvpp2_cls_lookup_write(priv, &le); |
| } |
| } |
| |
| static void mvpp2_cls_port_config(struct mvpp2_port *port) |
| { |
| struct mvpp2_cls_lookup_entry le; |
| u32 val; |
| |
| /* Set way for the port */ |
| val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG); |
| val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id); |
| mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val); |
| |
| /* Pick the entry to be accessed in lookup ID decoding table |
| * according to the way and lkpid. |
| */ |
| le.lkpid = port->id; |
| le.way = 0; |
| le.data = 0; |
| |
| /* Set initial CPU queue for receiving packets */ |
| le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK; |
| le.data |= port->first_rxq; |
| |
| /* Disable classification engines */ |
| le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK; |
| |
| /* Update lookup ID table entry */ |
| mvpp2_cls_lookup_write(port->priv, &le); |
| } |
| |
| /* Set CPU queue number for oversize packets */ |
| static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port) |
| { |
| u32 val; |
| |
| mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id), |
| port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK); |
| |
| mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id), |
| (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS)); |
| |
| val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG); |
| val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id); |
| mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val); |
| } |
| |
| static void *mvpp2_frag_alloc(const struct mvpp2_bm_pool *pool) |
| { |
| if (likely(pool->frag_size <= PAGE_SIZE)) |
| return netdev_alloc_frag(pool->frag_size); |
| else |
| return kmalloc(pool->frag_size, GFP_ATOMIC); |
| } |
| |
| static void mvpp2_frag_free(const struct mvpp2_bm_pool *pool, void *data) |
| { |
| if (likely(pool->frag_size <= PAGE_SIZE)) |
| skb_free_frag(data); |
| else |
| kfree(data); |
| } |
| |
| /* Buffer Manager configuration routines */ |
| |
| /* Create pool */ |
| static int mvpp2_bm_pool_create(struct platform_device *pdev, |
| struct mvpp2 *priv, |
| struct mvpp2_bm_pool *bm_pool, int size) |
| { |
| u32 val; |
| |
| /* Number of buffer pointers must be a multiple of 16, as per |
| * hardware constraints |
| */ |
| if (!IS_ALIGNED(size, 16)) |
| return -EINVAL; |
| |
| /* PPv2.1 needs 8 bytes per buffer pointer, PPv2.2 needs 16 |
| * bytes per buffer pointer |
| */ |
| if (priv->hw_version == MVPP21) |
| bm_pool->size_bytes = 2 * sizeof(u32) * size; |
| else |
| bm_pool->size_bytes = 2 * sizeof(u64) * size; |
| |
| bm_pool->virt_addr = dma_alloc_coherent(&pdev->dev, bm_pool->size_bytes, |
| &bm_pool->dma_addr, |
| GFP_KERNEL); |
| if (!bm_pool->virt_addr) |
| return -ENOMEM; |
| |
| if (!IS_ALIGNED((unsigned long)bm_pool->virt_addr, |
| MVPP2_BM_POOL_PTR_ALIGN)) { |
| dma_free_coherent(&pdev->dev, bm_pool->size_bytes, |
| bm_pool->virt_addr, bm_pool->dma_addr); |
| dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n", |
| bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN); |
| return -ENOMEM; |
| } |
| |
| mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id), |
| lower_32_bits(bm_pool->dma_addr)); |
| mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size); |
| |
| val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id)); |
| val |= MVPP2_BM_START_MASK; |
| mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val); |
| |
| bm_pool->type = MVPP2_BM_FREE; |
| bm_pool->size = size; |
| bm_pool->pkt_size = 0; |
| bm_pool->buf_num = 0; |
| |
| return 0; |
| } |
| |
| /* Set pool buffer size */ |
| static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv, |
| struct mvpp2_bm_pool *bm_pool, |
| int buf_size) |
| { |
| u32 val; |
| |
| bm_pool->buf_size = buf_size; |
| |
| val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET); |
| mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val); |
| } |
| |
| static void mvpp2_bm_bufs_get_addrs(struct device *dev, struct mvpp2 *priv, |
| struct mvpp2_bm_pool *bm_pool, |
| dma_addr_t *dma_addr, |
| phys_addr_t *phys_addr) |
| { |
| int cpu = get_cpu(); |
| |
| *dma_addr = mvpp2_percpu_read(priv, cpu, |
| MVPP2_BM_PHY_ALLOC_REG(bm_pool->id)); |
| *phys_addr = mvpp2_percpu_read(priv, cpu, MVPP2_BM_VIRT_ALLOC_REG); |
| |
| if (priv->hw_version == MVPP22) { |
| u32 val; |
| u32 dma_addr_highbits, phys_addr_highbits; |
| |
| val = mvpp2_percpu_read(priv, cpu, MVPP22_BM_ADDR_HIGH_ALLOC); |
| dma_addr_highbits = (val & MVPP22_BM_ADDR_HIGH_PHYS_MASK); |
| phys_addr_highbits = (val & MVPP22_BM_ADDR_HIGH_VIRT_MASK) >> |
| MVPP22_BM_ADDR_HIGH_VIRT_SHIFT; |
| |
| if (sizeof(dma_addr_t) == 8) |
| *dma_addr |= (u64)dma_addr_highbits << 32; |
| |
| if (sizeof(phys_addr_t) == 8) |
| *phys_addr |= (u64)phys_addr_highbits << 32; |
| } |
| |
| put_cpu(); |
| } |
| |
| /* Free all buffers from the pool */ |
| static void mvpp2_bm_bufs_free(struct device *dev, struct mvpp2 *priv, |
| struct mvpp2_bm_pool *bm_pool) |
| { |
| int i; |
| |
| for (i = 0; i < bm_pool->buf_num; i++) { |
| dma_addr_t buf_dma_addr; |
| phys_addr_t buf_phys_addr; |
| void *data; |
| |
| mvpp2_bm_bufs_get_addrs(dev, priv, bm_pool, |
| &buf_dma_addr, &buf_phys_addr); |
| |
| dma_unmap_single(dev, buf_dma_addr, |
| bm_pool->buf_size, DMA_FROM_DEVICE); |
| |
| data = (void *)phys_to_virt(buf_phys_addr); |
| if (!data) |
| break; |
| |
| mvpp2_frag_free(bm_pool, data); |
| } |
| |
| /* Update BM driver with number of buffers removed from pool */ |
| bm_pool->buf_num -= i; |
| } |
| |
| /* Cleanup pool */ |
| static int mvpp2_bm_pool_destroy(struct platform_device *pdev, |
| struct mvpp2 *priv, |
| struct mvpp2_bm_pool *bm_pool) |
| { |
| u32 val; |
| |
| mvpp2_bm_bufs_free(&pdev->dev, priv, bm_pool); |
| if (bm_pool->buf_num) { |
| WARN(1, "cannot free all buffers in pool %d\n", bm_pool->id); |
| return 0; |
| } |
| |
| val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id)); |
| val |= MVPP2_BM_STOP_MASK; |
| mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val); |
| |
| dma_free_coherent(&pdev->dev, bm_pool->size_bytes, |
| bm_pool->virt_addr, |
| bm_pool->dma_addr); |
| return 0; |
| } |
| |
| static int mvpp2_bm_pools_init(struct platform_device *pdev, |
| struct mvpp2 *priv) |
| { |
| int i, err, size; |
| struct mvpp2_bm_pool *bm_pool; |
| |
| /* Create all pools with maximum size */ |
| size = MVPP2_BM_POOL_SIZE_MAX; |
| for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) { |
| bm_pool = &priv->bm_pools[i]; |
| bm_pool->id = i; |
| err = mvpp2_bm_pool_create(pdev, priv, bm_pool, size); |
| if (err) |
| goto err_unroll_pools; |
| mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0); |
| } |
| return 0; |
| |
| err_unroll_pools: |
| dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size); |
| for (i = i - 1; i >= 0; i--) |
| mvpp2_bm_pool_destroy(pdev, priv, &priv->bm_pools[i]); |
| return err; |
| } |
| |
| static int mvpp2_bm_init(struct platform_device *pdev, struct mvpp2 *priv) |
| { |
| int i, err; |
| |
| for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) { |
| /* Mask BM all interrupts */ |
| mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0); |
| /* Clear BM cause register */ |
| mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0); |
| } |
| |
| /* Allocate and initialize BM pools */ |
| priv->bm_pools = devm_kcalloc(&pdev->dev, MVPP2_BM_POOLS_NUM, |
| sizeof(*priv->bm_pools), GFP_KERNEL); |
| if (!priv->bm_pools) |
| return -ENOMEM; |
| |
| err = mvpp2_bm_pools_init(pdev, priv); |
| if (err < 0) |
| return err; |
| return 0; |
| } |
| |
| /* Attach long pool to rxq */ |
| static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port, |
| int lrxq, int long_pool) |
| { |
| u32 val, mask; |
| int prxq; |
| |
| /* Get queue physical ID */ |
| prxq = port->rxqs[lrxq]->id; |
| |
| if (port->priv->hw_version == MVPP21) |
| mask = MVPP21_RXQ_POOL_LONG_MASK; |
| else |
| mask = MVPP22_RXQ_POOL_LONG_MASK; |
| |
| val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq)); |
| val &= ~mask; |
| val |= (long_pool << MVPP2_RXQ_POOL_LONG_OFFS) & mask; |
| mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val); |
| } |
| |
| /* Attach short pool to rxq */ |
| static void mvpp2_rxq_short_pool_set(struct mvpp2_port *port, |
| int lrxq, int short_pool) |
| { |
| u32 val, mask; |
| int prxq; |
| |
| /* Get queue physical ID */ |
| prxq = port->rxqs[lrxq]->id; |
| |
| if (port->priv->hw_version == MVPP21) |
| mask = MVPP21_RXQ_POOL_SHORT_MASK; |
| else |
| mask = MVPP22_RXQ_POOL_SHORT_MASK; |
| |
| val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq)); |
| val &= ~mask; |
| val |= (short_pool << MVPP2_RXQ_POOL_SHORT_OFFS) & mask; |
| mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val); |
| } |
| |
| static void *mvpp2_buf_alloc(struct mvpp2_port *port, |
| struct mvpp2_bm_pool *bm_pool, |
| dma_addr_t *buf_dma_addr, |
| phys_addr_t *buf_phys_addr, |
| gfp_t gfp_mask) |
| { |
| dma_addr_t dma_addr; |
| void *data; |
| |
| data = mvpp2_frag_alloc(bm_pool); |
| if (!data) |
| return NULL; |
| |
| dma_addr = dma_map_single(port->dev->dev.parent, data, |
| MVPP2_RX_BUF_SIZE(bm_pool->pkt_size), |
| DMA_FROM_DEVICE); |
| if (unlikely(dma_mapping_error(port->dev->dev.parent, dma_addr))) { |
| mvpp2_frag_free(bm_pool, data); |
| return NULL; |
| } |
| *buf_dma_addr = dma_addr; |
| *buf_phys_addr = virt_to_phys(data); |
| |
| return data; |
| } |
| |
| /* Set pool number in a BM cookie */ |
| static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool) |
| { |
| u32 bm; |
| |
| bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS); |
| bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS); |
| |
| return bm; |
| } |
| |
| /* Release buffer to BM */ |
| static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool, |
| dma_addr_t buf_dma_addr, |
| phys_addr_t buf_phys_addr) |
| { |
| int cpu = get_cpu(); |
| |
| if (port->priv->hw_version == MVPP22) { |
| u32 val = 0; |
| |
| if (sizeof(dma_addr_t) == 8) |
| val |= upper_32_bits(buf_dma_addr) & |
| MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK; |
| |
| if (sizeof(phys_addr_t) == 8) |
| val |= (upper_32_bits(buf_phys_addr) |
| << MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT) & |
| MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK; |
| |
| mvpp2_percpu_write(port->priv, cpu, |
| MVPP22_BM_ADDR_HIGH_RLS_REG, val); |
| } |
| |
| /* MVPP2_BM_VIRT_RLS_REG is not interpreted by HW, and simply |
| * returned in the "cookie" field of the RX |
| * descriptor. Instead of storing the virtual address, we |
| * store the physical address |
| */ |
| mvpp2_percpu_write(port->priv, cpu, |
| MVPP2_BM_VIRT_RLS_REG, buf_phys_addr); |
| mvpp2_percpu_write(port->priv, cpu, |
| MVPP2_BM_PHY_RLS_REG(pool), buf_dma_addr); |
| |
| put_cpu(); |
| } |
| |
| /* Refill BM pool */ |
| static void mvpp2_pool_refill(struct mvpp2_port *port, int pool, |
| dma_addr_t dma_addr, |
| phys_addr_t phys_addr) |
| { |
| mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr); |
| } |
| |
| /* Allocate buffers for the pool */ |
| static int mvpp2_bm_bufs_add(struct mvpp2_port *port, |
| struct mvpp2_bm_pool *bm_pool, int buf_num) |
| { |
| int i, buf_size, total_size; |
| dma_addr_t dma_addr; |
| phys_addr_t phys_addr; |
| void *buf; |
| |
| buf_size = MVPP2_RX_BUF_SIZE(bm_pool->pkt_size); |
| total_size = MVPP2_RX_TOTAL_SIZE(buf_size); |
| |
| if (buf_num < 0 || |
| (buf_num + bm_pool->buf_num > bm_pool->size)) { |
| netdev_err(port->dev, |
| "cannot allocate %d buffers for pool %d\n", |
| buf_num, bm_pool->id); |
| return 0; |
| } |
| |
| for (i = 0; i < buf_num; i++) { |
| buf = mvpp2_buf_alloc(port, bm_pool, &dma_addr, |
| &phys_addr, GFP_KERNEL); |
| if (!buf) |
| break; |
| |
| mvpp2_bm_pool_put(port, bm_pool->id, dma_addr, |
| phys_addr); |
| } |
| |
| /* Update BM driver with number of buffers added to pool */ |
| bm_pool->buf_num += i; |
| |
| netdev_dbg(port->dev, |
| "%s pool %d: pkt_size=%4d, buf_size=%4d, total_size=%4d\n", |
| bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long", |
| bm_pool->id, bm_pool->pkt_size, buf_size, total_size); |
| |
| netdev_dbg(port->dev, |
| "%s pool %d: %d of %d buffers added\n", |
| bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long", |
| bm_pool->id, i, buf_num); |
| return i; |
| } |
| |
| /* Notify the driver that BM pool is being used as specific type and return the |
| * pool pointer on success |
| */ |
| static struct mvpp2_bm_pool * |
| mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type, |
| int pkt_size) |
| { |
| struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool]; |
| int num; |
| |
| if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) { |
| netdev_err(port->dev, "mixing pool types is forbidden\n"); |
| return NULL; |
| } |
| |
| if (new_pool->type == MVPP2_BM_FREE) |
| new_pool->type = type; |
| |
| /* Allocate buffers in case BM pool is used as long pool, but packet |
| * size doesn't match MTU or BM pool hasn't being used yet |
| */ |
| if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) || |
| (new_pool->pkt_size == 0)) { |
| int pkts_num; |
| |
| /* Set default buffer number or free all the buffers in case |
| * the pool is not empty |
| */ |
| pkts_num = new_pool->buf_num; |
| if (pkts_num == 0) |
| pkts_num = type == MVPP2_BM_SWF_LONG ? |
| MVPP2_BM_LONG_BUF_NUM : |
| MVPP2_BM_SHORT_BUF_NUM; |
| else |
| mvpp2_bm_bufs_free(port->dev->dev.parent, |
| port->priv, new_pool); |
| |
| new_pool->pkt_size = pkt_size; |
| new_pool->frag_size = |
| SKB_DATA_ALIGN(MVPP2_RX_BUF_SIZE(pkt_size)) + |
| MVPP2_SKB_SHINFO_SIZE; |
| |
| /* Allocate buffers for this pool */ |
| num = mvpp2_bm_bufs_add(port, new_pool, pkts_num); |
| if (num != pkts_num) { |
| WARN(1, "pool %d: %d of %d allocated\n", |
| new_pool->id, num, pkts_num); |
| return NULL; |
| } |
| } |
| |
| mvpp2_bm_pool_bufsize_set(port->priv, new_pool, |
| MVPP2_RX_BUF_SIZE(new_pool->pkt_size)); |
| |
| return new_pool; |
| } |
| |
| /* Initialize pools for swf */ |
| static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port) |
| { |
| int rxq; |
| |
| if (!port->pool_long) { |
| port->pool_long = |
| mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id), |
| MVPP2_BM_SWF_LONG, |
| port->pkt_size); |
| if (!port->pool_long) |
| return -ENOMEM; |
| |
| port->pool_long->port_map |= (1 << port->id); |
| |
| for (rxq = 0; rxq < rxq_number; rxq++) |
| mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id); |
| } |
| |
| if (!port->pool_short) { |
| port->pool_short = |
| mvpp2_bm_pool_use(port, MVPP2_BM_SWF_SHORT_POOL, |
| MVPP2_BM_SWF_SHORT, |
| MVPP2_BM_SHORT_PKT_SIZE); |
| if (!port->pool_short) |
| return -ENOMEM; |
| |
| port->pool_short->port_map |= (1 << port->id); |
| |
| for (rxq = 0; rxq < rxq_number; rxq++) |
| mvpp2_rxq_short_pool_set(port, rxq, |
| port->pool_short->id); |
| } |
| |
| return 0; |
| } |
| |
| static int mvpp2_bm_update_mtu(struct net_device *dev, int mtu) |
| { |
| struct mvpp2_port *port = netdev_priv(dev); |
| struct mvpp2_bm_pool *port_pool = port->pool_long; |
| int num, pkts_num = port_pool->buf_num; |
| int pkt_size = MVPP2_RX_PKT_SIZE(mtu); |
| |
| /* Update BM pool with new buffer size */ |
| mvpp2_bm_bufs_free(dev->dev.parent, port->priv, port_pool); |
| if (port_pool->buf_num) { |
| WARN(1, "cannot free all buffers in pool %d\n", port_pool->id); |
| return -EIO; |
| } |
| |
| port_pool->pkt_size = pkt_size; |
| port_pool->frag_size = SKB_DATA_ALIGN(MVPP2_RX_BUF_SIZE(pkt_size)) + |
| MVPP2_SKB_SHINFO_SIZE; |
| num = mvpp2_bm_bufs_add(port, port_pool, pkts_num); |
| if (num != pkts_num) { |
| WARN(1, "pool %d: %d of %d allocated\n", |
| port_pool->id, num, pkts_num); |
| return -EIO; |
| } |
| |
| mvpp2_bm_pool_bufsize_set(port->priv, port_pool, |
| MVPP2_RX_BUF_SIZE(port_pool->pkt_size)); |
| dev->mtu = mtu; |
| netdev_update_features(dev); |
| return 0; |
| } |
| |
| static inline void mvpp2_interrupts_enable(struct mvpp2_port *port) |
| { |
| int cpu, cpu_mask = 0; |
| |
| for_each_present_cpu(cpu) |
| cpu_mask |= 1 << cpu; |
| mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id), |
| MVPP2_ISR_ENABLE_INTERRUPT(cpu_mask)); |
| } |
| |
| static inline void mvpp2_interrupts_disable(struct mvpp2_port *port) |
| { |
| int cpu, cpu_mask = 0; |
| |
| for_each_present_cpu(cpu) |
| cpu_mask |= 1 << cpu; |
| mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id), |
| MVPP2_ISR_DISABLE_INTERRUPT(cpu_mask)); |
| } |
| |
| /* Mask the current CPU's Rx/Tx interrupts */ |
| static void mvpp2_interrupts_mask(void *arg) |
| { |
| struct mvpp2_port *port = arg; |
| |
| mvpp2_percpu_write(port->priv, smp_processor_id(), |
| MVPP2_ISR_RX_TX_MASK_REG(port->id), 0); |
| } |
| |
| /* Unmask the current CPU's Rx/Tx interrupts */ |
| static void mvpp2_interrupts_unmask(void *arg) |
| { |
| struct mvpp2_port *port = arg; |
| |
| mvpp2_percpu_write(port->priv, smp_processor_id(), |
| MVPP2_ISR_RX_TX_MASK_REG(port->id), |
| (MVPP2_CAUSE_MISC_SUM_MASK | |
| MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK)); |
| } |
| |
| /* Port configuration routines */ |
| |
| static void mvpp22_port_mii_set(struct mvpp2_port *port) |
| { |
| u32 val; |
| |
| /* Only GOP port 0 has an XLG MAC */ |
| if (port->gop_id == 0) { |
| val = readl(port->base + MVPP22_XLG_CTRL3_REG); |
| val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK; |
| val |= MVPP22_XLG_CTRL3_MACMODESELECT_GMAC; |
| writel(val, port->base + MVPP22_XLG_CTRL3_REG); |
| } |
| |
| val = readl(port->base + MVPP22_GMAC_CTRL_4_REG); |
| if (port->phy_interface == PHY_INTERFACE_MODE_RGMII) |
| val |= MVPP22_CTRL4_EXT_PIN_GMII_SEL; |
| else |
| val &= ~MVPP22_CTRL4_EXT_PIN_GMII_SEL; |
| val &= ~MVPP22_CTRL4_DP_CLK_SEL; |
| val |= MVPP22_CTRL4_SYNC_BYPASS; |
| val |= MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE; |
| writel(val, port->base + MVPP22_GMAC_CTRL_4_REG); |
| } |
| |
| static void mvpp2_port_mii_set(struct mvpp2_port *port) |
| { |
| u32 val; |
| |
| if (port->priv->hw_version == MVPP22) |
| mvpp22_port_mii_set(port); |
| |
| val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); |
| |
| switch (port->phy_interface) { |
| case PHY_INTERFACE_MODE_SGMII: |
| val |= MVPP2_GMAC_INBAND_AN_MASK; |
| break; |
| case PHY_INTERFACE_MODE_RGMII: |
| val |= MVPP2_GMAC_PORT_RGMII_MASK; |
| default: |
| val &= ~MVPP2_GMAC_PCS_ENABLE_MASK; |
| } |
| |
| writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); |
| } |
| |
| static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port) |
| { |
| u32 val; |
| |
| val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG); |
| val |= MVPP2_GMAC_FC_ADV_EN; |
| writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); |
| } |
| |
| static void mvpp2_port_enable(struct mvpp2_port *port) |
| { |
| u32 val; |
| |
| val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); |
| val |= MVPP2_GMAC_PORT_EN_MASK; |
| val |= MVPP2_GMAC_MIB_CNTR_EN_MASK; |
| writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); |
| } |
| |
| static void mvpp2_port_disable(struct mvpp2_port *port) |
| { |
| u32 val; |
| |
| val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); |
| val &= ~(MVPP2_GMAC_PORT_EN_MASK); |
| writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); |
| } |
| |
| /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */ |
| static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port) |
| { |
| u32 val; |
| |
| val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) & |
| ~MVPP2_GMAC_PERIODIC_XON_EN_MASK; |
| writel(val, port->base + MVPP2_GMAC_CTRL_1_REG); |
| } |
| |
| /* Configure loopback port */ |
| static void mvpp2_port_loopback_set(struct mvpp2_port *port) |
| { |
| u32 val; |
| |
| val = readl(port->base + MVPP2_GMAC_CTRL_1_REG); |
| |
| if (port->speed == 1000) |
| val |= MVPP2_GMAC_GMII_LB_EN_MASK; |
| else |
| val &= ~MVPP2_GMAC_GMII_LB_EN_MASK; |
| |
| if (port->phy_interface == PHY_INTERFACE_MODE_SGMII) |
| val |= MVPP2_GMAC_PCS_LB_EN_MASK; |
| else |
| val &= ~MVPP2_GMAC_PCS_LB_EN_MASK; |
| |
| writel(val, port->base + MVPP2_GMAC_CTRL_1_REG); |
| } |
| |
| static void mvpp2_port_reset(struct mvpp2_port *port) |
| { |
| u32 val; |
| |
| val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) & |
| ~MVPP2_GMAC_PORT_RESET_MASK; |
| writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); |
| |
| while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) & |
| MVPP2_GMAC_PORT_RESET_MASK) |
| continue; |
| } |
| |
| /* Change maximum receive size of the port */ |
| static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port) |
| { |
| u32 val; |
| |
| val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); |
| val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK; |
| val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) << |
| MVPP2_GMAC_MAX_RX_SIZE_OFFS); |
| writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); |
| } |
| |
| /* Set defaults to the MVPP2 port */ |
| static void mvpp2_defaults_set(struct mvpp2_port *port) |
| { |
| int tx_port_num, val, queue, ptxq, lrxq; |
| |
| if (port->priv->hw_version == MVPP21) { |
| /* Configure port to loopback if needed */ |
| if (port->flags & MVPP2_F_LOOPBACK) |
| mvpp2_port_loopback_set(port); |
| |
| /* Update TX FIFO MIN Threshold */ |
| val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); |
| val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK; |
| /* Min. TX threshold must be less than minimal packet length */ |
| val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2); |
| writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); |
| } |
| |
| /* Disable Legacy WRR, Disable EJP, Release from reset */ |
| tx_port_num = mvpp2_egress_port(port); |
| mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, |
| tx_port_num); |
| mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0); |
| |
| /* Close bandwidth for all queues */ |
| for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) { |
| ptxq = mvpp2_txq_phys(port->id, queue); |
| mvpp2_write(port->priv, |
| MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0); |
| } |
| |
| /* Set refill period to 1 usec, refill tokens |
| * and bucket size to maximum |
| */ |
| mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG, |
| port->priv->tclk / USEC_PER_SEC); |
| val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG); |
| val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK; |
| val |= MVPP2_TXP_REFILL_PERIOD_MASK(1); |
| val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK; |
| mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val); |
| val = MVPP2_TXP_TOKEN_SIZE_MAX; |
| mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val); |
| |
| /* Set MaximumLowLatencyPacketSize value to 256 */ |
| mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id), |
| MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK | |
| MVPP2_RX_LOW_LATENCY_PKT_SIZE(256)); |
| |
| /* Enable Rx cache snoop */ |
| for (lrxq = 0; lrxq < rxq_number; lrxq++) { |
| queue = port->rxqs[lrxq]->id; |
| val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue)); |
| val |= MVPP2_SNOOP_PKT_SIZE_MASK | |
| MVPP2_SNOOP_BUF_HDR_MASK; |
| mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val); |
| } |
| |
| /* At default, mask all interrupts to all present cpus */ |
| mvpp2_interrupts_disable(port); |
| } |
| |
| /* Enable/disable receiving packets */ |
| static void mvpp2_ingress_enable(struct mvpp2_port *port) |
| { |
| u32 val; |
| int lrxq, queue; |
| |
| for (lrxq = 0; lrxq < rxq_number; lrxq++) { |
| queue = port->rxqs[lrxq]->id; |
| val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue)); |
| val &= ~MVPP2_RXQ_DISABLE_MASK; |
| mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val); |
| } |
| } |
| |
| static void mvpp2_ingress_disable(struct mvpp2_port *port) |
| { |
| u32 val; |
| int lrxq, queue; |
| |
| for (lrxq = 0; lrxq < rxq_number; lrxq++) { |
| queue = port->rxqs[lrxq]->id; |
| val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue)); |
| val |= MVPP2_RXQ_DISABLE_MASK; |
| mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val); |
| } |
| } |
| |
| /* Enable transmit via physical egress queue |
| * - HW starts take descriptors from DRAM |
| */ |
| static void mvpp2_egress_enable(struct mvpp2_port *port) |
| { |
| u32 qmap; |
| int queue; |
| int tx_port_num = mvpp2_egress_port(port); |
| |
| /* Enable all initialized TXs. */ |
| qmap = 0; |
| for (queue = 0; queue < txq_number; queue++) { |
| struct mvpp2_tx_queue *txq = port->txqs[queue]; |
| |
| if (txq->descs) |
| qmap |= (1 << queue); |
| } |
| |
| mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num); |
| mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap); |
| } |
| |
| /* Disable transmit via physical egress queue |
| * - HW doesn't take descriptors from DRAM |
| */ |
| static void mvpp2_egress_disable(struct mvpp2_port *port) |
| { |
| u32 reg_data; |
| int delay; |
| int tx_port_num = mvpp2_egress_port(port); |
| |
| /* Issue stop command for active channels only */ |
| mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num); |
| reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) & |
| MVPP2_TXP_SCHED_ENQ_MASK; |
| if (reg_data != 0) |
| mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, |
| (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET)); |
| |
| /* Wait for all Tx activity to terminate. */ |
| delay = 0; |
| do { |
| if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) { |
| netdev_warn(port->dev, |
| "Tx stop timed out, status=0x%08x\n", |
| reg_data); |
| break; |
| } |
| mdelay(1); |
| delay++; |
| |
| /* Check port TX Command register that all |
| * Tx queues are stopped |
| */ |
| reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG); |
| } while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK); |
| } |
| |
| /* Rx descriptors helper methods */ |
| |
| /* Get number of Rx descriptors occupied by received packets */ |
| static inline int |
| mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id) |
| { |
| u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id)); |
| |
| return val & MVPP2_RXQ_OCCUPIED_MASK; |
| } |
| |
| /* Update Rx queue status with the number of occupied and available |
| * Rx descriptor slots. |
| */ |
| static inline void |
| mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id, |
| int used_count, int free_count) |
| { |
| /* Decrement the number of used descriptors and increment count |
| * increment the number of free descriptors. |
| */ |
| u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET); |
| |
| mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val); |
| } |
| |
| /* Get pointer to next RX descriptor to be processed by SW */ |
| static inline struct mvpp2_rx_desc * |
| mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq) |
| { |
| int rx_desc = rxq->next_desc_to_proc; |
| |
| rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc); |
| prefetch(rxq->descs + rxq->next_desc_to_proc); |
| return rxq->descs + rx_desc; |
| } |
| |
| /* Set rx queue offset */ |
| static void mvpp2_rxq_offset_set(struct mvpp2_port *port, |
| int prxq, int offset) |
| { |
| u32 val; |
| |
| /* Convert offset from bytes to units of 32 bytes */ |
| offset = offset >> 5; |
| |
| val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq)); |
| val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK; |
| |
| /* Offset is in */ |
| val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) & |
| MVPP2_RXQ_PACKET_OFFSET_MASK); |
| |
| mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val); |
| } |
| |
| /* Tx descriptors helper methods */ |
| |
| /* Get pointer to next Tx descriptor to be processed (send) by HW */ |
| static struct mvpp2_tx_desc * |
| mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq) |
| { |
| int tx_desc = txq->next_desc_to_proc; |
| |
| txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc); |
| return txq->descs + tx_desc; |
| } |
| |
| /* Update HW with number of aggregated Tx descriptors to be sent */ |
| static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending) |
| { |
| /* aggregated access - relevant TXQ number is written in TX desc */ |
| mvpp2_percpu_write(port->priv, smp_processor_id(), |
| MVPP2_AGGR_TXQ_UPDATE_REG, pending); |
| } |
| |
| |
| /* Check if there are enough free descriptors in aggregated txq. |
| * If not, update the number of occupied descriptors and repeat the check. |
| */ |
| static int mvpp2_aggr_desc_num_check(struct mvpp2 *priv, |
| struct mvpp2_tx_queue *aggr_txq, int num) |
| { |
| if ((aggr_txq->count + num) > aggr_txq->size) { |
| /* Update number of occupied aggregated Tx descriptors */ |
| int cpu = smp_processor_id(); |
| u32 val = mvpp2_read(priv, MVPP2_AGGR_TXQ_STATUS_REG(cpu)); |
| |
| aggr_txq->count = val & MVPP2_AGGR_TXQ_PENDING_MASK; |
| } |
| |
| if ((aggr_txq->count + num) > aggr_txq->size) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| /* Reserved Tx descriptors allocation request */ |
| static int mvpp2_txq_alloc_reserved_desc(struct mvpp2 *priv, |
| struct mvpp2_tx_queue *txq, int num) |
| { |
| u32 val; |
| int cpu = smp_processor_id(); |
| |
| val = (txq->id << MVPP2_TXQ_RSVD_REQ_Q_OFFSET) | num; |
| mvpp2_percpu_write(priv, cpu, MVPP2_TXQ_RSVD_REQ_REG, val); |
| |
| val = mvpp2_percpu_read(priv, cpu, MVPP2_TXQ_RSVD_RSLT_REG); |
| |
| return val & MVPP2_TXQ_RSVD_RSLT_MASK; |
| } |
| |
| /* Check if there are enough reserved descriptors for transmission. |
| * If not, request chunk of reserved descriptors and check again. |
| */ |
| static int mvpp2_txq_reserved_desc_num_proc(struct mvpp2 *priv, |
| struct mvpp2_tx_queue *txq, |
| struct mvpp2_txq_pcpu *txq_pcpu, |
| int num) |
| { |
| int req, cpu, desc_count; |
| |
| if (txq_pcpu->reserved_num >= num) |
| return 0; |
| |
| /* Not enough descriptors reserved! Update the reserved descriptor |
| * count and check again. |
| */ |
| |
| desc_count = 0; |
| /* Compute total of used descriptors */ |
| for_each_present_cpu(cpu) { |
| struct mvpp2_txq_pcpu *txq_pcpu_aux; |
| |
| txq_pcpu_aux = per_cpu_ptr(txq->pcpu, cpu); |
| desc_count += txq_pcpu_aux->count; |
| desc_count += txq_pcpu_aux->reserved_num; |
| } |
| |
| req = max(MVPP2_CPU_DESC_CHUNK, num - txq_pcpu->reserved_num); |
| desc_count += req; |
| |
| if (desc_count > |
| (txq->size - (num_present_cpus() * MVPP2_CPU_DESC_CHUNK))) |
| return -ENOMEM; |
| |
| txq_pcpu->reserved_num += mvpp2_txq_alloc_reserved_desc(priv, txq, req); |
| |
| /* OK, the descriptor cound has been updated: check again. */ |
| if (txq_pcpu->reserved_num < num) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| /* Release the last allocated Tx descriptor. Useful to handle DMA |
| * mapping failures in the Tx path. |
| */ |
| static void mvpp2_txq_desc_put(struct mvpp2_tx_queue *txq) |
| { |
| if (txq->next_desc_to_proc == 0) |
| txq->next_desc_to_proc = txq->last_desc - 1; |
| else |
| txq->next_desc_to_proc--; |
| } |
| |
| /* Set Tx descriptors fields relevant for CSUM calculation */ |
| static u32 mvpp2_txq_desc_csum(int l3_offs, int l3_proto, |
| int ip_hdr_len, int l4_proto) |
| { |
| u32 command; |
| |
| /* fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, |
| * G_L4_chk, L4_type required only for checksum calculation |
| */ |
| command = (l3_offs << MVPP2_TXD_L3_OFF_SHIFT); |
| command |= (ip_hdr_len << MVPP2_TXD_IP_HLEN_SHIFT); |
| command |= MVPP2_TXD_IP_CSUM_DISABLE; |
| |
| if (l3_proto == swab16(ETH_P_IP)) { |
| command &= ~MVPP2_TXD_IP_CSUM_DISABLE; /* enable IPv4 csum */ |
| command &= ~MVPP2_TXD_L3_IP6; /* enable IPv4 */ |
| } else { |
| command |= MVPP2_TXD_L3_IP6; /* enable IPv6 */ |
| } |
| |
| if (l4_proto == IPPROTO_TCP) { |
| command &= ~MVPP2_TXD_L4_UDP; /* enable TCP */ |
| command &= ~MVPP2_TXD_L4_CSUM_FRAG; /* generate L4 csum */ |
| } else if (l4_proto == IPPROTO_UDP) { |
| command |= MVPP2_TXD_L4_UDP; /* enable UDP */ |
| command &= ~MVPP2_TXD_L4_CSUM_FRAG; /* generate L4 csum */ |
| } else { |
| command |= MVPP2_TXD_L4_CSUM_NOT; |
| } |
| |
| return command; |
| } |
| |
| /* Get number of sent descriptors and decrement counter. |
| * The number of sent descriptors is returned. |
| * Per-CPU access |
| */ |
| static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port, |
| struct mvpp2_tx_queue *txq) |
| { |
| u32 val; |
| |
| /* Reading status reg resets transmitted descriptor counter */ |
| val = mvpp2_percpu_read(port->priv, smp_processor_id(), |
| MVPP2_TXQ_SENT_REG(txq->id)); |
| |
| return (val & MVPP2_TRANSMITTED_COUNT_MASK) >> |
| MVPP2_TRANSMITTED_COUNT_OFFSET; |
| } |
| |
| static void mvpp2_txq_sent_counter_clear(void *arg) |
| { |
| struct mvpp2_port *port = arg; |
| int queue; |
| |
| for (queue = 0; queue < txq_number; queue++) { |
| int id = port->txqs[queue]->id; |
| |
| mvpp2_percpu_read(port->priv, smp_processor_id(), |
| MVPP2_TXQ_SENT_REG(id)); |
| } |
| } |
| |
| /* Set max sizes for Tx queues */ |
| static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port) |
| { |
| u32 val, size, mtu; |
| int txq, tx_port_num; |
| |
| mtu = port->pkt_size * 8; |
| if (mtu > MVPP2_TXP_MTU_MAX) |
| mtu = MVPP2_TXP_MTU_MAX; |
| |
| /* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */ |
| mtu = 3 * mtu; |
| |
| /* Indirect access to registers */ |
| tx_port_num = mvpp2_egress_port(port); |
| mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num); |
| |
| /* Set MTU */ |
| val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG); |
| val &= ~MVPP2_TXP_MTU_MAX; |
| val |= mtu; |
| mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val); |
| |
| /* TXP token size and all TXQs token size must be larger that MTU */ |
| val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG); |
| size = val & MVPP2_TXP_TOKEN_SIZE_MAX; |
| if (size < mtu) { |
| size = mtu; |
| val &= ~MVPP2_TXP_TOKEN_SIZE_MAX; |
| val |= size; |
| mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val); |
| } |
| |
| for (txq = 0; txq < txq_number; txq++) { |
| val = mvpp2_read(port->priv, |
| MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq)); |
| size = val & MVPP2_TXQ_TOKEN_SIZE_MAX; |
| |
| if (size < mtu) { |
| size = mtu; |
| val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX; |
| val |= size; |
| mvpp2_write(port->priv, |
| MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq), |
| val); |
| } |
| } |
| } |
| |
| /* Set the number of packets that will be received before Rx interrupt |
| * will be generated by HW. |
| */ |
| static void mvpp2_rx_pkts_coal_set(struct mvpp2_port *port, |
| struct mvpp2_rx_queue *rxq) |
| { |
| int cpu = get_cpu(); |
| |
| if (rxq->pkts_coal > MVPP2_OCCUPIED_THRESH_MASK) |
| rxq->pkts_coal = MVPP2_OCCUPIED_THRESH_MASK; |
| |
| mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_NUM_REG, rxq->id); |
| mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_THRESH_REG, |
| rxq->pkts_coal); |
| |
| put_cpu(); |
| } |
| |
| static u32 mvpp2_usec_to_cycles(u32 usec, unsigned long clk_hz) |
| { |
| u64 tmp = (u64)clk_hz * usec; |
| |
| do_div(tmp, USEC_PER_SEC); |
| |
| return tmp > U32_MAX ? U32_MAX : tmp; |
| } |
| |
| static u32 mvpp2_cycles_to_usec(u32 cycles, unsigned long clk_hz) |
| { |
| u64 tmp = (u64)cycles * USEC_PER_SEC; |
| |
| do_div(tmp, clk_hz); |
| |
| return tmp > U32_MAX ? U32_MAX : tmp; |
| } |
| |
| /* Set the time delay in usec before Rx interrupt */ |
| static void mvpp2_rx_time_coal_set(struct mvpp2_port *port, |
| struct mvpp2_rx_queue *rxq) |
| { |
| unsigned long freq = port->priv->tclk; |
| u32 val = mvpp2_usec_to_cycles(rxq->time_coal, freq); |
| |
| if (val > MVPP2_MAX_ISR_RX_THRESHOLD) { |
| rxq->time_coal = |
| mvpp2_cycles_to_usec(MVPP2_MAX_ISR_RX_THRESHOLD, freq); |
| |
| /* re-evaluate to get actual register value */ |
| val = mvpp2_usec_to_cycles(rxq->time_coal, freq); |
| } |
| |
| mvpp2_write(port->priv, MVPP2_ISR_RX_THRESHOLD_REG(rxq->id), val); |
| } |
| |
| /* Free Tx queue skbuffs */ |
| static void mvpp2_txq_bufs_free(struct mvpp2_port *port, |
| struct mvpp2_tx_queue *txq, |
| struct mvpp2_txq_pcpu *txq_pcpu, int num) |
| { |
| int i; |
| |
| for (i = 0; i < num; i++) { |
| struct mvpp2_txq_pcpu_buf *tx_buf = |
| txq_pcpu->buffs + txq_pcpu->txq_get_index; |
| |
| dma_unmap_single(port->dev->dev.parent, tx_buf->dma, |
| tx_buf->size, DMA_TO_DEVICE); |
| if (tx_buf->skb) |
| dev_kfree_skb_any(tx_buf->skb); |
| |
| mvpp2_txq_inc_get(txq_pcpu); |
| } |
| } |
| |
| static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port, |
| u32 cause) |
| { |
| int queue = fls(cause) - 1; |
| |
| return port->rxqs[queue]; |
| } |
| |
| static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port, |
| u32 cause) |
| { |
| int queue = fls(cause) - 1; |
| |
| return port->txqs[queue]; |
| } |
| |
| /* Handle end of transmission */ |
| static void mvpp2_txq_done(struct mvpp2_port *port, struct mvpp2_tx_queue *txq, |
| struct mvpp2_txq_pcpu *txq_pcpu) |
| { |
| struct netdev_queue *nq = netdev_get_tx_queue(port->dev, txq->log_id); |
| int tx_done; |
| |
| if (txq_pcpu->cpu != smp_processor_id()) |
| netdev_err(port->dev, "wrong cpu on the end of Tx processing\n"); |
| |
| tx_done = mvpp2_txq_sent_desc_proc(port, txq); |
| if (!tx_done) |
| return; |
| mvpp2_txq_bufs_free(port, txq, txq_pcpu, tx_done); |
| |
| txq_pcpu->count -= tx_done; |
| |
| if (netif_tx_queue_stopped(nq)) |
| if (txq_pcpu->size - txq_pcpu->count >= MAX_SKB_FRAGS + 1) |
| netif_tx_wake_queue(nq); |
| } |
| |
| static unsigned int mvpp2_tx_done(struct mvpp2_port *port, u32 cause) |
| { |
| struct mvpp2_tx_queue *txq; |
| struct mvpp2_txq_pcpu *txq_pcpu; |
| unsigned int tx_todo = 0; |
| |
| while (cause) { |
| txq = mvpp2_get_tx_queue(port, cause); |
| if (!txq) |
| break; |
| |
| txq_pcpu = this_cpu_ptr(txq->pcpu); |
| |
| if (txq_pcpu->count) { |
| mvpp2_txq_done(port, txq, txq_pcpu); |
| tx_todo += txq_pcpu->count; |
| } |
| |
| cause &= ~(1 << txq->log_id); |
| } |
| return tx_todo; |
| } |
| |
| /* Rx/Tx queue initialization/cleanup methods */ |
| |
| /* Allocate and initialize descriptors for aggr TXQ */ |
| static int mvpp2_aggr_txq_init(struct platform_device *pdev, |
| struct mvpp2_tx_queue *aggr_txq, |
| int desc_num, int cpu, |
| struct mvpp2 *priv) |
| { |
| u32 txq_dma; |
| |
| /* Allocate memory for TX descriptors */ |
| aggr_txq->descs = dma_alloc_coherent(&pdev->dev, |
| desc_num * MVPP2_DESC_ALIGNED_SIZE, |
| &aggr_txq->descs_dma, GFP_KERNEL); |
| if (!aggr_txq->descs) |
| return -ENOMEM; |
| |
| aggr_txq->last_desc = aggr_txq->size - 1; |
| |
| /* Aggr TXQ no reset WA */ |
| aggr_txq->next_desc_to_proc = mvpp2_read(priv, |
| MVPP2_AGGR_TXQ_INDEX_REG(cpu)); |
| |
| /* Set Tx descriptors queue starting address indirect |
| * access |
| */ |
| if (priv->hw_version == MVPP21) |
| txq_dma = aggr_txq->descs_dma; |
| else |
| txq_dma = aggr_txq->descs_dma >> |
| MVPP22_AGGR_TXQ_DESC_ADDR_OFFS; |
| |
| mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu), txq_dma); |
| mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num); |
| |
| return 0; |
| } |
| |
| /* Create a specified Rx queue */ |
| static int mvpp2_rxq_init(struct mvpp2_port *port, |
| struct mvpp2_rx_queue *rxq) |
| |
| { |
| u32 rxq_dma; |
| int cpu; |
| |
| rxq->size = port->rx_ring_size; |
| |
| /* Allocate memory for RX descriptors */ |
| rxq->descs = dma_alloc_coherent(port->dev->dev.parent, |
| rxq->size * MVPP2_DESC_ALIGNED_SIZE, |
| &rxq->descs_dma, GFP_KERNEL); |
| if (!rxq->descs) |
| return -ENOMEM; |
| |
| rxq->last_desc = rxq->size - 1; |
| |
| /* Zero occupied and non-occupied counters - direct access */ |
| mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0); |
| |
| /* Set Rx descriptors queue starting address - indirect access */ |
| cpu = get_cpu(); |
| mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_NUM_REG, rxq->id); |
| if (port->priv->hw_version == MVPP21) |
| rxq_dma = rxq->descs_dma; |
| else |
| rxq_dma = rxq->descs_dma >> MVPP22_DESC_ADDR_OFFS; |
| mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_ADDR_REG, rxq_dma); |
| mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_SIZE_REG, rxq->size); |
| mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_INDEX_REG, 0); |
| put_cpu(); |
| |
| /* Set Offset */ |
| mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD); |
| |
| /* Set coalescing pkts and time */ |
| mvpp2_rx_pkts_coal_set(port, rxq); |
| mvpp2_rx_time_coal_set(port, rxq); |
| |
| /* Add number of descriptors ready for receiving packets */ |
| mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size); |
| |
| return 0; |
| } |
| |
| /* Push packets received by the RXQ to BM pool */ |
| static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port, |
| struct mvpp2_rx_queue *rxq) |
| { |
| int rx_received, i; |
| |
| rx_received = mvpp2_rxq_received(port, rxq->id); |
| if (!rx_received) |
| return; |
| |
| for (i = 0; i < rx_received; i++) { |
| struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq); |
| u32 status = mvpp2_rxdesc_status_get(port, rx_desc); |
| int pool; |
| |
| pool = (status & MVPP2_RXD_BM_POOL_ID_MASK) >> |
| MVPP2_RXD_BM_POOL_ID_OFFS; |
| |
| mvpp2_pool_refill(port, pool, |
| mvpp2_rxdesc_dma_addr_get(port, rx_desc), |
| mvpp2_rxdesc_cookie_get(port, rx_desc)); |
| } |
| mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received); |
| } |
| |
| /* Cleanup Rx queue */ |
| static void mvpp2_rxq_deinit(struct mvpp2_port *port, |
| struct mvpp2_rx_queue *rxq) |
| { |
| int cpu; |
| |
| mvpp2_rxq_drop_pkts(port, rxq); |
| |
| if (rxq->descs) |
| dma_free_coherent(port->dev->dev.parent, |
| rxq->size * MVPP2_DESC_ALIGNED_SIZE, |
| rxq->descs, |
| rxq->descs_dma); |
| |
| rxq->descs = NULL; |
| rxq->last_desc = 0; |
| rxq->next_desc_to_proc = 0; |
| rxq->descs_dma = 0; |
| |
| /* Clear Rx descriptors queue starting address and size; |
| * free descriptor number |
| */ |
| mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0); |
| cpu = get_cpu(); |
| mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_NUM_REG, rxq->id); |
| mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_ADDR_REG, 0); |
| mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_SIZE_REG, 0); |
| put_cpu(); |
| } |
| |
| /* Create and initialize a Tx queue */ |
| static int mvpp2_txq_init(struct mvpp2_port *port, |
| struct mvpp2_tx_queue *txq) |
| { |
| u32 val; |
| int cpu, desc, desc_per_txq, tx_port_num; |
| struct mvpp2_txq_pcpu *txq_pcpu; |
| |
| txq->size = port->tx_ring_size; |
| |
| /* Allocate memory for Tx descriptors */ |
| txq->descs = dma_alloc_coherent(port->dev->dev.parent, |
| txq->size * MVPP2_DESC_ALIGNED_SIZE, |
| &txq->descs_dma, GFP_KERNEL); |
| if (!txq->descs) |
| return -ENOMEM; |
| |
| txq->last_desc = txq->size - 1; |
| |
| /* Set Tx descriptors queue starting address - indirect access */ |
| cpu = get_cpu(); |
| mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id); |
| mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_ADDR_REG, |
| txq->descs_dma); |
| mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_SIZE_REG, |
| txq->size & MVPP2_TXQ_DESC_SIZE_MASK); |
| mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_INDEX_REG, 0); |
| mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_RSVD_CLR_REG, |
| txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET); |
| val = mvpp2_percpu_read(port->priv, cpu, MVPP2_TXQ_PENDING_REG); |
| val &= ~MVPP2_TXQ_PENDING_MASK; |
| mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PENDING_REG, val); |
| |
| /* Calculate base address in prefetch buffer. We reserve 16 descriptors |
| * for each existing TXQ. |
| * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT |
| * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS |
| */ |
| desc_per_txq = 16; |
| desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) + |
| (txq->log_id * desc_per_txq); |
| |
| mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG, |
| MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 | |
| MVPP2_PREF_BUF_THRESH(desc_per_txq / 2)); |
| put_cpu(); |
| |
| /* WRR / EJP configuration - indirect access */ |
| tx_port_num = mvpp2_egress_port(port); |
| mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num); |
| |
| val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id)); |
| val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK; |
| val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1); |
| val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK; |
| mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val); |
| |
| val = MVPP2_TXQ_TOKEN_SIZE_MAX; |
| mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id), |
| val); |
| |
| for_each_present_cpu(cpu) { |
| txq_pcpu = per_cpu_ptr(txq->pcpu, cpu); |
| txq_pcpu->size = txq->size; |
| txq_pcpu->buffs = kmalloc_array(txq_pcpu->size, |
| sizeof(*txq_pcpu->buffs), |
| GFP_KERNEL); |
| if (!txq_pcpu->buffs) |
| goto cleanup; |
| |
| txq_pcpu->count = 0; |
| txq_pcpu->reserved_num = 0; |
| txq_pcpu->txq_put_index = 0; |
| txq_pcpu->txq_get_index = 0; |
| } |
| |
| return 0; |
| cleanup: |
| for_each_present_cpu(cpu) { |
| txq_pcpu = per_cpu_ptr(txq->pcpu, cpu); |
| kfree(txq_pcpu->buffs); |
| } |
| |
| dma_free_coherent(port->dev->dev.parent, |
| txq->size * MVPP2_DESC_ALIGNED_SIZE, |
| txq->descs, txq->descs_dma); |
| |
| return -ENOMEM; |
| } |
| |
| /* Free allocated TXQ resources */ |
| static void mvpp2_txq_deinit(struct mvpp2_port *port, |
| struct mvpp2_tx_queue *txq) |
| { |
| struct mvpp2_txq_pcpu *txq_pcpu; |
| int cpu; |
| |
| for_each_present_cpu(cpu) { |
| txq_pcpu = per_cpu_ptr(txq->pcpu, cpu); |
| kfree(txq_pcpu->buffs); |
| } |
| |
| if (txq->descs) |
| dma_free_coherent(port->dev->dev.parent, |
| txq->size * MVPP2_DESC_ALIGNED_SIZE, |
| txq->descs, txq->descs_dma); |
| |
| txq->descs = NULL; |
| txq->last_desc = 0; |
| txq->next_desc_to_proc = 0; |
| txq->descs_dma = 0; |
| |
| /* Set minimum bandwidth for disabled TXQs */ |
| mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0); |
| |
| /* Set Tx descriptors queue starting address and size */ |
| cpu = get_cpu(); |
| mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id); |
| mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_ADDR_REG, 0); |
| mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_SIZE_REG, 0); |
| put_cpu(); |
| } |
| |
| /* Cleanup Tx ports */ |
| static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq) |
| { |
| struct mvpp2_txq_pcpu *txq_pcpu; |
| int delay, pending, cpu; |
| u32 val; |
| |
| cpu = get_cpu(); |
| mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id); |
| val = mvpp2_percpu_read(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG); |
| val |= MVPP2_TXQ_DRAIN_EN_MASK; |
| mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG, val); |
| |
| /* The napi queue has been stopped so wait for all packets |
| * to be transmitted. |
| */ |
| delay = 0; |
| do { |
| if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) { |
| netdev_warn(port->dev, |
| "port %d: cleaning queue %d timed out\n", |
| port->id, txq->log_id); |
| break; |
| } |
| mdelay(1); |
| delay++; |
| |
| pending = mvpp2_percpu_read(port->priv, cpu, |
| MVPP2_TXQ_PENDING_REG); |
| pending &= MVPP2_TXQ_PENDING_MASK; |
| } while (pending); |
| |
| val &= ~MVPP2_TXQ_DRAIN_EN_MASK; |
| mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG, val); |
| put_cpu(); |
| |
| for_each_present_cpu(cpu) { |
| txq_pcpu = per_cpu_ptr(txq->pcpu, cpu); |
| |
| /* Release all packets */ |
| mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count); |
| |
| /* Reset queue */ |
| txq_pcpu->count = 0; |
| txq_pcpu->txq_put_index = 0; |
| txq_pcpu->txq_get_index = 0; |
| } |
| } |
| |
| /* Cleanup all Tx queues */ |
| static void mvpp2_cleanup_txqs(struct mvpp2_port *port) |
| { |
| struct mvpp2_tx_queue *txq; |
| int queue; |
| u32 val; |
| |
| val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG); |
| |
| /* Reset Tx ports and delete Tx queues */ |
| val |= MVPP2_TX_PORT_FLUSH_MASK(port->id); |
| mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val); |
| |
| for (queue = 0; queue < txq_number; queue++) { |
| txq = port->txqs[queue]; |
| mvpp2_txq_clean(port, txq); |
| mvpp2_txq_deinit(port, txq); |
| } |
| |
| on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1); |
| |
| val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id); |
| mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val); |
| } |
| |
| /* Cleanup all Rx queues */ |
| static void mvpp2_cleanup_rxqs(struct mvpp2_port *port) |
| { |
| int queue; |
| |
| for (queue = 0; queue < rxq_number; queue++) |
| mvpp2_rxq_deinit(port, port->rxqs[queue]); |
| } |
| |
| /* Init all Rx queues for port */ |
| static int mvpp2_setup_rxqs(struct mvpp2_port *port) |
| { |
| int queue, err; |
| |
| for (queue = 0; queue < rxq_number; queue++) { |
| err = mvpp2_rxq_init(port, port->rxqs[queue]); |
| if (err) |
| goto err_cleanup; |
| } |
| return 0; |
| |
| err_cleanup: |
| mvpp2_cleanup_rxqs(port); |
| return err; |
| } |
| |
| /* Init all tx queues for port */ |
| static int mvpp2_setup_txqs(struct mvpp2_port *port) |
| { |
| struct mvpp2_tx_queue *txq; |
| int queue, err; |
| |
| for (queue = 0; queue < txq_number; queue++) { |
| txq = port->txqs[queue]; |
| err = mvpp2_txq_init(port, txq); |
| if (err) |
| goto err_cleanup; |
| } |
| |
| on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1); |
| return 0; |
| |
| err_cleanup: |
| mvpp2_cleanup_txqs(port); |
| return err; |
| } |
| |
| /* The callback for per-port interrupt */ |
| static irqreturn_t mvpp2_isr(int irq, void *dev_id) |
| { |
| struct mvpp2_port *port = (struct mvpp2_port *)dev_id; |
| |
| mvpp2_interrupts_disable(port); |
| |
| napi_schedule(&port->napi); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* Adjust link */ |
| static void mvpp2_link_event(struct net_device *dev) |
| { |
| struct mvpp2_port *port = netdev_priv(dev); |
| struct phy_device *phydev = dev->phydev; |
| int status_change = 0; |
| u32 val; |
| |
| if (phydev->link) { |
| if ((port->speed != phydev->speed) || |
| (port->duplex != phydev->duplex)) { |
| u32 val; |
| |
| val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG); |
| val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED | |
| MVPP2_GMAC_CONFIG_GMII_SPEED | |
| MVPP2_GMAC_CONFIG_FULL_DUPLEX | |
| MVPP2_GMAC_AN_SPEED_EN | |
| MVPP2_GMAC_AN_DUPLEX_EN); |
| |
| if (phydev->duplex) |
| val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX; |
| |
| if (phydev->speed == SPEED_1000) |
| val |= MVPP2_GMAC_CONFIG_GMII_SPEED; |
| else if (phydev->speed == SPEED_100) |
| val |= MVPP2_GMAC_CONFIG_MII_SPEED; |
| |
| writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); |
| |
| port->duplex = phydev->duplex; |
| port->speed = phydev->speed; |
| } |
| } |
| |
| if (phydev->link != port->link) { |
| if (!phydev->link) { |
| port->duplex = -1; |
| port->speed = 0; |
| } |
| |
| port->link = phydev->link; |
| status_change = 1; |
| } |
| |
| if (status_change) { |
| if (phydev->link) { |
| val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG); |
| val |= (MVPP2_GMAC_FORCE_LINK_PASS | |
| MVPP2_GMAC_FORCE_LINK_DOWN); |
| writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); |
| mvpp2_egress_enable(port); |
| mvpp2_ingress_enable(port); |
| } else { |
| mvpp2_ingress_disable(port); |
| mvpp2_egress_disable(port); |
| } |
| phy_print_status(phydev); |
| } |
| } |
| |
| static void mvpp2_timer_set(struct mvpp2_port_pcpu *port_pcpu) |
| { |
| ktime_t interval; |
| |
| if (!port_pcpu->timer_scheduled) { |
| port_pcpu->timer_scheduled = true; |
| interval = MVPP2_TXDONE_HRTIMER_PERIOD_NS; |
| hrtimer_start(&port_pcpu->tx_done_timer, interval, |
| HRTIMER_MODE_REL_PINNED); |
| } |
| } |
| |
| static void mvpp2_tx_proc_cb(unsigned long data) |
| { |
| struct net_device *dev = (struct net_device *)data; |
| struct mvpp2_port *port = netdev_priv(dev); |
| struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu); |
| unsigned int tx_todo, cause; |
| |
| if (!netif_running(dev)) |
| return; |
| port_pcpu->timer_scheduled = false; |
| |
| /* Process all the Tx queues */ |
| cause = (1 << txq_number) - 1; |
| tx_todo = mvpp2_tx_done(port, cause); |
| |
| /* Set the timer in case not all the packets were processed */ |
| if (tx_todo) |
| mvpp2_timer_set(port_pcpu); |
| } |
| |
| static enum hrtimer_restart mvpp2_hr_timer_cb(struct hrtimer *timer) |
| { |
| struct mvpp2_port_pcpu *port_pcpu = container_of(timer, |
| struct mvpp2_port_pcpu, |
| tx_done_timer); |
| |
| tasklet_schedule(&port_pcpu->tx_done_tasklet); |
| |
| return HRTIMER_NORESTART; |
| } |
| |
| /* Main RX/TX processing routines */ |
| |
| /* Display more error info */ |
| static void mvpp2_rx_error(struct mvpp2_port *port, |
| struct mvpp2_rx_desc *rx_desc) |
| { |
| u32 status = mvpp2_rxdesc_status_get(port, rx_desc); |
| size_t sz = mvpp2_rxdesc_size_get(port, rx_desc); |
| |
| switch (status & MVPP2_RXD_ERR_CODE_MASK) { |
| case MVPP2_RXD_ERR_CRC: |
| netdev_err(port->dev, "bad rx status %08x (crc error), size=%zu\n", |
| status, sz); |
| break; |
| case MVPP2_RXD_ERR_OVERRUN: |
| netdev_err(port->dev, "bad rx status %08x (overrun error), size=%zu\n", |
| status, sz); |
| break; |
| case MVPP2_RXD_ERR_RESOURCE: |
| netdev_err(port->dev, "bad rx status %08x (resource error), size=%zu\n", |
| status, sz); |
| break; |
| } |
| } |
| |
| /* Handle RX checksum offload */ |
| static void mvpp2_rx_csum(struct mvpp2_port *port, u32 status, |
| struct sk_buff *skb) |
| { |
| if (((status & MVPP2_RXD_L3_IP4) && |
| !(status & MVPP2_RXD_IP4_HEADER_ERR)) || |
| (status & MVPP2_RXD_L3_IP6)) |
| if (((status & MVPP2_RXD_L4_UDP) || |
| (status & MVPP2_RXD_L4_TCP)) && |
| (status & MVPP2_RXD_L4_CSUM_OK)) { |
| skb->csum = 0; |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| return; |
| } |
| |
| skb->ip_summed = CHECKSUM_NONE; |
| } |
| |
| /* Reuse skb if possible, or allocate a new skb and add it to BM pool */ |
| static int mvpp2_rx_refill(struct mvpp2_port *port, |
| struct mvpp2_bm_pool *bm_pool, int pool) |
| { |
| dma_addr_t dma_addr; |
| phys_addr_t phys_addr; |
| void *buf; |
| |
| /* No recycle or too many buffers are in use, so allocate a new skb */ |
| buf = mvpp2_buf_alloc(port, bm_pool, &dma_addr, &phys_addr, |
| GFP_ATOMIC); |
| if (!buf) |
| return -ENOMEM; |
| |
| mvpp2_pool_refill(port, pool, dma_addr, phys_addr); |
| |
| return 0; |
| } |
| |
| /* Handle tx checksum */ |
| static u32 mvpp2_skb_tx_csum(struct mvpp2_port *port, struct sk_buff *skb) |
| { |
| if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| int ip_hdr_len = 0; |
| u8 l4_proto; |
| |
| if (skb->protocol == htons(ETH_P_IP)) { |
| struct iphdr *ip4h = ip_hdr(skb); |
| |
| /* Calculate IPv4 checksum and L4 checksum */ |
| ip_hdr_len = ip4h->ihl; |
| l4_proto = ip4h->protocol; |
| } else if (skb->protocol == htons(ETH_P_IPV6)) { |
| struct ipv6hdr *ip6h = ipv6_hdr(skb); |
| |
| /* Read l4_protocol from one of IPv6 extra headers */ |
| if (skb_network_header_len(skb) > 0) |
| ip_hdr_len = (skb_network_header_len(skb) >> 2); |
| l4_proto = ip6h->nexthdr; |
| } else { |
| return MVPP2_TXD_L4_CSUM_NOT; |
| } |
| |
| return mvpp2_txq_desc_csum(skb_network_offset(skb), |
| skb->protocol, ip_hdr_len, l4_proto); |
| } |
| |
| return MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE; |
| } |
| |
| /* Main rx processing */ |
| static int mvpp2_rx(struct mvpp2_port *port, int rx_todo, |
| struct mvpp2_rx_queue *rxq) |
| { |
| struct net_device *dev = port->dev; |
| int rx_received; |
| int rx_done = 0; |
| u32 rcvd_pkts = 0; |
| u32 rcvd_bytes = 0; |
| |
| /* Get number of received packets and clamp the to-do */ |
| rx_received = mvpp2_rxq_received(port, rxq->id); |
| if (rx_todo > rx_received) |
| rx_todo = rx_received; |
| |
| while (rx_done < rx_todo) { |
| struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq); |
| struct mvpp2_bm_pool *bm_pool; |
| struct sk_buff *skb; |
| unsigned int frag_size; |
| dma_addr_t dma_addr; |
| phys_addr_t phys_addr; |
| u32 rx_status; |
| int pool, rx_bytes, err; |
| void *data; |
| |
| rx_done++; |
| rx_status = mvpp2_rxdesc_status_get(port, rx_desc); |
| rx_bytes = mvpp2_rxdesc_size_get(port, rx_desc); |
| rx_bytes -= MVPP2_MH_SIZE; |
| dma_addr = mvpp2_rxdesc_dma_addr_get(port, rx_desc); |
| phys_addr = mvpp2_rxdesc_cookie_get(port, rx_desc); |
| data = (void *)phys_to_virt(phys_addr); |
| |
| pool = (rx_status & MVPP2_RXD_BM_POOL_ID_MASK) >> |
| MVPP2_RXD_BM_POOL_ID_OFFS; |
| bm_pool = &port->priv->bm_pools[pool]; |
| |
| /* In case of an error, release the requested buffer pointer |
| * to the Buffer Manager. This request process is controlled |
| * by the hardware, and the information about the buffer is |
| * comprised by the RX descriptor. |
| */ |
| if (rx_status & MVPP2_RXD_ERR_SUMMARY) { |
| err_drop_frame: |
| dev->stats.rx_errors++; |
| mvpp2_rx_error(port, rx_desc); |
| /* Return the buffer to the pool */ |
| mvpp2_pool_refill(port, pool, dma_addr, phys_addr); |
| continue; |
| } |
| |
| if (bm_pool->frag_size > PAGE_SIZE) |
| frag_size = 0; |
| else |
| frag_size = bm_pool->frag_size; |
| |
| skb = build_skb(data, frag_size); |
| if (!skb) { |
| netdev_warn(port->dev, "skb build failed\n"); |
| goto err_drop_frame; |
| } |
| |
| err = mvpp2_rx_refill(port, bm_pool, pool); |
| if (err) { |
| netdev_err(port->dev, "failed to refill BM pools\n"); |
| goto err_drop_frame; |
| } |
| |
| dma_unmap_single(dev->dev.parent, dma_addr, |
| bm_pool->buf_size, DMA_FROM_DEVICE); |
| |
| rcvd_pkts++; |
| rcvd_bytes += rx_bytes; |
| |
| skb_reserve(skb, MVPP2_MH_SIZE + NET_SKB_PAD); |
| skb_put(skb, rx_bytes); |
| skb->protocol = eth_type_trans(skb, dev); |
| mvpp2_rx_csum(port, rx_status, skb); |
| |
| napi_gro_receive(&port->napi, skb); |
| } |
| |
| if (rcvd_pkts) { |
| struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats); |
| |
| u64_stats_update_begin(&stats->syncp); |
| stats->rx_packets += rcvd_pkts; |
| stats->rx_bytes += rcvd_bytes; |
| u64_stats_update_end(&stats->syncp); |
| } |
| |
| /* Update Rx queue management counters */ |
| wmb(); |
| mvpp2_rxq_status_update(port, rxq->id, rx_done, rx_done); |
| |
| return rx_todo; |
| } |
| |
| static inline void |
| tx_desc_unmap_put(struct mvpp2_port *port, struct mvpp2_tx_queue *txq, |
| struct mvpp2_tx_desc *desc) |
| { |
| dma_addr_t buf_dma_addr = |
| mvpp2_txdesc_dma_addr_get(port, desc); |
| size_t buf_sz = |
| mvpp2_txdesc_size_get(port, desc); |
| dma_unmap_single(port->dev->dev.parent, buf_dma_addr, |
| buf_sz, DMA_TO_DEVICE); |
| mvpp2_txq_desc_put(txq); |
| } |
| |
| /* Handle tx fragmentation processing */ |
| static int mvpp2_tx_frag_process(struct mvpp2_port *port, struct sk_buff *skb, |
| struct mvpp2_tx_queue *aggr_txq, |
| struct mvpp2_tx_queue *txq) |
| { |
| struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu); |
| struct mvpp2_tx_desc *tx_desc; |
| int i; |
| dma_addr_t buf_dma_addr; |
| |
| for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { |
| skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
| void *addr = page_address(frag->page.p) + frag->page_offset; |
| |
| tx_desc = mvpp2_txq_next_desc_get(aggr_txq); |
| mvpp2_txdesc_txq_set(port, tx_desc, txq->id); |
| mvpp2_txdesc_size_set(port, tx_desc, frag->size); |
| |
| buf_dma_addr = dma_map_single(port->dev->dev.parent, addr, |
| frag->size, |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(port->dev->dev.parent, buf_dma_addr)) { |
| mvpp2_txq_desc_put(txq); |
| goto cleanup; |
| } |
| |
| mvpp2_txdesc_offset_set(port, tx_desc, |
| buf_dma_addr & MVPP2_TX_DESC_ALIGN); |
| mvpp2_txdesc_dma_addr_set(port, tx_desc, |
| buf_dma_addr & ~MVPP2_TX_DESC_ALIGN); |
| |
| if (i == (skb_shinfo(skb)->nr_frags - 1)) { |
| /* Last descriptor */ |
| mvpp2_txdesc_cmd_set(port, tx_desc, |
| MVPP2_TXD_L_DESC); |
| mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc); |
| } else { |
| /* Descriptor in the middle: Not First, Not Last */ |
| mvpp2_txdesc_cmd_set(port, tx_desc, 0); |
| mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc); |
| } |
| } |
| |
| return 0; |
| cleanup: |
| /* Release all descriptors that were used to map fragments of |
| * this packet, as well as the corresponding DMA mappings |
| */ |
| for (i = i - 1; i >= 0; i--) { |
| tx_desc = txq->descs + i; |
| tx_desc_unmap_put(port, txq, tx_desc); |
| } |
| |
| return -ENOMEM; |
| } |
| |
| /* Main tx processing */ |
| static int mvpp2_tx(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct mvpp2_port *port = netdev_priv(dev); |
| struct mvpp2_tx_queue *txq, *aggr_txq; |
| struct mvpp2_txq_pcpu *txq_pcpu; |
| struct mvpp2_tx_desc *tx_desc; |
| dma_addr_t buf_dma_addr; |
| int frags = 0; |
| u16 txq_id; |
| u32 tx_cmd; |
| |
| txq_id = skb_get_queue_mapping(skb); |
| txq = port->txqs[txq_id]; |
| txq_pcpu = this_cpu_ptr(txq->pcpu); |
| aggr_txq = &port->priv->aggr_txqs[smp_processor_id()]; |
| |
| frags = skb_shinfo(skb)->nr_frags + 1; |
| |
| /* Check number of available descriptors */ |
| if (mvpp2_aggr_desc_num_check(port->priv, aggr_txq, frags) || |
| mvpp2_txq_reserved_desc_num_proc(port->priv, txq, |
| txq_pcpu, frags)) { |
| frags = 0; |
| goto out; |
| } |
| |
| /* Get a descriptor for the first part of the packet */ |
| tx_desc = mvpp2_txq_next_desc_get(aggr_txq); |
| mvpp2_txdesc_txq_set(port, tx_desc, txq->id); |
| mvpp2_txdesc_size_set(port, tx_desc, skb_headlen(skb)); |
| |
| buf_dma_addr = dma_map_single(dev->dev.parent, skb->data, |
| skb_headlen(skb), DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(dev->dev.parent, buf_dma_addr))) { |
| mvpp2_txq_desc_put(txq); |
| frags = 0; |
| goto out; |
| } |
| |
| mvpp2_txdesc_offset_set(port, tx_desc, |
| buf_dma_addr & MVPP2_TX_DESC_ALIGN); |
| mvpp2_txdesc_dma_addr_set(port, tx_desc, |
| buf_dma_addr & ~MVPP2_TX_DESC_ALIGN); |
| |
| tx_cmd = mvpp2_skb_tx_csum(port, skb); |
| |
| if (frags == 1) { |
| /* First and Last descriptor */ |
| tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC; |
| mvpp2_txdesc_cmd_set(port, tx_desc, tx_cmd); |
| mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc); |
| } else { |
| /* First but not Last */ |
| tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_PADDING_DISABLE; |
| mvpp2_txdesc_cmd_set(port, tx_desc, tx_cmd); |
| mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc); |
| |
| /* Continue with other skb fragments */ |
| if (mvpp2_tx_frag_process(port, skb, aggr_txq, txq)) { |
| tx_desc_unmap_put(port, txq, tx_desc); |
| frags = 0; |
| goto out; |
| } |
| } |
| |
| txq_pcpu->reserved_num -= frags; |
| txq_pcpu->count += frags; |
| aggr_txq->count += frags; |
| |
| /* Enable transmit */ |
| wmb(); |
| mvpp2_aggr_txq_pend_desc_add(port, frags); |
| |
| if (txq_pcpu->size - txq_pcpu->count < MAX_SKB_FRAGS + 1) { |
| struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); |
| |
| netif_tx_stop_queue(nq); |
| } |
| out: |
| if (frags > 0) { |
| struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats); |
| |
| u64_stats_update_begin(&stats->syncp); |
| stats->tx_packets++; |
| stats->tx_bytes += skb->len; |
| u64_stats_update_end(&stats->syncp); |
| } else { |
| dev->stats.tx_dropped++; |
| dev_kfree_skb_any(skb); |
| } |
| |
| /* Finalize TX processing */ |
| if (txq_pcpu->count >= txq->done_pkts_coal) |
| mvpp2_txq_done(port, txq, txq_pcpu); |
| |
| /* Set the timer in case not all frags were processed */ |
| if (txq_pcpu->count <= frags && txq_pcpu->count > 0) { |
| struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu); |
| |
| mvpp2_timer_set(port_pcpu); |
| } |
| |
| return NETDEV_TX_OK; |
| } |
| |
| static inline void mvpp2_cause_error(struct net_device *dev, int cause) |
| { |
| if (cause & MVPP2_CAUSE_FCS_ERR_MASK) |
| netdev_err(dev, "FCS error\n"); |
| if (cause & MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK) |
| netdev_err(dev, "rx fifo overrun error\n"); |
| if (cause & MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK) |
| netdev_err(dev, "tx fifo underrun error\n"); |
| } |
| |
| static int mvpp2_poll(struct napi_struct *napi, int budget) |
| { |
| u32 cause_rx_tx, cause_rx, cause_misc; |
| int rx_done = 0; |
| struct mvpp2_port *port = netdev_priv(napi->dev); |
| int cpu = smp_processor_id(); |
| |
| /* Rx/Tx cause register |
| * |
| * Bits 0-15: each bit indicates received packets on the Rx queue |
| * (bit 0 is for Rx queue 0). |
| * |
| * Bits 16-23: each bit indicates transmitted packets on the Tx queue |
| * (bit 16 is for Tx queue 0). |
| * |
| * Each CPU has its own Rx/Tx cause register |
| */ |
| cause_rx_tx = mvpp2_percpu_read(port->priv, cpu, |
| MVPP2_ISR_RX_TX_CAUSE_REG(port->id)); |
| cause_rx_tx &= ~MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK; |
| cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK; |
| |
| if (cause_misc) { |
| mvpp2_cause_error(port->dev, cause_misc); |
| |
| /* Clear the cause register */ |
| mvpp2_write(port->priv, MVPP2_ISR_MISC_CAUSE_REG, 0); |
| mvpp2_percpu_write(port->priv, cpu, |
| MVPP2_ISR_RX_TX_CAUSE_REG(port->id), |
| cause_rx_tx & ~MVPP2_CAUSE_MISC_SUM_MASK); |
| } |
| |
| cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK; |
| |
| /* Process RX packets */ |
| cause_rx |= port->pending_cause_rx; |
| while (cause_rx && budget > 0) { |
| int count; |
| struct mvpp2_rx_queue *rxq; |
| |
| rxq = mvpp2_get_rx_queue(port, cause_rx); |
| if (!rxq) |
| break; |
| |
| count = mvpp2_rx(port, budget, rxq); |
| rx_done += count; |
| budget -= count; |
| if (budget > 0) { |
| /* Clear the bit associated to this Rx queue |
| * so that next iteration will continue from |
| * the next Rx queue. |
| */ |
| cause_rx &= ~(1 << rxq->logic_rxq); |
| } |
| } |
| |
| if (budget > 0) { |
| cause_rx = 0; |
| napi_complete_done(napi, rx_done); |
| |
| mvpp2_interrupts_enable(port); |
| } |
| port->pending_cause_rx = cause_rx; |
| return rx_done; |
| } |
| |
| /* Set hw internals when starting port */ |
| static void mvpp2_start_dev(struct mvpp2_port *port) |
| { |
| struct net_device *ndev = port->dev; |
| |
| mvpp2_gmac_max_rx_size_set(port); |
| mvpp2_txp_max_tx_size_set(port); |
| |
| napi_enable(&port->napi); |
| |
| /* Enable interrupts on all CPUs */ |
| mvpp2_interrupts_enable(port); |
| |
| mvpp2_port_enable(port); |
| phy_start(ndev->phydev); |
| netif_tx_start_all_queues(port->dev); |
| } |
| |
| /* Set hw internals when stopping port */ |
| static void mvpp2_stop_dev(struct mvpp2_port *port) |
| { |
| struct net_device *ndev = port->dev; |
| |
| /* Stop new packets from arriving to RXQs */ |
| mvpp2_ingress_disable(port); |
| |
| mdelay(10); |
| |
| /* Disable interrupts on all CPUs */ |
| mvpp2_interrupts_disable(port); |
| |
| napi_disable(&port->napi); |
| |
| netif_carrier_off(port->dev); |
| netif_tx_stop_all_queues(port->dev); |
| |
| mvpp2_egress_disable(port); |
| mvpp2_port_disable(port); |
| phy_stop(ndev->phydev); |
| } |
| |
| static int mvpp2_check_ringparam_valid(struct net_device *dev, |
| struct ethtool_ringparam *ring) |
| { |
| u16 new_rx_pending = ring->rx_pending; |
| u16 new_tx_pending = ring->tx_pending; |
| |
| if (ring->rx_pending == 0 || ring->tx_pending == 0) |
| return -EINVAL; |
| |
| if (ring->rx_pending > MVPP2_MAX_RXD) |
| new_rx_pending = MVPP2_MAX_RXD; |
| else if (!IS_ALIGNED(ring->rx_pending, 16)) |
| new_rx_pending = ALIGN(ring->rx_pending, 16); |
| |
| if (ring->tx_pending > MVPP2_MAX_TXD) |
| new_tx_pending = MVPP2_MAX_TXD; |
| else if (!IS_ALIGNED(ring->tx_pending, 32)) |
| new_tx_pending = ALIGN(ring->tx_pending, 32); |
| |
| if (ring->rx_pending != new_rx_pending) { |
| netdev_info(dev, "illegal Rx ring size value %d, round to %d\n", |
| ring->rx_pending, new_rx_pending); |
| ring->rx_pending = new_rx_pending; |
| } |
| |
| if (ring->tx_pending != new_tx_pending) { |
| netdev_info(dev, "illegal Tx ring size value %d, round to %d\n", |
| ring->tx_pending, new_tx_pending); |
| ring->tx_pending = new_tx_pending; |
| } |
| |
| return 0; |
| } |
| |
| static void mvpp21_get_mac_address(struct mvpp2_port *port, unsigned char *addr) |
| { |
| u32 mac_addr_l, mac_addr_m, mac_addr_h; |
| |
| mac_addr_l = readl(port->base + MVPP2_GMAC_CTRL_1_REG); |
| mac_addr_m = readl(port->priv->lms_base + MVPP2_SRC_ADDR_MIDDLE); |
| mac_addr_h = readl(port->priv->lms_base + MVPP2_SRC_ADDR_HIGH); |
| addr[0] = (mac_addr_h >> 24) & 0xFF; |
| addr[1] = (mac_addr_h >> 16) & 0xFF; |
| addr[2] = (mac_addr_h >> 8) & 0xFF; |
| addr[3] = mac_addr_h & 0xFF; |
| addr[4] = mac_addr_m & 0xFF; |
| addr[5] = (mac_addr_l >> MVPP2_GMAC_SA_LOW_OFFS) & 0xFF; |
| } |
| |
| static int mvpp2_phy_connect(struct mvpp2_port *port) |
| { |
| struct phy_device *phy_dev; |
| |
| phy_dev = of_phy_connect(port->dev, port->phy_node, mvpp2_link_event, 0, |
| port->phy_interface); |
| if (!phy_dev) { |
| netdev_err(port->dev, "cannot connect to phy\n"); |
| return -ENODEV; |
| } |
| phy_dev->supported &= PHY_GBIT_FEATURES; |
| phy_dev->advertising = phy_dev->supported; |
| |
| port->link = 0; |
| port->duplex = 0; |
| port->speed = 0; |
| |
| return 0; |
| } |
| |
| static void mvpp2_phy_disconnect(struct mvpp2_port *port) |
| { |
| struct net_device *ndev = port->dev; |
| |
| phy_disconnect(ndev->phydev); |
| } |
| |
| static int mvpp2_open(struct net_device *dev) |
| { |
| struct mvpp2_port *port = netdev_priv(dev); |
| unsigned char mac_bcast[ETH_ALEN] = { |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; |
| int err; |
| |
| err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true); |
| if (err) { |
| netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n"); |
| return err; |
| } |
| err = mvpp2_prs_mac_da_accept(port->priv, port->id, |
| dev->dev_addr, true); |
| if (err) { |
| netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n"); |
| return err; |
| } |
| err = mvpp2_prs_tag_mode_set(port->priv, port->id, MVPP2_TAG_TYPE_MH); |
| if (err) { |
| netdev_err(dev, "mvpp2_prs_tag_mode_set failed\n"); |
| return err; |
| } |
| err = mvpp2_prs_def_flow(port); |
| if (err) { |
| netdev_err(dev, "mvpp2_prs_def_flow failed\n"); |
| return err; |
| } |
| |
| /* Allocate the Rx/Tx queues */ |
| err = mvpp2_setup_rxqs(port); |
| if (err) { |
| netdev_err(port->dev, "cannot allocate Rx queues\n"); |
| return err; |
| } |
| |
| err = mvpp2_setup_txqs(port); |
| if (err) { |
| netdev_err(port->dev, "cannot allocate Tx queues\n"); |
| goto err_cleanup_rxqs; |
| } |
| |
| err = request_irq(port->irq, mvpp2_isr, 0, dev->name, port); |
| if (err) { |
| netdev_err(port->dev, "cannot request IRQ %d\n", port->irq); |
| goto err_cleanup_txqs; |
| } |
| |
| /* In default link is down */ |
| netif_carrier_off(port->dev); |
| |
| err = mvpp2_phy_connect(port); |
| if (err < 0) |
| goto err_free_irq; |
| |
| /* Unmask interrupts on all CPUs */ |
| on_each_cpu(mvpp2_interrupts_unmask, port, 1); |
| |
| mvpp2_start_dev(port); |
| |
| return 0; |
| |
| err_free_irq: |
| free_irq(port->irq, port); |
| err_cleanup_txqs: |
| mvpp2_cleanup_txqs(port); |
| err_cleanup_rxqs: |
| mvpp2_cleanup_rxqs(port); |
| return err; |
| } |
| |
| static int mvpp2_stop(struct net_device *dev) |
| { |
| struct mvpp2_port *port = netdev_priv(dev); |
| struct mvpp2_port_pcpu *port_pcpu; |
| int cpu; |
| |
| mvpp2_stop_dev(port); |
| mvpp2_phy_disconnect(port); |
| |
| /* Mask interrupts on all CPUs */ |
| on_each_cpu(mvpp2_interrupts_mask, port, 1); |
| |
| free_irq(port->irq, port); |
| for_each_present_cpu(cpu) { |
| port_pcpu = per_cpu_ptr(port->pcpu, cpu); |
| |
| hrtimer_cancel(&port_pcpu->tx_done_timer); |
| port_pcpu->timer_scheduled = false; |
| tasklet_kill(&port_pcpu->tx_done_tasklet); |
| } |
| mvpp2_cleanup_rxqs(port); |
| mvpp2_cleanup_txqs(port); |
| |
| return 0; |
| } |
| |
| static void mvpp2_set_rx_mode(struct net_device *dev) |
| { |
| struct mvpp2_port *port = netdev_priv(dev); |
| struct mvpp2 *priv = port->priv; |
| struct netdev_hw_addr *ha; |
| int id = port->id; |
| bool allmulti = dev->flags & IFF_ALLMULTI; |
| |
| mvpp2_prs_mac_promisc_set(priv, id, dev->flags & IFF_PROMISC); |
| mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_ALL, allmulti); |
| mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_IP6, allmulti); |
| |
| /* Remove all port->id's mcast enries */ |
| mvpp2_prs_mcast_del_all(priv, id); |
| |
| if (allmulti && !netdev_mc_empty(dev)) { |
| netdev_for_each_mc_addr(ha, dev) |
| mvpp2_prs_mac_da_accept(priv, id, ha->addr, true); |
| } |
| } |
| |
| static int mvpp2_set_mac_address(struct net_device *dev, void *p) |
| { |
| struct mvpp2_port *port = netdev_priv(dev); |
| const struct sockaddr *addr = p; |
| int err; |
| |
| if (!is_valid_ether_addr(addr->sa_data)) { |
| err = -EADDRNOTAVAIL; |
| goto log_error; |
| } |
| |
| if (!netif_running(dev)) { |
| err = mvpp2_prs_update_mac_da(dev, addr->sa_data); |
| if (!err) |
| return 0; |
| /* Reconfigure parser to accept the original MAC address */ |
| err = mvpp2_prs_update_mac_da(dev, dev->dev_addr); |
| if (err) |
| goto log_error; |
| } |
| |
| mvpp2_stop_dev(port); |
| |
| err = mvpp2_prs_update_mac_da(dev, addr->sa_data); |
| if (!err) |
| goto out_start; |
| |
| /* Reconfigure parser accept the original MAC address */ |
| err = mvpp2_prs_update_mac_da(dev, dev->dev_addr); |
| if (err) |
| goto log_error; |
| out_start: |
| mvpp2_start_dev(port); |
| mvpp2_egress_enable(port); |
| mvpp2_ingress_enable(port); |
| return 0; |
| log_error: |
| netdev_err(dev, "failed to change MAC address\n"); |
| return err; |
| } |
| |
| static int mvpp2_change_mtu(struct net_device *dev, int mtu) |
| { |
| struct mvpp2_port *port = netdev_priv(dev); |
| int err; |
| |
| if (!IS_ALIGNED(MVPP2_RX_PKT_SIZE(mtu), 8)) { |
| netdev_info(dev, "illegal MTU value %d, round to %d\n", mtu, |
| ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8)); |
| mtu = ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8); |
| } |
| |
| if (!netif_running(dev)) { |
| err = mvpp2_bm_update_mtu(dev, mtu); |
| if (!err) { |
| port->pkt_size = MVPP2_RX_PKT_SIZE(mtu); |
| return 0; |
| } |
| |
| /* Reconfigure BM to the original MTU */ |
| err = mvpp2_bm_update_mtu(dev, dev->mtu); |
| if (err) |
| goto log_error; |
| } |
| |
| mvpp2_stop_dev(port); |
| |
| err = mvpp2_bm_update_mtu(dev, mtu); |
| if (!err) { |
| port->pkt_size = MVPP2_RX_PKT_SIZE(mtu); |
| goto out_start; |
| } |
| |
| /* Reconfigure BM to the original MTU */ |
| err = mvpp2_bm_update_mtu(dev, dev->mtu); |
| if (err) |
| goto log_error; |
| |
| out_start: |
| mvpp2_start_dev(port); |
| mvpp2_egress_enable(port); |
| mvpp2_ingress_enable(port); |
| |
| return 0; |
| log_error: |
| netdev_err(dev, "failed to change MTU\n"); |
| return err; |
| } |
| |
| static void |
| mvpp2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) |
| { |
| struct mvpp2_port *port = netdev_priv(dev); |
| unsigned int start; |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| struct mvpp2_pcpu_stats *cpu_stats; |
| u64 rx_packets; |
| u64 rx_bytes; |
| u64 tx_packets; |
| u64 tx_bytes; |
| |
| cpu_stats = per_cpu_ptr(port->stats, cpu); |
| do { |
| start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); |
| rx_packets = cpu_stats->rx_packets; |
| rx_bytes = cpu_stats->rx_bytes; |
| tx_packets = cpu_stats->tx_packets; |
| tx_bytes = cpu_stats->tx_bytes; |
| } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); |
| |
| stats->rx_packets += rx_packets; |
| stats->rx_bytes += rx_bytes; |
| stats->tx_packets += tx_packets; |
| stats->tx_bytes += tx_bytes; |
| } |
| |
| stats->rx_errors = dev->stats.rx_errors; |
| stats->rx_dropped = dev->stats.rx_dropped; |
| stats->tx_dropped = dev->stats.tx_dropped; |
| } |
| |
| static int mvpp2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) |
| { |
| int ret; |
| |
| if (!dev->phydev) |
| return -ENOTSUPP; |
| |
| ret = phy_mii_ioctl(dev->phydev, ifr, cmd); |
| if (!ret) |
| mvpp2_link_event(dev); |
| |
| return ret; |
| } |
| |
| /* Ethtool methods */ |
| |
| /* Set interrupt coalescing for ethtools */ |
| static int mvpp2_ethtool_set_coalesce(struct net_device *dev, |
| struct ethtool_coalesce *c) |
| { |
| struct mvpp2_port *port = netdev_priv(dev); |
| int queue; |
| |
| for (queue = 0; queue < rxq_number; queue++) { |
| struct mvpp2_rx_queue *rxq = port->rxqs[queue]; |
| |
| rxq->time_coal = c->rx_coalesce_usecs; |
| rxq->pkts_coal = c->rx_max_coalesced_frames; |
| mvpp2_rx_pkts_coal_set(port, rxq); |
| mvpp2_rx_time_coal_set(port, rxq); |
| } |
| |
| for (queue = 0; queue < txq_number; queue++) { |
| struct mvpp2_tx_queue *txq = port->txqs[queue]; |
| |
| txq->done_pkts_coal = c->tx_max_coalesced_frames; |
| } |
| |
| return 0; |
| } |
| |
| /* get coalescing for ethtools */ |
| static int mvpp2_ethtool_get_coalesce(struct net_device *dev, |
| struct ethtool_coalesce *c) |
| { |
| struct mvpp2_port *port = netdev_priv(dev); |
| |
| c->rx_coalesce_usecs = port->rxqs[0]->time_coal; |
| c->rx_max_coalesced_frames = port->rxqs[0]->pkts_coal; |
| c->tx_max_coalesced_frames = port->txqs[0]->done_pkts_coal; |
| return 0; |
| } |
| |
| static void mvpp2_ethtool_get_drvinfo(struct net_device *dev, |
| struct ethtool_drvinfo *drvinfo) |
| { |
| strlcpy(drvinfo->driver, MVPP2_DRIVER_NAME, |
| sizeof(drvinfo->driver)); |
| strlcpy(drvinfo->version, MVPP2_DRIVER_VERSION, |
| sizeof(drvinfo->version)); |
| strlcpy(drvinfo->bus_info, dev_name(&dev->dev), |
| sizeof(drvinfo->bus_info)); |
| } |
| |
| static void mvpp2_ethtool_get_ringparam(struct net_device *dev, |
| struct ethtool_ringparam *ring) |
| { |
| struct mvpp2_port *port = netdev_priv(dev); |
| |
| ring->rx_max_pending = MVPP2_MAX_RXD; |
| ring->tx_max_pending = MVPP2_MAX_TXD; |
| ring->rx_pending = port->rx_ring_size; |
| ring->tx_pending = port->tx_ring_size; |
| } |
| |
| static int mvpp2_ethtool_set_ringparam(struct net_device *dev, |
| struct ethtool_ringparam *ring) |
| { |
| struct mvpp2_port *port = netdev_priv(dev); |
| u16 prev_rx_ring_size = port->rx_ring_size; |
| u16 prev_tx_ring_size = port->tx_ring_size; |
| int err; |
| |
| err = mvpp2_check_ringparam_valid(dev, ring); |
| if (err) |
| return err; |
| |
| if (!netif_running(dev)) { |
| port->rx_ring_size = ring->rx_pending; |
| port->tx_ring_size = ring->tx_pending; |
| return 0; |
| } |
| |
| /* The interface is running, so we have to force a |
| * reallocation of the queues |
| */ |
| mvpp2_stop_dev(port); |
| mvpp2_cleanup_rxqs(port); |
| mvpp2_cleanup_txqs(port); |
| |
| port->rx_ring_size = ring->rx_pending; |
| port->tx_ring_size = ring->tx_pending; |
| |
| err = mvpp2_setup_rxqs(port); |
| if (err) { |
| /* Reallocate Rx queues with the original ring size */ |
| port->rx_ring_size = prev_rx_ring_size; |
| ring->rx_pending = prev_rx_ring_size; |
| err = mvpp2_setup_rxqs(port); |
| if (err) |
| goto err_out; |
| } |
| err = mvpp2_setup_txqs(port); |
| if (err) { |
| /* Reallocate Tx queues with the original ring size */ |
| port->tx_ring_size = prev_tx_ring_size; |
| ring->tx_pending = prev_tx_ring_size; |
| err = mvpp2_setup_txqs(port); |
| if (err) |
| goto err_clean_rxqs; |
| } |
| |
| mvpp2_start_dev(port); |
| mvpp2_egress_enable(port); |
| mvpp2_ingress_enable(port); |
| |
| return 0; |
| |
| err_clean_rxqs: |
| mvpp2_cleanup_rxqs(port); |
| err_out: |
| netdev_err(dev, "failed to change ring parameters"); |
| return err; |
| } |
| |
| /* Device ops */ |
| |
| static const struct net_device_ops mvpp2_netdev_ops = { |
| .ndo_open = mvpp2_open, |
| .ndo_stop = mvpp2_stop, |
| .ndo_start_xmit = mvpp2_tx, |
| .ndo_set_rx_mode = mvpp2_set_rx_mode, |
| .ndo_set_mac_address = mvpp2_set_mac_address, |
| .ndo_change_mtu = mvpp2_change_mtu, |
| .ndo_get_stats64 = mvpp2_get_stats64, |
| .ndo_do_ioctl = mvpp2_ioctl, |
| }; |
| |
| static const struct ethtool_ops mvpp2_eth_tool_ops = { |
| .nway_reset = phy_ethtool_nway_reset, |
| .get_link = ethtool_op_get_link, |
| .set_coalesce = mvpp2_ethtool_set_coalesce, |
| .get_coalesce = mvpp2_ethtool_get_coalesce, |
| .get_drvinfo = mvpp2_ethtool_get_drvinfo, |
| .get_ringparam = mvpp2_ethtool_get_ringparam, |
| .set_ringparam = mvpp2_ethtool_set_ringparam, |
| .get_link_ksettings = phy_ethtool_get_link_ksettings, |
| .set_link_ksettings = phy_ethtool_set_link_ksettings, |
| }; |
| |
| /* Initialize port HW */ |
| static int mvpp2_port_init(struct mvpp2_port *port) |
| { |
| struct device *dev = port->dev->dev.parent; |
| struct mvpp2 *priv = port->priv; |
| struct mvpp2_txq_pcpu *txq_pcpu; |
| int queue, cpu, err; |
| |
| if (port->first_rxq + rxq_number > |
| MVPP2_MAX_PORTS * priv->max_port_rxqs) |
| return -EINVAL; |
| |
| /* Disable port */ |
| mvpp2_egress_disable(port); |
| mvpp2_port_disable(port); |
| |
| port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs), |
| GFP_KERNEL); |
| if (!port->txqs) |
| return -ENOMEM; |
| |
| /* Associate physical Tx queues to this port and initialize. |
| * The mapping is predefined. |
| */ |
| for (queue = 0; queue < txq_number; queue++) { |
| int queue_phy_id = mvpp2_txq_phys(port->id, queue); |
| struct mvpp2_tx_queue *txq; |
| |
| txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL); |
| if (!txq) { |
| err = -ENOMEM; |
| goto err_free_percpu; |
| } |
| |
| txq->pcpu = alloc_percpu(struct mvpp2_txq_pcpu); |
| if (!txq->pcpu) { |
| err = -ENOMEM; |
| goto err_free_percpu; |
| } |
| |
| txq->id = queue_phy_id; |
| txq->log_id = queue; |
| txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH; |
| for_each_present_cpu(cpu) { |
| txq_pcpu = per_cpu_ptr(txq->pcpu, cpu); |
| txq_pcpu->cpu = cpu; |
| } |
| |
| port->txqs[queue] = txq; |
| } |
| |
| port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs), |
| GFP_KERNEL); |
| if (!port->rxqs) { |
| err = -ENOMEM; |
| goto err_free_percpu; |
| } |
| |
| /* Allocate and initialize Rx queue for this port */ |
| for (queue = 0; queue < rxq_number; queue++) { |
| struct mvpp2_rx_queue *rxq; |
| |
| /* Map physical Rx queue to port's logical Rx queue */ |
| rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL); |
| if (!rxq) { |
| err = -ENOMEM; |
| goto err_free_percpu; |
| } |
| /* Map this Rx queue to a physical queue */ |
| rxq->id = port->first_rxq + queue; |
| rxq->port = port->id; |
| rxq->logic_rxq = queue; |
| |
| port->rxqs[queue] = rxq; |
| } |
| |
| /* Configure Rx queue group interrupt for this port */ |
| if (priv->hw_version == MVPP21) { |
| mvpp2_write(priv, MVPP21_ISR_RXQ_GROUP_REG(port->id), |
| rxq_number); |
| } else { |
| u32 val; |
| |
| val = (port->id << MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET); |
| mvpp2_write(priv, MVPP22_ISR_RXQ_GROUP_INDEX_REG, val); |
| |
| val = (rxq_number << MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET); |
| mvpp2_write(priv, MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG, val); |
| } |
| |
| /* Create Rx descriptor rings */ |
| for (queue = 0; queue < rxq_number; queue++) { |
| struct mvpp2_rx_queue *rxq = port->rxqs[queue]; |
| |
| rxq->size = port->rx_ring_size; |
| rxq->pkts_coal = MVPP2_RX_COAL_PKTS; |
| rxq->time_coal = MVPP2_RX_COAL_USEC; |
| } |
| |
| mvpp2_ingress_disable(port); |
| |
| /* Port default configuration */ |
| mvpp2_defaults_set(port); |
| |
| /* Port's classifier configuration */ |
| mvpp2_cls_oversize_rxq_set(port); |
| mvpp2_cls_port_config(port); |
| |
| /* Provide an initial Rx packet size */ |
| port->pkt_size = MVPP2_RX_PKT_SIZE(port->dev->mtu); |
| |
| /* Initialize pools for swf */ |
| err = mvpp2_swf_bm_pool_init(port); |
| if (err) |
| goto err_free_percpu; |
| |
| return 0; |
| |
| err_free_percpu: |
| for (queue = 0; queue < txq_number; queue++) { |
| if (!port->txqs[queue]) |
| continue; |
| free_percpu(port->txqs[queue]->pcpu); |
| } |
| return err; |
| } |
| |
| /* Ports initialization */ |
| static int mvpp2_port_probe(struct platform_device *pdev, |
| struct device_node *port_node, |
| struct mvpp2 *priv) |
| { |
| struct device_node *phy_node; |
| struct mvpp2_port *port; |
| struct mvpp2_port_pcpu *port_pcpu; |
| struct net_device *dev; |
| struct resource *res; |
| const char *dt_mac_addr; |
| const char *mac_from; |
| char hw_mac_addr[ETH_ALEN]; |
| u32 id; |
| int features; |
| int phy_mode; |
| int err, i, cpu; |
| |
| dev = alloc_etherdev_mqs(sizeof(*port), txq_number, rxq_number); |
| if (!dev) |
| return -ENOMEM; |
| |
| phy_node = of_parse_phandle(port_node, "phy", 0); |
| if (!phy_node) { |
| dev_err(&pdev->dev, "missing phy\n"); |
| err = -ENODEV; |
| goto err_free_netdev; |
| } |
| |
| phy_mode = of_get_phy_mode(port_node); |
| if (phy_mode < 0) { |
| dev_err(&pdev->dev, "incorrect phy mode\n"); |
| err = phy_mode; |
| goto err_free_netdev; |
| } |
| |
| if (of_property_read_u32(port_node, "port-id", &id)) { |
| err = -EINVAL; |
| dev_err(&pdev->dev, "missing port-id value\n"); |
| goto err_free_netdev; |
| } |
| |
| dev->tx_queue_len = MVPP2_MAX_TXD; |
| dev->watchdog_timeo = 5 * HZ; |
| dev->netdev_ops = &mvpp2_netdev_ops; |
| dev->ethtool_ops = &mvpp2_eth_tool_ops; |
| |
| port = netdev_priv(dev); |
| |
| port->irq = irq_of_parse_and_map(port_node, 0); |
| if (port->irq <= 0) { |
| err = -EINVAL; |
| goto err_free_netdev; |
| } |
| |
| if (of_property_read_bool(port_node, "marvell,loopback")) |
| port->flags |= MVPP2_F_LOOPBACK; |
| |
| port->priv = priv; |
| port->id = id; |
| if (priv->hw_version == MVPP21) |
| port->first_rxq = port->id * rxq_number; |
| else |
| port->first_rxq = port->id * priv->max_port_rxqs; |
| |
| port->phy_node = phy_node; |
| port->phy_interface = phy_mode; |
| |
| if (priv->hw_version == MVPP21) { |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 2 + id); |
| port->base = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(port->base)) { |
| err = PTR_ERR(port->base); |
| goto err_free_irq; |
| } |
| } else { |
| if (of_property_read_u32(port_node, "gop-port-id", |
| &port->gop_id)) { |
| err = -EINVAL; |
| dev_err(&pdev->dev, "missing gop-port-id value\n"); |
| goto err_free_irq; |
| } |
| |
| port->base = priv->iface_base + MVPP22_GMAC_BASE(port->gop_id); |
| } |
| |
| /* Alloc per-cpu stats */ |
| port->stats = netdev_alloc_pcpu_stats(struct mvpp2_pcpu_stats); |
| if (!port->stats) { |
| err = -ENOMEM; |
| goto err_free_irq; |
| } |
| |
| dt_mac_addr = of_get_mac_address(port_node); |
| if (dt_mac_addr && is_valid_ether_addr(dt_mac_addr)) { |
| mac_from = "device tree"; |
| ether_addr_copy(dev->dev_addr, dt_mac_addr); |
| } else { |
| if (priv->hw_version == MVPP21) |
| mvpp21_get_mac_address(port, hw_mac_addr); |
| if (is_valid_ether_addr(hw_mac_addr)) { |
| mac_from = "hardware"; |
| ether_addr_copy(dev->dev_addr, hw_mac_addr); |
| } else { |
| mac_from = "random"; |
| eth_hw_addr_random(dev); |
| } |
| } |
| |
| port->tx_ring_size = MVPP2_MAX_TXD; |
| port->rx_ring_size = MVPP2_MAX_RXD; |
| port->dev = dev; |
| SET_NETDEV_DEV(dev, &pdev->dev); |
| |
| err = mvpp2_port_init(port); |
| if (err < 0) { |
| dev_err(&pdev->dev, "failed to init port %d\n", id); |
| goto err_free_stats; |
| } |
| |
| mvpp2_port_mii_set(port); |
| mvpp2_port_periodic_xon_disable(port); |
| |
| if (priv->hw_version == MVPP21) |
| mvpp2_port_fc_adv_enable(port); |
| |
| mvpp2_port_reset(port); |
| |
| port->pcpu = alloc_percpu(struct mvpp2_port_pcpu); |
| if (!port->pcpu) { |
| err = -ENOMEM; |
| goto err_free_txq_pcpu; |
| } |
| |
| for_each_present_cpu(cpu) { |
| port_pcpu = per_cpu_ptr(port->pcpu, cpu); |
| |
| hrtimer_init(&port_pcpu->tx_done_timer, CLOCK_MONOTONIC, |
| HRTIMER_MODE_REL_PINNED); |
| port_pcpu->tx_done_timer.function = mvpp2_hr_timer_cb; |
| port_pcpu->timer_scheduled = false; |
| |
| tasklet_init(&port_pcpu->tx_done_tasklet, mvpp2_tx_proc_cb, |
| (unsigned long)dev); |
| } |
| |
| netif_napi_add(dev, &port->napi, mvpp2_poll, NAPI_POLL_WEIGHT); |
| features = NETIF_F_SG | NETIF_F_IP_CSUM; |
| dev->features = features | NETIF_F_RXCSUM; |
| dev->hw_features |= features | NETIF_F_RXCSUM | NETIF_F_GRO; |
| dev->vlan_features |= features; |
| |
| /* MTU range: 68 - 9676 */ |
| dev->min_mtu = ETH_MIN_MTU; |
| /* 9676 == 9700 - 20 and rounding to 8 */ |
| dev->max_mtu = 9676; |
| |
| err = register_netdev(dev); |
| if (err < 0) { |
| dev_err(&pdev->dev, "failed to register netdev\n"); |
| goto err_free_port_pcpu; |
| } |
| netdev_info(dev, "Using %s mac address %pM\n", mac_from, dev->dev_addr); |
| |
| priv->port_list[id] = port; |
| return 0; |
| |
| err_free_port_pcpu: |
| free_percpu(port->pcpu); |
| err_free_txq_pcpu: |
| for (i = 0; i < txq_number; i++) |
| free_percpu(port->txqs[i]->pcpu); |
| err_free_stats: |
| free_percpu(port->stats); |
| err_free_irq: |
| irq_dispose_mapping(port->irq); |
| err_free_netdev: |
| of_node_put(phy_node); |
| free_netdev(dev); |
| return err; |
| } |
| |
| /* Ports removal routine */ |
| static void mvpp2_port_remove(struct mvpp2_port *port) |
| { |
| int i; |
| |
| unregister_netdev(port->dev); |
| of_node_put(port->phy_node); |
| free_percpu(port->pcpu); |
| free_percpu(port->stats); |
| for (i = 0; i < txq_number; i++) |
| free_percpu(port->txqs[i]->pcpu); |
| irq_dispose_mapping(port->irq); |
| free_netdev(port->dev); |
| } |
| |
| /* Initialize decoding windows */ |
| static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram, |
| struct mvpp2 *priv) |
| { |
| u32 win_enable; |
| int i; |
| |
| for (i = 0; i < 6; i++) { |
| mvpp2_write(priv, MVPP2_WIN_BASE(i), 0); |
| mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0); |
| |
| if (i < 4) |
| mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0); |
| } |
| |
| win_enable = 0; |
| |
| for (i = 0; i < dram->num_cs; i++) { |
| const struct mbus_dram_window *cs = dram->cs + i; |
| |
| mvpp2_write(priv, MVPP2_WIN_BASE(i), |
| (cs->base & 0xffff0000) | (cs->mbus_attr << 8) | |
| dram->mbus_dram_target_id); |
| |
| mvpp2_write(priv, MVPP2_WIN_SIZE(i), |
| (cs->size - 1) & 0xffff0000); |
| |
| win_enable |= (1 << i); |
| } |
| |
| mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable); |
| } |
| |
| /* Initialize Rx FIFO's */ |
| static void mvpp2_rx_fifo_init(struct mvpp2 *priv) |
| { |
| int port; |
| |
| for (port = 0; port < MVPP2_MAX_PORTS; port++) { |
| mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port), |
| MVPP2_RX_FIFO_PORT_DATA_SIZE); |
| mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port), |
| MVPP2_RX_FIFO_PORT_ATTR_SIZE); |
| } |
| |
| mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG, |
| MVPP2_RX_FIFO_PORT_MIN_PKT); |
| mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1); |
| } |
| |
| static void mvpp2_axi_init(struct mvpp2 *priv) |
| { |
| u32 val, rdval, wrval; |
| |
| mvpp2_write(priv, MVPP22_BM_ADDR_HIGH_RLS_REG, 0x0); |
| |
| /* AXI Bridge Configuration */ |
| |
| rdval = MVPP22_AXI_CODE_CACHE_RD_CACHE |
| << MVPP22_AXI_ATTR_CACHE_OFFS; |
| rdval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM |
| << MVPP22_AXI_ATTR_DOMAIN_OFFS; |
| |
| wrval = MVPP22_AXI_CODE_CACHE_WR_CACHE |
| << MVPP22_AXI_ATTR_CACHE_OFFS; |
| wrval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM |
| << MVPP22_AXI_ATTR_DOMAIN_OFFS; |
| |
| /* BM */ |
| mvpp2_write(priv, MVPP22_AXI_BM_WR_ATTR_REG, wrval); |
| mvpp2_write(priv, MVPP22_AXI_BM_RD_ATTR_REG, rdval); |
| |
| /* Descriptors */ |
| mvpp2_write(priv, MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG, rdval); |
| mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG, wrval); |
| mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG, rdval); |
| mvpp2_write(priv, MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG, wrval); |
| |
| /* Buffer Data */ |
| mvpp2_write(priv, MVPP22_AXI_TX_DATA_RD_ATTR_REG, rdval); |
| mvpp2_write(priv, MVPP22_AXI_RX_DATA_WR_ATTR_REG, wrval); |
| |
| val = MVPP22_AXI_CODE_CACHE_NON_CACHE |
| << MVPP22_AXI_CODE_CACHE_OFFS; |
| val |= MVPP22_AXI_CODE_DOMAIN_SYSTEM |
| << MVPP22_AXI_CODE_DOMAIN_OFFS; |
| mvpp2_write(priv, MVPP22_AXI_RD_NORMAL_CODE_REG, val); |
| mvpp2_write(priv, MVPP22_AXI_WR_NORMAL_CODE_REG, val); |
| |
| val = MVPP22_AXI_CODE_CACHE_RD_CACHE |
| << MVPP22_AXI_CODE_CACHE_OFFS; |
| val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM |
| << MVPP22_AXI_CODE_DOMAIN_OFFS; |
| |
| mvpp2_write(priv, MVPP22_AXI_RD_SNOOP_CODE_REG, val); |
| |
| val = MVPP22_AXI_CODE_CACHE_WR_CACHE |
| << MVPP22_AXI_CODE_CACHE_OFFS; |
| val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM |
| << MVPP22_AXI_CODE_DOMAIN_OFFS; |
| |
| mvpp2_write(priv, MVPP22_AXI_WR_SNOOP_CODE_REG, val); |
| } |
| |
| /* Initialize network controller common part HW */ |
| static int mvpp2_init(struct platform_device *pdev, struct mvpp2 *priv) |
| { |
| const struct mbus_dram_target_info *dram_target_info; |
| int err, i; |
| u32 val; |
| |
| /* Checks for hardware constraints */ |
| if (rxq_number % 4 || (rxq_number > priv->max_port_rxqs) || |
| (txq_number > MVPP2_MAX_TXQ)) { |
| dev_err(&pdev->dev, "invalid queue size parameter\n"); |
| return -EINVAL; |
| } |
| |
| /* MBUS windows configuration */ |
| dram_target_info = mv_mbus_dram_info(); |
| if (dram_target_info) |
| mvpp2_conf_mbus_windows(dram_target_info, priv); |
| |
| if (priv->hw_version == MVPP22) |
| mvpp2_axi_init(priv); |
| |
| /* Disable HW PHY polling */ |
| if (priv->hw_version == MVPP21) { |
| val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG); |
| val |= MVPP2_PHY_AN_STOP_SMI0_MASK; |
| writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG); |
| } else { |
| val = readl(priv->iface_base + MVPP22_SMI_MISC_CFG_REG); |
| val &= ~MVPP22_SMI_POLLING_EN; |
| writel(val, priv->iface_base + MVPP22_SMI_MISC_CFG_REG); |
| } |
| |
| /* Allocate and initialize aggregated TXQs */ |
| priv->aggr_txqs = devm_kcalloc(&pdev->dev, num_present_cpus(), |
| sizeof(*priv->aggr_txqs), |
| GFP_KERNEL); |
| if (!priv->aggr_txqs) |
| return -ENOMEM; |
| |
| for_each_present_cpu(i) { |
| priv->aggr_txqs[i].id = i; |
| priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE; |
| err = mvpp2_aggr_txq_init(pdev, &priv->aggr_txqs[i], |
| MVPP2_AGGR_TXQ_SIZE, i, priv); |
| if (err < 0) |
| return err; |
| } |
| |
| /* Rx Fifo Init */ |
| mvpp2_rx_fifo_init(priv); |
| |
| /* Reset Rx queue group interrupt configuration */ |
| for (i = 0; i < MVPP2_MAX_PORTS; i++) { |
| if (priv->hw_version == MVPP21) { |
| mvpp2_write(priv, MVPP21_ISR_RXQ_GROUP_REG(i), |
| rxq_number); |
| continue; |
| } else { |
| u32 val; |
| |
| val = (i << MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET); |
| mvpp2_write(priv, MVPP22_ISR_RXQ_GROUP_INDEX_REG, val); |
| |
| val = (rxq_number << MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET); |
| mvpp2_write(priv, MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG, val); |
| } |
| } |
| |
| if (priv->hw_version == MVPP21) |
| writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT, |
| priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG); |
| |
| /* Allow cache snoop when transmiting packets */ |
| mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1); |
| |
| /* Buffer Manager initialization */ |
| err = mvpp2_bm_init(pdev, priv); |
| if (err < 0) |
| return err; |
| |
| /* Parser default initialization */ |
| err = mvpp2_prs_default_init(pdev, priv); |
| if (err < 0) |
| return err; |
| |
| /* Classifier default initialization */ |
| mvpp2_cls_init(priv); |
| |
| return 0; |
| } |
| |
| static int mvpp2_probe(struct platform_device *pdev) |
| { |
| struct device_node *dn = pdev->dev.of_node; |
| struct device_node *port_node; |
| struct mvpp2 *priv; |
| struct resource *res; |
| void __iomem *base; |
| int port_count, cpu; |
| int err; |
| |
| priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); |
| if (!priv) |
| return -ENOMEM; |
| |
| priv->hw_version = |
| (unsigned long)of_device_get_match_data(&pdev->dev); |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| base = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(base)) |
| return PTR_ERR(base); |
| |
| if (priv->hw_version == MVPP21) { |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 1); |
| priv->lms_base = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(priv->lms_base)) |
| return PTR_ERR(priv->lms_base); |
| } else { |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 1); |
| priv->iface_base = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(priv->iface_base)) |
| return PTR_ERR(priv->iface_base); |
| } |
| |
| for_each_present_cpu(cpu) { |
| u32 addr_space_sz; |
| |
| addr_space_sz = (priv->hw_version == MVPP21 ? |
| MVPP21_ADDR_SPACE_SZ : MVPP22_ADDR_SPACE_SZ); |
| priv->cpu_base[cpu] = base + cpu * addr_space_sz; |
| } |
| |
| if (priv->hw_version == MVPP21) |
| priv->max_port_rxqs = 8; |
| else |
| priv->max_port_rxqs = 32; |
| |
| priv->pp_clk = devm_clk_get(&pdev->dev, "pp_clk"); |
| if (IS_ERR(priv->pp_clk)) |
| return PTR_ERR(priv->pp_clk); |
| err = clk_prepare_enable(priv->pp_clk); |
| if (err < 0) |
| return err; |
| |
| priv->gop_clk = devm_clk_get(&pdev->dev, "gop_clk"); |
| if (IS_ERR(priv->gop_clk)) { |
| err = PTR_ERR(priv->gop_clk); |
| goto err_pp_clk; |
| } |
| err = clk_prepare_enable(priv->gop_clk); |
| if (err < 0) |
| goto err_pp_clk; |
| |
| if (priv->hw_version == MVPP22) { |
| priv->mg_clk = devm_clk_get(&pdev->dev, "mg_clk"); |
| if (IS_ERR(priv->mg_clk)) { |
| err = PTR_ERR(priv->mg_clk); |
| goto err_gop_clk; |
| } |
| |
| err = clk_prepare_enable(priv->mg_clk); |
| if (err < 0) |
| goto err_gop_clk; |
| } |
| |
| /* Get system's tclk rate */ |
| priv->tclk = clk_get_rate(priv->pp_clk); |
| |
| if (priv->hw_version == MVPP22) { |
| err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(40)); |
| if (err) |
| goto err_mg_clk; |
| /* Sadly, the BM pools all share the same register to |
| * store the high 32 bits of their address. So they |
| * must all have the same high 32 bits, which forces |
| * us to restrict coherent memory to DMA_BIT_MASK(32). |
| */ |
| err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); |
| if (err) |
| goto err_mg_clk; |
| } |
| |
| /* Initialize network controller */ |
| err = mvpp2_init(pdev, priv); |
| if (err < 0) { |
| dev_err(&pdev->dev, "failed to initialize controller\n"); |
| goto err_mg_clk; |
| } |
| |
| port_count = of_get_available_child_count(dn); |
| if (port_count == 0) { |
| dev_err(&pdev->dev, "no ports enabled\n"); |
| err = -ENODEV; |
| goto err_mg_clk; |
| } |
| |
| priv->port_list = devm_kcalloc(&pdev->dev, port_count, |
| sizeof(*priv->port_list), |
| GFP_KERNEL); |
| if (!priv->port_list) { |
| err = -ENOMEM; |
| goto err_mg_clk; |
| } |
| |
| /* Initialize ports */ |
| for_each_available_child_of_node(dn, port_node) { |
| err = mvpp2_port_probe(pdev, port_node, priv); |
| if (err < 0) |
| goto err_mg_clk; |
| } |
| |
| platform_set_drvdata(pdev, priv); |
| return 0; |
| |
| err_mg_clk: |
| if (priv->hw_version == MVPP22) |
| clk_disable_unprepare(priv->mg_clk); |
| err_gop_clk: |
| clk_disable_unprepare(priv->gop_clk); |
| err_pp_clk: |
| clk_disable_unprepare(priv->pp_clk); |
| return err; |
| } |
| |
| static int mvpp2_remove(struct platform_device *pdev) |
| { |
| struct mvpp2 *priv = platform_get_drvdata(pdev); |
| struct device_node *dn = pdev->dev.of_node; |
| struct device_node *port_node; |
| int i = 0; |
| |
| for_each_available_child_of_node(dn, port_node) { |
| if (priv->port_list[i]) |
| mvpp2_port_remove(priv->port_list[i]); |
| i++; |
| } |
| |
| for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) { |
| struct mvpp2_bm_pool *bm_pool = &priv->bm_pools[i]; |
| |
| mvpp2_bm_pool_destroy(pdev, priv, bm_pool); |
| } |
| |
| for_each_present_cpu(i) { |
| struct mvpp2_tx_queue *aggr_txq = &priv->aggr_txqs[i]; |
| |
| dma_free_coherent(&pdev->dev, |
| MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE, |
| aggr_txq->descs, |
| aggr_txq->descs_dma); |
| } |
| |
| clk_disable_unprepare(priv->mg_clk); |
| clk_disable_unprepare(priv->pp_clk); |
| clk_disable_unprepare(priv->gop_clk); |
| |
| return 0; |
| } |
| |
| static const struct of_device_id mvpp2_match[] = { |
| { |
| .compatible = "marvell,armada-375-pp2", |
| .data = (void *)MVPP21, |
| }, |
| { |
| .compatible = "marvell,armada-7k-pp22", |
| .data = (void *)MVPP22, |
| }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(of, mvpp2_match); |
| |
| static struct platform_driver mvpp2_driver = { |
| .probe = mvpp2_probe, |
| .remove = mvpp2_remove, |
| .driver = { |
| .name = MVPP2_DRIVER_NAME, |
| .of_match_table = mvpp2_match, |
| }, |
| }; |
| |
| module_platform_driver(mvpp2_driver); |
| |
| MODULE_DESCRIPTION("Marvell PPv2 Ethernet Driver - www.marvell.com"); |
| MODULE_AUTHOR("Marcin Wojtas <mw@semihalf.com>"); |
| MODULE_LICENSE("GPL v2"); |