| /* |
| * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| * Communication to userspace based on kernel/printk.c |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/poll.h> |
| #include <linux/proc_fs.h> |
| #include <linux/init.h> |
| #include <linux/vmalloc.h> |
| #include <linux/spinlock.h> |
| #include <linux/cpu.h> |
| #include <linux/delay.h> |
| |
| #include <asm/uaccess.h> |
| #include <asm/io.h> |
| #include <asm/rtas.h> |
| #include <asm/prom.h> |
| #include <asm/nvram.h> |
| #include <asm/atomic.h> |
| #include <asm/machdep.h> |
| |
| #if 0 |
| #define DEBUG(A...) printk(KERN_ERR A) |
| #else |
| #define DEBUG(A...) |
| #endif |
| |
| static DEFINE_SPINLOCK(rtasd_log_lock); |
| |
| DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait); |
| |
| static char *rtas_log_buf; |
| static unsigned long rtas_log_start; |
| static unsigned long rtas_log_size; |
| |
| static int surveillance_timeout = -1; |
| static unsigned int rtas_event_scan_rate; |
| static unsigned int rtas_error_log_max; |
| static unsigned int rtas_error_log_buffer_max; |
| |
| static int full_rtas_msgs = 0; |
| |
| extern int no_logging; |
| |
| volatile int error_log_cnt = 0; |
| |
| /* |
| * Since we use 32 bit RTAS, the physical address of this must be below |
| * 4G or else bad things happen. Allocate this in the kernel data and |
| * make it big enough. |
| */ |
| static unsigned char logdata[RTAS_ERROR_LOG_MAX]; |
| |
| static int get_eventscan_parms(void); |
| |
| static char *rtas_type[] = { |
| "Unknown", "Retry", "TCE Error", "Internal Device Failure", |
| "Timeout", "Data Parity", "Address Parity", "Cache Parity", |
| "Address Invalid", "ECC Uncorrected", "ECC Corrupted", |
| }; |
| |
| static char *rtas_event_type(int type) |
| { |
| if ((type > 0) && (type < 11)) |
| return rtas_type[type]; |
| |
| switch (type) { |
| case RTAS_TYPE_EPOW: |
| return "EPOW"; |
| case RTAS_TYPE_PLATFORM: |
| return "Platform Error"; |
| case RTAS_TYPE_IO: |
| return "I/O Event"; |
| case RTAS_TYPE_INFO: |
| return "Platform Information Event"; |
| case RTAS_TYPE_DEALLOC: |
| return "Resource Deallocation Event"; |
| case RTAS_TYPE_DUMP: |
| return "Dump Notification Event"; |
| } |
| |
| return rtas_type[0]; |
| } |
| |
| /* To see this info, grep RTAS /var/log/messages and each entry |
| * will be collected together with obvious begin/end. |
| * There will be a unique identifier on the begin and end lines. |
| * This will persist across reboots. |
| * |
| * format of error logs returned from RTAS: |
| * bytes (size) : contents |
| * -------------------------------------------------------- |
| * 0-7 (8) : rtas_error_log |
| * 8-47 (40) : extended info |
| * 48-51 (4) : vendor id |
| * 52-1023 (vendor specific) : location code and debug data |
| */ |
| static void printk_log_rtas(char *buf, int len) |
| { |
| |
| int i,j,n = 0; |
| int perline = 16; |
| char buffer[64]; |
| char * str = "RTAS event"; |
| |
| if (full_rtas_msgs) { |
| printk(RTAS_DEBUG "%d -------- %s begin --------\n", |
| error_log_cnt, str); |
| |
| /* |
| * Print perline bytes on each line, each line will start |
| * with RTAS and a changing number, so syslogd will |
| * print lines that are otherwise the same. Separate every |
| * 4 bytes with a space. |
| */ |
| for (i = 0; i < len; i++) { |
| j = i % perline; |
| if (j == 0) { |
| memset(buffer, 0, sizeof(buffer)); |
| n = sprintf(buffer, "RTAS %d:", i/perline); |
| } |
| |
| if ((i % 4) == 0) |
| n += sprintf(buffer+n, " "); |
| |
| n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]); |
| |
| if (j == (perline-1)) |
| printk(KERN_DEBUG "%s\n", buffer); |
| } |
| if ((i % perline) != 0) |
| printk(KERN_DEBUG "%s\n", buffer); |
| |
| printk(RTAS_DEBUG "%d -------- %s end ----------\n", |
| error_log_cnt, str); |
| } else { |
| struct rtas_error_log *errlog = (struct rtas_error_log *)buf; |
| |
| printk(RTAS_DEBUG "event: %d, Type: %s, Severity: %d\n", |
| error_log_cnt, rtas_event_type(errlog->type), |
| errlog->severity); |
| } |
| } |
| |
| static int log_rtas_len(char * buf) |
| { |
| int len; |
| struct rtas_error_log *err; |
| |
| /* rtas fixed header */ |
| len = 8; |
| err = (struct rtas_error_log *)buf; |
| if (err->extended_log_length) { |
| |
| /* extended header */ |
| len += err->extended_log_length; |
| } |
| |
| if (rtas_error_log_max == 0) { |
| get_eventscan_parms(); |
| } |
| if (len > rtas_error_log_max) |
| len = rtas_error_log_max; |
| |
| return len; |
| } |
| |
| /* |
| * First write to nvram, if fatal error, that is the only |
| * place we log the info. The error will be picked up |
| * on the next reboot by rtasd. If not fatal, run the |
| * method for the type of error. Currently, only RTAS |
| * errors have methods implemented, but in the future |
| * there might be a need to store data in nvram before a |
| * call to panic(). |
| * |
| * XXX We write to nvram periodically, to indicate error has |
| * been written and sync'd, but there is a possibility |
| * that if we don't shutdown correctly, a duplicate error |
| * record will be created on next reboot. |
| */ |
| void pSeries_log_error(char *buf, unsigned int err_type, int fatal) |
| { |
| unsigned long offset; |
| unsigned long s; |
| int len = 0; |
| |
| DEBUG("logging event\n"); |
| if (buf == NULL) |
| return; |
| |
| spin_lock_irqsave(&rtasd_log_lock, s); |
| |
| /* get length and increase count */ |
| switch (err_type & ERR_TYPE_MASK) { |
| case ERR_TYPE_RTAS_LOG: |
| len = log_rtas_len(buf); |
| if (!(err_type & ERR_FLAG_BOOT)) |
| error_log_cnt++; |
| break; |
| case ERR_TYPE_KERNEL_PANIC: |
| default: |
| spin_unlock_irqrestore(&rtasd_log_lock, s); |
| return; |
| } |
| |
| /* Write error to NVRAM */ |
| if (!no_logging && !(err_type & ERR_FLAG_BOOT)) |
| nvram_write_error_log(buf, len, err_type); |
| |
| /* |
| * rtas errors can occur during boot, and we do want to capture |
| * those somewhere, even if nvram isn't ready (why not?), and even |
| * if rtasd isn't ready. Put them into the boot log, at least. |
| */ |
| if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG) |
| printk_log_rtas(buf, len); |
| |
| /* Check to see if we need to or have stopped logging */ |
| if (fatal || no_logging) { |
| no_logging = 1; |
| spin_unlock_irqrestore(&rtasd_log_lock, s); |
| return; |
| } |
| |
| /* call type specific method for error */ |
| switch (err_type & ERR_TYPE_MASK) { |
| case ERR_TYPE_RTAS_LOG: |
| offset = rtas_error_log_buffer_max * |
| ((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK); |
| |
| /* First copy over sequence number */ |
| memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int)); |
| |
| /* Second copy over error log data */ |
| offset += sizeof(int); |
| memcpy(&rtas_log_buf[offset], buf, len); |
| |
| if (rtas_log_size < LOG_NUMBER) |
| rtas_log_size += 1; |
| else |
| rtas_log_start += 1; |
| |
| spin_unlock_irqrestore(&rtasd_log_lock, s); |
| wake_up_interruptible(&rtas_log_wait); |
| break; |
| case ERR_TYPE_KERNEL_PANIC: |
| default: |
| spin_unlock_irqrestore(&rtasd_log_lock, s); |
| return; |
| } |
| |
| } |
| |
| |
| static int rtas_log_open(struct inode * inode, struct file * file) |
| { |
| return 0; |
| } |
| |
| static int rtas_log_release(struct inode * inode, struct file * file) |
| { |
| return 0; |
| } |
| |
| /* This will check if all events are logged, if they are then, we |
| * know that we can safely clear the events in NVRAM. |
| * Next we'll sit and wait for something else to log. |
| */ |
| static ssize_t rtas_log_read(struct file * file, char __user * buf, |
| size_t count, loff_t *ppos) |
| { |
| int error; |
| char *tmp; |
| unsigned long s; |
| unsigned long offset; |
| |
| if (!buf || count < rtas_error_log_buffer_max) |
| return -EINVAL; |
| |
| count = rtas_error_log_buffer_max; |
| |
| if (!access_ok(VERIFY_WRITE, buf, count)) |
| return -EFAULT; |
| |
| tmp = kmalloc(count, GFP_KERNEL); |
| if (!tmp) |
| return -ENOMEM; |
| |
| |
| spin_lock_irqsave(&rtasd_log_lock, s); |
| /* if it's 0, then we know we got the last one (the one in NVRAM) */ |
| if (rtas_log_size == 0 && !no_logging) |
| nvram_clear_error_log(); |
| spin_unlock_irqrestore(&rtasd_log_lock, s); |
| |
| |
| error = wait_event_interruptible(rtas_log_wait, rtas_log_size); |
| if (error) |
| goto out; |
| |
| spin_lock_irqsave(&rtasd_log_lock, s); |
| offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK); |
| memcpy(tmp, &rtas_log_buf[offset], count); |
| |
| rtas_log_start += 1; |
| rtas_log_size -= 1; |
| spin_unlock_irqrestore(&rtasd_log_lock, s); |
| |
| error = copy_to_user(buf, tmp, count) ? -EFAULT : count; |
| out: |
| kfree(tmp); |
| return error; |
| } |
| |
| static unsigned int rtas_log_poll(struct file *file, poll_table * wait) |
| { |
| poll_wait(file, &rtas_log_wait, wait); |
| if (rtas_log_size) |
| return POLLIN | POLLRDNORM; |
| return 0; |
| } |
| |
| struct file_operations proc_rtas_log_operations = { |
| .read = rtas_log_read, |
| .poll = rtas_log_poll, |
| .open = rtas_log_open, |
| .release = rtas_log_release, |
| }; |
| |
| static int enable_surveillance(int timeout) |
| { |
| int error; |
| |
| error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout); |
| |
| if (error == 0) |
| return 0; |
| |
| if (error == -EINVAL) { |
| printk(KERN_DEBUG "rtasd: surveillance not supported\n"); |
| return 0; |
| } |
| |
| printk(KERN_ERR "rtasd: could not update surveillance\n"); |
| return -1; |
| } |
| |
| static int get_eventscan_parms(void) |
| { |
| struct device_node *node; |
| const int *ip; |
| |
| node = of_find_node_by_path("/rtas"); |
| |
| ip = get_property(node, "rtas-event-scan-rate", NULL); |
| if (ip == NULL) { |
| printk(KERN_ERR "rtasd: no rtas-event-scan-rate\n"); |
| of_node_put(node); |
| return -1; |
| } |
| rtas_event_scan_rate = *ip; |
| DEBUG("rtas-event-scan-rate %d\n", rtas_event_scan_rate); |
| |
| /* Make room for the sequence number */ |
| rtas_error_log_max = rtas_get_error_log_max(); |
| rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int); |
| |
| of_node_put(node); |
| |
| return 0; |
| } |
| |
| static void do_event_scan(int event_scan) |
| { |
| int error; |
| do { |
| memset(logdata, 0, rtas_error_log_max); |
| error = rtas_call(event_scan, 4, 1, NULL, |
| RTAS_EVENT_SCAN_ALL_EVENTS, 0, |
| __pa(logdata), rtas_error_log_max); |
| if (error == -1) { |
| printk(KERN_ERR "event-scan failed\n"); |
| break; |
| } |
| |
| if (error == 0) |
| pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG, 0); |
| |
| } while(error == 0); |
| } |
| |
| static void do_event_scan_all_cpus(long delay) |
| { |
| int cpu; |
| |
| lock_cpu_hotplug(); |
| cpu = first_cpu(cpu_online_map); |
| for (;;) { |
| set_cpus_allowed(current, cpumask_of_cpu(cpu)); |
| do_event_scan(rtas_token("event-scan")); |
| set_cpus_allowed(current, CPU_MASK_ALL); |
| |
| /* Drop hotplug lock, and sleep for the specified delay */ |
| unlock_cpu_hotplug(); |
| msleep_interruptible(delay); |
| lock_cpu_hotplug(); |
| |
| cpu = next_cpu(cpu, cpu_online_map); |
| if (cpu == NR_CPUS) |
| break; |
| } |
| unlock_cpu_hotplug(); |
| } |
| |
| static int rtasd(void *unused) |
| { |
| unsigned int err_type; |
| int event_scan = rtas_token("event-scan"); |
| int rc; |
| |
| daemonize("rtasd"); |
| |
| if (event_scan == RTAS_UNKNOWN_SERVICE || get_eventscan_parms() == -1) |
| goto error; |
| |
| rtas_log_buf = vmalloc(rtas_error_log_buffer_max*LOG_NUMBER); |
| if (!rtas_log_buf) { |
| printk(KERN_ERR "rtasd: no memory\n"); |
| goto error; |
| } |
| |
| printk(KERN_DEBUG "RTAS daemon started\n"); |
| |
| DEBUG("will sleep for %d milliseconds\n", (30000/rtas_event_scan_rate)); |
| |
| /* See if we have any error stored in NVRAM */ |
| memset(logdata, 0, rtas_error_log_max); |
| |
| rc = nvram_read_error_log(logdata, rtas_error_log_max, &err_type); |
| |
| /* We can use rtas_log_buf now */ |
| no_logging = 0; |
| |
| if (!rc) { |
| if (err_type != ERR_FLAG_ALREADY_LOGGED) { |
| pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0); |
| } |
| } |
| |
| /* First pass. */ |
| do_event_scan_all_cpus(1000); |
| |
| if (surveillance_timeout != -1) { |
| DEBUG("enabling surveillance\n"); |
| enable_surveillance(surveillance_timeout); |
| DEBUG("surveillance enabled\n"); |
| } |
| |
| /* Delay should be at least one second since some |
| * machines have problems if we call event-scan too |
| * quickly. */ |
| for (;;) |
| do_event_scan_all_cpus(30000/rtas_event_scan_rate); |
| |
| error: |
| /* Should delete proc entries */ |
| return -EINVAL; |
| } |
| |
| static int __init rtas_init(void) |
| { |
| struct proc_dir_entry *entry; |
| |
| if (!machine_is(pseries)) |
| return 0; |
| |
| /* No RTAS */ |
| if (rtas_token("event-scan") == RTAS_UNKNOWN_SERVICE) { |
| printk(KERN_DEBUG "rtasd: no event-scan on system\n"); |
| return -ENODEV; |
| } |
| |
| entry = create_proc_entry("ppc64/rtas/error_log", S_IRUSR, NULL); |
| if (entry) |
| entry->proc_fops = &proc_rtas_log_operations; |
| else |
| printk(KERN_ERR "Failed to create error_log proc entry\n"); |
| |
| if (kernel_thread(rtasd, NULL, CLONE_FS) < 0) |
| printk(KERN_ERR "Failed to start RTAS daemon\n"); |
| |
| return 0; |
| } |
| |
| static int __init surveillance_setup(char *str) |
| { |
| int i; |
| |
| if (get_option(&str,&i)) { |
| if (i >= 0 && i <= 255) |
| surveillance_timeout = i; |
| } |
| |
| return 1; |
| } |
| |
| static int __init rtasmsgs_setup(char *str) |
| { |
| if (strcmp(str, "on") == 0) |
| full_rtas_msgs = 1; |
| else if (strcmp(str, "off") == 0) |
| full_rtas_msgs = 0; |
| |
| return 1; |
| } |
| __initcall(rtas_init); |
| __setup("surveillance=", surveillance_setup); |
| __setup("rtasmsgs=", rtasmsgs_setup); |