| /* |
| * arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver |
| * |
| * Created by: Nicolas Pitre, March 2012 |
| * Copyright: (C) 2012-2013 Linaro Limited |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/atomic.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/interrupt.h> |
| #include <linux/cpu_pm.h> |
| #include <linux/cpu.h> |
| #include <linux/cpumask.h> |
| #include <linux/kthread.h> |
| #include <linux/wait.h> |
| #include <linux/time.h> |
| #include <linux/clockchips.h> |
| #include <linux/hrtimer.h> |
| #include <linux/tick.h> |
| #include <linux/notifier.h> |
| #include <linux/mm.h> |
| #include <linux/mutex.h> |
| #include <linux/smp.h> |
| #include <linux/spinlock.h> |
| #include <linux/string.h> |
| #include <linux/sysfs.h> |
| #include <linux/irqchip/arm-gic.h> |
| #include <linux/moduleparam.h> |
| |
| #include <asm/smp_plat.h> |
| #include <asm/cputype.h> |
| #include <asm/suspend.h> |
| #include <asm/mcpm.h> |
| #include <asm/bL_switcher.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/power_cpu_migrate.h> |
| |
| |
| /* |
| * Use our own MPIDR accessors as the generic ones in asm/cputype.h have |
| * __attribute_const__ and we don't want the compiler to assume any |
| * constness here as the value _does_ change along some code paths. |
| */ |
| |
| static int read_mpidr(void) |
| { |
| unsigned int id; |
| asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id)); |
| return id & MPIDR_HWID_BITMASK; |
| } |
| |
| /* |
| * Get a global nanosecond time stamp for tracing. |
| */ |
| static s64 get_ns(void) |
| { |
| struct timespec ts; |
| getnstimeofday(&ts); |
| return timespec_to_ns(&ts); |
| } |
| |
| /* |
| * bL switcher core code. |
| */ |
| |
| static void bL_do_switch(void *_arg) |
| { |
| unsigned ib_mpidr, ib_cpu, ib_cluster; |
| long volatile handshake, **handshake_ptr = _arg; |
| |
| pr_debug("%s\n", __func__); |
| |
| ib_mpidr = cpu_logical_map(smp_processor_id()); |
| ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0); |
| ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1); |
| |
| /* Advertise our handshake location */ |
| if (handshake_ptr) { |
| handshake = 0; |
| *handshake_ptr = &handshake; |
| } else |
| handshake = -1; |
| |
| /* |
| * Our state has been saved at this point. Let's release our |
| * inbound CPU. |
| */ |
| mcpm_set_entry_vector(ib_cpu, ib_cluster, cpu_resume); |
| sev(); |
| |
| /* |
| * From this point, we must assume that our counterpart CPU might |
| * have taken over in its parallel world already, as if execution |
| * just returned from cpu_suspend(). It is therefore important to |
| * be very careful not to make any change the other guy is not |
| * expecting. This is why we need stack isolation. |
| * |
| * Fancy under cover tasks could be performed here. For now |
| * we have none. |
| */ |
| |
| /* |
| * Let's wait until our inbound is alive. |
| */ |
| while (!handshake) { |
| wfe(); |
| smp_mb(); |
| } |
| |
| /* Let's put ourself down. */ |
| mcpm_cpu_power_down(); |
| |
| /* should never get here */ |
| BUG(); |
| } |
| |
| /* |
| * Stack isolation. To ensure 'current' remains valid, we just use another |
| * piece of our thread's stack space which should be fairly lightly used. |
| * The selected area starts just above the thread_info structure located |
| * at the very bottom of the stack, aligned to a cache line, and indexed |
| * with the cluster number. |
| */ |
| #define STACK_SIZE 512 |
| extern void call_with_stack(void (*fn)(void *), void *arg, void *sp); |
| static int bL_switchpoint(unsigned long _arg) |
| { |
| unsigned int mpidr = read_mpidr(); |
| unsigned int clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1); |
| void *stack = current_thread_info() + 1; |
| stack = PTR_ALIGN(stack, L1_CACHE_BYTES); |
| stack += clusterid * STACK_SIZE + STACK_SIZE; |
| call_with_stack(bL_do_switch, (void *)_arg, stack); |
| BUG(); |
| } |
| |
| /* |
| * Generic switcher interface |
| */ |
| |
| static unsigned int bL_gic_id[MAX_CPUS_PER_CLUSTER][MAX_NR_CLUSTERS]; |
| static int bL_switcher_cpu_pairing[NR_CPUS]; |
| |
| /* |
| * bL_switch_to - Switch to a specific cluster for the current CPU |
| * @new_cluster_id: the ID of the cluster to switch to. |
| * |
| * This function must be called on the CPU to be switched. |
| * Returns 0 on success, else a negative status code. |
| */ |
| static int bL_switch_to(unsigned int new_cluster_id) |
| { |
| unsigned int mpidr, this_cpu, that_cpu; |
| unsigned int ob_mpidr, ob_cpu, ob_cluster, ib_mpidr, ib_cpu, ib_cluster; |
| struct completion inbound_alive; |
| struct tick_device *tdev; |
| enum clock_event_mode tdev_mode; |
| long volatile *handshake_ptr; |
| int ipi_nr, ret; |
| |
| this_cpu = smp_processor_id(); |
| ob_mpidr = read_mpidr(); |
| ob_cpu = MPIDR_AFFINITY_LEVEL(ob_mpidr, 0); |
| ob_cluster = MPIDR_AFFINITY_LEVEL(ob_mpidr, 1); |
| BUG_ON(cpu_logical_map(this_cpu) != ob_mpidr); |
| |
| if (new_cluster_id == ob_cluster) |
| return 0; |
| |
| that_cpu = bL_switcher_cpu_pairing[this_cpu]; |
| ib_mpidr = cpu_logical_map(that_cpu); |
| ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0); |
| ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1); |
| |
| pr_debug("before switch: CPU %d MPIDR %#x -> %#x\n", |
| this_cpu, ob_mpidr, ib_mpidr); |
| |
| this_cpu = smp_processor_id(); |
| |
| /* Close the gate for our entry vectors */ |
| mcpm_set_entry_vector(ob_cpu, ob_cluster, NULL); |
| mcpm_set_entry_vector(ib_cpu, ib_cluster, NULL); |
| |
| /* Install our "inbound alive" notifier. */ |
| init_completion(&inbound_alive); |
| ipi_nr = register_ipi_completion(&inbound_alive, this_cpu); |
| ipi_nr |= ((1 << 16) << bL_gic_id[ob_cpu][ob_cluster]); |
| mcpm_set_early_poke(ib_cpu, ib_cluster, gic_get_sgir_physaddr(), ipi_nr); |
| |
| /* |
| * Let's wake up the inbound CPU now in case it requires some delay |
| * to come online, but leave it gated in our entry vector code. |
| */ |
| ret = mcpm_cpu_power_up(ib_cpu, ib_cluster); |
| if (ret) { |
| pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__, ret); |
| return ret; |
| } |
| |
| /* |
| * Raise a SGI on the inbound CPU to make sure it doesn't stall |
| * in a possible WFI, such as in bL_power_down(). |
| */ |
| gic_send_sgi(bL_gic_id[ib_cpu][ib_cluster], 0); |
| |
| /* |
| * Wait for the inbound to come up. This allows for other |
| * tasks to be scheduled in the mean time. |
| */ |
| wait_for_completion(&inbound_alive); |
| mcpm_set_early_poke(ib_cpu, ib_cluster, 0, 0); |
| |
| /* |
| * From this point we are entering the switch critical zone |
| * and can't take any interrupts anymore. |
| */ |
| local_irq_disable(); |
| local_fiq_disable(); |
| trace_cpu_migrate_begin(get_ns(), ob_mpidr); |
| |
| /* redirect GIC's SGIs to our counterpart */ |
| gic_migrate_target(bL_gic_id[ib_cpu][ib_cluster]); |
| |
| tdev = tick_get_device(this_cpu); |
| if (tdev && !cpumask_equal(tdev->evtdev->cpumask, cpumask_of(this_cpu))) |
| tdev = NULL; |
| if (tdev) { |
| tdev_mode = tdev->evtdev->mode; |
| clockevents_set_mode(tdev->evtdev, CLOCK_EVT_MODE_SHUTDOWN); |
| } |
| |
| ret = cpu_pm_enter(); |
| |
| /* we can not tolerate errors at this point */ |
| if (ret) |
| panic("%s: cpu_pm_enter() returned %d\n", __func__, ret); |
| |
| /* Swap the physical CPUs in the logical map for this logical CPU. */ |
| cpu_logical_map(this_cpu) = ib_mpidr; |
| cpu_logical_map(that_cpu) = ob_mpidr; |
| |
| /* Let's do the actual CPU switch. */ |
| ret = cpu_suspend((unsigned long)&handshake_ptr, bL_switchpoint); |
| if (ret > 0) |
| panic("%s: cpu_suspend() returned %d\n", __func__, ret); |
| |
| /* We are executing on the inbound CPU at this point */ |
| mpidr = read_mpidr(); |
| pr_debug("after switch: CPU %d MPIDR %#x\n", this_cpu, mpidr); |
| BUG_ON(mpidr != ib_mpidr); |
| |
| mcpm_cpu_powered_up(); |
| |
| ret = cpu_pm_exit(); |
| |
| if (tdev) { |
| clockevents_set_mode(tdev->evtdev, tdev_mode); |
| clockevents_program_event(tdev->evtdev, |
| tdev->evtdev->next_event, 1); |
| } |
| |
| trace_cpu_migrate_finish(get_ns(), ib_mpidr); |
| local_fiq_enable(); |
| local_irq_enable(); |
| |
| *handshake_ptr = 1; |
| dsb_sev(); |
| |
| if (ret) |
| pr_err("%s exiting with error %d\n", __func__, ret); |
| return ret; |
| } |
| |
| struct bL_thread { |
| spinlock_t lock; |
| struct task_struct *task; |
| wait_queue_head_t wq; |
| int wanted_cluster; |
| struct completion started; |
| bL_switch_completion_handler completer; |
| void *completer_cookie; |
| }; |
| |
| static struct bL_thread bL_threads[NR_CPUS]; |
| |
| static int bL_switcher_thread(void *arg) |
| { |
| struct bL_thread *t = arg; |
| struct sched_param param = { .sched_priority = 1 }; |
| int cluster; |
| bL_switch_completion_handler completer; |
| void *completer_cookie; |
| |
| sched_setscheduler_nocheck(current, SCHED_FIFO, ¶m); |
| complete(&t->started); |
| |
| do { |
| if (signal_pending(current)) |
| flush_signals(current); |
| wait_event_interruptible(t->wq, |
| t->wanted_cluster != -1 || |
| kthread_should_stop()); |
| |
| spin_lock(&t->lock); |
| cluster = t->wanted_cluster; |
| completer = t->completer; |
| completer_cookie = t->completer_cookie; |
| t->wanted_cluster = -1; |
| t->completer = NULL; |
| spin_unlock(&t->lock); |
| |
| if (cluster != -1) { |
| bL_switch_to(cluster); |
| |
| if (completer) |
| completer(completer_cookie); |
| } |
| } while (!kthread_should_stop()); |
| |
| return 0; |
| } |
| |
| static struct task_struct *bL_switcher_thread_create(int cpu, void *arg) |
| { |
| struct task_struct *task; |
| |
| task = kthread_create_on_node(bL_switcher_thread, arg, |
| cpu_to_node(cpu), "kswitcher_%d", cpu); |
| if (!IS_ERR(task)) { |
| kthread_bind(task, cpu); |
| wake_up_process(task); |
| } else |
| pr_err("%s failed for CPU %d\n", __func__, cpu); |
| return task; |
| } |
| |
| /* |
| * bL_switch_request_cb - Switch to a specific cluster for the given CPU, |
| * with completion notification via a callback |
| * |
| * @cpu: the CPU to switch |
| * @new_cluster_id: the ID of the cluster to switch to. |
| * @completer: switch completion callback. if non-NULL, |
| * @completer(@completer_cookie) will be called on completion of |
| * the switch, in non-atomic context. |
| * @completer_cookie: opaque context argument for @completer. |
| * |
| * This function causes a cluster switch on the given CPU by waking up |
| * the appropriate switcher thread. This function may or may not return |
| * before the switch has occurred. |
| * |
| * If a @completer callback function is supplied, it will be called when |
| * the switch is complete. This can be used to determine asynchronously |
| * when the switch is complete, regardless of when bL_switch_request() |
| * returns. When @completer is supplied, no new switch request is permitted |
| * for the affected CPU until after the switch is complete, and @completer |
| * has returned. |
| */ |
| int bL_switch_request_cb(unsigned int cpu, unsigned int new_cluster_id, |
| bL_switch_completion_handler completer, |
| void *completer_cookie) |
| { |
| struct bL_thread *t; |
| |
| if (cpu >= ARRAY_SIZE(bL_threads)) { |
| pr_err("%s: cpu %d out of bounds\n", __func__, cpu); |
| return -EINVAL; |
| } |
| |
| t = &bL_threads[cpu]; |
| |
| if (IS_ERR(t->task)) |
| return PTR_ERR(t->task); |
| if (!t->task) |
| return -ESRCH; |
| |
| spin_lock(&t->lock); |
| if (t->completer) { |
| spin_unlock(&t->lock); |
| return -EBUSY; |
| } |
| t->completer = completer; |
| t->completer_cookie = completer_cookie; |
| t->wanted_cluster = new_cluster_id; |
| spin_unlock(&t->lock); |
| wake_up(&t->wq); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(bL_switch_request_cb); |
| |
| /* |
| * Activation and configuration code. |
| */ |
| |
| static DEFINE_MUTEX(bL_switcher_activation_lock); |
| static BLOCKING_NOTIFIER_HEAD(bL_activation_notifier); |
| static unsigned int bL_switcher_active; |
| static unsigned int bL_switcher_cpu_original_cluster[NR_CPUS]; |
| static cpumask_t bL_switcher_removed_logical_cpus; |
| |
| int bL_switcher_register_notifier(struct notifier_block *nb) |
| { |
| return blocking_notifier_chain_register(&bL_activation_notifier, nb); |
| } |
| EXPORT_SYMBOL_GPL(bL_switcher_register_notifier); |
| |
| int bL_switcher_unregister_notifier(struct notifier_block *nb) |
| { |
| return blocking_notifier_chain_unregister(&bL_activation_notifier, nb); |
| } |
| EXPORT_SYMBOL_GPL(bL_switcher_unregister_notifier); |
| |
| static int bL_activation_notify(unsigned long val) |
| { |
| int ret; |
| |
| ret = blocking_notifier_call_chain(&bL_activation_notifier, val, NULL); |
| if (ret & NOTIFY_STOP_MASK) |
| pr_err("%s: notifier chain failed with status 0x%x\n", |
| __func__, ret); |
| return notifier_to_errno(ret); |
| } |
| |
| static void bL_switcher_restore_cpus(void) |
| { |
| int i; |
| |
| for_each_cpu(i, &bL_switcher_removed_logical_cpus) |
| cpu_up(i); |
| } |
| |
| static int bL_switcher_halve_cpus(void) |
| { |
| int i, j, cluster_0, gic_id, ret; |
| unsigned int cpu, cluster, mask; |
| cpumask_t available_cpus; |
| |
| /* First pass to validate what we have */ |
| mask = 0; |
| for_each_online_cpu(i) { |
| cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0); |
| cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1); |
| if (cluster >= 2) { |
| pr_err("%s: only dual cluster systems are supported\n", __func__); |
| return -EINVAL; |
| } |
| if (WARN_ON(cpu >= MAX_CPUS_PER_CLUSTER)) |
| return -EINVAL; |
| mask |= (1 << cluster); |
| } |
| if (mask != 3) { |
| pr_err("%s: no CPU pairing possible\n", __func__); |
| return -EINVAL; |
| } |
| |
| /* |
| * Now let's do the pairing. We match each CPU with another CPU |
| * from a different cluster. To get a uniform scheduling behavior |
| * without fiddling with CPU topology and compute capacity data, |
| * we'll use logical CPUs initially belonging to the same cluster. |
| */ |
| memset(bL_switcher_cpu_pairing, -1, sizeof(bL_switcher_cpu_pairing)); |
| cpumask_copy(&available_cpus, cpu_online_mask); |
| cluster_0 = -1; |
| for_each_cpu(i, &available_cpus) { |
| int match = -1; |
| cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1); |
| if (cluster_0 == -1) |
| cluster_0 = cluster; |
| if (cluster != cluster_0) |
| continue; |
| cpumask_clear_cpu(i, &available_cpus); |
| for_each_cpu(j, &available_cpus) { |
| cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(j), 1); |
| /* |
| * Let's remember the last match to create "odd" |
| * pairings on purpose in order for other code not |
| * to assume any relation between physical and |
| * logical CPU numbers. |
| */ |
| if (cluster != cluster_0) |
| match = j; |
| } |
| if (match != -1) { |
| bL_switcher_cpu_pairing[i] = match; |
| cpumask_clear_cpu(match, &available_cpus); |
| pr_info("CPU%d paired with CPU%d\n", i, match); |
| } |
| } |
| |
| /* |
| * Now we disable the unwanted CPUs i.e. everything that has no |
| * pairing information (that includes the pairing counterparts). |
| */ |
| cpumask_clear(&bL_switcher_removed_logical_cpus); |
| for_each_online_cpu(i) { |
| cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0); |
| cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1); |
| |
| /* Let's take note of the GIC ID for this CPU */ |
| gic_id = gic_get_cpu_id(i); |
| if (gic_id < 0) { |
| pr_err("%s: bad GIC ID for CPU %d\n", __func__, i); |
| bL_switcher_restore_cpus(); |
| return -EINVAL; |
| } |
| bL_gic_id[cpu][cluster] = gic_id; |
| pr_info("GIC ID for CPU %u cluster %u is %u\n", |
| cpu, cluster, gic_id); |
| |
| if (bL_switcher_cpu_pairing[i] != -1) { |
| bL_switcher_cpu_original_cluster[i] = cluster; |
| continue; |
| } |
| |
| ret = cpu_down(i); |
| if (ret) { |
| bL_switcher_restore_cpus(); |
| return ret; |
| } |
| cpumask_set_cpu(i, &bL_switcher_removed_logical_cpus); |
| } |
| |
| return 0; |
| } |
| |
| static void bL_switcher_trace_trigger_cpu(void *__always_unused info) |
| { |
| trace_cpu_migrate_current(get_ns(), read_mpidr()); |
| } |
| |
| static int bL_switcher_trace_trigger(void) |
| { |
| int ret; |
| |
| preempt_disable(); |
| |
| bL_switcher_trace_trigger_cpu(NULL); |
| ret = smp_call_function(bL_switcher_trace_trigger_cpu, NULL, true); |
| |
| preempt_enable(); |
| |
| return ret; |
| } |
| |
| static int bL_switcher_enable(void) |
| { |
| int cpu, ret; |
| |
| mutex_lock(&bL_switcher_activation_lock); |
| cpu_hotplug_driver_lock(); |
| if (bL_switcher_active) { |
| cpu_hotplug_driver_unlock(); |
| mutex_unlock(&bL_switcher_activation_lock); |
| return 0; |
| } |
| |
| pr_info("big.LITTLE switcher initializing\n"); |
| |
| ret = bL_activation_notify(BL_NOTIFY_PRE_ENABLE); |
| if (ret) |
| goto error; |
| |
| ret = bL_switcher_halve_cpus(); |
| if (ret) |
| goto error; |
| |
| bL_switcher_trace_trigger(); |
| |
| for_each_online_cpu(cpu) { |
| struct bL_thread *t = &bL_threads[cpu]; |
| spin_lock_init(&t->lock); |
| init_waitqueue_head(&t->wq); |
| init_completion(&t->started); |
| t->wanted_cluster = -1; |
| t->task = bL_switcher_thread_create(cpu, t); |
| } |
| |
| bL_switcher_active = 1; |
| bL_activation_notify(BL_NOTIFY_POST_ENABLE); |
| pr_info("big.LITTLE switcher initialized\n"); |
| goto out; |
| |
| error: |
| pr_warn("big.LITTLE switcher initialization failed\n"); |
| bL_activation_notify(BL_NOTIFY_POST_DISABLE); |
| |
| out: |
| cpu_hotplug_driver_unlock(); |
| mutex_unlock(&bL_switcher_activation_lock); |
| return ret; |
| } |
| |
| #ifdef CONFIG_SYSFS |
| |
| static void bL_switcher_disable(void) |
| { |
| unsigned int cpu, cluster; |
| struct bL_thread *t; |
| struct task_struct *task; |
| |
| mutex_lock(&bL_switcher_activation_lock); |
| cpu_hotplug_driver_lock(); |
| |
| if (!bL_switcher_active) |
| goto out; |
| |
| if (bL_activation_notify(BL_NOTIFY_PRE_DISABLE) != 0) { |
| bL_activation_notify(BL_NOTIFY_POST_ENABLE); |
| goto out; |
| } |
| |
| bL_switcher_active = 0; |
| |
| /* |
| * To deactivate the switcher, we must shut down the switcher |
| * threads to prevent any other requests from being accepted. |
| * Then, if the final cluster for given logical CPU is not the |
| * same as the original one, we'll recreate a switcher thread |
| * just for the purpose of switching the CPU back without any |
| * possibility for interference from external requests. |
| */ |
| for_each_online_cpu(cpu) { |
| t = &bL_threads[cpu]; |
| task = t->task; |
| t->task = NULL; |
| if (!task || IS_ERR(task)) |
| continue; |
| kthread_stop(task); |
| /* no more switch may happen on this CPU at this point */ |
| cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1); |
| if (cluster == bL_switcher_cpu_original_cluster[cpu]) |
| continue; |
| init_completion(&t->started); |
| t->wanted_cluster = bL_switcher_cpu_original_cluster[cpu]; |
| task = bL_switcher_thread_create(cpu, t); |
| if (!IS_ERR(task)) { |
| wait_for_completion(&t->started); |
| kthread_stop(task); |
| cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1); |
| if (cluster == bL_switcher_cpu_original_cluster[cpu]) |
| continue; |
| } |
| /* If execution gets here, we're in trouble. */ |
| pr_crit("%s: unable to restore original cluster for CPU %d\n", |
| __func__, cpu); |
| pr_crit("%s: CPU %d can't be restored\n", |
| __func__, bL_switcher_cpu_pairing[cpu]); |
| cpumask_clear_cpu(bL_switcher_cpu_pairing[cpu], |
| &bL_switcher_removed_logical_cpus); |
| } |
| |
| bL_switcher_restore_cpus(); |
| bL_switcher_trace_trigger(); |
| |
| bL_activation_notify(BL_NOTIFY_POST_DISABLE); |
| |
| out: |
| cpu_hotplug_driver_unlock(); |
| mutex_unlock(&bL_switcher_activation_lock); |
| } |
| |
| static ssize_t bL_switcher_active_show(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| return sprintf(buf, "%u\n", bL_switcher_active); |
| } |
| |
| static ssize_t bL_switcher_active_store(struct kobject *kobj, |
| struct kobj_attribute *attr, const char *buf, size_t count) |
| { |
| int ret; |
| |
| switch (buf[0]) { |
| case '0': |
| bL_switcher_disable(); |
| ret = 0; |
| break; |
| case '1': |
| ret = bL_switcher_enable(); |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| |
| return (ret >= 0) ? count : ret; |
| } |
| |
| static ssize_t bL_switcher_trace_trigger_store(struct kobject *kobj, |
| struct kobj_attribute *attr, const char *buf, size_t count) |
| { |
| int ret = bL_switcher_trace_trigger(); |
| |
| return ret ? ret : count; |
| } |
| |
| static struct kobj_attribute bL_switcher_active_attr = |
| __ATTR(active, 0644, bL_switcher_active_show, bL_switcher_active_store); |
| |
| static struct kobj_attribute bL_switcher_trace_trigger_attr = |
| __ATTR(trace_trigger, 0200, NULL, bL_switcher_trace_trigger_store); |
| |
| static struct attribute *bL_switcher_attrs[] = { |
| &bL_switcher_active_attr.attr, |
| &bL_switcher_trace_trigger_attr.attr, |
| NULL, |
| }; |
| |
| static struct attribute_group bL_switcher_attr_group = { |
| .attrs = bL_switcher_attrs, |
| }; |
| |
| static struct kobject *bL_switcher_kobj; |
| |
| static int __init bL_switcher_sysfs_init(void) |
| { |
| int ret; |
| |
| bL_switcher_kobj = kobject_create_and_add("bL_switcher", kernel_kobj); |
| if (!bL_switcher_kobj) |
| return -ENOMEM; |
| ret = sysfs_create_group(bL_switcher_kobj, &bL_switcher_attr_group); |
| if (ret) |
| kobject_put(bL_switcher_kobj); |
| return ret; |
| } |
| |
| #endif /* CONFIG_SYSFS */ |
| |
| bool bL_switcher_get_enabled(void) |
| { |
| mutex_lock(&bL_switcher_activation_lock); |
| |
| return bL_switcher_active; |
| } |
| EXPORT_SYMBOL_GPL(bL_switcher_get_enabled); |
| |
| void bL_switcher_put_enabled(void) |
| { |
| mutex_unlock(&bL_switcher_activation_lock); |
| } |
| EXPORT_SYMBOL_GPL(bL_switcher_put_enabled); |
| |
| /* |
| * Veto any CPU hotplug operation on those CPUs we've removed |
| * while the switcher is active. |
| * We're just not ready to deal with that given the trickery involved. |
| */ |
| static int bL_switcher_hotplug_callback(struct notifier_block *nfb, |
| unsigned long action, void *hcpu) |
| { |
| if (bL_switcher_active) { |
| int pairing = bL_switcher_cpu_pairing[(unsigned long)hcpu]; |
| switch (action & 0xf) { |
| case CPU_UP_PREPARE: |
| case CPU_DOWN_PREPARE: |
| if (pairing == -1) |
| return NOTIFY_BAD; |
| } |
| } |
| return NOTIFY_DONE; |
| } |
| |
| static bool no_bL_switcher; |
| core_param(no_bL_switcher, no_bL_switcher, bool, 0644); |
| |
| static int __init bL_switcher_init(void) |
| { |
| int ret; |
| |
| if (MAX_NR_CLUSTERS != 2) { |
| pr_err("%s: only dual cluster systems are supported\n", __func__); |
| return -EINVAL; |
| } |
| |
| cpu_notifier(bL_switcher_hotplug_callback, 0); |
| |
| if (!no_bL_switcher) { |
| ret = bL_switcher_enable(); |
| if (ret) |
| return ret; |
| } |
| |
| #ifdef CONFIG_SYSFS |
| ret = bL_switcher_sysfs_init(); |
| if (ret) |
| pr_err("%s: unable to create sysfs entry\n", __func__); |
| #endif |
| |
| return 0; |
| } |
| |
| late_initcall(bL_switcher_init); |