blob: 1c2093c53157cb9f36419143ec323b2c98173e54 [file] [log] [blame]
/*
* Faraday FTGMAC100 Gigabit Ethernet
*
* (C) Copyright 2009-2011 Faraday Technology
* Po-Yu Chuang <ratbert@faraday-tech.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of.h>
#include <linux/phy.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <net/ip.h>
#include <net/ncsi.h>
#include "ftgmac100.h"
#define DRV_NAME "ftgmac100"
#define DRV_VERSION "0.7"
#define RX_QUEUE_ENTRIES 256 /* must be power of 2 */
#define TX_QUEUE_ENTRIES 512 /* must be power of 2 */
#define MAX_PKT_SIZE 1518
#define RX_BUF_SIZE PAGE_SIZE /* must be smaller than 0x3fff */
struct ftgmac100_descs {
struct ftgmac100_rxdes rxdes[RX_QUEUE_ENTRIES];
struct ftgmac100_txdes txdes[TX_QUEUE_ENTRIES];
};
struct ftgmac100 {
/* Registers */
struct resource *res;
void __iomem *base;
struct ftgmac100_descs *descs;
dma_addr_t descs_dma_addr;
/* Rx ring */
struct page *rx_pages[RX_QUEUE_ENTRIES];
unsigned int rx_pointer;
u32 rxdes0_edorr_mask;
/* Tx ring */
unsigned int tx_clean_pointer;
unsigned int tx_pointer;
unsigned int tx_pending;
u32 txdes0_edotr_mask;
spinlock_t tx_lock;
/* Component structures */
struct net_device *netdev;
struct device *dev;
struct ncsi_dev *ndev;
struct napi_struct napi;
struct work_struct reset_task;
struct mii_bus *mii_bus;
/* Link management */
int cur_speed;
int cur_duplex;
bool use_ncsi;
/* Misc */
bool need_mac_restart;
};
static void ftgmac100_set_rx_ring_base(struct ftgmac100 *priv, dma_addr_t addr)
{
iowrite32(addr, priv->base + FTGMAC100_OFFSET_RXR_BADR);
}
static void ftgmac100_set_rx_buffer_size(struct ftgmac100 *priv,
unsigned int size)
{
size = FTGMAC100_RBSR_SIZE(size);
iowrite32(size, priv->base + FTGMAC100_OFFSET_RBSR);
}
static void ftgmac100_set_normal_prio_tx_ring_base(struct ftgmac100 *priv,
dma_addr_t addr)
{
iowrite32(addr, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
}
static void ftgmac100_txdma_normal_prio_start_polling(struct ftgmac100 *priv)
{
iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
}
static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
{
struct net_device *netdev = priv->netdev;
int i;
/* NOTE: reset clears all registers */
iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
priv->base + FTGMAC100_OFFSET_MACCR);
for (i = 0; i < 50; i++) {
unsigned int maccr;
maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
if (!(maccr & FTGMAC100_MACCR_SW_RST))
return 0;
udelay(1);
}
netdev_err(netdev, "Hardware reset failed\n");
return -EIO;
}
static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
{
u32 maccr = 0;
switch (priv->cur_speed) {
case SPEED_10:
case 0: /* no link */
break;
case SPEED_100:
maccr |= FTGMAC100_MACCR_FAST_MODE;
break;
case SPEED_1000:
maccr |= FTGMAC100_MACCR_GIGA_MODE;
break;
default:
netdev_err(priv->netdev, "Unknown speed %d !\n",
priv->cur_speed);
break;
}
/* (Re)initialize the queue pointers */
priv->rx_pointer = 0;
priv->tx_clean_pointer = 0;
priv->tx_pointer = 0;
priv->tx_pending = 0;
/* The doc says reset twice with 10us interval */
if (ftgmac100_reset_mac(priv, maccr))
return -EIO;
usleep_range(10, 1000);
return ftgmac100_reset_mac(priv, maccr);
}
static void ftgmac100_set_mac(struct ftgmac100 *priv, const unsigned char *mac)
{
unsigned int maddr = mac[0] << 8 | mac[1];
unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
}
static void ftgmac100_setup_mac(struct ftgmac100 *priv)
{
u8 mac[ETH_ALEN];
unsigned int m;
unsigned int l;
void *addr;
addr = device_get_mac_address(priv->dev, mac, ETH_ALEN);
if (addr) {
ether_addr_copy(priv->netdev->dev_addr, mac);
dev_info(priv->dev, "Read MAC address %pM from device tree\n",
mac);
return;
}
m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);
mac[0] = (m >> 8) & 0xff;
mac[1] = m & 0xff;
mac[2] = (l >> 24) & 0xff;
mac[3] = (l >> 16) & 0xff;
mac[4] = (l >> 8) & 0xff;
mac[5] = l & 0xff;
if (is_valid_ether_addr(mac)) {
ether_addr_copy(priv->netdev->dev_addr, mac);
dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
} else {
eth_hw_addr_random(priv->netdev);
dev_info(priv->dev, "Generated random MAC address %pM\n",
priv->netdev->dev_addr);
}
}
static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
{
int ret;
ret = eth_prepare_mac_addr_change(dev, p);
if (ret < 0)
return ret;
eth_commit_mac_addr_change(dev, p);
ftgmac100_set_mac(netdev_priv(dev), dev->dev_addr);
return 0;
}
static void ftgmac100_init_hw(struct ftgmac100 *priv)
{
/* setup ring buffer base registers */
ftgmac100_set_rx_ring_base(priv,
priv->descs_dma_addr +
offsetof(struct ftgmac100_descs, rxdes));
ftgmac100_set_normal_prio_tx_ring_base(priv,
priv->descs_dma_addr +
offsetof(struct ftgmac100_descs, txdes));
ftgmac100_set_rx_buffer_size(priv, RX_BUF_SIZE);
iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1), priv->base + FTGMAC100_OFFSET_APTC);
ftgmac100_set_mac(priv, priv->netdev->dev_addr);
}
static void ftgmac100_start_hw(struct ftgmac100 *priv)
{
u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
/* Keep the original GMAC and FAST bits */
maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
/* Add all the main enable bits */
maccr |= FTGMAC100_MACCR_TXDMA_EN |
FTGMAC100_MACCR_RXDMA_EN |
FTGMAC100_MACCR_TXMAC_EN |
FTGMAC100_MACCR_RXMAC_EN |
FTGMAC100_MACCR_CRC_APD |
FTGMAC100_MACCR_PHY_LINK_LEVEL |
FTGMAC100_MACCR_RX_RUNT |
FTGMAC100_MACCR_RX_BROADPKT;
/* Add other bits as needed */
if (priv->cur_duplex == DUPLEX_FULL)
maccr |= FTGMAC100_MACCR_FULLDUP;
/* Hit the HW */
iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
}
static void ftgmac100_stop_hw(struct ftgmac100 *priv)
{
iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
}
static bool ftgmac100_rxdes_first_segment(struct ftgmac100_rxdes *rxdes)
{
return rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_FRS);
}
static bool ftgmac100_rxdes_last_segment(struct ftgmac100_rxdes *rxdes)
{
return rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_LRS);
}
static bool ftgmac100_rxdes_packet_ready(struct ftgmac100_rxdes *rxdes)
{
return rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY);
}
static void ftgmac100_rxdes_set_dma_own(const struct ftgmac100 *priv,
struct ftgmac100_rxdes *rxdes)
{
/* clear status bits */
rxdes->rxdes0 &= cpu_to_le32(priv->rxdes0_edorr_mask);
}
static bool ftgmac100_rxdes_rx_error(struct ftgmac100_rxdes *rxdes)
{
return rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RX_ERR);
}
static bool ftgmac100_rxdes_crc_error(struct ftgmac100_rxdes *rxdes)
{
return rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_CRC_ERR);
}
static bool ftgmac100_rxdes_frame_too_long(struct ftgmac100_rxdes *rxdes)
{
return rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_FTL);
}
static bool ftgmac100_rxdes_runt(struct ftgmac100_rxdes *rxdes)
{
return rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RUNT);
}
static bool ftgmac100_rxdes_odd_nibble(struct ftgmac100_rxdes *rxdes)
{
return rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RX_ODD_NB);
}
static unsigned int ftgmac100_rxdes_data_length(struct ftgmac100_rxdes *rxdes)
{
return le32_to_cpu(rxdes->rxdes0) & FTGMAC100_RXDES0_VDBC;
}
static bool ftgmac100_rxdes_multicast(struct ftgmac100_rxdes *rxdes)
{
return rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_MULTICAST);
}
static void ftgmac100_rxdes_set_end_of_ring(const struct ftgmac100 *priv,
struct ftgmac100_rxdes *rxdes)
{
rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
}
static void ftgmac100_rxdes_set_dma_addr(struct ftgmac100_rxdes *rxdes,
dma_addr_t addr)
{
rxdes->rxdes3 = cpu_to_le32(addr);
}
static dma_addr_t ftgmac100_rxdes_get_dma_addr(struct ftgmac100_rxdes *rxdes)
{
return le32_to_cpu(rxdes->rxdes3);
}
static bool ftgmac100_rxdes_is_tcp(struct ftgmac100_rxdes *rxdes)
{
return (rxdes->rxdes1 & cpu_to_le32(FTGMAC100_RXDES1_PROT_MASK)) ==
cpu_to_le32(FTGMAC100_RXDES1_PROT_TCPIP);
}
static bool ftgmac100_rxdes_is_udp(struct ftgmac100_rxdes *rxdes)
{
return (rxdes->rxdes1 & cpu_to_le32(FTGMAC100_RXDES1_PROT_MASK)) ==
cpu_to_le32(FTGMAC100_RXDES1_PROT_UDPIP);
}
static bool ftgmac100_rxdes_tcpcs_err(struct ftgmac100_rxdes *rxdes)
{
return rxdes->rxdes1 & cpu_to_le32(FTGMAC100_RXDES1_TCP_CHKSUM_ERR);
}
static bool ftgmac100_rxdes_udpcs_err(struct ftgmac100_rxdes *rxdes)
{
return rxdes->rxdes1 & cpu_to_le32(FTGMAC100_RXDES1_UDP_CHKSUM_ERR);
}
static bool ftgmac100_rxdes_ipcs_err(struct ftgmac100_rxdes *rxdes)
{
return rxdes->rxdes1 & cpu_to_le32(FTGMAC100_RXDES1_IP_CHKSUM_ERR);
}
static inline struct page **ftgmac100_rxdes_page_slot(struct ftgmac100 *priv,
struct ftgmac100_rxdes *rxdes)
{
return &priv->rx_pages[rxdes - priv->descs->rxdes];
}
/*
* rxdes2 is not used by hardware. We use it to keep track of page.
* Since hardware does not touch it, we can skip cpu_to_le32()/le32_to_cpu().
*/
static void ftgmac100_rxdes_set_page(struct ftgmac100 *priv,
struct ftgmac100_rxdes *rxdes,
struct page *page)
{
*ftgmac100_rxdes_page_slot(priv, rxdes) = page;
}
static struct page *ftgmac100_rxdes_get_page(struct ftgmac100 *priv,
struct ftgmac100_rxdes *rxdes)
{
return *ftgmac100_rxdes_page_slot(priv, rxdes);
}
static int ftgmac100_alloc_rx_page(struct ftgmac100 *priv,
struct ftgmac100_rxdes *rxdes, gfp_t gfp)
{
struct net_device *netdev = priv->netdev;
struct page *page;
dma_addr_t map;
page = alloc_page(gfp);
if (!page) {
if (net_ratelimit())
netdev_err(netdev, "failed to allocate rx page\n");
return -ENOMEM;
}
map = dma_map_page(priv->dev, page, 0, RX_BUF_SIZE, DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(priv->dev, map))) {
if (net_ratelimit())
netdev_err(netdev, "failed to map rx page\n");
__free_page(page);
return -ENOMEM;
}
ftgmac100_rxdes_set_page(priv, rxdes, page);
ftgmac100_rxdes_set_dma_addr(rxdes, map);
ftgmac100_rxdes_set_dma_own(priv, rxdes);
return 0;
}
static int ftgmac100_next_rx_pointer(int pointer)
{
return (pointer + 1) & (RX_QUEUE_ENTRIES - 1);
}
static void ftgmac100_rx_pointer_advance(struct ftgmac100 *priv)
{
priv->rx_pointer = ftgmac100_next_rx_pointer(priv->rx_pointer);
}
static struct ftgmac100_rxdes *ftgmac100_current_rxdes(struct ftgmac100 *priv)
{
return &priv->descs->rxdes[priv->rx_pointer];
}
static struct ftgmac100_rxdes *
ftgmac100_rx_locate_first_segment(struct ftgmac100 *priv)
{
struct ftgmac100_rxdes *rxdes = ftgmac100_current_rxdes(priv);
while (ftgmac100_rxdes_packet_ready(rxdes)) {
if (ftgmac100_rxdes_first_segment(rxdes))
return rxdes;
ftgmac100_rxdes_set_dma_own(priv, rxdes);
ftgmac100_rx_pointer_advance(priv);
rxdes = ftgmac100_current_rxdes(priv);
}
return NULL;
}
static bool ftgmac100_rx_packet_error(struct ftgmac100 *priv,
struct ftgmac100_rxdes *rxdes)
{
struct net_device *netdev = priv->netdev;
bool error = false;
if (unlikely(ftgmac100_rxdes_rx_error(rxdes))) {
if (net_ratelimit())
netdev_info(netdev, "rx err\n");
netdev->stats.rx_errors++;
error = true;
}
if (unlikely(ftgmac100_rxdes_crc_error(rxdes))) {
if (net_ratelimit())
netdev_info(netdev, "rx crc err\n");
netdev->stats.rx_crc_errors++;
error = true;
} else if (unlikely(ftgmac100_rxdes_ipcs_err(rxdes))) {
if (net_ratelimit())
netdev_info(netdev, "rx IP checksum err\n");
error = true;
}
if (unlikely(ftgmac100_rxdes_frame_too_long(rxdes))) {
if (net_ratelimit())
netdev_info(netdev, "rx frame too long\n");
netdev->stats.rx_length_errors++;
error = true;
} else if (unlikely(ftgmac100_rxdes_runt(rxdes))) {
if (net_ratelimit())
netdev_info(netdev, "rx runt\n");
netdev->stats.rx_length_errors++;
error = true;
} else if (unlikely(ftgmac100_rxdes_odd_nibble(rxdes))) {
if (net_ratelimit())
netdev_info(netdev, "rx odd nibble\n");
netdev->stats.rx_length_errors++;
error = true;
}
return error;
}
static void ftgmac100_rx_drop_packet(struct ftgmac100 *priv)
{
struct net_device *netdev = priv->netdev;
struct ftgmac100_rxdes *rxdes = ftgmac100_current_rxdes(priv);
bool done = false;
if (net_ratelimit())
netdev_dbg(netdev, "drop packet %p\n", rxdes);
do {
if (ftgmac100_rxdes_last_segment(rxdes))
done = true;
ftgmac100_rxdes_set_dma_own(priv, rxdes);
ftgmac100_rx_pointer_advance(priv);
rxdes = ftgmac100_current_rxdes(priv);
} while (!done && ftgmac100_rxdes_packet_ready(rxdes));
netdev->stats.rx_dropped++;
}
static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
{
struct net_device *netdev = priv->netdev;
struct ftgmac100_rxdes *rxdes;
struct sk_buff *skb;
struct page *page;
unsigned int size;
dma_addr_t map;
rxdes = ftgmac100_rx_locate_first_segment(priv);
if (!rxdes)
return false;
/* We don't support segmented rx frames, so drop these
* along with packets with errors.
*/
if (unlikely(!ftgmac100_rxdes_last_segment(rxdes) ||
ftgmac100_rx_packet_error(priv, rxdes))) {
ftgmac100_rx_drop_packet(priv);
return true;
}
/* start processing */
skb = netdev_alloc_skb_ip_align(netdev, 128);
if (unlikely(!skb)) {
if (net_ratelimit())
netdev_err(netdev, "rx skb alloc failed\n");
ftgmac100_rx_drop_packet(priv);
return true;
}
if (unlikely(ftgmac100_rxdes_multicast(rxdes)))
netdev->stats.multicast++;
/*
* It seems that HW does checksum incorrectly with fragmented packets,
* so we are conservative here - if HW checksum error, let software do
* the checksum again.
*/
if ((ftgmac100_rxdes_is_tcp(rxdes) && !ftgmac100_rxdes_tcpcs_err(rxdes)) ||
(ftgmac100_rxdes_is_udp(rxdes) && !ftgmac100_rxdes_udpcs_err(rxdes)))
skb->ip_summed = CHECKSUM_UNNECESSARY;
map = ftgmac100_rxdes_get_dma_addr(rxdes);
dma_unmap_page(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
size = ftgmac100_rxdes_data_length(rxdes);
skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, page, 0, size);
skb->len += size;
skb->data_len += size;
skb->truesize += PAGE_SIZE;
ftgmac100_alloc_rx_page(priv, rxdes, GFP_ATOMIC);
ftgmac100_rx_pointer_advance(priv);
rxdes = ftgmac100_current_rxdes(priv);
/* Small frames are copied into linear part of skb to free one page */
if (skb->len <= 128) {
skb->truesize -= PAGE_SIZE;
__pskb_pull_tail(skb, skb->len);
} else {
/* We pull the minimum amount into linear part */
__pskb_pull_tail(skb, ETH_HLEN);
}
skb->protocol = eth_type_trans(skb, netdev);
netdev->stats.rx_packets++;
netdev->stats.rx_bytes += skb->len;
/* push packet to protocol stack */
napi_gro_receive(&priv->napi, skb);
(*processed)++;
return true;
}
static void ftgmac100_txdes_reset(const struct ftgmac100 *priv,
struct ftgmac100_txdes *txdes)
{
/* clear all except end of ring bit */
txdes->txdes0 &= cpu_to_le32(priv->txdes0_edotr_mask);
txdes->txdes1 = 0;
txdes->txdes2 = 0;
txdes->txdes3 = 0;
}
static bool ftgmac100_txdes_owned_by_dma(struct ftgmac100_txdes *txdes)
{
return txdes->txdes0 & cpu_to_le32(FTGMAC100_TXDES0_TXDMA_OWN);
}
static void ftgmac100_txdes_set_dma_own(struct ftgmac100_txdes *txdes)
{
/*
* Make sure dma own bit will not be set before any other
* descriptor fields.
*/
wmb();
txdes->txdes0 |= cpu_to_le32(FTGMAC100_TXDES0_TXDMA_OWN);
}
static void ftgmac100_txdes_set_end_of_ring(const struct ftgmac100 *priv,
struct ftgmac100_txdes *txdes)
{
txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
}
static void ftgmac100_txdes_set_first_segment(struct ftgmac100_txdes *txdes)
{
txdes->txdes0 |= cpu_to_le32(FTGMAC100_TXDES0_FTS);
}
static void ftgmac100_txdes_set_last_segment(struct ftgmac100_txdes *txdes)
{
txdes->txdes0 |= cpu_to_le32(FTGMAC100_TXDES0_LTS);
}
static void ftgmac100_txdes_set_buffer_size(struct ftgmac100_txdes *txdes,
unsigned int len)
{
txdes->txdes0 |= cpu_to_le32(FTGMAC100_TXDES0_TXBUF_SIZE(len));
}
static void ftgmac100_txdes_set_txint(struct ftgmac100_txdes *txdes)
{
txdes->txdes1 |= cpu_to_le32(FTGMAC100_TXDES1_TXIC);
}
static void ftgmac100_txdes_set_tcpcs(struct ftgmac100_txdes *txdes)
{
txdes->txdes1 |= cpu_to_le32(FTGMAC100_TXDES1_TCP_CHKSUM);
}
static void ftgmac100_txdes_set_udpcs(struct ftgmac100_txdes *txdes)
{
txdes->txdes1 |= cpu_to_le32(FTGMAC100_TXDES1_UDP_CHKSUM);
}
static void ftgmac100_txdes_set_ipcs(struct ftgmac100_txdes *txdes)
{
txdes->txdes1 |= cpu_to_le32(FTGMAC100_TXDES1_IP_CHKSUM);
}
static void ftgmac100_txdes_set_dma_addr(struct ftgmac100_txdes *txdes,
dma_addr_t addr)
{
txdes->txdes3 = cpu_to_le32(addr);
}
static dma_addr_t ftgmac100_txdes_get_dma_addr(struct ftgmac100_txdes *txdes)
{
return le32_to_cpu(txdes->txdes3);
}
/*
* txdes2 is not used by hardware. We use it to keep track of socket buffer.
* Since hardware does not touch it, we can skip cpu_to_le32()/le32_to_cpu().
*/
static void ftgmac100_txdes_set_skb(struct ftgmac100_txdes *txdes,
struct sk_buff *skb)
{
txdes->txdes2 = (unsigned int)skb;
}
static struct sk_buff *ftgmac100_txdes_get_skb(struct ftgmac100_txdes *txdes)
{
return (struct sk_buff *)txdes->txdes2;
}
static int ftgmac100_next_tx_pointer(int pointer)
{
return (pointer + 1) & (TX_QUEUE_ENTRIES - 1);
}
static void ftgmac100_tx_pointer_advance(struct ftgmac100 *priv)
{
priv->tx_pointer = ftgmac100_next_tx_pointer(priv->tx_pointer);
}
static void ftgmac100_tx_clean_pointer_advance(struct ftgmac100 *priv)
{
priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv->tx_clean_pointer);
}
static struct ftgmac100_txdes *ftgmac100_current_txdes(struct ftgmac100 *priv)
{
return &priv->descs->txdes[priv->tx_pointer];
}
static struct ftgmac100_txdes *
ftgmac100_current_clean_txdes(struct ftgmac100 *priv)
{
return &priv->descs->txdes[priv->tx_clean_pointer];
}
static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
{
struct net_device *netdev = priv->netdev;
struct ftgmac100_txdes *txdes;
struct sk_buff *skb;
dma_addr_t map;
if (priv->tx_pending == 0)
return false;
txdes = ftgmac100_current_clean_txdes(priv);
if (ftgmac100_txdes_owned_by_dma(txdes))
return false;
skb = ftgmac100_txdes_get_skb(txdes);
map = ftgmac100_txdes_get_dma_addr(txdes);
netdev->stats.tx_packets++;
netdev->stats.tx_bytes += skb->len;
dma_unmap_single(priv->dev, map, skb_headlen(skb), DMA_TO_DEVICE);
dev_kfree_skb(skb);
ftgmac100_txdes_reset(priv, txdes);
ftgmac100_tx_clean_pointer_advance(priv);
spin_lock(&priv->tx_lock);
priv->tx_pending--;
spin_unlock(&priv->tx_lock);
netif_wake_queue(netdev);
return true;
}
static void ftgmac100_tx_complete(struct ftgmac100 *priv)
{
while (ftgmac100_tx_complete_packet(priv))
;
}
static int ftgmac100_xmit(struct ftgmac100 *priv, struct sk_buff *skb,
dma_addr_t map)
{
struct net_device *netdev = priv->netdev;
struct ftgmac100_txdes *txdes;
unsigned int len = (skb->len < ETH_ZLEN) ? ETH_ZLEN : skb->len;
txdes = ftgmac100_current_txdes(priv);
ftgmac100_tx_pointer_advance(priv);
/* setup TX descriptor */
ftgmac100_txdes_set_skb(txdes, skb);
ftgmac100_txdes_set_dma_addr(txdes, map);
ftgmac100_txdes_set_buffer_size(txdes, len);
ftgmac100_txdes_set_first_segment(txdes);
ftgmac100_txdes_set_last_segment(txdes);
ftgmac100_txdes_set_txint(txdes);
if (skb->ip_summed == CHECKSUM_PARTIAL) {
__be16 protocol = skb->protocol;
if (protocol == cpu_to_be16(ETH_P_IP)) {
u8 ip_proto = ip_hdr(skb)->protocol;
ftgmac100_txdes_set_ipcs(txdes);
if (ip_proto == IPPROTO_TCP)
ftgmac100_txdes_set_tcpcs(txdes);
else if (ip_proto == IPPROTO_UDP)
ftgmac100_txdes_set_udpcs(txdes);
}
}
spin_lock(&priv->tx_lock);
priv->tx_pending++;
if (priv->tx_pending == TX_QUEUE_ENTRIES)
netif_stop_queue(netdev);
/* start transmit */
ftgmac100_txdes_set_dma_own(txdes);
spin_unlock(&priv->tx_lock);
ftgmac100_txdma_normal_prio_start_polling(priv);
return NETDEV_TX_OK;
}
static void ftgmac100_free_buffers(struct ftgmac100 *priv)
{
int i;
/* Free all RX buffers */
for (i = 0; i < RX_QUEUE_ENTRIES; i++) {
struct ftgmac100_rxdes *rxdes = &priv->descs->rxdes[i];
struct page *page = ftgmac100_rxdes_get_page(priv, rxdes);
dma_addr_t map = ftgmac100_rxdes_get_dma_addr(rxdes);
if (!page)
continue;
dma_unmap_page(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
__free_page(page);
}
/* Free all TX buffers */
for (i = 0; i < TX_QUEUE_ENTRIES; i++) {
struct ftgmac100_txdes *txdes = &priv->descs->txdes[i];
struct sk_buff *skb = ftgmac100_txdes_get_skb(txdes);
dma_addr_t map = ftgmac100_txdes_get_dma_addr(txdes);
if (!skb)
continue;
dma_unmap_single(priv->dev, map, skb_headlen(skb), DMA_TO_DEVICE);
kfree_skb(skb);
}
}
static void ftgmac100_free_rings(struct ftgmac100 *priv)
{
/* Free descriptors */
if (priv->descs)
dma_free_coherent(priv->dev, sizeof(struct ftgmac100_descs),
priv->descs, priv->descs_dma_addr);
}
static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
{
/* Allocate descriptors */
priv->descs = dma_zalloc_coherent(priv->dev,
sizeof(struct ftgmac100_descs),
&priv->descs_dma_addr, GFP_KERNEL);
if (!priv->descs)
return -ENOMEM;
return 0;
}
static void ftgmac100_init_rings(struct ftgmac100 *priv)
{
int i;
/* Initialize RX ring */
for (i = 0; i < RX_QUEUE_ENTRIES; i++)
priv->descs->rxdes[i].rxdes0 = 0;
ftgmac100_rxdes_set_end_of_ring(priv, &priv->descs->rxdes[i - 1]);
/* Initialize TX ring */
for (i = 0; i < TX_QUEUE_ENTRIES; i++)
priv->descs->txdes[i].txdes0 = 0;
ftgmac100_txdes_set_end_of_ring(priv, &priv->descs->txdes[i -1]);
}
static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
{
int i;
for (i = 0; i < RX_QUEUE_ENTRIES; i++) {
struct ftgmac100_rxdes *rxdes = &priv->descs->rxdes[i];
if (ftgmac100_alloc_rx_page(priv, rxdes, GFP_KERNEL))
return -ENOMEM;
}
return 0;
}
static void ftgmac100_adjust_link(struct net_device *netdev)
{
struct ftgmac100 *priv = netdev_priv(netdev);
struct phy_device *phydev = netdev->phydev;
int new_speed;
/* We store "no link" as speed 0 */
if (!phydev->link)
new_speed = 0;
else
new_speed = phydev->speed;
if (phydev->speed == priv->cur_speed &&
phydev->duplex == priv->cur_duplex)
return;
/* Print status if we have a link or we had one and just lost it,
* don't print otherwise.
*/
if (new_speed || priv->cur_speed)
phy_print_status(phydev);
priv->cur_speed = new_speed;
priv->cur_duplex = phydev->duplex;
/* Link is down, do nothing else */
if (!new_speed)
return;
/* Disable all interrupts */
iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
/* Reset the adapter asynchronously */
schedule_work(&priv->reset_task);
}
static int ftgmac100_mii_probe(struct ftgmac100 *priv)
{
struct net_device *netdev = priv->netdev;
struct phy_device *phydev;
phydev = phy_find_first(priv->mii_bus);
if (!phydev) {
netdev_info(netdev, "%s: no PHY found\n", netdev->name);
return -ENODEV;
}
phydev = phy_connect(netdev, phydev_name(phydev),
&ftgmac100_adjust_link, PHY_INTERFACE_MODE_GMII);
if (IS_ERR(phydev)) {
netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
return PTR_ERR(phydev);
}
return 0;
}
static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
{
struct net_device *netdev = bus->priv;
struct ftgmac100 *priv = netdev_priv(netdev);
unsigned int phycr;
int i;
phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
/* preserve MDC cycle threshold */
phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
FTGMAC100_PHYCR_REGAD(regnum) |
FTGMAC100_PHYCR_MIIRD;
iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
for (i = 0; i < 10; i++) {
phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
int data;
data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
return FTGMAC100_PHYDATA_MIIRDATA(data);
}
udelay(100);
}
netdev_err(netdev, "mdio read timed out\n");
return -EIO;
}
static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
int regnum, u16 value)
{
struct net_device *netdev = bus->priv;
struct ftgmac100 *priv = netdev_priv(netdev);
unsigned int phycr;
int data;
int i;
phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
/* preserve MDC cycle threshold */
phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
FTGMAC100_PHYCR_REGAD(regnum) |
FTGMAC100_PHYCR_MIIWR;
data = FTGMAC100_PHYDATA_MIIWDATA(value);
iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
for (i = 0; i < 10; i++) {
phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
return 0;
udelay(100);
}
netdev_err(netdev, "mdio write timed out\n");
return -EIO;
}
static void ftgmac100_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *info)
{
strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
strlcpy(info->version, DRV_VERSION, sizeof(info->version));
strlcpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
}
static const struct ethtool_ops ftgmac100_ethtool_ops = {
.get_drvinfo = ftgmac100_get_drvinfo,
.get_link = ethtool_op_get_link,
.get_link_ksettings = phy_ethtool_get_link_ksettings,
.set_link_ksettings = phy_ethtool_set_link_ksettings,
};
static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
{
struct net_device *netdev = dev_id;
struct ftgmac100 *priv = netdev_priv(netdev);
unsigned int status, new_mask = FTGMAC100_INT_BAD;
/* Fetch and clear interrupt bits, process abnormal ones */
status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
if (unlikely(status & FTGMAC100_INT_BAD)) {
/* RX buffer unavailable */
if (status & FTGMAC100_INT_NO_RXBUF)
netdev->stats.rx_over_errors++;
/* received packet lost due to RX FIFO full */
if (status & FTGMAC100_INT_RPKT_LOST)
netdev->stats.rx_fifo_errors++;
/* sent packet lost due to excessive TX collision */
if (status & FTGMAC100_INT_XPKT_LOST)
netdev->stats.tx_fifo_errors++;
/* AHB error -> Reset the chip */
if (status & FTGMAC100_INT_AHB_ERR) {
if (net_ratelimit())
netdev_warn(netdev,
"AHB bus error ! Resetting chip.\n");
iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
schedule_work(&priv->reset_task);
return IRQ_HANDLED;
}
/* We may need to restart the MAC after such errors, delay
* this until after we have freed some Rx buffers though
*/
priv->need_mac_restart = true;
/* Disable those errors until we restart */
new_mask &= ~status;
}
/* Only enable "bad" interrupts while NAPI is on */
iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);
/* Schedule NAPI bh */
napi_schedule_irqoff(&priv->napi);
return IRQ_HANDLED;
}
static int ftgmac100_poll(struct napi_struct *napi, int budget)
{
struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
bool more, completed = true;
int rx = 0;
ftgmac100_tx_complete(priv);
do {
more = ftgmac100_rx_packet(priv, &rx);
} while (more && rx < budget);
if (more && rx == budget)
completed = false;
/* The interrupt is telling us to kick the MAC back to life
* after an RX overflow
*/
if (unlikely(priv->need_mac_restart)) {
ftgmac100_start_hw(priv);
/* Re-enable "bad" interrupts */
iowrite32(FTGMAC100_INT_BAD,
priv->base + FTGMAC100_OFFSET_IER);
}
/* Keep NAPI going if we have still packets to reclaim */
if (priv->tx_pending)
return budget;
if (completed) {
/* We are about to re-enable all interrupts. However
* the HW has been latching RX/TX packet interrupts while
* they were masked. So we clear them first, then we need
* to re-check if there's something to process
*/
iowrite32(FTGMAC100_INT_RXTX,
priv->base + FTGMAC100_OFFSET_ISR);
if (ftgmac100_rxdes_packet_ready
(ftgmac100_current_rxdes(priv)) || priv->tx_pending)
return budget;
/* deschedule NAPI */
napi_complete(napi);
/* enable all interrupts */
iowrite32(FTGMAC100_INT_ALL,
priv->base + FTGMAC100_OFFSET_IER);
}
return rx;
}
static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
{
int err = 0;
/* Re-init descriptors (adjust queue sizes) */
ftgmac100_init_rings(priv);
/* Realloc rx descriptors */
err = ftgmac100_alloc_rx_buffers(priv);
if (err && !ignore_alloc_err)
return err;
/* Reinit and restart HW */
ftgmac100_init_hw(priv);
ftgmac100_start_hw(priv);
/* Re-enable the device */
napi_enable(&priv->napi);
netif_start_queue(priv->netdev);
/* Enable all interrupts */
iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
return err;
}
static void ftgmac100_reset_task(struct work_struct *work)
{
struct ftgmac100 *priv = container_of(work, struct ftgmac100,
reset_task);
struct net_device *netdev = priv->netdev;
int err;
netdev_dbg(netdev, "Resetting NIC...\n");
/* Lock the world */
rtnl_lock();
if (netdev->phydev)
mutex_lock(&netdev->phydev->lock);
if (priv->mii_bus)
mutex_lock(&priv->mii_bus->mdio_lock);
/* Check if the interface is still up */
if (!netif_running(netdev))
goto bail;
/* Stop the network stack */
netif_trans_update(netdev);
napi_disable(&priv->napi);
netif_tx_disable(netdev);
/* Stop and reset the MAC */
ftgmac100_stop_hw(priv);
err = ftgmac100_reset_and_config_mac(priv);
if (err) {
/* Not much we can do ... it might come back... */
netdev_err(netdev, "attempting to continue...\n");
}
/* Free all rx and tx buffers */
ftgmac100_free_buffers(priv);
/* Setup everything again and restart chip */
ftgmac100_init_all(priv, true);
netdev_dbg(netdev, "Reset done !\n");
bail:
if (priv->mii_bus)
mutex_unlock(&priv->mii_bus->mdio_lock);
if (netdev->phydev)
mutex_unlock(&netdev->phydev->lock);
rtnl_unlock();
}
static int ftgmac100_open(struct net_device *netdev)
{
struct ftgmac100 *priv = netdev_priv(netdev);
int err;
/* Allocate ring buffers */
err = ftgmac100_alloc_rings(priv);
if (err) {
netdev_err(netdev, "Failed to allocate descriptors\n");
return err;
}
/* When using NC-SI we force the speed to 100Mbit/s full duplex,
*
* Otherwise we leave it set to 0 (no link), the link
* message from the PHY layer will handle setting it up to
* something else if needed.
*/
if (priv->use_ncsi) {
priv->cur_duplex = DUPLEX_FULL;
priv->cur_speed = SPEED_100;
} else {
priv->cur_duplex = 0;
priv->cur_speed = 0;
}
/* Reset the hardware */
err = ftgmac100_reset_and_config_mac(priv);
if (err)
goto err_hw;
/* Initialize NAPI */
netif_napi_add(netdev, &priv->napi, ftgmac100_poll, 64);
/* Grab our interrupt */
err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
if (err) {
netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
goto err_irq;
}
/* Start things up */
err = ftgmac100_init_all(priv, false);
if (err) {
netdev_err(netdev, "Failed to allocate packet buffers\n");
goto err_alloc;
}
if (netdev->phydev) {
/* If we have a PHY, start polling */
phy_start(netdev->phydev);
} else if (priv->use_ncsi) {
/* If using NC-SI, set our carrier on and start the stack */
netif_carrier_on(netdev);
/* Start the NCSI device */
err = ncsi_start_dev(priv->ndev);
if (err)
goto err_ncsi;
}
return 0;
err_ncsi:
napi_disable(&priv->napi);
netif_stop_queue(netdev);
err_alloc:
ftgmac100_free_buffers(priv);
free_irq(netdev->irq, netdev);
err_irq:
netif_napi_del(&priv->napi);
err_hw:
iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
ftgmac100_free_rings(priv);
return err;
}
static int ftgmac100_stop(struct net_device *netdev)
{
struct ftgmac100 *priv = netdev_priv(netdev);
/* Note about the reset task: We are called with the rtnl lock
* held, so we are synchronized against the core of the reset
* task. We must not try to synchronously cancel it otherwise
* we can deadlock. But since it will test for netif_running()
* which has already been cleared by the net core, we don't
* anything special to do.
*/
/* disable all interrupts */
iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
netif_stop_queue(netdev);
napi_disable(&priv->napi);
netif_napi_del(&priv->napi);
if (netdev->phydev)
phy_stop(netdev->phydev);
else if (priv->use_ncsi)
ncsi_stop_dev(priv->ndev);
ftgmac100_stop_hw(priv);
free_irq(netdev->irq, netdev);
ftgmac100_free_buffers(priv);
ftgmac100_free_rings(priv);
return 0;
}
static int ftgmac100_hard_start_xmit(struct sk_buff *skb,
struct net_device *netdev)
{
struct ftgmac100 *priv = netdev_priv(netdev);
dma_addr_t map;
if (unlikely(skb->len > MAX_PKT_SIZE)) {
if (net_ratelimit())
netdev_dbg(netdev, "tx packet too big\n");
netdev->stats.tx_dropped++;
kfree_skb(skb);
return NETDEV_TX_OK;
}
map = dma_map_single(priv->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(priv->dev, map))) {
/* drop packet */
if (net_ratelimit())
netdev_err(netdev, "map socket buffer failed\n");
netdev->stats.tx_dropped++;
kfree_skb(skb);
return NETDEV_TX_OK;
}
return ftgmac100_xmit(priv, skb, map);
}
/* optional */
static int ftgmac100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
if (!netdev->phydev)
return -ENXIO;
return phy_mii_ioctl(netdev->phydev, ifr, cmd);
}
static const struct net_device_ops ftgmac100_netdev_ops = {
.ndo_open = ftgmac100_open,
.ndo_stop = ftgmac100_stop,
.ndo_start_xmit = ftgmac100_hard_start_xmit,
.ndo_set_mac_address = ftgmac100_set_mac_addr,
.ndo_validate_addr = eth_validate_addr,
.ndo_do_ioctl = ftgmac100_do_ioctl,
};
static int ftgmac100_setup_mdio(struct net_device *netdev)
{
struct ftgmac100 *priv = netdev_priv(netdev);
struct platform_device *pdev = to_platform_device(priv->dev);
int i, err = 0;
u32 reg;
/* initialize mdio bus */
priv->mii_bus = mdiobus_alloc();
if (!priv->mii_bus)
return -EIO;
if (of_machine_is_compatible("aspeed,ast2400") ||
of_machine_is_compatible("aspeed,ast2500")) {
/* This driver supports the old MDIO interface */
reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
};
priv->mii_bus->name = "ftgmac100_mdio";
snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
pdev->name, pdev->id);
priv->mii_bus->priv = priv->netdev;
priv->mii_bus->read = ftgmac100_mdiobus_read;
priv->mii_bus->write = ftgmac100_mdiobus_write;
for (i = 0; i < PHY_MAX_ADDR; i++)
priv->mii_bus->irq[i] = PHY_POLL;
err = mdiobus_register(priv->mii_bus);
if (err) {
dev_err(priv->dev, "Cannot register MDIO bus!\n");
goto err_register_mdiobus;
}
err = ftgmac100_mii_probe(priv);
if (err) {
dev_err(priv->dev, "MII Probe failed!\n");
goto err_mii_probe;
}
return 0;
err_mii_probe:
mdiobus_unregister(priv->mii_bus);
err_register_mdiobus:
mdiobus_free(priv->mii_bus);
return err;
}
static void ftgmac100_destroy_mdio(struct net_device *netdev)
{
struct ftgmac100 *priv = netdev_priv(netdev);
if (!netdev->phydev)
return;
phy_disconnect(netdev->phydev);
mdiobus_unregister(priv->mii_bus);
mdiobus_free(priv->mii_bus);
}
static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
{
if (unlikely(nd->state != ncsi_dev_state_functional))
return;
netdev_info(nd->dev, "NCSI interface %s\n",
nd->link_up ? "up" : "down");
}
static int ftgmac100_probe(struct platform_device *pdev)
{
struct resource *res;
int irq;
struct net_device *netdev;
struct ftgmac100 *priv;
int err = 0;
if (!pdev)
return -ENODEV;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return -ENXIO;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
/* setup net_device */
netdev = alloc_etherdev(sizeof(*priv));
if (!netdev) {
err = -ENOMEM;
goto err_alloc_etherdev;
}
SET_NETDEV_DEV(netdev, &pdev->dev);
netdev->ethtool_ops = &ftgmac100_ethtool_ops;
netdev->netdev_ops = &ftgmac100_netdev_ops;
platform_set_drvdata(pdev, netdev);
/* setup private data */
priv = netdev_priv(netdev);
priv->netdev = netdev;
priv->dev = &pdev->dev;
INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
spin_lock_init(&priv->tx_lock);
/* map io memory */
priv->res = request_mem_region(res->start, resource_size(res),
dev_name(&pdev->dev));
if (!priv->res) {
dev_err(&pdev->dev, "Could not reserve memory region\n");
err = -ENOMEM;
goto err_req_mem;
}
priv->base = ioremap(res->start, resource_size(res));
if (!priv->base) {
dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
err = -EIO;
goto err_ioremap;
}
netdev->irq = irq;
/* MAC address from chip or random one */
ftgmac100_setup_mac(priv);
if (of_machine_is_compatible("aspeed,ast2400") ||
of_machine_is_compatible("aspeed,ast2500")) {
priv->rxdes0_edorr_mask = BIT(30);
priv->txdes0_edotr_mask = BIT(30);
} else {
priv->rxdes0_edorr_mask = BIT(15);
priv->txdes0_edotr_mask = BIT(15);
}
if (pdev->dev.of_node &&
of_get_property(pdev->dev.of_node, "use-ncsi", NULL)) {
if (!IS_ENABLED(CONFIG_NET_NCSI)) {
dev_err(&pdev->dev, "NCSI stack not enabled\n");
goto err_ncsi_dev;
}
dev_info(&pdev->dev, "Using NCSI interface\n");
priv->use_ncsi = true;
priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
if (!priv->ndev)
goto err_ncsi_dev;
} else {
priv->use_ncsi = false;
err = ftgmac100_setup_mdio(netdev);
if (err)
goto err_setup_mdio;
}
/* We have to disable on-chip IP checksum functionality
* when NCSI is enabled on the interface. It doesn't work
* in that case.
*/
netdev->features = NETIF_F_IP_CSUM | NETIF_F_GRO;
if (priv->use_ncsi &&
of_get_property(pdev->dev.of_node, "no-hw-checksum", NULL))
netdev->features &= ~NETIF_F_IP_CSUM;
/* register network device */
err = register_netdev(netdev);
if (err) {
dev_err(&pdev->dev, "Failed to register netdev\n");
goto err_register_netdev;
}
netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
return 0;
err_ncsi_dev:
err_register_netdev:
ftgmac100_destroy_mdio(netdev);
err_setup_mdio:
iounmap(priv->base);
err_ioremap:
release_resource(priv->res);
err_req_mem:
netif_napi_del(&priv->napi);
free_netdev(netdev);
err_alloc_etherdev:
return err;
}
static int ftgmac100_remove(struct platform_device *pdev)
{
struct net_device *netdev;
struct ftgmac100 *priv;
netdev = platform_get_drvdata(pdev);
priv = netdev_priv(netdev);
unregister_netdev(netdev);
/* There's a small chance the reset task will have been re-queued,
* during stop, make sure it's gone before we free the structure.
*/
cancel_work_sync(&priv->reset_task);
ftgmac100_destroy_mdio(netdev);
iounmap(priv->base);
release_resource(priv->res);
netif_napi_del(&priv->napi);
free_netdev(netdev);
return 0;
}
static const struct of_device_id ftgmac100_of_match[] = {
{ .compatible = "faraday,ftgmac100" },
{ }
};
MODULE_DEVICE_TABLE(of, ftgmac100_of_match);
static struct platform_driver ftgmac100_driver = {
.probe = ftgmac100_probe,
.remove = ftgmac100_remove,
.driver = {
.name = DRV_NAME,
.of_match_table = ftgmac100_of_match,
},
};
module_platform_driver(ftgmac100_driver);
MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
MODULE_DESCRIPTION("FTGMAC100 driver");
MODULE_LICENSE("GPL");