| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 1998-2003 Hewlett-Packard Co |
| * David Mosberger-Tang <davidm@hpl.hp.com> |
| * Stephane Eranian <eranian@hpl.hp.com> |
| * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com> |
| * Copyright (C) 1999 VA Linux Systems |
| * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> |
| * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved. |
| * |
| * Routines used by ia64 machines with contiguous (or virtually contiguous) |
| * memory. |
| */ |
| #include <linux/bootmem.h> |
| #include <linux/efi.h> |
| #include <linux/mm.h> |
| #include <linux/nmi.h> |
| #include <linux/swap.h> |
| |
| #include <asm/meminit.h> |
| #include <asm/pgalloc.h> |
| #include <asm/pgtable.h> |
| #include <asm/sections.h> |
| #include <asm/mca.h> |
| |
| #ifdef CONFIG_VIRTUAL_MEM_MAP |
| static unsigned long max_gap; |
| #endif |
| |
| /** |
| * show_mem - give short summary of memory stats |
| * |
| * Shows a simple page count of reserved and used pages in the system. |
| * For discontig machines, it does this on a per-pgdat basis. |
| */ |
| void show_mem(void) |
| { |
| int i, total_reserved = 0; |
| int total_shared = 0, total_cached = 0; |
| unsigned long total_present = 0; |
| pg_data_t *pgdat; |
| |
| printk(KERN_INFO "Mem-info:\n"); |
| show_free_areas(); |
| printk(KERN_INFO "Node memory in pages:\n"); |
| for_each_online_pgdat(pgdat) { |
| unsigned long present; |
| unsigned long flags; |
| int shared = 0, cached = 0, reserved = 0; |
| |
| pgdat_resize_lock(pgdat, &flags); |
| present = pgdat->node_present_pages; |
| for(i = 0; i < pgdat->node_spanned_pages; i++) { |
| struct page *page; |
| if (unlikely(i % MAX_ORDER_NR_PAGES == 0)) |
| touch_nmi_watchdog(); |
| if (pfn_valid(pgdat->node_start_pfn + i)) |
| page = pfn_to_page(pgdat->node_start_pfn + i); |
| else { |
| #ifdef CONFIG_VIRTUAL_MEM_MAP |
| if (max_gap < LARGE_GAP) |
| continue; |
| #endif |
| i = vmemmap_find_next_valid_pfn(pgdat->node_id, |
| i) - 1; |
| continue; |
| } |
| if (PageReserved(page)) |
| reserved++; |
| else if (PageSwapCache(page)) |
| cached++; |
| else if (page_count(page)) |
| shared += page_count(page)-1; |
| } |
| pgdat_resize_unlock(pgdat, &flags); |
| total_present += present; |
| total_reserved += reserved; |
| total_cached += cached; |
| total_shared += shared; |
| printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, " |
| "shrd: %10d, swpd: %10d\n", pgdat->node_id, |
| present, reserved, shared, cached); |
| } |
| printk(KERN_INFO "%ld pages of RAM\n", total_present); |
| printk(KERN_INFO "%d reserved pages\n", total_reserved); |
| printk(KERN_INFO "%d pages shared\n", total_shared); |
| printk(KERN_INFO "%d pages swap cached\n", total_cached); |
| printk(KERN_INFO "Total of %ld pages in page table cache\n", |
| quicklist_total_size()); |
| printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages()); |
| } |
| |
| |
| /* physical address where the bootmem map is located */ |
| unsigned long bootmap_start; |
| |
| /** |
| * find_bootmap_location - callback to find a memory area for the bootmap |
| * @start: start of region |
| * @end: end of region |
| * @arg: unused callback data |
| * |
| * Find a place to put the bootmap and return its starting address in |
| * bootmap_start. This address must be page-aligned. |
| */ |
| static int __init |
| find_bootmap_location (unsigned long start, unsigned long end, void *arg) |
| { |
| unsigned long needed = *(unsigned long *)arg; |
| unsigned long range_start, range_end, free_start; |
| int i; |
| |
| #if IGNORE_PFN0 |
| if (start == PAGE_OFFSET) { |
| start += PAGE_SIZE; |
| if (start >= end) |
| return 0; |
| } |
| #endif |
| |
| free_start = PAGE_OFFSET; |
| |
| for (i = 0; i < num_rsvd_regions; i++) { |
| range_start = max(start, free_start); |
| range_end = min(end, rsvd_region[i].start & PAGE_MASK); |
| |
| free_start = PAGE_ALIGN(rsvd_region[i].end); |
| |
| if (range_end <= range_start) |
| continue; /* skip over empty range */ |
| |
| if (range_end - range_start >= needed) { |
| bootmap_start = __pa(range_start); |
| return -1; /* done */ |
| } |
| |
| /* nothing more available in this segment */ |
| if (range_end == end) |
| return 0; |
| } |
| return 0; |
| } |
| |
| #ifdef CONFIG_SMP |
| static void *cpu_data; |
| /** |
| * per_cpu_init - setup per-cpu variables |
| * |
| * Allocate and setup per-cpu data areas. |
| */ |
| void * __cpuinit |
| per_cpu_init (void) |
| { |
| int cpu; |
| static int first_time=1; |
| |
| /* |
| * get_free_pages() cannot be used before cpu_init() done. BSP |
| * allocates "NR_CPUS" pages for all CPUs to avoid that AP calls |
| * get_zeroed_page(). |
| */ |
| if (first_time) { |
| void *cpu0_data = __cpu0_per_cpu; |
| |
| first_time=0; |
| |
| __per_cpu_offset[0] = (char *) cpu0_data - __per_cpu_start; |
| per_cpu(local_per_cpu_offset, 0) = __per_cpu_offset[0]; |
| |
| for (cpu = 1; cpu < NR_CPUS; cpu++) { |
| memcpy(cpu_data, __phys_per_cpu_start, __per_cpu_end - __per_cpu_start); |
| __per_cpu_offset[cpu] = (char *) cpu_data - __per_cpu_start; |
| cpu_data += PERCPU_PAGE_SIZE; |
| per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu]; |
| } |
| } |
| return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; |
| } |
| |
| static inline void |
| alloc_per_cpu_data(void) |
| { |
| cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * NR_CPUS-1, |
| PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); |
| } |
| #else |
| #define alloc_per_cpu_data() do { } while (0) |
| #endif /* CONFIG_SMP */ |
| |
| /** |
| * find_memory - setup memory map |
| * |
| * Walk the EFI memory map and find usable memory for the system, taking |
| * into account reserved areas. |
| */ |
| void __init |
| find_memory (void) |
| { |
| unsigned long bootmap_size; |
| |
| reserve_memory(); |
| |
| /* first find highest page frame number */ |
| min_low_pfn = ~0UL; |
| max_low_pfn = 0; |
| efi_memmap_walk(find_max_min_low_pfn, NULL); |
| max_pfn = max_low_pfn; |
| /* how many bytes to cover all the pages */ |
| bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT; |
| |
| /* look for a location to hold the bootmap */ |
| bootmap_start = ~0UL; |
| efi_memmap_walk(find_bootmap_location, &bootmap_size); |
| if (bootmap_start == ~0UL) |
| panic("Cannot find %ld bytes for bootmap\n", bootmap_size); |
| |
| bootmap_size = init_bootmem_node(NODE_DATA(0), |
| (bootmap_start >> PAGE_SHIFT), 0, max_pfn); |
| |
| /* Free all available memory, then mark bootmem-map as being in use. */ |
| efi_memmap_walk(filter_rsvd_memory, free_bootmem); |
| reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT); |
| |
| find_initrd(); |
| |
| alloc_per_cpu_data(); |
| } |
| |
| static int |
| count_pages (u64 start, u64 end, void *arg) |
| { |
| unsigned long *count = arg; |
| |
| *count += (end - start) >> PAGE_SHIFT; |
| return 0; |
| } |
| |
| /* |
| * Set up the page tables. |
| */ |
| |
| void __init |
| paging_init (void) |
| { |
| unsigned long max_dma; |
| unsigned long max_zone_pfns[MAX_NR_ZONES]; |
| |
| num_physpages = 0; |
| efi_memmap_walk(count_pages, &num_physpages); |
| |
| memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); |
| #ifdef CONFIG_ZONE_DMA |
| max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; |
| max_zone_pfns[ZONE_DMA] = max_dma; |
| #endif |
| max_zone_pfns[ZONE_NORMAL] = max_low_pfn; |
| |
| #ifdef CONFIG_VIRTUAL_MEM_MAP |
| efi_memmap_walk(filter_memory, register_active_ranges); |
| efi_memmap_walk(find_largest_hole, (u64 *)&max_gap); |
| if (max_gap < LARGE_GAP) { |
| vmem_map = (struct page *) 0; |
| free_area_init_nodes(max_zone_pfns); |
| } else { |
| unsigned long map_size; |
| |
| /* allocate virtual_mem_map */ |
| |
| map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) * |
| sizeof(struct page)); |
| vmalloc_end -= map_size; |
| vmem_map = (struct page *) vmalloc_end; |
| efi_memmap_walk(create_mem_map_page_table, NULL); |
| |
| /* |
| * alloc_node_mem_map makes an adjustment for mem_map |
| * which isn't compatible with vmem_map. |
| */ |
| NODE_DATA(0)->node_mem_map = vmem_map + |
| find_min_pfn_with_active_regions(); |
| free_area_init_nodes(max_zone_pfns); |
| |
| printk("Virtual mem_map starts at 0x%p\n", mem_map); |
| } |
| #else /* !CONFIG_VIRTUAL_MEM_MAP */ |
| add_active_range(0, 0, max_low_pfn); |
| free_area_init_nodes(max_zone_pfns); |
| #endif /* !CONFIG_VIRTUAL_MEM_MAP */ |
| zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page)); |
| } |