arm/arm64: KVM: enable kernel side of GICv3 emulation

With all the necessary GICv3 emulation code in place, we can now
connect the code to the GICv3 backend in the kernel.
The LR register handling is different depending on the emulated GIC
model, so provide different implementations for each.
Also allow non-v2-compatible GICv3 implementations (which don't
provide MMIO regions for the virtual CPU interface in the DT), but
restrict those hosts to support GICv3 guests only.
If the device tree provides a GICv2 compatible GICV resource entry,
but that one is faulty, just disable the GICv2 emulation and let the
user use at least the GICv3 emulation for guests.
To provide proper support for the legacy KVM_CREATE_IRQCHIP ioctl,
note virtual GICv2 compatibility in struct vgic_params and use it
on creating a VGICv2.

Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
diff --git a/virt/kvm/arm/vgic.c b/virt/kvm/arm/vgic.c
index 6d23e57..2efba82 100644
--- a/virt/kvm/arm/vgic.c
+++ b/virt/kvm/arm/vgic.c
@@ -1550,6 +1550,11 @@
 	case KVM_DEV_TYPE_ARM_VGIC_V2:
 		vgic_v2_init_emulation(kvm);
 		break;
+#ifdef CONFIG_ARM_GIC_V3
+	case KVM_DEV_TYPE_ARM_VGIC_V3:
+		vgic_v3_init_emulation(kvm);
+		break;
+#endif
 	default:
 		return -ENODEV;
 	}
@@ -1573,6 +1578,15 @@
 	}
 
 	/*
+	 * This function is also called by the KVM_CREATE_IRQCHIP handler,
+	 * which had no chance yet to check the availability of the GICv2
+	 * emulation. So check this here again. KVM_CREATE_DEVICE does
+	 * the proper checks already.
+	 */
+	if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2)
+		return -ENODEV;
+
+	/*
 	 * Any time a vcpu is run, vcpu_load is called which tries to grab the
 	 * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
 	 * that no other VCPUs are run while we create the vgic.