| /******************************************************************************* |
| |
| Intel PRO/1000 Linux driver |
| Copyright(c) 1999 - 2006 Intel Corporation. |
| |
| This program is free software; you can redistribute it and/or modify it |
| under the terms and conditions of the GNU General Public License, |
| version 2, as published by the Free Software Foundation. |
| |
| This program is distributed in the hope it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| more details. |
| |
| You should have received a copy of the GNU General Public License along with |
| this program; if not, write to the Free Software Foundation, Inc., |
| 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| |
| The full GNU General Public License is included in this distribution in |
| the file called "COPYING". |
| |
| Contact Information: |
| Linux NICS <linux.nics@intel.com> |
| e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| |
| *******************************************************************************/ |
| |
| /* e1000_hw.c |
| * Shared functions for accessing and configuring the MAC |
| */ |
| |
| |
| #include "e1000_hw.h" |
| |
| static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask); |
| static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask); |
| static int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data); |
| static int32_t e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data); |
| static int32_t e1000_get_software_semaphore(struct e1000_hw *hw); |
| static void e1000_release_software_semaphore(struct e1000_hw *hw); |
| |
| static uint8_t e1000_arc_subsystem_valid(struct e1000_hw *hw); |
| static int32_t e1000_check_downshift(struct e1000_hw *hw); |
| static int32_t e1000_check_polarity(struct e1000_hw *hw, e1000_rev_polarity *polarity); |
| static void e1000_clear_hw_cntrs(struct e1000_hw *hw); |
| static void e1000_clear_vfta(struct e1000_hw *hw); |
| static int32_t e1000_commit_shadow_ram(struct e1000_hw *hw); |
| static int32_t e1000_config_dsp_after_link_change(struct e1000_hw *hw, boolean_t link_up); |
| static int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw); |
| static int32_t e1000_detect_gig_phy(struct e1000_hw *hw); |
| static int32_t e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t bank); |
| static int32_t e1000_get_auto_rd_done(struct e1000_hw *hw); |
| static int32_t e1000_get_cable_length(struct e1000_hw *hw, uint16_t *min_length, uint16_t *max_length); |
| static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw); |
| static int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw); |
| static int32_t e1000_get_software_flag(struct e1000_hw *hw); |
| static int32_t e1000_ich8_cycle_init(struct e1000_hw *hw); |
| static int32_t e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout); |
| static int32_t e1000_id_led_init(struct e1000_hw *hw); |
| static int32_t e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, uint32_t cnf_base_addr, uint32_t cnf_size); |
| static int32_t e1000_init_lcd_from_nvm(struct e1000_hw *hw); |
| static void e1000_init_rx_addrs(struct e1000_hw *hw); |
| static void e1000_initialize_hardware_bits(struct e1000_hw *hw); |
| static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw); |
| static int32_t e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw); |
| static int32_t e1000_mng_enable_host_if(struct e1000_hw *hw); |
| static int32_t e1000_mng_host_if_write(struct e1000_hw *hw, uint8_t *buffer, uint16_t length, uint16_t offset, uint8_t *sum); |
| static int32_t e1000_mng_write_cmd_header(struct e1000_hw* hw, struct e1000_host_mng_command_header* hdr); |
| static int32_t e1000_mng_write_commit(struct e1000_hw *hw); |
| static int32_t e1000_phy_ife_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info); |
| static int32_t e1000_phy_igp_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info); |
| static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data); |
| static int32_t e1000_write_eeprom_eewr(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data); |
| static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd); |
| static int32_t e1000_phy_m88_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info); |
| static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw); |
| static int32_t e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t *data); |
| static int32_t e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte); |
| static int32_t e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte); |
| static int32_t e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data); |
| static int32_t e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size, uint16_t *data); |
| static int32_t e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size, uint16_t data); |
| static int32_t e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data); |
| static int32_t e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data); |
| static void e1000_release_software_flag(struct e1000_hw *hw); |
| static int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active); |
| static int32_t e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active); |
| static int32_t e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop); |
| static void e1000_set_pci_express_master_disable(struct e1000_hw *hw); |
| static int32_t e1000_wait_autoneg(struct e1000_hw *hw); |
| static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, uint32_t value); |
| static int32_t e1000_set_phy_type(struct e1000_hw *hw); |
| static void e1000_phy_init_script(struct e1000_hw *hw); |
| static int32_t e1000_setup_copper_link(struct e1000_hw *hw); |
| static int32_t e1000_setup_fiber_serdes_link(struct e1000_hw *hw); |
| static int32_t e1000_adjust_serdes_amplitude(struct e1000_hw *hw); |
| static int32_t e1000_phy_force_speed_duplex(struct e1000_hw *hw); |
| static int32_t e1000_config_mac_to_phy(struct e1000_hw *hw); |
| static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl); |
| static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl); |
| static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, |
| uint16_t count); |
| static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw); |
| static int32_t e1000_phy_reset_dsp(struct e1000_hw *hw); |
| static int32_t e1000_write_eeprom_spi(struct e1000_hw *hw, uint16_t offset, |
| uint16_t words, uint16_t *data); |
| static int32_t e1000_write_eeprom_microwire(struct e1000_hw *hw, |
| uint16_t offset, uint16_t words, |
| uint16_t *data); |
| static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw); |
| static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd); |
| static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd); |
| static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, |
| uint16_t count); |
| static int32_t e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr, |
| uint16_t phy_data); |
| static int32_t e1000_read_phy_reg_ex(struct e1000_hw *hw,uint32_t reg_addr, |
| uint16_t *phy_data); |
| static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count); |
| static int32_t e1000_acquire_eeprom(struct e1000_hw *hw); |
| static void e1000_release_eeprom(struct e1000_hw *hw); |
| static void e1000_standby_eeprom(struct e1000_hw *hw); |
| static int32_t e1000_set_vco_speed(struct e1000_hw *hw); |
| static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw); |
| static int32_t e1000_set_phy_mode(struct e1000_hw *hw); |
| static int32_t e1000_host_if_read_cookie(struct e1000_hw *hw, uint8_t *buffer); |
| static uint8_t e1000_calculate_mng_checksum(char *buffer, uint32_t length); |
| static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, |
| uint16_t duplex); |
| static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw); |
| |
| /* IGP cable length table */ |
| static const |
| uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = |
| { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
| 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, |
| 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, |
| 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, |
| 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, |
| 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, |
| 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, |
| 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120}; |
| |
| static const |
| uint16_t e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] = |
| { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, |
| 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, |
| 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, |
| 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, |
| 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, |
| 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, |
| 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, |
| 104, 109, 114, 118, 121, 124}; |
| |
| /****************************************************************************** |
| * Set the phy type member in the hw struct. |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| static int32_t |
| e1000_set_phy_type(struct e1000_hw *hw) |
| { |
| DEBUGFUNC("e1000_set_phy_type"); |
| |
| if (hw->mac_type == e1000_undefined) |
| return -E1000_ERR_PHY_TYPE; |
| |
| switch (hw->phy_id) { |
| case M88E1000_E_PHY_ID: |
| case M88E1000_I_PHY_ID: |
| case M88E1011_I_PHY_ID: |
| case M88E1111_I_PHY_ID: |
| hw->phy_type = e1000_phy_m88; |
| break; |
| case IGP01E1000_I_PHY_ID: |
| if (hw->mac_type == e1000_82541 || |
| hw->mac_type == e1000_82541_rev_2 || |
| hw->mac_type == e1000_82547 || |
| hw->mac_type == e1000_82547_rev_2) { |
| hw->phy_type = e1000_phy_igp; |
| break; |
| } |
| case IGP03E1000_E_PHY_ID: |
| hw->phy_type = e1000_phy_igp_3; |
| break; |
| case IFE_E_PHY_ID: |
| case IFE_PLUS_E_PHY_ID: |
| case IFE_C_E_PHY_ID: |
| hw->phy_type = e1000_phy_ife; |
| break; |
| case GG82563_E_PHY_ID: |
| if (hw->mac_type == e1000_80003es2lan) { |
| hw->phy_type = e1000_phy_gg82563; |
| break; |
| } |
| /* Fall Through */ |
| default: |
| /* Should never have loaded on this device */ |
| hw->phy_type = e1000_phy_undefined; |
| return -E1000_ERR_PHY_TYPE; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * IGP phy init script - initializes the GbE PHY |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| static void |
| e1000_phy_init_script(struct e1000_hw *hw) |
| { |
| uint32_t ret_val; |
| uint16_t phy_saved_data; |
| |
| DEBUGFUNC("e1000_phy_init_script"); |
| |
| if (hw->phy_init_script) { |
| msleep(20); |
| |
| /* Save off the current value of register 0x2F5B to be restored at |
| * the end of this routine. */ |
| ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); |
| |
| /* Disabled the PHY transmitter */ |
| e1000_write_phy_reg(hw, 0x2F5B, 0x0003); |
| |
| msleep(20); |
| |
| e1000_write_phy_reg(hw,0x0000,0x0140); |
| |
| msleep(5); |
| |
| switch (hw->mac_type) { |
| case e1000_82541: |
| case e1000_82547: |
| e1000_write_phy_reg(hw, 0x1F95, 0x0001); |
| |
| e1000_write_phy_reg(hw, 0x1F71, 0xBD21); |
| |
| e1000_write_phy_reg(hw, 0x1F79, 0x0018); |
| |
| e1000_write_phy_reg(hw, 0x1F30, 0x1600); |
| |
| e1000_write_phy_reg(hw, 0x1F31, 0x0014); |
| |
| e1000_write_phy_reg(hw, 0x1F32, 0x161C); |
| |
| e1000_write_phy_reg(hw, 0x1F94, 0x0003); |
| |
| e1000_write_phy_reg(hw, 0x1F96, 0x003F); |
| |
| e1000_write_phy_reg(hw, 0x2010, 0x0008); |
| break; |
| |
| case e1000_82541_rev_2: |
| case e1000_82547_rev_2: |
| e1000_write_phy_reg(hw, 0x1F73, 0x0099); |
| break; |
| default: |
| break; |
| } |
| |
| e1000_write_phy_reg(hw, 0x0000, 0x3300); |
| |
| msleep(20); |
| |
| /* Now enable the transmitter */ |
| e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); |
| |
| if (hw->mac_type == e1000_82547) { |
| uint16_t fused, fine, coarse; |
| |
| /* Move to analog registers page */ |
| e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused); |
| |
| if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { |
| e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused); |
| |
| fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; |
| coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; |
| |
| if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { |
| coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10; |
| fine -= IGP01E1000_ANALOG_FUSE_FINE_1; |
| } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) |
| fine -= IGP01E1000_ANALOG_FUSE_FINE_10; |
| |
| fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | |
| (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | |
| (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK); |
| |
| e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused); |
| e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS, |
| IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); |
| } |
| } |
| } |
| } |
| |
| /****************************************************************************** |
| * Set the mac type member in the hw struct. |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| int32_t |
| e1000_set_mac_type(struct e1000_hw *hw) |
| { |
| DEBUGFUNC("e1000_set_mac_type"); |
| |
| switch (hw->device_id) { |
| case E1000_DEV_ID_82542: |
| switch (hw->revision_id) { |
| case E1000_82542_2_0_REV_ID: |
| hw->mac_type = e1000_82542_rev2_0; |
| break; |
| case E1000_82542_2_1_REV_ID: |
| hw->mac_type = e1000_82542_rev2_1; |
| break; |
| default: |
| /* Invalid 82542 revision ID */ |
| return -E1000_ERR_MAC_TYPE; |
| } |
| break; |
| case E1000_DEV_ID_82543GC_FIBER: |
| case E1000_DEV_ID_82543GC_COPPER: |
| hw->mac_type = e1000_82543; |
| break; |
| case E1000_DEV_ID_82544EI_COPPER: |
| case E1000_DEV_ID_82544EI_FIBER: |
| case E1000_DEV_ID_82544GC_COPPER: |
| case E1000_DEV_ID_82544GC_LOM: |
| hw->mac_type = e1000_82544; |
| break; |
| case E1000_DEV_ID_82540EM: |
| case E1000_DEV_ID_82540EM_LOM: |
| case E1000_DEV_ID_82540EP: |
| case E1000_DEV_ID_82540EP_LOM: |
| case E1000_DEV_ID_82540EP_LP: |
| hw->mac_type = e1000_82540; |
| break; |
| case E1000_DEV_ID_82545EM_COPPER: |
| case E1000_DEV_ID_82545EM_FIBER: |
| hw->mac_type = e1000_82545; |
| break; |
| case E1000_DEV_ID_82545GM_COPPER: |
| case E1000_DEV_ID_82545GM_FIBER: |
| case E1000_DEV_ID_82545GM_SERDES: |
| hw->mac_type = e1000_82545_rev_3; |
| break; |
| case E1000_DEV_ID_82546EB_COPPER: |
| case E1000_DEV_ID_82546EB_FIBER: |
| case E1000_DEV_ID_82546EB_QUAD_COPPER: |
| hw->mac_type = e1000_82546; |
| break; |
| case E1000_DEV_ID_82546GB_COPPER: |
| case E1000_DEV_ID_82546GB_FIBER: |
| case E1000_DEV_ID_82546GB_SERDES: |
| case E1000_DEV_ID_82546GB_PCIE: |
| case E1000_DEV_ID_82546GB_QUAD_COPPER: |
| case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: |
| hw->mac_type = e1000_82546_rev_3; |
| break; |
| case E1000_DEV_ID_82541EI: |
| case E1000_DEV_ID_82541EI_MOBILE: |
| case E1000_DEV_ID_82541ER_LOM: |
| hw->mac_type = e1000_82541; |
| break; |
| case E1000_DEV_ID_82541ER: |
| case E1000_DEV_ID_82541GI: |
| case E1000_DEV_ID_82541GI_LF: |
| case E1000_DEV_ID_82541GI_MOBILE: |
| hw->mac_type = e1000_82541_rev_2; |
| break; |
| case E1000_DEV_ID_82547EI: |
| case E1000_DEV_ID_82547EI_MOBILE: |
| hw->mac_type = e1000_82547; |
| break; |
| case E1000_DEV_ID_82547GI: |
| hw->mac_type = e1000_82547_rev_2; |
| break; |
| case E1000_DEV_ID_82571EB_COPPER: |
| case E1000_DEV_ID_82571EB_FIBER: |
| case E1000_DEV_ID_82571EB_SERDES: |
| case E1000_DEV_ID_82571EB_SERDES_DUAL: |
| case E1000_DEV_ID_82571EB_SERDES_QUAD: |
| case E1000_DEV_ID_82571EB_QUAD_COPPER: |
| case E1000_DEV_ID_82571PT_QUAD_COPPER: |
| case E1000_DEV_ID_82571EB_QUAD_FIBER: |
| case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE: |
| hw->mac_type = e1000_82571; |
| break; |
| case E1000_DEV_ID_82572EI_COPPER: |
| case E1000_DEV_ID_82572EI_FIBER: |
| case E1000_DEV_ID_82572EI_SERDES: |
| case E1000_DEV_ID_82572EI: |
| hw->mac_type = e1000_82572; |
| break; |
| case E1000_DEV_ID_82573E: |
| case E1000_DEV_ID_82573E_IAMT: |
| case E1000_DEV_ID_82573L: |
| hw->mac_type = e1000_82573; |
| break; |
| case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: |
| case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: |
| case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: |
| case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: |
| hw->mac_type = e1000_80003es2lan; |
| break; |
| case E1000_DEV_ID_ICH8_IGP_M_AMT: |
| case E1000_DEV_ID_ICH8_IGP_AMT: |
| case E1000_DEV_ID_ICH8_IGP_C: |
| case E1000_DEV_ID_ICH8_IFE: |
| case E1000_DEV_ID_ICH8_IFE_GT: |
| case E1000_DEV_ID_ICH8_IFE_G: |
| case E1000_DEV_ID_ICH8_IGP_M: |
| hw->mac_type = e1000_ich8lan; |
| break; |
| default: |
| /* Should never have loaded on this device */ |
| return -E1000_ERR_MAC_TYPE; |
| } |
| |
| switch (hw->mac_type) { |
| case e1000_ich8lan: |
| hw->swfwhw_semaphore_present = TRUE; |
| hw->asf_firmware_present = TRUE; |
| break; |
| case e1000_80003es2lan: |
| hw->swfw_sync_present = TRUE; |
| /* fall through */ |
| case e1000_82571: |
| case e1000_82572: |
| case e1000_82573: |
| hw->eeprom_semaphore_present = TRUE; |
| /* fall through */ |
| case e1000_82541: |
| case e1000_82547: |
| case e1000_82541_rev_2: |
| case e1000_82547_rev_2: |
| hw->asf_firmware_present = TRUE; |
| break; |
| default: |
| break; |
| } |
| |
| /* The 82543 chip does not count tx_carrier_errors properly in |
| * FD mode |
| */ |
| if (hw->mac_type == e1000_82543) |
| hw->bad_tx_carr_stats_fd = TRUE; |
| |
| /* capable of receiving management packets to the host */ |
| if (hw->mac_type >= e1000_82571) |
| hw->has_manc2h = TRUE; |
| |
| /* In rare occasions, ESB2 systems would end up started without |
| * the RX unit being turned on. |
| */ |
| if (hw->mac_type == e1000_80003es2lan) |
| hw->rx_needs_kicking = TRUE; |
| |
| if (hw->mac_type > e1000_82544) |
| hw->has_smbus = TRUE; |
| |
| return E1000_SUCCESS; |
| } |
| |
| /***************************************************************************** |
| * Set media type and TBI compatibility. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * **************************************************************************/ |
| void |
| e1000_set_media_type(struct e1000_hw *hw) |
| { |
| uint32_t status; |
| |
| DEBUGFUNC("e1000_set_media_type"); |
| |
| if (hw->mac_type != e1000_82543) { |
| /* tbi_compatibility is only valid on 82543 */ |
| hw->tbi_compatibility_en = FALSE; |
| } |
| |
| switch (hw->device_id) { |
| case E1000_DEV_ID_82545GM_SERDES: |
| case E1000_DEV_ID_82546GB_SERDES: |
| case E1000_DEV_ID_82571EB_SERDES: |
| case E1000_DEV_ID_82571EB_SERDES_DUAL: |
| case E1000_DEV_ID_82571EB_SERDES_QUAD: |
| case E1000_DEV_ID_82572EI_SERDES: |
| case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: |
| hw->media_type = e1000_media_type_internal_serdes; |
| break; |
| default: |
| switch (hw->mac_type) { |
| case e1000_82542_rev2_0: |
| case e1000_82542_rev2_1: |
| hw->media_type = e1000_media_type_fiber; |
| break; |
| case e1000_ich8lan: |
| case e1000_82573: |
| /* The STATUS_TBIMODE bit is reserved or reused for the this |
| * device. |
| */ |
| hw->media_type = e1000_media_type_copper; |
| break; |
| default: |
| status = E1000_READ_REG(hw, STATUS); |
| if (status & E1000_STATUS_TBIMODE) { |
| hw->media_type = e1000_media_type_fiber; |
| /* tbi_compatibility not valid on fiber */ |
| hw->tbi_compatibility_en = FALSE; |
| } else { |
| hw->media_type = e1000_media_type_copper; |
| } |
| break; |
| } |
| } |
| } |
| |
| /****************************************************************************** |
| * Reset the transmit and receive units; mask and clear all interrupts. |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| int32_t |
| e1000_reset_hw(struct e1000_hw *hw) |
| { |
| uint32_t ctrl; |
| uint32_t ctrl_ext; |
| uint32_t icr; |
| uint32_t manc; |
| uint32_t led_ctrl; |
| uint32_t timeout; |
| uint32_t extcnf_ctrl; |
| int32_t ret_val; |
| |
| DEBUGFUNC("e1000_reset_hw"); |
| |
| /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ |
| if (hw->mac_type == e1000_82542_rev2_0) { |
| DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); |
| e1000_pci_clear_mwi(hw); |
| } |
| |
| if (hw->bus_type == e1000_bus_type_pci_express) { |
| /* Prevent the PCI-E bus from sticking if there is no TLP connection |
| * on the last TLP read/write transaction when MAC is reset. |
| */ |
| if (e1000_disable_pciex_master(hw) != E1000_SUCCESS) { |
| DEBUGOUT("PCI-E Master disable polling has failed.\n"); |
| } |
| } |
| |
| /* Clear interrupt mask to stop board from generating interrupts */ |
| DEBUGOUT("Masking off all interrupts\n"); |
| E1000_WRITE_REG(hw, IMC, 0xffffffff); |
| |
| /* Disable the Transmit and Receive units. Then delay to allow |
| * any pending transactions to complete before we hit the MAC with |
| * the global reset. |
| */ |
| E1000_WRITE_REG(hw, RCTL, 0); |
| E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP); |
| E1000_WRITE_FLUSH(hw); |
| |
| /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ |
| hw->tbi_compatibility_on = FALSE; |
| |
| /* Delay to allow any outstanding PCI transactions to complete before |
| * resetting the device |
| */ |
| msleep(10); |
| |
| ctrl = E1000_READ_REG(hw, CTRL); |
| |
| /* Must reset the PHY before resetting the MAC */ |
| if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
| E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST)); |
| msleep(5); |
| } |
| |
| /* Must acquire the MDIO ownership before MAC reset. |
| * Ownership defaults to firmware after a reset. */ |
| if (hw->mac_type == e1000_82573) { |
| timeout = 10; |
| |
| extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); |
| extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; |
| |
| do { |
| E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); |
| extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); |
| |
| if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) |
| break; |
| else |
| extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; |
| |
| msleep(2); |
| timeout--; |
| } while (timeout); |
| } |
| |
| /* Workaround for ICH8 bit corruption issue in FIFO memory */ |
| if (hw->mac_type == e1000_ich8lan) { |
| /* Set Tx and Rx buffer allocation to 8k apiece. */ |
| E1000_WRITE_REG(hw, PBA, E1000_PBA_8K); |
| /* Set Packet Buffer Size to 16k. */ |
| E1000_WRITE_REG(hw, PBS, E1000_PBS_16K); |
| } |
| |
| /* Issue a global reset to the MAC. This will reset the chip's |
| * transmit, receive, DMA, and link units. It will not effect |
| * the current PCI configuration. The global reset bit is self- |
| * clearing, and should clear within a microsecond. |
| */ |
| DEBUGOUT("Issuing a global reset to MAC\n"); |
| |
| switch (hw->mac_type) { |
| case e1000_82544: |
| case e1000_82540: |
| case e1000_82545: |
| case e1000_82546: |
| case e1000_82541: |
| case e1000_82541_rev_2: |
| /* These controllers can't ack the 64-bit write when issuing the |
| * reset, so use IO-mapping as a workaround to issue the reset */ |
| E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); |
| break; |
| case e1000_82545_rev_3: |
| case e1000_82546_rev_3: |
| /* Reset is performed on a shadow of the control register */ |
| E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST)); |
| break; |
| case e1000_ich8lan: |
| if (!hw->phy_reset_disable && |
| e1000_check_phy_reset_block(hw) == E1000_SUCCESS) { |
| /* e1000_ich8lan PHY HW reset requires MAC CORE reset |
| * at the same time to make sure the interface between |
| * MAC and the external PHY is reset. |
| */ |
| ctrl |= E1000_CTRL_PHY_RST; |
| } |
| |
| e1000_get_software_flag(hw); |
| E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); |
| msleep(5); |
| break; |
| default: |
| E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); |
| break; |
| } |
| |
| /* After MAC reset, force reload of EEPROM to restore power-on settings to |
| * device. Later controllers reload the EEPROM automatically, so just wait |
| * for reload to complete. |
| */ |
| switch (hw->mac_type) { |
| case e1000_82542_rev2_0: |
| case e1000_82542_rev2_1: |
| case e1000_82543: |
| case e1000_82544: |
| /* Wait for reset to complete */ |
| udelay(10); |
| ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| ctrl_ext |= E1000_CTRL_EXT_EE_RST; |
| E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| E1000_WRITE_FLUSH(hw); |
| /* Wait for EEPROM reload */ |
| msleep(2); |
| break; |
| case e1000_82541: |
| case e1000_82541_rev_2: |
| case e1000_82547: |
| case e1000_82547_rev_2: |
| /* Wait for EEPROM reload */ |
| msleep(20); |
| break; |
| case e1000_82573: |
| if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) { |
| udelay(10); |
| ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| ctrl_ext |= E1000_CTRL_EXT_EE_RST; |
| E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| E1000_WRITE_FLUSH(hw); |
| } |
| /* fall through */ |
| default: |
| /* Auto read done will delay 5ms or poll based on mac type */ |
| ret_val = e1000_get_auto_rd_done(hw); |
| if (ret_val) |
| return ret_val; |
| break; |
| } |
| |
| /* Disable HW ARPs on ASF enabled adapters */ |
| if (hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) { |
| manc = E1000_READ_REG(hw, MANC); |
| manc &= ~(E1000_MANC_ARP_EN); |
| E1000_WRITE_REG(hw, MANC, manc); |
| } |
| |
| if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
| e1000_phy_init_script(hw); |
| |
| /* Configure activity LED after PHY reset */ |
| led_ctrl = E1000_READ_REG(hw, LEDCTL); |
| led_ctrl &= IGP_ACTIVITY_LED_MASK; |
| led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
| E1000_WRITE_REG(hw, LEDCTL, led_ctrl); |
| } |
| |
| /* Clear interrupt mask to stop board from generating interrupts */ |
| DEBUGOUT("Masking off all interrupts\n"); |
| E1000_WRITE_REG(hw, IMC, 0xffffffff); |
| |
| /* Clear any pending interrupt events. */ |
| icr = E1000_READ_REG(hw, ICR); |
| |
| /* If MWI was previously enabled, reenable it. */ |
| if (hw->mac_type == e1000_82542_rev2_0) { |
| if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) |
| e1000_pci_set_mwi(hw); |
| } |
| |
| if (hw->mac_type == e1000_ich8lan) { |
| uint32_t kab = E1000_READ_REG(hw, KABGTXD); |
| kab |= E1000_KABGTXD_BGSQLBIAS; |
| E1000_WRITE_REG(hw, KABGTXD, kab); |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * |
| * Initialize a number of hardware-dependent bits |
| * |
| * hw: Struct containing variables accessed by shared code |
| * |
| * This function contains hardware limitation workarounds for PCI-E adapters |
| * |
| *****************************************************************************/ |
| static void |
| e1000_initialize_hardware_bits(struct e1000_hw *hw) |
| { |
| if ((hw->mac_type >= e1000_82571) && (!hw->initialize_hw_bits_disable)) { |
| /* Settings common to all PCI-express silicon */ |
| uint32_t reg_ctrl, reg_ctrl_ext; |
| uint32_t reg_tarc0, reg_tarc1; |
| uint32_t reg_tctl; |
| uint32_t reg_txdctl, reg_txdctl1; |
| |
| /* link autonegotiation/sync workarounds */ |
| reg_tarc0 = E1000_READ_REG(hw, TARC0); |
| reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27)); |
| |
| /* Enable not-done TX descriptor counting */ |
| reg_txdctl = E1000_READ_REG(hw, TXDCTL); |
| reg_txdctl |= E1000_TXDCTL_COUNT_DESC; |
| E1000_WRITE_REG(hw, TXDCTL, reg_txdctl); |
| reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1); |
| reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC; |
| E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1); |
| |
| switch (hw->mac_type) { |
| case e1000_82571: |
| case e1000_82572: |
| /* Clear PHY TX compatible mode bits */ |
| reg_tarc1 = E1000_READ_REG(hw, TARC1); |
| reg_tarc1 &= ~((1 << 30)|(1 << 29)); |
| |
| /* link autonegotiation/sync workarounds */ |
| reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23)); |
| |
| /* TX ring control fixes */ |
| reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24)); |
| |
| /* Multiple read bit is reversed polarity */ |
| reg_tctl = E1000_READ_REG(hw, TCTL); |
| if (reg_tctl & E1000_TCTL_MULR) |
| reg_tarc1 &= ~(1 << 28); |
| else |
| reg_tarc1 |= (1 << 28); |
| |
| E1000_WRITE_REG(hw, TARC1, reg_tarc1); |
| break; |
| case e1000_82573: |
| reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| reg_ctrl_ext &= ~(1 << 23); |
| reg_ctrl_ext |= (1 << 22); |
| |
| /* TX byte count fix */ |
| reg_ctrl = E1000_READ_REG(hw, CTRL); |
| reg_ctrl &= ~(1 << 29); |
| |
| E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext); |
| E1000_WRITE_REG(hw, CTRL, reg_ctrl); |
| break; |
| case e1000_80003es2lan: |
| /* improve small packet performace for fiber/serdes */ |
| if ((hw->media_type == e1000_media_type_fiber) || |
| (hw->media_type == e1000_media_type_internal_serdes)) { |
| reg_tarc0 &= ~(1 << 20); |
| } |
| |
| /* Multiple read bit is reversed polarity */ |
| reg_tctl = E1000_READ_REG(hw, TCTL); |
| reg_tarc1 = E1000_READ_REG(hw, TARC1); |
| if (reg_tctl & E1000_TCTL_MULR) |
| reg_tarc1 &= ~(1 << 28); |
| else |
| reg_tarc1 |= (1 << 28); |
| |
| E1000_WRITE_REG(hw, TARC1, reg_tarc1); |
| break; |
| case e1000_ich8lan: |
| /* Reduce concurrent DMA requests to 3 from 4 */ |
| if ((hw->revision_id < 3) || |
| ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) && |
| (hw->device_id != E1000_DEV_ID_ICH8_IGP_M))) |
| reg_tarc0 |= ((1 << 29)|(1 << 28)); |
| |
| reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| reg_ctrl_ext |= (1 << 22); |
| E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext); |
| |
| /* workaround TX hang with TSO=on */ |
| reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23)); |
| |
| /* Multiple read bit is reversed polarity */ |
| reg_tctl = E1000_READ_REG(hw, TCTL); |
| reg_tarc1 = E1000_READ_REG(hw, TARC1); |
| if (reg_tctl & E1000_TCTL_MULR) |
| reg_tarc1 &= ~(1 << 28); |
| else |
| reg_tarc1 |= (1 << 28); |
| |
| /* workaround TX hang with TSO=on */ |
| reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24)); |
| |
| E1000_WRITE_REG(hw, TARC1, reg_tarc1); |
| break; |
| default: |
| break; |
| } |
| |
| E1000_WRITE_REG(hw, TARC0, reg_tarc0); |
| } |
| } |
| |
| /****************************************************************************** |
| * Performs basic configuration of the adapter. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Assumes that the controller has previously been reset and is in a |
| * post-reset uninitialized state. Initializes the receive address registers, |
| * multicast table, and VLAN filter table. Calls routines to setup link |
| * configuration and flow control settings. Clears all on-chip counters. Leaves |
| * the transmit and receive units disabled and uninitialized. |
| *****************************************************************************/ |
| int32_t |
| e1000_init_hw(struct e1000_hw *hw) |
| { |
| uint32_t ctrl; |
| uint32_t i; |
| int32_t ret_val; |
| uint16_t pcix_cmd_word; |
| uint16_t pcix_stat_hi_word; |
| uint16_t cmd_mmrbc; |
| uint16_t stat_mmrbc; |
| uint32_t mta_size; |
| uint32_t reg_data; |
| uint32_t ctrl_ext; |
| |
| DEBUGFUNC("e1000_init_hw"); |
| |
| /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */ |
| if ((hw->mac_type == e1000_ich8lan) && |
| ((hw->revision_id < 3) || |
| ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) && |
| (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) { |
| reg_data = E1000_READ_REG(hw, STATUS); |
| reg_data &= ~0x80000000; |
| E1000_WRITE_REG(hw, STATUS, reg_data); |
| } |
| |
| /* Initialize Identification LED */ |
| ret_val = e1000_id_led_init(hw); |
| if (ret_val) { |
| DEBUGOUT("Error Initializing Identification LED\n"); |
| return ret_val; |
| } |
| |
| /* Set the media type and TBI compatibility */ |
| e1000_set_media_type(hw); |
| |
| /* Must be called after e1000_set_media_type because media_type is used */ |
| e1000_initialize_hardware_bits(hw); |
| |
| /* Disabling VLAN filtering. */ |
| DEBUGOUT("Initializing the IEEE VLAN\n"); |
| /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */ |
| if (hw->mac_type != e1000_ich8lan) { |
| if (hw->mac_type < e1000_82545_rev_3) |
| E1000_WRITE_REG(hw, VET, 0); |
| e1000_clear_vfta(hw); |
| } |
| |
| /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ |
| if (hw->mac_type == e1000_82542_rev2_0) { |
| DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); |
| e1000_pci_clear_mwi(hw); |
| E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); |
| E1000_WRITE_FLUSH(hw); |
| msleep(5); |
| } |
| |
| /* Setup the receive address. This involves initializing all of the Receive |
| * Address Registers (RARs 0 - 15). |
| */ |
| e1000_init_rx_addrs(hw); |
| |
| /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ |
| if (hw->mac_type == e1000_82542_rev2_0) { |
| E1000_WRITE_REG(hw, RCTL, 0); |
| E1000_WRITE_FLUSH(hw); |
| msleep(1); |
| if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) |
| e1000_pci_set_mwi(hw); |
| } |
| |
| /* Zero out the Multicast HASH table */ |
| DEBUGOUT("Zeroing the MTA\n"); |
| mta_size = E1000_MC_TBL_SIZE; |
| if (hw->mac_type == e1000_ich8lan) |
| mta_size = E1000_MC_TBL_SIZE_ICH8LAN; |
| for (i = 0; i < mta_size; i++) { |
| E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
| /* use write flush to prevent Memory Write Block (MWB) from |
| * occuring when accessing our register space */ |
| E1000_WRITE_FLUSH(hw); |
| } |
| |
| /* Set the PCI priority bit correctly in the CTRL register. This |
| * determines if the adapter gives priority to receives, or if it |
| * gives equal priority to transmits and receives. Valid only on |
| * 82542 and 82543 silicon. |
| */ |
| if (hw->dma_fairness && hw->mac_type <= e1000_82543) { |
| ctrl = E1000_READ_REG(hw, CTRL); |
| E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); |
| } |
| |
| switch (hw->mac_type) { |
| case e1000_82545_rev_3: |
| case e1000_82546_rev_3: |
| break; |
| default: |
| /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ |
| if (hw->bus_type == e1000_bus_type_pcix) { |
| e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word); |
| e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, |
| &pcix_stat_hi_word); |
| cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >> |
| PCIX_COMMAND_MMRBC_SHIFT; |
| stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> |
| PCIX_STATUS_HI_MMRBC_SHIFT; |
| if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) |
| stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; |
| if (cmd_mmrbc > stat_mmrbc) { |
| pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK; |
| pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; |
| e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, |
| &pcix_cmd_word); |
| } |
| } |
| break; |
| } |
| |
| /* More time needed for PHY to initialize */ |
| if (hw->mac_type == e1000_ich8lan) |
| msleep(15); |
| |
| /* Call a subroutine to configure the link and setup flow control. */ |
| ret_val = e1000_setup_link(hw); |
| |
| /* Set the transmit descriptor write-back policy */ |
| if (hw->mac_type > e1000_82544) { |
| ctrl = E1000_READ_REG(hw, TXDCTL); |
| ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; |
| E1000_WRITE_REG(hw, TXDCTL, ctrl); |
| } |
| |
| if (hw->mac_type == e1000_82573) { |
| e1000_enable_tx_pkt_filtering(hw); |
| } |
| |
| switch (hw->mac_type) { |
| default: |
| break; |
| case e1000_80003es2lan: |
| /* Enable retransmit on late collisions */ |
| reg_data = E1000_READ_REG(hw, TCTL); |
| reg_data |= E1000_TCTL_RTLC; |
| E1000_WRITE_REG(hw, TCTL, reg_data); |
| |
| /* Configure Gigabit Carry Extend Padding */ |
| reg_data = E1000_READ_REG(hw, TCTL_EXT); |
| reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; |
| reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX; |
| E1000_WRITE_REG(hw, TCTL_EXT, reg_data); |
| |
| /* Configure Transmit Inter-Packet Gap */ |
| reg_data = E1000_READ_REG(hw, TIPG); |
| reg_data &= ~E1000_TIPG_IPGT_MASK; |
| reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; |
| E1000_WRITE_REG(hw, TIPG, reg_data); |
| |
| reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001); |
| reg_data &= ~0x00100000; |
| E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data); |
| /* Fall through */ |
| case e1000_82571: |
| case e1000_82572: |
| case e1000_ich8lan: |
| ctrl = E1000_READ_REG(hw, TXDCTL1); |
| ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; |
| E1000_WRITE_REG(hw, TXDCTL1, ctrl); |
| break; |
| } |
| |
| |
| if (hw->mac_type == e1000_82573) { |
| uint32_t gcr = E1000_READ_REG(hw, GCR); |
| gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; |
| E1000_WRITE_REG(hw, GCR, gcr); |
| } |
| |
| /* Clear all of the statistics registers (clear on read). It is |
| * important that we do this after we have tried to establish link |
| * because the symbol error count will increment wildly if there |
| * is no link. |
| */ |
| e1000_clear_hw_cntrs(hw); |
| |
| /* ICH8 No-snoop bits are opposite polarity. |
| * Set to snoop by default after reset. */ |
| if (hw->mac_type == e1000_ich8lan) |
| e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL); |
| |
| if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || |
| hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { |
| ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| /* Relaxed ordering must be disabled to avoid a parity |
| * error crash in a PCI slot. */ |
| ctrl_ext |= E1000_CTRL_EXT_RO_DIS; |
| E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| } |
| |
| return ret_val; |
| } |
| |
| /****************************************************************************** |
| * Adjust SERDES output amplitude based on EEPROM setting. |
| * |
| * hw - Struct containing variables accessed by shared code. |
| *****************************************************************************/ |
| static int32_t |
| e1000_adjust_serdes_amplitude(struct e1000_hw *hw) |
| { |
| uint16_t eeprom_data; |
| int32_t ret_val; |
| |
| DEBUGFUNC("e1000_adjust_serdes_amplitude"); |
| |
| if (hw->media_type != e1000_media_type_internal_serdes) |
| return E1000_SUCCESS; |
| |
| switch (hw->mac_type) { |
| case e1000_82545_rev_3: |
| case e1000_82546_rev_3: |
| break; |
| default: |
| return E1000_SUCCESS; |
| } |
| |
| ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data); |
| if (ret_val) { |
| return ret_val; |
| } |
| |
| if (eeprom_data != EEPROM_RESERVED_WORD) { |
| /* Adjust SERDES output amplitude only. */ |
| eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Configures flow control and link settings. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Determines which flow control settings to use. Calls the apropriate media- |
| * specific link configuration function. Configures the flow control settings. |
| * Assuming the adapter has a valid link partner, a valid link should be |
| * established. Assumes the hardware has previously been reset and the |
| * transmitter and receiver are not enabled. |
| *****************************************************************************/ |
| int32_t |
| e1000_setup_link(struct e1000_hw *hw) |
| { |
| uint32_t ctrl_ext; |
| int32_t ret_val; |
| uint16_t eeprom_data; |
| |
| DEBUGFUNC("e1000_setup_link"); |
| |
| /* In the case of the phy reset being blocked, we already have a link. |
| * We do not have to set it up again. */ |
| if (e1000_check_phy_reset_block(hw)) |
| return E1000_SUCCESS; |
| |
| /* Read and store word 0x0F of the EEPROM. This word contains bits |
| * that determine the hardware's default PAUSE (flow control) mode, |
| * a bit that determines whether the HW defaults to enabling or |
| * disabling auto-negotiation, and the direction of the |
| * SW defined pins. If there is no SW over-ride of the flow |
| * control setting, then the variable hw->fc will |
| * be initialized based on a value in the EEPROM. |
| */ |
| if (hw->fc == E1000_FC_DEFAULT) { |
| switch (hw->mac_type) { |
| case e1000_ich8lan: |
| case e1000_82573: |
| hw->fc = E1000_FC_FULL; |
| break; |
| default: |
| ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, |
| 1, &eeprom_data); |
| if (ret_val) { |
| DEBUGOUT("EEPROM Read Error\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) |
| hw->fc = E1000_FC_NONE; |
| else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == |
| EEPROM_WORD0F_ASM_DIR) |
| hw->fc = E1000_FC_TX_PAUSE; |
| else |
| hw->fc = E1000_FC_FULL; |
| break; |
| } |
| } |
| |
| /* We want to save off the original Flow Control configuration just |
| * in case we get disconnected and then reconnected into a different |
| * hub or switch with different Flow Control capabilities. |
| */ |
| if (hw->mac_type == e1000_82542_rev2_0) |
| hw->fc &= (~E1000_FC_TX_PAUSE); |
| |
| if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) |
| hw->fc &= (~E1000_FC_RX_PAUSE); |
| |
| hw->original_fc = hw->fc; |
| |
| DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc); |
| |
| /* Take the 4 bits from EEPROM word 0x0F that determine the initial |
| * polarity value for the SW controlled pins, and setup the |
| * Extended Device Control reg with that info. |
| * This is needed because one of the SW controlled pins is used for |
| * signal detection. So this should be done before e1000_setup_pcs_link() |
| * or e1000_phy_setup() is called. |
| */ |
| if (hw->mac_type == e1000_82543) { |
| ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, |
| 1, &eeprom_data); |
| if (ret_val) { |
| DEBUGOUT("EEPROM Read Error\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << |
| SWDPIO__EXT_SHIFT); |
| E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| } |
| |
| /* Call the necessary subroutine to configure the link. */ |
| ret_val = (hw->media_type == e1000_media_type_copper) ? |
| e1000_setup_copper_link(hw) : |
| e1000_setup_fiber_serdes_link(hw); |
| |
| /* Initialize the flow control address, type, and PAUSE timer |
| * registers to their default values. This is done even if flow |
| * control is disabled, because it does not hurt anything to |
| * initialize these registers. |
| */ |
| DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); |
| |
| /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */ |
| if (hw->mac_type != e1000_ich8lan) { |
| E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); |
| E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); |
| E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); |
| } |
| |
| E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); |
| |
| /* Set the flow control receive threshold registers. Normally, |
| * these registers will be set to a default threshold that may be |
| * adjusted later by the driver's runtime code. However, if the |
| * ability to transmit pause frames in not enabled, then these |
| * registers will be set to 0. |
| */ |
| if (!(hw->fc & E1000_FC_TX_PAUSE)) { |
| E1000_WRITE_REG(hw, FCRTL, 0); |
| E1000_WRITE_REG(hw, FCRTH, 0); |
| } else { |
| /* We need to set up the Receive Threshold high and low water marks |
| * as well as (optionally) enabling the transmission of XON frames. |
| */ |
| if (hw->fc_send_xon) { |
| E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); |
| E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); |
| } else { |
| E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water); |
| E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); |
| } |
| } |
| return ret_val; |
| } |
| |
| /****************************************************************************** |
| * Sets up link for a fiber based or serdes based adapter |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Manipulates Physical Coding Sublayer functions in order to configure |
| * link. Assumes the hardware has been previously reset and the transmitter |
| * and receiver are not enabled. |
| *****************************************************************************/ |
| static int32_t |
| e1000_setup_fiber_serdes_link(struct e1000_hw *hw) |
| { |
| uint32_t ctrl; |
| uint32_t status; |
| uint32_t txcw = 0; |
| uint32_t i; |
| uint32_t signal = 0; |
| int32_t ret_val; |
| |
| DEBUGFUNC("e1000_setup_fiber_serdes_link"); |
| |
| /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists |
| * until explicitly turned off or a power cycle is performed. A read to |
| * the register does not indicate its status. Therefore, we ensure |
| * loopback mode is disabled during initialization. |
| */ |
| if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) |
| E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK); |
| |
| /* On adapters with a MAC newer than 82544, SWDP 1 will be |
| * set when the optics detect a signal. On older adapters, it will be |
| * cleared when there is a signal. This applies to fiber media only. |
| * If we're on serdes media, adjust the output amplitude to value |
| * set in the EEPROM. |
| */ |
| ctrl = E1000_READ_REG(hw, CTRL); |
| if (hw->media_type == e1000_media_type_fiber) |
| signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; |
| |
| ret_val = e1000_adjust_serdes_amplitude(hw); |
| if (ret_val) |
| return ret_val; |
| |
| /* Take the link out of reset */ |
| ctrl &= ~(E1000_CTRL_LRST); |
| |
| /* Adjust VCO speed to improve BER performance */ |
| ret_val = e1000_set_vco_speed(hw); |
| if (ret_val) |
| return ret_val; |
| |
| e1000_config_collision_dist(hw); |
| |
| /* Check for a software override of the flow control settings, and setup |
| * the device accordingly. If auto-negotiation is enabled, then software |
| * will have to set the "PAUSE" bits to the correct value in the Tranmsit |
| * Config Word Register (TXCW) and re-start auto-negotiation. However, if |
| * auto-negotiation is disabled, then software will have to manually |
| * configure the two flow control enable bits in the CTRL register. |
| * |
| * The possible values of the "fc" parameter are: |
| * 0: Flow control is completely disabled |
| * 1: Rx flow control is enabled (we can receive pause frames, but |
| * not send pause frames). |
| * 2: Tx flow control is enabled (we can send pause frames but we do |
| * not support receiving pause frames). |
| * 3: Both Rx and TX flow control (symmetric) are enabled. |
| */ |
| switch (hw->fc) { |
| case E1000_FC_NONE: |
| /* Flow control is completely disabled by a software over-ride. */ |
| txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); |
| break; |
| case E1000_FC_RX_PAUSE: |
| /* RX Flow control is enabled and TX Flow control is disabled by a |
| * software over-ride. Since there really isn't a way to advertise |
| * that we are capable of RX Pause ONLY, we will advertise that we |
| * support both symmetric and asymmetric RX PAUSE. Later, we will |
| * disable the adapter's ability to send PAUSE frames. |
| */ |
| txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
| break; |
| case E1000_FC_TX_PAUSE: |
| /* TX Flow control is enabled, and RX Flow control is disabled, by a |
| * software over-ride. |
| */ |
| txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); |
| break; |
| case E1000_FC_FULL: |
| /* Flow control (both RX and TX) is enabled by a software over-ride. */ |
| txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
| break; |
| default: |
| DEBUGOUT("Flow control param set incorrectly\n"); |
| return -E1000_ERR_CONFIG; |
| break; |
| } |
| |
| /* Since auto-negotiation is enabled, take the link out of reset (the link |
| * will be in reset, because we previously reset the chip). This will |
| * restart auto-negotiation. If auto-neogtiation is successful then the |
| * link-up status bit will be set and the flow control enable bits (RFCE |
| * and TFCE) will be set according to their negotiated value. |
| */ |
| DEBUGOUT("Auto-negotiation enabled\n"); |
| |
| E1000_WRITE_REG(hw, TXCW, txcw); |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| E1000_WRITE_FLUSH(hw); |
| |
| hw->txcw = txcw; |
| msleep(1); |
| |
| /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" |
| * indication in the Device Status Register. Time-out if a link isn't |
| * seen in 500 milliseconds seconds (Auto-negotiation should complete in |
| * less than 500 milliseconds even if the other end is doing it in SW). |
| * For internal serdes, we just assume a signal is present, then poll. |
| */ |
| if (hw->media_type == e1000_media_type_internal_serdes || |
| (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { |
| DEBUGOUT("Looking for Link\n"); |
| for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { |
| msleep(10); |
| status = E1000_READ_REG(hw, STATUS); |
| if (status & E1000_STATUS_LU) break; |
| } |
| if (i == (LINK_UP_TIMEOUT / 10)) { |
| DEBUGOUT("Never got a valid link from auto-neg!!!\n"); |
| hw->autoneg_failed = 1; |
| /* AutoNeg failed to achieve a link, so we'll call |
| * e1000_check_for_link. This routine will force the link up if |
| * we detect a signal. This will allow us to communicate with |
| * non-autonegotiating link partners. |
| */ |
| ret_val = e1000_check_for_link(hw); |
| if (ret_val) { |
| DEBUGOUT("Error while checking for link\n"); |
| return ret_val; |
| } |
| hw->autoneg_failed = 0; |
| } else { |
| hw->autoneg_failed = 0; |
| DEBUGOUT("Valid Link Found\n"); |
| } |
| } else { |
| DEBUGOUT("No Signal Detected\n"); |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Make sure we have a valid PHY and change PHY mode before link setup. |
| * |
| * hw - Struct containing variables accessed by shared code |
| ******************************************************************************/ |
| static int32_t |
| e1000_copper_link_preconfig(struct e1000_hw *hw) |
| { |
| uint32_t ctrl; |
| int32_t ret_val; |
| uint16_t phy_data; |
| |
| DEBUGFUNC("e1000_copper_link_preconfig"); |
| |
| ctrl = E1000_READ_REG(hw, CTRL); |
| /* With 82543, we need to force speed and duplex on the MAC equal to what |
| * the PHY speed and duplex configuration is. In addition, we need to |
| * perform a hardware reset on the PHY to take it out of reset. |
| */ |
| if (hw->mac_type > e1000_82543) { |
| ctrl |= E1000_CTRL_SLU; |
| ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| } else { |
| ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| ret_val = e1000_phy_hw_reset(hw); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* Make sure we have a valid PHY */ |
| ret_val = e1000_detect_gig_phy(hw); |
| if (ret_val) { |
| DEBUGOUT("Error, did not detect valid phy.\n"); |
| return ret_val; |
| } |
| DEBUGOUT1("Phy ID = %x \n", hw->phy_id); |
| |
| /* Set PHY to class A mode (if necessary) */ |
| ret_val = e1000_set_phy_mode(hw); |
| if (ret_val) |
| return ret_val; |
| |
| if ((hw->mac_type == e1000_82545_rev_3) || |
| (hw->mac_type == e1000_82546_rev_3)) { |
| ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| phy_data |= 0x00000008; |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
| } |
| |
| if (hw->mac_type <= e1000_82543 || |
| hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || |
| hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) |
| hw->phy_reset_disable = FALSE; |
| |
| return E1000_SUCCESS; |
| } |
| |
| |
| /******************************************************************** |
| * Copper link setup for e1000_phy_igp series. |
| * |
| * hw - Struct containing variables accessed by shared code |
| *********************************************************************/ |
| static int32_t |
| e1000_copper_link_igp_setup(struct e1000_hw *hw) |
| { |
| uint32_t led_ctrl; |
| int32_t ret_val; |
| uint16_t phy_data; |
| |
| DEBUGFUNC("e1000_copper_link_igp_setup"); |
| |
| if (hw->phy_reset_disable) |
| return E1000_SUCCESS; |
| |
| ret_val = e1000_phy_reset(hw); |
| if (ret_val) { |
| DEBUGOUT("Error Resetting the PHY\n"); |
| return ret_val; |
| } |
| |
| /* Wait 15ms for MAC to configure PHY from eeprom settings */ |
| msleep(15); |
| if (hw->mac_type != e1000_ich8lan) { |
| /* Configure activity LED after PHY reset */ |
| led_ctrl = E1000_READ_REG(hw, LEDCTL); |
| led_ctrl &= IGP_ACTIVITY_LED_MASK; |
| led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
| E1000_WRITE_REG(hw, LEDCTL, led_ctrl); |
| } |
| |
| /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ |
| if (hw->phy_type == e1000_phy_igp) { |
| /* disable lplu d3 during driver init */ |
| ret_val = e1000_set_d3_lplu_state(hw, FALSE); |
| if (ret_val) { |
| DEBUGOUT("Error Disabling LPLU D3\n"); |
| return ret_val; |
| } |
| } |
| |
| /* disable lplu d0 during driver init */ |
| ret_val = e1000_set_d0_lplu_state(hw, FALSE); |
| if (ret_val) { |
| DEBUGOUT("Error Disabling LPLU D0\n"); |
| return ret_val; |
| } |
| /* Configure mdi-mdix settings */ |
| ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
| hw->dsp_config_state = e1000_dsp_config_disabled; |
| /* Force MDI for earlier revs of the IGP PHY */ |
| phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX); |
| hw->mdix = 1; |
| |
| } else { |
| hw->dsp_config_state = e1000_dsp_config_enabled; |
| phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; |
| |
| switch (hw->mdix) { |
| case 1: |
| phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; |
| break; |
| case 2: |
| phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; |
| break; |
| case 0: |
| default: |
| phy_data |= IGP01E1000_PSCR_AUTO_MDIX; |
| break; |
| } |
| } |
| ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* set auto-master slave resolution settings */ |
| if (hw->autoneg) { |
| e1000_ms_type phy_ms_setting = hw->master_slave; |
| |
| if (hw->ffe_config_state == e1000_ffe_config_active) |
| hw->ffe_config_state = e1000_ffe_config_enabled; |
| |
| if (hw->dsp_config_state == e1000_dsp_config_activated) |
| hw->dsp_config_state = e1000_dsp_config_enabled; |
| |
| /* when autonegotiation advertisment is only 1000Mbps then we |
| * should disable SmartSpeed and enable Auto MasterSlave |
| * resolution as hardware default. */ |
| if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { |
| /* Disable SmartSpeed */ |
| ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| phy_data); |
| if (ret_val) |
| return ret_val; |
| /* Set auto Master/Slave resolution process */ |
| ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| phy_data &= ~CR_1000T_MS_ENABLE; |
| ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* load defaults for future use */ |
| hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? |
| ((phy_data & CR_1000T_MS_VALUE) ? |
| e1000_ms_force_master : |
| e1000_ms_force_slave) : |
| e1000_ms_auto; |
| |
| switch (phy_ms_setting) { |
| case e1000_ms_force_master: |
| phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); |
| break; |
| case e1000_ms_force_slave: |
| phy_data |= CR_1000T_MS_ENABLE; |
| phy_data &= ~(CR_1000T_MS_VALUE); |
| break; |
| case e1000_ms_auto: |
| phy_data &= ~CR_1000T_MS_ENABLE; |
| default: |
| break; |
| } |
| ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /******************************************************************** |
| * Copper link setup for e1000_phy_gg82563 series. |
| * |
| * hw - Struct containing variables accessed by shared code |
| *********************************************************************/ |
| static int32_t |
| e1000_copper_link_ggp_setup(struct e1000_hw *hw) |
| { |
| int32_t ret_val; |
| uint16_t phy_data; |
| uint32_t reg_data; |
| |
| DEBUGFUNC("e1000_copper_link_ggp_setup"); |
| |
| if (!hw->phy_reset_disable) { |
| |
| /* Enable CRS on TX for half-duplex operation. */ |
| ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; |
| /* Use 25MHz for both link down and 1000BASE-T for Tx clock */ |
| phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ; |
| |
| ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, |
| phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Options: |
| * MDI/MDI-X = 0 (default) |
| * 0 - Auto for all speeds |
| * 1 - MDI mode |
| * 2 - MDI-X mode |
| * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) |
| */ |
| ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; |
| |
| switch (hw->mdix) { |
| case 1: |
| phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI; |
| break; |
| case 2: |
| phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX; |
| break; |
| case 0: |
| default: |
| phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; |
| break; |
| } |
| |
| /* Options: |
| * disable_polarity_correction = 0 (default) |
| * Automatic Correction for Reversed Cable Polarity |
| * 0 - Disabled |
| * 1 - Enabled |
| */ |
| phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; |
| if (hw->disable_polarity_correction == 1) |
| phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE; |
| ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data); |
| |
| if (ret_val) |
| return ret_val; |
| |
| /* SW Reset the PHY so all changes take effect */ |
| ret_val = e1000_phy_reset(hw); |
| if (ret_val) { |
| DEBUGOUT("Error Resetting the PHY\n"); |
| return ret_val; |
| } |
| } /* phy_reset_disable */ |
| |
| if (hw->mac_type == e1000_80003es2lan) { |
| /* Bypass RX and TX FIFO's */ |
| ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL, |
| E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS | |
| E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; |
| ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data); |
| |
| if (ret_val) |
| return ret_val; |
| |
| reg_data = E1000_READ_REG(hw, CTRL_EXT); |
| reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK); |
| E1000_WRITE_REG(hw, CTRL_EXT, reg_data); |
| |
| ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Do not init these registers when the HW is in IAMT mode, since the |
| * firmware will have already initialized them. We only initialize |
| * them if the HW is not in IAMT mode. |
| */ |
| if (e1000_check_mng_mode(hw) == FALSE) { |
| /* Enable Electrical Idle on the PHY */ |
| phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; |
| ret_val = e1000_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, |
| phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
| ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, |
| phy_data); |
| |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* Workaround: Disable padding in Kumeran interface in the MAC |
| * and in the PHY to avoid CRC errors. |
| */ |
| ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| phy_data |= GG82563_ICR_DIS_PADDING; |
| ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL, |
| phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /******************************************************************** |
| * Copper link setup for e1000_phy_m88 series. |
| * |
| * hw - Struct containing variables accessed by shared code |
| *********************************************************************/ |
| static int32_t |
| e1000_copper_link_mgp_setup(struct e1000_hw *hw) |
| { |
| int32_t ret_val; |
| uint16_t phy_data; |
| |
| DEBUGFUNC("e1000_copper_link_mgp_setup"); |
| |
| if (hw->phy_reset_disable) |
| return E1000_SUCCESS; |
| |
| /* Enable CRS on TX. This must be set for half-duplex operation. */ |
| ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
| |
| /* Options: |
| * MDI/MDI-X = 0 (default) |
| * 0 - Auto for all speeds |
| * 1 - MDI mode |
| * 2 - MDI-X mode |
| * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) |
| */ |
| phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; |
| |
| switch (hw->mdix) { |
| case 1: |
| phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; |
| break; |
| case 2: |
| phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; |
| break; |
| case 3: |
| phy_data |= M88E1000_PSCR_AUTO_X_1000T; |
| break; |
| case 0: |
| default: |
| phy_data |= M88E1000_PSCR_AUTO_X_MODE; |
| break; |
| } |
| |
| /* Options: |
| * disable_polarity_correction = 0 (default) |
| * Automatic Correction for Reversed Cable Polarity |
| * 0 - Disabled |
| * 1 - Enabled |
| */ |
| phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; |
| if (hw->disable_polarity_correction == 1) |
| phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| if (hw->phy_revision < M88E1011_I_REV_4) { |
| /* Force TX_CLK in the Extended PHY Specific Control Register |
| * to 25MHz clock. |
| */ |
| ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= M88E1000_EPSCR_TX_CLK_25; |
| |
| if ((hw->phy_revision == E1000_REVISION_2) && |
| (hw->phy_id == M88E1111_I_PHY_ID)) { |
| /* Vidalia Phy, set the downshift counter to 5x */ |
| phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); |
| phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; |
| ret_val = e1000_write_phy_reg(hw, |
| M88E1000_EXT_PHY_SPEC_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| } else { |
| /* Configure Master and Slave downshift values */ |
| phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | |
| M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); |
| phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | |
| M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); |
| ret_val = e1000_write_phy_reg(hw, |
| M88E1000_EXT_PHY_SPEC_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| } |
| |
| /* SW Reset the PHY so all changes take effect */ |
| ret_val = e1000_phy_reset(hw); |
| if (ret_val) { |
| DEBUGOUT("Error Resetting the PHY\n"); |
| return ret_val; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /******************************************************************** |
| * Setup auto-negotiation and flow control advertisements, |
| * and then perform auto-negotiation. |
| * |
| * hw - Struct containing variables accessed by shared code |
| *********************************************************************/ |
| static int32_t |
| e1000_copper_link_autoneg(struct e1000_hw *hw) |
| { |
| int32_t ret_val; |
| uint16_t phy_data; |
| |
| DEBUGFUNC("e1000_copper_link_autoneg"); |
| |
| /* Perform some bounds checking on the hw->autoneg_advertised |
| * parameter. If this variable is zero, then set it to the default. |
| */ |
| hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| |
| /* If autoneg_advertised is zero, we assume it was not defaulted |
| * by the calling code so we set to advertise full capability. |
| */ |
| if (hw->autoneg_advertised == 0) |
| hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| |
| /* IFE phy only supports 10/100 */ |
| if (hw->phy_type == e1000_phy_ife) |
| hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; |
| |
| DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); |
| ret_val = e1000_phy_setup_autoneg(hw); |
| if (ret_val) { |
| DEBUGOUT("Error Setting up Auto-Negotiation\n"); |
| return ret_val; |
| } |
| DEBUGOUT("Restarting Auto-Neg\n"); |
| |
| /* Restart auto-negotiation by setting the Auto Neg Enable bit and |
| * the Auto Neg Restart bit in the PHY control register. |
| */ |
| ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); |
| ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Does the user want to wait for Auto-Neg to complete here, or |
| * check at a later time (for example, callback routine). |
| */ |
| if (hw->wait_autoneg_complete) { |
| ret_val = e1000_wait_autoneg(hw); |
| if (ret_val) { |
| DEBUGOUT("Error while waiting for autoneg to complete\n"); |
| return ret_val; |
| } |
| } |
| |
| hw->get_link_status = TRUE; |
| |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Config the MAC and the PHY after link is up. |
| * 1) Set up the MAC to the current PHY speed/duplex |
| * if we are on 82543. If we |
| * are on newer silicon, we only need to configure |
| * collision distance in the Transmit Control Register. |
| * 2) Set up flow control on the MAC to that established with |
| * the link partner. |
| * 3) Config DSP to improve Gigabit link quality for some PHY revisions. |
| * |
| * hw - Struct containing variables accessed by shared code |
| ******************************************************************************/ |
| static int32_t |
| e1000_copper_link_postconfig(struct e1000_hw *hw) |
| { |
| int32_t ret_val; |
| DEBUGFUNC("e1000_copper_link_postconfig"); |
| |
| if (hw->mac_type >= e1000_82544) { |
| e1000_config_collision_dist(hw); |
| } else { |
| ret_val = e1000_config_mac_to_phy(hw); |
| if (ret_val) { |
| DEBUGOUT("Error configuring MAC to PHY settings\n"); |
| return ret_val; |
| } |
| } |
| ret_val = e1000_config_fc_after_link_up(hw); |
| if (ret_val) { |
| DEBUGOUT("Error Configuring Flow Control\n"); |
| return ret_val; |
| } |
| |
| /* Config DSP to improve Giga link quality */ |
| if (hw->phy_type == e1000_phy_igp) { |
| ret_val = e1000_config_dsp_after_link_change(hw, TRUE); |
| if (ret_val) { |
| DEBUGOUT("Error Configuring DSP after link up\n"); |
| return ret_val; |
| } |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Detects which PHY is present and setup the speed and duplex |
| * |
| * hw - Struct containing variables accessed by shared code |
| ******************************************************************************/ |
| static int32_t |
| e1000_setup_copper_link(struct e1000_hw *hw) |
| { |
| int32_t ret_val; |
| uint16_t i; |
| uint16_t phy_data; |
| uint16_t reg_data; |
| |
| DEBUGFUNC("e1000_setup_copper_link"); |
| |
| switch (hw->mac_type) { |
| case e1000_80003es2lan: |
| case e1000_ich8lan: |
| /* Set the mac to wait the maximum time between each |
| * iteration and increase the max iterations when |
| * polling the phy; this fixes erroneous timeouts at 10Mbps. */ |
| ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data); |
| if (ret_val) |
| return ret_val; |
| reg_data |= 0x3F; |
| ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data); |
| if (ret_val) |
| return ret_val; |
| default: |
| break; |
| } |
| |
| /* Check if it is a valid PHY and set PHY mode if necessary. */ |
| ret_val = e1000_copper_link_preconfig(hw); |
| if (ret_val) |
| return ret_val; |
| |
| switch (hw->mac_type) { |
| case e1000_80003es2lan: |
| /* Kumeran registers are written-only */ |
| reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT; |
| reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING; |
| ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL, |
| reg_data); |
| if (ret_val) |
| return ret_val; |
| break; |
| default: |
| break; |
| } |
| |
| if (hw->phy_type == e1000_phy_igp || |
| hw->phy_type == e1000_phy_igp_3 || |
| hw->phy_type == e1000_phy_igp_2) { |
| ret_val = e1000_copper_link_igp_setup(hw); |
| if (ret_val) |
| return ret_val; |
| } else if (hw->phy_type == e1000_phy_m88) { |
| ret_val = e1000_copper_link_mgp_setup(hw); |
| if (ret_val) |
| return ret_val; |
| } else if (hw->phy_type == e1000_phy_gg82563) { |
| ret_val = e1000_copper_link_ggp_setup(hw); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| if (hw->autoneg) { |
| /* Setup autoneg and flow control advertisement |
| * and perform autonegotiation */ |
| ret_val = e1000_copper_link_autoneg(hw); |
| if (ret_val) |
| return ret_val; |
| } else { |
| /* PHY will be set to 10H, 10F, 100H,or 100F |
| * depending on value from forced_speed_duplex. */ |
| DEBUGOUT("Forcing speed and duplex\n"); |
| ret_val = e1000_phy_force_speed_duplex(hw); |
| if (ret_val) { |
| DEBUGOUT("Error Forcing Speed and Duplex\n"); |
| return ret_val; |
| } |
| } |
| |
| /* Check link status. Wait up to 100 microseconds for link to become |
| * valid. |
| */ |
| for (i = 0; i < 10; i++) { |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| if (phy_data & MII_SR_LINK_STATUS) { |
| /* Config the MAC and PHY after link is up */ |
| ret_val = e1000_copper_link_postconfig(hw); |
| if (ret_val) |
| return ret_val; |
| |
| DEBUGOUT("Valid link established!!!\n"); |
| return E1000_SUCCESS; |
| } |
| udelay(10); |
| } |
| |
| DEBUGOUT("Unable to establish link!!!\n"); |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Configure the MAC-to-PHY interface for 10/100Mbps |
| * |
| * hw - Struct containing variables accessed by shared code |
| ******************************************************************************/ |
| static int32_t |
| e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex) |
| { |
| int32_t ret_val = E1000_SUCCESS; |
| uint32_t tipg; |
| uint16_t reg_data; |
| |
| DEBUGFUNC("e1000_configure_kmrn_for_10_100"); |
| |
| reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT; |
| ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL, |
| reg_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Configure Transmit Inter-Packet Gap */ |
| tipg = E1000_READ_REG(hw, TIPG); |
| tipg &= ~E1000_TIPG_IPGT_MASK; |
| tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100; |
| E1000_WRITE_REG(hw, TIPG, tipg); |
| |
| ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); |
| |
| if (ret_val) |
| return ret_val; |
| |
| if (duplex == HALF_DUPLEX) |
| reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; |
| else |
| reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
| |
| ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); |
| |
| return ret_val; |
| } |
| |
| static int32_t |
| e1000_configure_kmrn_for_1000(struct e1000_hw *hw) |
| { |
| int32_t ret_val = E1000_SUCCESS; |
| uint16_t reg_data; |
| uint32_t tipg; |
| |
| DEBUGFUNC("e1000_configure_kmrn_for_1000"); |
| |
| reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT; |
| ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL, |
| reg_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Configure Transmit Inter-Packet Gap */ |
| tipg = E1000_READ_REG(hw, TIPG); |
| tipg &= ~E1000_TIPG_IPGT_MASK; |
| tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; |
| E1000_WRITE_REG(hw, TIPG, tipg); |
| |
| ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); |
| |
| if (ret_val) |
| return ret_val; |
| |
| reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
| ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); |
| |
| return ret_val; |
| } |
| |
| /****************************************************************************** |
| * Configures PHY autoneg and flow control advertisement settings |
| * |
| * hw - Struct containing variables accessed by shared code |
| ******************************************************************************/ |
| int32_t |
| e1000_phy_setup_autoneg(struct e1000_hw *hw) |
| { |
| int32_t ret_val; |
| uint16_t mii_autoneg_adv_reg; |
| uint16_t mii_1000t_ctrl_reg; |
| |
| DEBUGFUNC("e1000_phy_setup_autoneg"); |
| |
| /* Read the MII Auto-Neg Advertisement Register (Address 4). */ |
| ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); |
| if (ret_val) |
| return ret_val; |
| |
| if (hw->phy_type != e1000_phy_ife) { |
| /* Read the MII 1000Base-T Control Register (Address 9). */ |
| ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); |
| if (ret_val) |
| return ret_val; |
| } else |
| mii_1000t_ctrl_reg=0; |
| |
| /* Need to parse both autoneg_advertised and fc and set up |
| * the appropriate PHY registers. First we will parse for |
| * autoneg_advertised software override. Since we can advertise |
| * a plethora of combinations, we need to check each bit |
| * individually. |
| */ |
| |
| /* First we clear all the 10/100 mb speed bits in the Auto-Neg |
| * Advertisement Register (Address 4) and the 1000 mb speed bits in |
| * the 1000Base-T Control Register (Address 9). |
| */ |
| mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; |
| mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; |
| |
| DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised); |
| |
| /* Do we want to advertise 10 Mb Half Duplex? */ |
| if (hw->autoneg_advertised & ADVERTISE_10_HALF) { |
| DEBUGOUT("Advertise 10mb Half duplex\n"); |
| mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; |
| } |
| |
| /* Do we want to advertise 10 Mb Full Duplex? */ |
| if (hw->autoneg_advertised & ADVERTISE_10_FULL) { |
| DEBUGOUT("Advertise 10mb Full duplex\n"); |
| mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; |
| } |
| |
| /* Do we want to advertise 100 Mb Half Duplex? */ |
| if (hw->autoneg_advertised & ADVERTISE_100_HALF) { |
| DEBUGOUT("Advertise 100mb Half duplex\n"); |
| mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; |
| } |
| |
| /* Do we want to advertise 100 Mb Full Duplex? */ |
| if (hw->autoneg_advertised & ADVERTISE_100_FULL) { |
| DEBUGOUT("Advertise 100mb Full duplex\n"); |
| mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; |
| } |
| |
| /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ |
| if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { |
| DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n"); |
| } |
| |
| /* Do we want to advertise 1000 Mb Full Duplex? */ |
| if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { |
| DEBUGOUT("Advertise 1000mb Full duplex\n"); |
| mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; |
| if (hw->phy_type == e1000_phy_ife) { |
| DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n"); |
| } |
| } |
| |
| /* Check for a software override of the flow control settings, and |
| * setup the PHY advertisement registers accordingly. If |
| * auto-negotiation is enabled, then software will have to set the |
| * "PAUSE" bits to the correct value in the Auto-Negotiation |
| * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. |
| * |
| * The possible values of the "fc" parameter are: |
| * 0: Flow control is completely disabled |
| * 1: Rx flow control is enabled (we can receive pause frames |
| * but not send pause frames). |
| * 2: Tx flow control is enabled (we can send pause frames |
| * but we do not support receiving pause frames). |
| * 3: Both Rx and TX flow control (symmetric) are enabled. |
| * other: No software override. The flow control configuration |
| * in the EEPROM is used. |
| */ |
| switch (hw->fc) { |
| case E1000_FC_NONE: /* 0 */ |
| /* Flow control (RX & TX) is completely disabled by a |
| * software over-ride. |
| */ |
| mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| break; |
| case E1000_FC_RX_PAUSE: /* 1 */ |
| /* RX Flow control is enabled, and TX Flow control is |
| * disabled, by a software over-ride. |
| */ |
| /* Since there really isn't a way to advertise that we are |
| * capable of RX Pause ONLY, we will advertise that we |
| * support both symmetric and asymmetric RX PAUSE. Later |
| * (in e1000_config_fc_after_link_up) we will disable the |
| *hw's ability to send PAUSE frames. |
| */ |
| mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| break; |
| case E1000_FC_TX_PAUSE: /* 2 */ |
| /* TX Flow control is enabled, and RX Flow control is |
| * disabled, by a software over-ride. |
| */ |
| mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; |
| mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; |
| break; |
| case E1000_FC_FULL: /* 3 */ |
| /* Flow control (both RX and TX) is enabled by a software |
| * over-ride. |
| */ |
| mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| break; |
| default: |
| DEBUGOUT("Flow control param set incorrectly\n"); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); |
| if (ret_val) |
| return ret_val; |
| |
| DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); |
| |
| if (hw->phy_type != e1000_phy_ife) { |
| ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Force PHY speed and duplex settings to hw->forced_speed_duplex |
| * |
| * hw - Struct containing variables accessed by shared code |
| ******************************************************************************/ |
| static int32_t |
| e1000_phy_force_speed_duplex(struct e1000_hw *hw) |
| { |
| uint32_t ctrl; |
| int32_t ret_val; |
| uint16_t mii_ctrl_reg; |
| uint16_t mii_status_reg; |
| uint16_t phy_data; |
| uint16_t i; |
| |
| DEBUGFUNC("e1000_phy_force_speed_duplex"); |
| |
| /* Turn off Flow control if we are forcing speed and duplex. */ |
| hw->fc = E1000_FC_NONE; |
| |
| DEBUGOUT1("hw->fc = %d\n", hw->fc); |
| |
| /* Read the Device Control Register. */ |
| ctrl = E1000_READ_REG(hw, CTRL); |
| |
| /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ |
| ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| ctrl &= ~(DEVICE_SPEED_MASK); |
| |
| /* Clear the Auto Speed Detect Enable bit. */ |
| ctrl &= ~E1000_CTRL_ASDE; |
| |
| /* Read the MII Control Register. */ |
| ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); |
| if (ret_val) |
| return ret_val; |
| |
| /* We need to disable autoneg in order to force link and duplex. */ |
| |
| mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; |
| |
| /* Are we forcing Full or Half Duplex? */ |
| if (hw->forced_speed_duplex == e1000_100_full || |
| hw->forced_speed_duplex == e1000_10_full) { |
| /* We want to force full duplex so we SET the full duplex bits in the |
| * Device and MII Control Registers. |
| */ |
| ctrl |= E1000_CTRL_FD; |
| mii_ctrl_reg |= MII_CR_FULL_DUPLEX; |
| DEBUGOUT("Full Duplex\n"); |
| } else { |
| /* We want to force half duplex so we CLEAR the full duplex bits in |
| * the Device and MII Control Registers. |
| */ |
| ctrl &= ~E1000_CTRL_FD; |
| mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; |
| DEBUGOUT("Half Duplex\n"); |
| } |
| |
| /* Are we forcing 100Mbps??? */ |
| if (hw->forced_speed_duplex == e1000_100_full || |
| hw->forced_speed_duplex == e1000_100_half) { |
| /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ |
| ctrl |= E1000_CTRL_SPD_100; |
| mii_ctrl_reg |= MII_CR_SPEED_100; |
| mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); |
| DEBUGOUT("Forcing 100mb "); |
| } else { |
| /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ |
| ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); |
| mii_ctrl_reg |= MII_CR_SPEED_10; |
| mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); |
| DEBUGOUT("Forcing 10mb "); |
| } |
| |
| e1000_config_collision_dist(hw); |
| |
| /* Write the configured values back to the Device Control Reg. */ |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| |
| if ((hw->phy_type == e1000_phy_m88) || |
| (hw->phy_type == e1000_phy_gg82563)) { |
| ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI |
| * forced whenever speed are duplex are forced. |
| */ |
| phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data); |
| |
| /* Need to reset the PHY or these changes will be ignored */ |
| mii_ctrl_reg |= MII_CR_RESET; |
| |
| /* Disable MDI-X support for 10/100 */ |
| } else if (hw->phy_type == e1000_phy_ife) { |
| ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~IFE_PMC_AUTO_MDIX; |
| phy_data &= ~IFE_PMC_FORCE_MDIX; |
| |
| ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| } else { |
| /* Clear Auto-Crossover to force MDI manually. IGP requires MDI |
| * forced whenever speed or duplex are forced. |
| */ |
| ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; |
| phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; |
| |
| ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* Write back the modified PHY MII control register. */ |
| ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); |
| if (ret_val) |
| return ret_val; |
| |
| udelay(1); |
| |
| /* The wait_autoneg_complete flag may be a little misleading here. |
| * Since we are forcing speed and duplex, Auto-Neg is not enabled. |
| * But we do want to delay for a period while forcing only so we |
| * don't generate false No Link messages. So we will wait here |
| * only if the user has set wait_autoneg_complete to 1, which is |
| * the default. |
| */ |
| if (hw->wait_autoneg_complete) { |
| /* We will wait for autoneg to complete. */ |
| DEBUGOUT("Waiting for forced speed/duplex link.\n"); |
| mii_status_reg = 0; |
| |
| /* We will wait for autoneg to complete or 4.5 seconds to expire. */ |
| for (i = PHY_FORCE_TIME; i > 0; i--) { |
| /* Read the MII Status Register and wait for Auto-Neg Complete bit |
| * to be set. |
| */ |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
| if (ret_val) |
| return ret_val; |
| |
| if (mii_status_reg & MII_SR_LINK_STATUS) break; |
| msleep(100); |
| } |
| if ((i == 0) && |
| ((hw->phy_type == e1000_phy_m88) || |
| (hw->phy_type == e1000_phy_gg82563))) { |
| /* We didn't get link. Reset the DSP and wait again for link. */ |
| ret_val = e1000_phy_reset_dsp(hw); |
| if (ret_val) { |
| DEBUGOUT("Error Resetting PHY DSP\n"); |
| return ret_val; |
| } |
| } |
| /* This loop will early-out if the link condition has been met. */ |
| for (i = PHY_FORCE_TIME; i > 0; i--) { |
| if (mii_status_reg & MII_SR_LINK_STATUS) break; |
| msleep(100); |
| /* Read the MII Status Register and wait for Auto-Neg Complete bit |
| * to be set. |
| */ |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
| if (ret_val) |
| return ret_val; |
| } |
| } |
| |
| if (hw->phy_type == e1000_phy_m88) { |
| /* Because we reset the PHY above, we need to re-force TX_CLK in the |
| * Extended PHY Specific Control Register to 25MHz clock. This value |
| * defaults back to a 2.5MHz clock when the PHY is reset. |
| */ |
| ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= M88E1000_EPSCR_TX_CLK_25; |
| ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* In addition, because of the s/w reset above, we need to enable CRS on |
| * TX. This must be set for both full and half duplex operation. |
| */ |
| ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && |
| (!hw->autoneg) && (hw->forced_speed_duplex == e1000_10_full || |
| hw->forced_speed_duplex == e1000_10_half)) { |
| ret_val = e1000_polarity_reversal_workaround(hw); |
| if (ret_val) |
| return ret_val; |
| } |
| } else if (hw->phy_type == e1000_phy_gg82563) { |
| /* The TX_CLK of the Extended PHY Specific Control Register defaults |
| * to 2.5MHz on a reset. We need to re-force it back to 25MHz, if |
| * we're not in a forced 10/duplex configuration. */ |
| ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~GG82563_MSCR_TX_CLK_MASK; |
| if ((hw->forced_speed_duplex == e1000_10_full) || |
| (hw->forced_speed_duplex == e1000_10_half)) |
| phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ; |
| else |
| phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ; |
| |
| /* Also due to the reset, we need to enable CRS on Tx. */ |
| phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; |
| |
| ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Sets the collision distance in the Transmit Control register |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Link should have been established previously. Reads the speed and duplex |
| * information from the Device Status register. |
| ******************************************************************************/ |
| void |
| e1000_config_collision_dist(struct e1000_hw *hw) |
| { |
| uint32_t tctl, coll_dist; |
| |
| DEBUGFUNC("e1000_config_collision_dist"); |
| |
| if (hw->mac_type < e1000_82543) |
| coll_dist = E1000_COLLISION_DISTANCE_82542; |
| else |
| coll_dist = E1000_COLLISION_DISTANCE; |
| |
| tctl = E1000_READ_REG(hw, TCTL); |
| |
| tctl &= ~E1000_TCTL_COLD; |
| tctl |= coll_dist << E1000_COLD_SHIFT; |
| |
| E1000_WRITE_REG(hw, TCTL, tctl); |
| E1000_WRITE_FLUSH(hw); |
| } |
| |
| /****************************************************************************** |
| * Sets MAC speed and duplex settings to reflect the those in the PHY |
| * |
| * hw - Struct containing variables accessed by shared code |
| * mii_reg - data to write to the MII control register |
| * |
| * The contents of the PHY register containing the needed information need to |
| * be passed in. |
| ******************************************************************************/ |
| static int32_t |
| e1000_config_mac_to_phy(struct e1000_hw *hw) |
| { |
| uint32_t ctrl; |
| int32_t ret_val; |
| uint16_t phy_data; |
| |
| DEBUGFUNC("e1000_config_mac_to_phy"); |
| |
| /* 82544 or newer MAC, Auto Speed Detection takes care of |
| * MAC speed/duplex configuration.*/ |
| if (hw->mac_type >= e1000_82544) |
| return E1000_SUCCESS; |
| |
| /* Read the Device Control Register and set the bits to Force Speed |
| * and Duplex. |
| */ |
| ctrl = E1000_READ_REG(hw, CTRL); |
| ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); |
| |
| /* Set up duplex in the Device Control and Transmit Control |
| * registers depending on negotiated values. |
| */ |
| ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| if (phy_data & M88E1000_PSSR_DPLX) |
| ctrl |= E1000_CTRL_FD; |
| else |
| ctrl &= ~E1000_CTRL_FD; |
| |
| e1000_config_collision_dist(hw); |
| |
| /* Set up speed in the Device Control register depending on |
| * negotiated values. |
| */ |
| if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) |
| ctrl |= E1000_CTRL_SPD_1000; |
| else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) |
| ctrl |= E1000_CTRL_SPD_100; |
| |
| /* Write the configured values back to the Device Control Reg. */ |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Forces the MAC's flow control settings. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Sets the TFCE and RFCE bits in the device control register to reflect |
| * the adapter settings. TFCE and RFCE need to be explicitly set by |
| * software when a Copper PHY is used because autonegotiation is managed |
| * by the PHY rather than the MAC. Software must also configure these |
| * bits when link is forced on a fiber connection. |
| *****************************************************************************/ |
| int32_t |
| e1000_force_mac_fc(struct e1000_hw *hw) |
| { |
| uint32_t ctrl; |
| |
| DEBUGFUNC("e1000_force_mac_fc"); |
| |
| /* Get the current configuration of the Device Control Register */ |
| ctrl = E1000_READ_REG(hw, CTRL); |
| |
| /* Because we didn't get link via the internal auto-negotiation |
| * mechanism (we either forced link or we got link via PHY |
| * auto-neg), we have to manually enable/disable transmit an |
| * receive flow control. |
| * |
| * The "Case" statement below enables/disable flow control |
| * according to the "hw->fc" parameter. |
| * |
| * The possible values of the "fc" parameter are: |
| * 0: Flow control is completely disabled |
| * 1: Rx flow control is enabled (we can receive pause |
| * frames but not send pause frames). |
| * 2: Tx flow control is enabled (we can send pause frames |
| * frames but we do not receive pause frames). |
| * 3: Both Rx and TX flow control (symmetric) is enabled. |
| * other: No other values should be possible at this point. |
| */ |
| |
| switch (hw->fc) { |
| case E1000_FC_NONE: |
| ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); |
| break; |
| case E1000_FC_RX_PAUSE: |
| ctrl &= (~E1000_CTRL_TFCE); |
| ctrl |= E1000_CTRL_RFCE; |
| break; |
| case E1000_FC_TX_PAUSE: |
| ctrl &= (~E1000_CTRL_RFCE); |
| ctrl |= E1000_CTRL_TFCE; |
| break; |
| case E1000_FC_FULL: |
| ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); |
| break; |
| default: |
| DEBUGOUT("Flow control param set incorrectly\n"); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| /* Disable TX Flow Control for 82542 (rev 2.0) */ |
| if (hw->mac_type == e1000_82542_rev2_0) |
| ctrl &= (~E1000_CTRL_TFCE); |
| |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Configures flow control settings after link is established |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Should be called immediately after a valid link has been established. |
| * Forces MAC flow control settings if link was forced. When in MII/GMII mode |
| * and autonegotiation is enabled, the MAC flow control settings will be set |
| * based on the flow control negotiated by the PHY. In TBI mode, the TFCE |
| * and RFCE bits will be automaticaly set to the negotiated flow control mode. |
| *****************************************************************************/ |
| static int32_t |
| e1000_config_fc_after_link_up(struct e1000_hw *hw) |
| { |
| int32_t ret_val; |
| uint16_t mii_status_reg; |
| uint16_t mii_nway_adv_reg; |
| uint16_t mii_nway_lp_ability_reg; |
| uint16_t speed; |
| uint16_t duplex; |
| |
| DEBUGFUNC("e1000_config_fc_after_link_up"); |
| |
| /* Check for the case where we have fiber media and auto-neg failed |
| * so we had to force link. In this case, we need to force the |
| * configuration of the MAC to match the "fc" parameter. |
| */ |
| if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) || |
| ((hw->media_type == e1000_media_type_internal_serdes) && |
| (hw->autoneg_failed)) || |
| ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) { |
| ret_val = e1000_force_mac_fc(hw); |
| if (ret_val) { |
| DEBUGOUT("Error forcing flow control settings\n"); |
| return ret_val; |
| } |
| } |
| |
| /* Check for the case where we have copper media and auto-neg is |
| * enabled. In this case, we need to check and see if Auto-Neg |
| * has completed, and if so, how the PHY and link partner has |
| * flow control configured. |
| */ |
| if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) { |
| /* Read the MII Status Register and check to see if AutoNeg |
| * has completed. We read this twice because this reg has |
| * some "sticky" (latched) bits. |
| */ |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
| if (ret_val) |
| return ret_val; |
| |
| if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { |
| /* The AutoNeg process has completed, so we now need to |
| * read both the Auto Negotiation Advertisement Register |
| * (Address 4) and the Auto_Negotiation Base Page Ability |
| * Register (Address 5) to determine how flow control was |
| * negotiated. |
| */ |
| ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, |
| &mii_nway_adv_reg); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, |
| &mii_nway_lp_ability_reg); |
| if (ret_val) |
| return ret_val; |
| |
| /* Two bits in the Auto Negotiation Advertisement Register |
| * (Address 4) and two bits in the Auto Negotiation Base |
| * Page Ability Register (Address 5) determine flow control |
| * for both the PHY and the link partner. The following |
| * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, |
| * 1999, describes these PAUSE resolution bits and how flow |
| * control is determined based upon these settings. |
| * NOTE: DC = Don't Care |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution |
| *-------|---------|-------|---------|-------------------- |
| * 0 | 0 | DC | DC | E1000_FC_NONE |
| * 0 | 1 | 0 | DC | E1000_FC_NONE |
| * 0 | 1 | 1 | 0 | E1000_FC_NONE |
| * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE |
| * 1 | 0 | 0 | DC | E1000_FC_NONE |
| * 1 | DC | 1 | DC | E1000_FC_FULL |
| * 1 | 1 | 0 | 0 | E1000_FC_NONE |
| * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE |
| * |
| */ |
| /* Are both PAUSE bits set to 1? If so, this implies |
| * Symmetric Flow Control is enabled at both ends. The |
| * ASM_DIR bits are irrelevant per the spec. |
| * |
| * For Symmetric Flow Control: |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| *-------|---------|-------|---------|-------------------- |
| * 1 | DC | 1 | DC | E1000_FC_FULL |
| * |
| */ |
| if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { |
| /* Now we need to check if the user selected RX ONLY |
| * of pause frames. In this case, we had to advertise |
| * FULL flow control because we could not advertise RX |
| * ONLY. Hence, we must now check to see if we need to |
| * turn OFF the TRANSMISSION of PAUSE frames. |
| */ |
| if (hw->original_fc == E1000_FC_FULL) { |
| hw->fc = E1000_FC_FULL; |
| DEBUGOUT("Flow Control = FULL.\n"); |
| } else { |
| hw->fc = E1000_FC_RX_PAUSE; |
| DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); |
| } |
| } |
| /* For receiving PAUSE frames ONLY. |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| *-------|---------|-------|---------|-------------------- |
| * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE |
| * |
| */ |
| else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
| (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
| (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { |
| hw->fc = E1000_FC_TX_PAUSE; |
| DEBUGOUT("Flow Control = TX PAUSE frames only.\n"); |
| } |
| /* For transmitting PAUSE frames ONLY. |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| *-------|---------|-------|---------|-------------------- |
| * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE |
| * |
| */ |
| else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
| !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
| (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { |
| hw->fc = E1000_FC_RX_PAUSE; |
| DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); |
| } |
| /* Per the IEEE spec, at this point flow control should be |
| * disabled. However, we want to consider that we could |
| * be connected to a legacy switch that doesn't advertise |
| * desired flow control, but can be forced on the link |
| * partner. So if we advertised no flow control, that is |
| * what we will resolve to. If we advertised some kind of |
| * receive capability (Rx Pause Only or Full Flow Control) |
| * and the link partner advertised none, we will configure |
| * ourselves to enable Rx Flow Control only. We can do |
| * this safely for two reasons: If the link partner really |
| * didn't want flow control enabled, and we enable Rx, no |
| * harm done since we won't be receiving any PAUSE frames |
| * anyway. If the intent on the link partner was to have |
| * flow control enabled, then by us enabling RX only, we |
| * can at least receive pause frames and process them. |
| * This is a good idea because in most cases, since we are |
| * predominantly a server NIC, more times than not we will |
| * be asked to delay transmission of packets than asking |
| * our link partner to pause transmission of frames. |
| */ |
| else if ((hw->original_fc == E1000_FC_NONE || |
| hw->original_fc == E1000_FC_TX_PAUSE) || |
| hw->fc_strict_ieee) { |
| hw->fc = E1000_FC_NONE; |
| DEBUGOUT("Flow Control = NONE.\n"); |
| } else { |
| hw->fc = E1000_FC_RX_PAUSE; |
| DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); |
| } |
| |
| /* Now we need to do one last check... If we auto- |
| * negotiated to HALF DUPLEX, flow control should not be |
| * enabled per IEEE 802.3 spec. |
| */ |
| ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); |
| if (ret_val) { |
| DEBUGOUT("Error getting link speed and duplex\n"); |
| return ret_val; |
| } |
| |
| if (duplex == HALF_DUPLEX) |
| hw->fc = E1000_FC_NONE; |
| |
| /* Now we call a subroutine to actually force the MAC |
| * controller to use the correct flow control settings. |
| */ |
| ret_val = e1000_force_mac_fc(hw); |
| if (ret_val) { |
| DEBUGOUT("Error forcing flow control settings\n"); |
| return ret_val; |
| } |
| } else { |
| DEBUGOUT("Copper PHY and Auto Neg has not completed.\n"); |
| } |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Checks to see if the link status of the hardware has changed. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Called by any function that needs to check the link status of the adapter. |
| *****************************************************************************/ |
| int32_t |
| e1000_check_for_link(struct e1000_hw *hw) |
| { |
| uint32_t rxcw = 0; |
| uint32_t ctrl; |
| uint32_t status; |
| uint32_t rctl; |
| uint32_t icr; |
| uint32_t signal = 0; |
| int32_t ret_val; |
| uint16_t phy_data; |
| |
| DEBUGFUNC("e1000_check_for_link"); |
| |
| ctrl = E1000_READ_REG(hw, CTRL); |
| status = E1000_READ_REG(hw, STATUS); |
| |
| /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be |
| * set when the optics detect a signal. On older adapters, it will be |
| * cleared when there is a signal. This applies to fiber media only. |
| */ |
| if ((hw->media_type == e1000_media_type_fiber) || |
| (hw->media_type == e1000_media_type_internal_serdes)) { |
| rxcw = E1000_READ_REG(hw, RXCW); |
| |
| if (hw->media_type == e1000_media_type_fiber) { |
| signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; |
| if (status & E1000_STATUS_LU) |
| hw->get_link_status = FALSE; |
| } |
| } |
| |
| /* If we have a copper PHY then we only want to go out to the PHY |
| * registers to see if Auto-Neg has completed and/or if our link |
| * status has changed. The get_link_status flag will be set if we |
| * receive a Link Status Change interrupt or we have Rx Sequence |
| * Errors. |
| */ |
| if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { |
| /* First we want to see if the MII Status Register reports |
| * link. If so, then we want to get the current speed/duplex |
| * of the PHY. |
| * Read the register twice since the link bit is sticky. |
| */ |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| if (phy_data & MII_SR_LINK_STATUS) { |
| hw->get_link_status = FALSE; |
| /* Check if there was DownShift, must be checked immediately after |
| * link-up */ |
| e1000_check_downshift(hw); |
| |
| /* If we are on 82544 or 82543 silicon and speed/duplex |
| * are forced to 10H or 10F, then we will implement the polarity |
| * reversal workaround. We disable interrupts first, and upon |
| * returning, place the devices interrupt state to its previous |
| * value except for the link status change interrupt which will |
| * happen due to the execution of this workaround. |
| */ |
| |
| if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && |
| (!hw->autoneg) && |
| (hw->forced_speed_duplex == e1000_10_full || |
| hw->forced_speed_duplex == e1000_10_half)) { |
| E1000_WRITE_REG(hw, IMC, 0xffffffff); |
| ret_val = e1000_polarity_reversal_workaround(hw); |
| icr = E1000_READ_REG(hw, ICR); |
| E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC)); |
| E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK); |
| } |
| |
| } else { |
| /* No link detected */ |
| e1000_config_dsp_after_link_change(hw, FALSE); |
| return 0; |
| } |
| |
| /* If we are forcing speed/duplex, then we simply return since |
| * we have already determined whether we have link or not. |
| */ |
| if (!hw->autoneg) return -E1000_ERR_CONFIG; |
| |
| /* optimize the dsp settings for the igp phy */ |
| e1000_config_dsp_after_link_change(hw, TRUE); |
| |
| /* We have a M88E1000 PHY and Auto-Neg is enabled. If we |
| * have Si on board that is 82544 or newer, Auto |
| * Speed Detection takes care of MAC speed/duplex |
| * configuration. So we only need to configure Collision |
| * Distance in the MAC. Otherwise, we need to force |
| * speed/duplex on the MAC to the current PHY speed/duplex |
| * settings. |
| */ |
| if (hw->mac_type >= e1000_82544) |
| e1000_config_collision_dist(hw); |
| else { |
| ret_val = e1000_config_mac_to_phy(hw); |
| if (ret_val) { |
| DEBUGOUT("Error configuring MAC to PHY settings\n"); |
| return ret_val; |
| } |
| } |
| |
| /* Configure Flow Control now that Auto-Neg has completed. First, we |
| * need to restore the desired flow control settings because we may |
| * have had to re-autoneg with a different link partner. |
| */ |
| ret_val = e1000_config_fc_after_link_up(hw); |
| if (ret_val) { |
| DEBUGOUT("Error configuring flow control\n"); |
| return ret_val; |
| } |
| |
| /* At this point we know that we are on copper and we have |
| * auto-negotiated link. These are conditions for checking the link |
| * partner capability register. We use the link speed to determine if |
| * TBI compatibility needs to be turned on or off. If the link is not |
| * at gigabit speed, then TBI compatibility is not needed. If we are |
| * at gigabit speed, we turn on TBI compatibility. |
| */ |
| if (hw->tbi_compatibility_en) { |
| uint16_t speed, duplex; |
| ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); |
| if (ret_val) { |
| DEBUGOUT("Error getting link speed and duplex\n"); |
| return ret_val; |
| } |
| if (speed != SPEED_1000) { |
| /* If link speed is not set to gigabit speed, we do not need |
| * to enable TBI compatibility. |
| */ |
| if (hw->tbi_compatibility_on) { |
| /* If we previously were in the mode, turn it off. */ |
| rctl = E1000_READ_REG(hw, RCTL); |
| rctl &= ~E1000_RCTL_SBP; |
| E1000_WRITE_REG(hw, RCTL, rctl); |
| hw->tbi_compatibility_on = FALSE; |
| } |
| } else { |
| /* If TBI compatibility is was previously off, turn it on. For |
| * compatibility with a TBI link partner, we will store bad |
| * packets. Some frames have an additional byte on the end and |
| * will look like CRC errors to to the hardware. |
| */ |
| if (!hw->tbi_compatibility_on) { |
| hw->tbi_compatibility_on = TRUE; |
| rctl = E1000_READ_REG(hw, RCTL); |
| rctl |= E1000_RCTL_SBP; |
| E1000_WRITE_REG(hw, RCTL, rctl); |
| } |
| } |
| } |
| } |
| /* If we don't have link (auto-negotiation failed or link partner cannot |
| * auto-negotiate), the cable is plugged in (we have signal), and our |
| * link partner is not trying to auto-negotiate with us (we are receiving |
| * idles or data), we need to force link up. We also need to give |
| * auto-negotiation time to complete, in case the cable was just plugged |
| * in. The autoneg_failed flag does this. |
| */ |
| else if ((((hw->media_type == e1000_media_type_fiber) && |
| ((ctrl & E1000_CTRL_SWDPIN1) == signal)) || |
| (hw->media_type == e1000_media_type_internal_serdes)) && |
| (!(status & E1000_STATUS_LU)) && |
| (!(rxcw & E1000_RXCW_C))) { |
| if (hw->autoneg_failed == 0) { |
| hw->autoneg_failed = 1; |
| return 0; |
| } |
| DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n"); |
| |
| /* Disable auto-negotiation in the TXCW register */ |
| E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE)); |
| |
| /* Force link-up and also force full-duplex. */ |
| ctrl = E1000_READ_REG(hw, CTRL); |
| ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| |
| /* Configure Flow Control after forcing link up. */ |
| ret_val = e1000_config_fc_after_link_up(hw); |
| if (ret_val) { |
| DEBUGOUT("Error configuring flow control\n"); |
| return ret_val; |
| } |
| } |
| /* If we are forcing link and we are receiving /C/ ordered sets, re-enable |
| * auto-negotiation in the TXCW register and disable forced link in the |
| * Device Control register in an attempt to auto-negotiate with our link |
| * partner. |
| */ |
| else if (((hw->media_type == e1000_media_type_fiber) || |
| (hw->media_type == e1000_media_type_internal_serdes)) && |
| (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { |
| DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); |
| E1000_WRITE_REG(hw, TXCW, hw->txcw); |
| E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU)); |
| |
| hw->serdes_link_down = FALSE; |
| } |
| /* If we force link for non-auto-negotiation switch, check link status |
| * based on MAC synchronization for internal serdes media type. |
| */ |
| else if ((hw->media_type == e1000_media_type_internal_serdes) && |
| !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { |
| /* SYNCH bit and IV bit are sticky. */ |
| udelay(10); |
| if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) { |
| if (!(rxcw & E1000_RXCW_IV)) { |
| hw->serdes_link_down = FALSE; |
| DEBUGOUT("SERDES: Link is up.\n"); |
| } |
| } else { |
| hw->serdes_link_down = TRUE; |
| DEBUGOUT("SERDES: Link is down.\n"); |
| } |
| } |
| if ((hw->media_type == e1000_media_type_internal_serdes) && |
| (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { |
| hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS)); |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Detects the current speed and duplex settings of the hardware. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * speed - Speed of the connection |
| * duplex - Duplex setting of the connection |
| *****************************************************************************/ |
| int32_t |
| e1000_get_speed_and_duplex(struct e1000_hw *hw, |
| uint16_t *speed, |
| uint16_t *duplex) |
| { |
| uint32_t status; |
| int32_t ret_val; |
| uint16_t phy_data; |
| |
| DEBUGFUNC("e1000_get_speed_and_duplex"); |
| |
| if (hw->mac_type >= e1000_82543) { |
| status = E1000_READ_REG(hw, STATUS); |
| if (status & E1000_STATUS_SPEED_1000) { |
| *speed = SPEED_1000; |
| DEBUGOUT("1000 Mbs, "); |
| } else if (status & E1000_STATUS_SPEED_100) { |
| *speed = SPEED_100; |
| DEBUGOUT("100 Mbs, "); |
| } else { |
| *speed = SPEED_10; |
| DEBUGOUT("10 Mbs, "); |
| } |
| |
| if (status & E1000_STATUS_FD) { |
| *duplex = FULL_DUPLEX; |
| DEBUGOUT("Full Duplex\n"); |
| } else { |
| *duplex = HALF_DUPLEX; |
| DEBUGOUT(" Half Duplex\n"); |
| } |
| } else { |
| DEBUGOUT("1000 Mbs, Full Duplex\n"); |
| *speed = SPEED_1000; |
| *duplex = FULL_DUPLEX; |
| } |
| |
| /* IGP01 PHY may advertise full duplex operation after speed downgrade even |
| * if it is operating at half duplex. Here we set the duplex settings to |
| * match the duplex in the link partner's capabilities. |
| */ |
| if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { |
| ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| if (!(phy_data & NWAY_ER_LP_NWAY_CAPS)) |
| *duplex = HALF_DUPLEX; |
| else { |
| ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data); |
| if (ret_val) |
| return ret_val; |
| if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) || |
| (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) |
| *duplex = HALF_DUPLEX; |
| } |
| } |
| |
| if ((hw->mac_type == e1000_80003es2lan) && |
| (hw->media_type == e1000_media_type_copper)) { |
| if (*speed == SPEED_1000) |
| ret_val = e1000_configure_kmrn_for_1000(hw); |
| else |
| ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) { |
| ret_val = e1000_kumeran_lock_loss_workaround(hw); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Blocks until autoneg completes or times out (~4.5 seconds) |
| * |
| * hw - Struct containing variables accessed by shared code |
| ******************************************************************************/ |
| static int32_t |
| e1000_wait_autoneg(struct e1000_hw *hw) |
| { |
| int32_t ret_val; |
| uint16_t i; |
| uint16_t phy_data; |
| |
| DEBUGFUNC("e1000_wait_autoneg"); |
| DEBUGOUT("Waiting for Auto-Neg to complete.\n"); |
| |
| /* We will wait for autoneg to complete or 4.5 seconds to expire. */ |
| for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { |
| /* Read the MII Status Register and wait for Auto-Neg |
| * Complete bit to be set. |
| */ |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| if (phy_data & MII_SR_AUTONEG_COMPLETE) { |
| return E1000_SUCCESS; |
| } |
| msleep(100); |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Raises the Management Data Clock |
| * |
| * hw - Struct containing variables accessed by shared code |
| * ctrl - Device control register's current value |
| ******************************************************************************/ |
| static void |
| e1000_raise_mdi_clk(struct e1000_hw *hw, |
| uint32_t *ctrl) |
| { |
| /* Raise the clock input to the Management Data Clock (by setting the MDC |
| * bit), and then delay 10 microseconds. |
| */ |
| E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC)); |
| E1000_WRITE_FLUSH(hw); |
| udelay(10); |
| } |
| |
| /****************************************************************************** |
| * Lowers the Management Data Clock |
| * |
| * hw - Struct containing variables accessed by shared code |
| * ctrl - Device control register's current value |
| ******************************************************************************/ |
| static void |
| e1000_lower_mdi_clk(struct e1000_hw *hw, |
| uint32_t *ctrl) |
| { |
| /* Lower the clock input to the Management Data Clock (by clearing the MDC |
| * bit), and then delay 10 microseconds. |
| */ |
| E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC)); |
| E1000_WRITE_FLUSH(hw); |
| udelay(10); |
| } |
| |
| /****************************************************************************** |
| * Shifts data bits out to the PHY |
| * |
| * hw - Struct containing variables accessed by shared code |
| * data - Data to send out to the PHY |
| * count - Number of bits to shift out |
| * |
| * Bits are shifted out in MSB to LSB order. |
| ******************************************************************************/ |
| static void |
| e1000_shift_out_mdi_bits(struct e1000_hw *hw, |
| uint32_t data, |
| uint16_t count) |
| { |
| uint32_t ctrl; |
| uint32_t mask; |
| |
| /* We need to shift "count" number of bits out to the PHY. So, the value |
| * in the "data" parameter will be shifted out to the PHY one bit at a |
| * time. In order to do this, "data" must be broken down into bits. |
| */ |
| mask = 0x01; |
| mask <<= (count - 1); |
| |
| ctrl = E1000_READ_REG(hw, CTRL); |
| |
| /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ |
| ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); |
| |
| while (mask) { |
| /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and |
| * then raising and lowering the Management Data Clock. A "0" is |
| * shifted out to the PHY by setting the MDIO bit to "0" and then |
| * raising and lowering the clock. |
| */ |
| if (data & mask) |
| ctrl |= E1000_CTRL_MDIO; |
| else |
| ctrl &= ~E1000_CTRL_MDIO; |
| |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| E1000_WRITE_FLUSH(hw); |
| |
| udelay(10); |
| |
| e1000_raise_mdi_clk(hw, &ctrl); |
| e1000_lower_mdi_clk(hw, &ctrl); |
| |
| mask = mask >> 1; |
| } |
| } |
| |
| /****************************************************************************** |
| * Shifts data bits in from the PHY |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Bits are shifted in in MSB to LSB order. |
| ******************************************************************************/ |
| static uint16_t |
| e1000_shift_in_mdi_bits(struct e1000_hw *hw) |
| { |
| uint32_t ctrl; |
| uint16_t data = 0; |
| uint8_t i; |
| |
| /* In order to read a register from the PHY, we need to shift in a total |
| * of 18 bits from the PHY. The first two bit (turnaround) times are used |
| * to avoid contention on the MDIO pin when a read operation is performed. |
| * These two bits are ignored by us and thrown away. Bits are "shifted in" |
| * by raising the input to the Management Data Clock (setting the MDC bit), |
| * and then reading the value of the MDIO bit. |
| */ |
| ctrl = E1000_READ_REG(hw, CTRL); |
| |
| /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ |
| ctrl &= ~E1000_CTRL_MDIO_DIR; |
| ctrl &= ~E1000_CTRL_MDIO; |
| |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| E1000_WRITE_FLUSH(hw); |
| |
| /* Raise and Lower the clock before reading in the data. This accounts for |
| * the turnaround bits. The first clock occurred when we clocked out the |
| * last bit of the Register Address. |
| */ |
| e1000_raise_mdi_clk(hw, &ctrl); |
| e1000_lower_mdi_clk(hw, &ctrl); |
| |
| for (data = 0, i = 0; i < 16; i++) { |
| data = data << 1; |
| e1000_raise_mdi_clk(hw, &ctrl); |
| ctrl = E1000_READ_REG(hw, CTRL); |
| /* Check to see if we shifted in a "1". */ |
| if (ctrl & E1000_CTRL_MDIO) |
| data |= 1; |
| e1000_lower_mdi_clk(hw, &ctrl); |
| } |
| |
| e1000_raise_mdi_clk(hw, &ctrl); |
| e1000_lower_mdi_clk(hw, &ctrl); |
| |
| return data; |
| } |
| |
| static int32_t |
| e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask) |
| { |
| uint32_t swfw_sync = 0; |
| uint32_t swmask = mask; |
| uint32_t fwmask = mask << 16; |
| int32_t timeout = 200; |
| |
| DEBUGFUNC("e1000_swfw_sync_acquire"); |
| |
| if (hw->swfwhw_semaphore_present) |
| return e1000_get_software_flag(hw); |
| |
| if (!hw->swfw_sync_present) |
| return e1000_get_hw_eeprom_semaphore(hw); |
| |
| while (timeout) { |
| if (e1000_get_hw_eeprom_semaphore(hw)) |
| return -E1000_ERR_SWFW_SYNC; |
| |
| swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC); |
| if (!(swfw_sync & (fwmask | swmask))) { |
| break; |
| } |
| |
| /* firmware currently using resource (fwmask) */ |
| /* or other software thread currently using resource (swmask) */ |
| e1000_put_hw_eeprom_semaphore(hw); |
| mdelay(5); |
| timeout--; |
| } |
| |
| if (!timeout) { |
| DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); |
| return -E1000_ERR_SWFW_SYNC; |
| } |
| |
| swfw_sync |= swmask; |
| E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync); |
| |
| e1000_put_hw_eeprom_semaphore(hw); |
| return E1000_SUCCESS; |
| } |
| |
| static void |
| e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask) |
| { |
| uint32_t swfw_sync; |
| uint32_t swmask = mask; |
| |
| DEBUGFUNC("e1000_swfw_sync_release"); |
| |
| if (hw->swfwhw_semaphore_present) { |
| e1000_release_software_flag(hw); |
| return; |
| } |
| |
| if (!hw->swfw_sync_present) { |
| e1000_put_hw_eeprom_semaphore(hw); |
| return; |
| } |
| |
| /* if (e1000_get_hw_eeprom_semaphore(hw)) |
| * return -E1000_ERR_SWFW_SYNC; */ |
| while (e1000_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS); |
| /* empty */ |
| |
| swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC); |
| swfw_sync &= ~swmask; |
| E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync); |
| |
| e1000_put_hw_eeprom_semaphore(hw); |
| } |
| |
| /***************************************************************************** |
| * Reads the value from a PHY register, if the value is on a specific non zero |
| * page, sets the page first. |
| * hw - Struct containing variables accessed by shared code |
| * reg_addr - address of the PHY register to read |
| ******************************************************************************/ |
| int32_t |
| e1000_read_phy_reg(struct e1000_hw *hw, |
| uint32_t reg_addr, |
| uint16_t *phy_data) |
| { |
| uint32_t ret_val; |
| uint16_t swfw; |
| |
| DEBUGFUNC("e1000_read_phy_reg"); |
| |
| if ((hw->mac_type == e1000_80003es2lan) && |
| (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { |
| swfw = E1000_SWFW_PHY1_SM; |
| } else { |
| swfw = E1000_SWFW_PHY0_SM; |
| } |
| if (e1000_swfw_sync_acquire(hw, swfw)) |
| return -E1000_ERR_SWFW_SYNC; |
| |
| if ((hw->phy_type == e1000_phy_igp || |
| hw->phy_type == e1000_phy_igp_3 || |
| hw->phy_type == e1000_phy_igp_2) && |
| (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { |
| ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, |
| (uint16_t)reg_addr); |
| if (ret_val) { |
| e1000_swfw_sync_release(hw, swfw); |
| return ret_val; |
| } |
| } else if (hw->phy_type == e1000_phy_gg82563) { |
| if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) || |
| (hw->mac_type == e1000_80003es2lan)) { |
| /* Select Configuration Page */ |
| if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { |
| ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT, |
| (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT)); |
| } else { |
| /* Use Alternative Page Select register to access |
| * registers 30 and 31 |
| */ |
| ret_val = e1000_write_phy_reg_ex(hw, |
| GG82563_PHY_PAGE_SELECT_ALT, |
| (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT)); |
| } |
| |
| if (ret_val) { |
| e1000_swfw_sync_release(hw, swfw); |
| return ret_val; |
| } |
| } |
| } |
| |
| ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, |
| phy_data); |
| |
| e1000_swfw_sync_release(hw, swfw); |
| return ret_val; |
| } |
| |
| static int32_t |
| e1000_read_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr, |
| uint16_t *phy_data) |
| { |
| uint32_t i; |
| uint32_t mdic = 0; |
| const uint32_t phy_addr = 1; |
| |
| DEBUGFUNC("e1000_read_phy_reg_ex"); |
| |
| if (reg_addr > MAX_PHY_REG_ADDRESS) { |
| DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); |
| return -E1000_ERR_PARAM; |
| } |
| |
| if (hw->mac_type > e1000_82543) { |
| /* Set up Op-code, Phy Address, and register address in the MDI |
| * Control register. The MAC will take care of interfacing with the |
| * PHY to retrieve the desired data. |
| */ |
| mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | |
| (phy_addr << E1000_MDIC_PHY_SHIFT) | |
| (E1000_MDIC_OP_READ)); |
| |
| E1000_WRITE_REG(hw, MDIC, mdic); |
| |
| /* Poll the ready bit to see if the MDI read completed */ |
| for (i = 0; i < 64; i++) { |
| udelay(50); |
| mdic = E1000_READ_REG(hw, MDIC); |
| if (mdic & E1000_MDIC_READY) break; |
| } |
| if (!(mdic & E1000_MDIC_READY)) { |
| DEBUGOUT("MDI Read did not complete\n"); |
| return -E1000_ERR_PHY; |
| } |
| if (mdic & E1000_MDIC_ERROR) { |
| DEBUGOUT("MDI Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| *phy_data = (uint16_t) mdic; |
| } else { |
| /* We must first send a preamble through the MDIO pin to signal the |
| * beginning of an MII instruction. This is done by sending 32 |
| * consecutive "1" bits. |
| */ |
| e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); |
| |
| /* Now combine the next few fields that are required for a read |
| * operation. We use this method instead of calling the |
| * e1000_shift_out_mdi_bits routine five different times. The format of |
| * a MII read instruction consists of a shift out of 14 bits and is |
| * defined as follows: |
| * <Preamble><SOF><Op Code><Phy Addr><Reg Addr> |
| * followed by a shift in of 18 bits. This first two bits shifted in |
| * are TurnAround bits used to avoid contention on the MDIO pin when a |
| * READ operation is performed. These two bits are thrown away |
| * followed by a shift in of 16 bits which contains the desired data. |
| */ |
| mdic = ((reg_addr) | (phy_addr << 5) | |
| (PHY_OP_READ << 10) | (PHY_SOF << 12)); |
| |
| e1000_shift_out_mdi_bits(hw, mdic, 14); |
| |
| /* Now that we've shifted out the read command to the MII, we need to |
| * "shift in" the 16-bit value (18 total bits) of the requested PHY |
| * register address. |
| */ |
| *phy_data = e1000_shift_in_mdi_bits(hw); |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Writes a value to a PHY register |
| * |
| * hw - Struct containing variables accessed by shared code |
| * reg_addr - address of the PHY register to write |
| * data - data to write to the PHY |
| ******************************************************************************/ |
| int32_t |
| e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, |
| uint16_t phy_data) |
| { |
| uint32_t ret_val; |
| uint16_t swfw; |
| |
| DEBUGFUNC("e1000_write_phy_reg"); |
| |
| if ((hw->mac_type == e1000_80003es2lan) && |
| (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { |
| swfw = E1000_SWFW_PHY1_SM; |
| } else { |
| swfw = E1000_SWFW_PHY0_SM; |
| } |
| if (e1000_swfw_sync_acquire(hw, swfw)) |
| return -E1000_ERR_SWFW_SYNC; |
| |
| if ((hw->phy_type == e1000_phy_igp || |
| hw->phy_type == e1000_phy_igp_3 || |
| hw->phy_type == e1000_phy_igp_2) && |
| (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { |
| ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, |
| (uint16_t)reg_addr); |
| if (ret_val) { |
| e1000_swfw_sync_release(hw, swfw); |
| return ret_val; |
| } |
| } else if (hw->phy_type == e1000_phy_gg82563) { |
| if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) || |
| (hw->mac_type == e1000_80003es2lan)) { |
| /* Select Configuration Page */ |
| if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { |
| ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT, |
| (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT)); |
| } else { |
| /* Use Alternative Page Select register to access |
| * registers 30 and 31 |
| */ |
| ret_val = e1000_write_phy_reg_ex(hw, |
| GG82563_PHY_PAGE_SELECT_ALT, |
| (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT)); |
| } |
| |
| if (ret_val) { |
| e1000_swfw_sync_release(hw, swfw); |
| return ret_val; |
| } |
| } |
| } |
| |
| ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, |
| phy_data); |
| |
| e1000_swfw_sync_release(hw, swfw); |
| return ret_val; |
| } |
| |
| static int32_t |
| e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr, |
| uint16_t phy_data) |
| { |
| uint32_t i; |
| uint32_t mdic = 0; |
| const uint32_t phy_addr = 1; |
| |
| DEBUGFUNC("e1000_write_phy_reg_ex"); |
| |
| if (reg_addr > MAX_PHY_REG_ADDRESS) { |
| DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); |
| return -E1000_ERR_PARAM; |
| } |
| |
| if (hw->mac_type > e1000_82543) { |
| /* Set up Op-code, Phy Address, register address, and data intended |
| * for the PHY register in the MDI Control register. The MAC will take |
| * care of interfacing with the PHY to send the desired data. |
| */ |
| mdic = (((uint32_t) phy_data) | |
| (reg_addr << E1000_MDIC_REG_SHIFT) | |
| (phy_addr << E1000_MDIC_PHY_SHIFT) | |
| (E1000_MDIC_OP_WRITE)); |
| |
| E1000_WRITE_REG(hw, MDIC, mdic); |
| |
| /* Poll the ready bit to see if the MDI read completed */ |
| for (i = 0; i < 641; i++) { |
| udelay(5); |
| mdic = E1000_READ_REG(hw, MDIC); |
| if (mdic & E1000_MDIC_READY) break; |
| } |
| if (!(mdic & E1000_MDIC_READY)) { |
| DEBUGOUT("MDI Write did not complete\n"); |
| return -E1000_ERR_PHY; |
| } |
| } else { |
| /* We'll need to use the SW defined pins to shift the write command |
| * out to the PHY. We first send a preamble to the PHY to signal the |
| * beginning of the MII instruction. This is done by sending 32 |
| * consecutive "1" bits. |
| */ |
| e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); |
| |
| /* Now combine the remaining required fields that will indicate a |
| * write operation. We use this method instead of calling the |
| * e1000_shift_out_mdi_bits routine for each field in the command. The |
| * format of a MII write instruction is as follows: |
| * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. |
| */ |
| mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | |
| (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); |
| mdic <<= 16; |
| mdic |= (uint32_t) phy_data; |
| |
| e1000_shift_out_mdi_bits(hw, mdic, 32); |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| static int32_t |
| e1000_read_kmrn_reg(struct e1000_hw *hw, |
| uint32_t reg_addr, |
| uint16_t *data) |
| { |
| uint32_t reg_val; |
| uint16_t swfw; |
| DEBUGFUNC("e1000_read_kmrn_reg"); |
| |
| if ((hw->mac_type == e1000_80003es2lan) && |
| (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { |
| swfw = E1000_SWFW_PHY1_SM; |
| } else { |
| swfw = E1000_SWFW_PHY0_SM; |
| } |
| if (e1000_swfw_sync_acquire(hw, swfw)) |
| return -E1000_ERR_SWFW_SYNC; |
| |
| /* Write register address */ |
| reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) & |
| E1000_KUMCTRLSTA_OFFSET) | |
| E1000_KUMCTRLSTA_REN; |
| E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val); |
| udelay(2); |
| |
| /* Read the data returned */ |
| reg_val = E1000_READ_REG(hw, KUMCTRLSTA); |
| *data = (uint16_t)reg_val; |
| |
| e1000_swfw_sync_release(hw, swfw); |
| return E1000_SUCCESS; |
| } |
| |
| static int32_t |
| e1000_write_kmrn_reg(struct e1000_hw *hw, |
| uint32_t reg_addr, |
| uint16_t data) |
| { |
| uint32_t reg_val; |
| uint16_t swfw; |
| DEBUGFUNC("e1000_write_kmrn_reg"); |
| |
| if ((hw->mac_type == e1000_80003es2lan) && |
| (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { |
| swfw = E1000_SWFW_PHY1_SM; |
| } else { |
| swfw = E1000_SWFW_PHY0_SM; |
| } |
| if (e1000_swfw_sync_acquire(hw, swfw)) |
| return -E1000_ERR_SWFW_SYNC; |
| |
| reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) & |
| E1000_KUMCTRLSTA_OFFSET) | data; |
| E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val); |
| udelay(2); |
| |
| e1000_swfw_sync_release(hw, swfw); |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Returns the PHY to the power-on reset state |
| * |
| * hw - Struct containing variables accessed by shared code |
| ******************************************************************************/ |
| int32_t |
| e1000_phy_hw_reset(struct e1000_hw *hw) |
| { |
| uint32_t ctrl, ctrl_ext; |
| uint32_t led_ctrl; |
| int32_t ret_val; |
| uint16_t swfw; |
| |
| DEBUGFUNC("e1000_phy_hw_reset"); |
| |
| /* In the case of the phy reset being blocked, it's not an error, we |
| * simply return success without performing the reset. */ |
| ret_val = e1000_check_phy_reset_block(hw); |
| if (ret_val) |
| return E1000_SUCCESS; |
| |
| DEBUGOUT("Resetting Phy...\n"); |
| |
| if (hw->mac_type > e1000_82543) { |
| if ((hw->mac_type == e1000_80003es2lan) && |
| (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { |
| swfw = E1000_SWFW_PHY1_SM; |
| } else { |
| swfw = E1000_SWFW_PHY0_SM; |
| } |
| if (e1000_swfw_sync_acquire(hw, swfw)) { |
| DEBUGOUT("Unable to acquire swfw sync\n"); |
| return -E1000_ERR_SWFW_SYNC; |
| } |
| /* Read the device control register and assert the E1000_CTRL_PHY_RST |
| * bit. Then, take it out of reset. |
| * For pre-e1000_82571 hardware, we delay for 10ms between the assert |
| * and deassert. For e1000_82571 hardware and later, we instead delay |
| * for 50us between and 10ms after the deassertion. |
| */ |
| ctrl = E1000_READ_REG(hw, CTRL); |
| E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); |
| E1000_WRITE_FLUSH(hw); |
| |
| if (hw->mac_type < e1000_82571) |
| msleep(10); |
| else |
| udelay(100); |
| |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| E1000_WRITE_FLUSH(hw); |
| |
| if (hw->mac_type >= e1000_82571) |
| mdelay(10); |
| |
| e1000_swfw_sync_release(hw, swfw); |
| } else { |
| /* Read the Extended Device Control Register, assert the PHY_RESET_DIR |
| * bit to put the PHY into reset. Then, take it out of reset. |
| */ |
| ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; |
| ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; |
| E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| E1000_WRITE_FLUSH(hw); |
| msleep(10); |
| ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; |
| E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| E1000_WRITE_FLUSH(hw); |
| } |
| udelay(150); |
| |
| if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
| /* Configure activity LED after PHY reset */ |
| led_ctrl = E1000_READ_REG(hw, LEDCTL); |
| led_ctrl &= IGP_ACTIVITY_LED_MASK; |
| led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
| E1000_WRITE_REG(hw, LEDCTL, led_ctrl); |
| } |
| |
| /* Wait for FW to finish PHY configuration. */ |
| ret_val = e1000_get_phy_cfg_done(hw); |
| if (ret_val != E1000_SUCCESS) |
| return ret_val; |
| e1000_release_software_semaphore(hw); |
| |
| if ((hw->mac_type == e1000_ich8lan) && (hw->phy_type == e1000_phy_igp_3)) |
| ret_val = e1000_init_lcd_from_nvm(hw); |
| |
| return ret_val; |
| } |
| |
| /****************************************************************************** |
| * Resets the PHY |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Sets bit 15 of the MII Control register |
| ******************************************************************************/ |
| int32_t |
| e1000_phy_reset(struct e1000_hw *hw) |
| { |
| int32_t ret_val; |
| uint16_t phy_data; |
| |
| DEBUGFUNC("e1000_phy_reset"); |
| |
| /* In the case of the phy reset being blocked, it's not an error, we |
| * simply return success without performing the reset. */ |
| ret_val = e1000_check_phy_reset_block(hw); |
| if (ret_val) |
| return E1000_SUCCESS; |
| |
| switch (hw->phy_type) { |
| case e1000_phy_igp: |
| case e1000_phy_igp_2: |
| case e1000_phy_igp_3: |
| case e1000_phy_ife: |
| ret_val = e1000_phy_hw_reset(hw); |
| if (ret_val) |
| return ret_val; |
| break; |
| default: |
| ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= MII_CR_RESET; |
| ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| udelay(1); |
| break; |
| } |
| |
| if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2) |
| e1000_phy_init_script(hw); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Work-around for 82566 power-down: on D3 entry- |
| * 1) disable gigabit link |
| * 2) write VR power-down enable |
| * 3) read it back |
| * if successful continue, else issue LCD reset and repeat |
| * |
| * hw - struct containing variables accessed by shared code |
| ******************************************************************************/ |
| void |
| e1000_phy_powerdown_workaround(struct e1000_hw *hw) |
| { |
| int32_t reg; |
| uint16_t phy_data; |
| int32_t retry = 0; |
| |
| DEBUGFUNC("e1000_phy_powerdown_workaround"); |
| |
| if (hw->phy_type != e1000_phy_igp_3) |
| return; |
| |
| do { |
| /* Disable link */ |
| reg = E1000_READ_REG(hw, PHY_CTRL); |
| E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | |
| E1000_PHY_CTRL_NOND0A_GBE_DISABLE); |
| |
| /* Write VR power-down enable - bits 9:8 should be 10b */ |
| e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data); |
| phy_data |= (1 << 9); |
| phy_data &= ~(1 << 8); |
| e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data); |
| |
| /* Read it back and test */ |
| e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data); |
| if (((phy_data & IGP3_VR_CTRL_MODE_MASK) == IGP3_VR_CTRL_MODE_SHUT) || retry) |
| break; |
| |
| /* Issue PHY reset and repeat at most one more time */ |
| reg = E1000_READ_REG(hw, CTRL); |
| E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST); |
| retry++; |
| } while (retry); |
| |
| return; |
| |
| } |
| |
| /****************************************************************************** |
| * Work-around for 82566 Kumeran PCS lock loss: |
| * On link status change (i.e. PCI reset, speed change) and link is up and |
| * speed is gigabit- |
| * 0) if workaround is optionally disabled do nothing |
| * 1) wait 1ms for Kumeran link to come up |
| * 2) check Kumeran Diagnostic register PCS lock loss bit |
| * 3) if not set the link is locked (all is good), otherwise... |
| * 4) reset the PHY |
| * 5) repeat up to 10 times |
| * Note: this is only called for IGP3 copper when speed is 1gb. |
| * |
| * hw - struct containing variables accessed by shared code |
| ******************************************************************************/ |
| static int32_t |
| e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw) |
| { |
| int32_t ret_val; |
| int32_t reg; |
| int32_t cnt; |
| uint16_t phy_data; |
| |
| if (hw->kmrn_lock_loss_workaround_disabled) |
| return E1000_SUCCESS; |
| |
| /* Make sure link is up before proceeding. If not just return. |
| * Attempting this while link is negotiating fouled up link |
| * stability */ |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
| |
| if (phy_data & MII_SR_LINK_STATUS) { |
| for (cnt = 0; cnt < 10; cnt++) { |
| /* read once to clear */ |
| ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); |
| if (ret_val) |
| return ret_val; |
| /* and again to get new status */ |
| ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* check for PCS lock */ |
| if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) |
| return E1000_SUCCESS; |
| |
| /* Issue PHY reset */ |
| e1000_phy_hw_reset(hw); |
| mdelay(5); |
| } |
| /* Disable GigE link negotiation */ |
| reg = E1000_READ_REG(hw, PHY_CTRL); |
| E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | |
| E1000_PHY_CTRL_NOND0A_GBE_DISABLE); |
| |
| /* unable to acquire PCS lock */ |
| return E1000_ERR_PHY; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Probes the expected PHY address for known PHY IDs |
| * |
| * hw - Struct containing variables accessed by shared code |
| ******************************************************************************/ |
| static int32_t |
| e1000_detect_gig_phy(struct e1000_hw *hw) |
| { |
| int32_t phy_init_status, ret_val; |
| uint16_t phy_id_high, phy_id_low; |
| boolean_t match = FALSE; |
| |
| DEBUGFUNC("e1000_detect_gig_phy"); |
| |
| if (hw->phy_id != 0) |
| return E1000_SUCCESS; |
| |
| /* The 82571 firmware may still be configuring the PHY. In this |
| * case, we cannot access the PHY until the configuration is done. So |
| * we explicitly set the PHY values. */ |
| if (hw->mac_type == e1000_82571 || |
| hw->mac_type == e1000_82572) { |
| hw->phy_id = IGP01E1000_I_PHY_ID; |
| hw->phy_type = e1000_phy_igp_2; |
| return E1000_SUCCESS; |
| } |
| |
| /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a work- |
| * around that forces PHY page 0 to be set or the reads fail. The rest of |
| * the code in this routine uses e1000_read_phy_reg to read the PHY ID. |
| * So for ESB-2 we need to have this set so our reads won't fail. If the |
| * attached PHY is not a e1000_phy_gg82563, the routines below will figure |
| * this out as well. */ |
| if (hw->mac_type == e1000_80003es2lan) |
| hw->phy_type = e1000_phy_gg82563; |
| |
| /* Read the PHY ID Registers to identify which PHY is onboard. */ |
| ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); |
| if (ret_val) |
| return ret_val; |
| |
| hw->phy_id = (uint32_t) (phy_id_high << 16); |
| udelay(20); |
| ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); |
| if (ret_val) |
| return ret_val; |
| |
| hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK); |
| hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK; |
| |
| switch (hw->mac_type) { |
| case e1000_82543: |
| if (hw->phy_id == M88E1000_E_PHY_ID) match = TRUE; |
| break; |
| case e1000_82544: |
| if (hw->phy_id == M88E1000_I_PHY_ID) match = TRUE; |
| break; |
| case e1000_82540: |
| case e1000_82545: |
| case e1000_82545_rev_3: |
| case e1000_82546: |
| case e1000_82546_rev_3: |
| if (hw->phy_id == M88E1011_I_PHY_ID) match = TRUE; |
| break; |
| case e1000_82541: |
| case e1000_82541_rev_2: |
| case e1000_82547: |
| case e1000_82547_rev_2: |
| if (hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE; |
| break; |
| case e1000_82573: |
| if (hw->phy_id == M88E1111_I_PHY_ID) match = TRUE; |
| break; |
| case e1000_80003es2lan: |
| if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE; |
| break; |
| case e1000_ich8lan: |
| if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE; |
| if (hw->phy_id == IFE_E_PHY_ID) match = TRUE; |
| if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE; |
| if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE; |
| break; |
| default: |
| DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); |
| return -E1000_ERR_CONFIG; |
| } |
| phy_init_status = e1000_set_phy_type(hw); |
| |
| if ((match) && (phy_init_status == E1000_SUCCESS)) { |
| DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id); |
| return E1000_SUCCESS; |
| } |
| DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id); |
| return -E1000_ERR_PHY; |
| } |
| |
| /****************************************************************************** |
| * Resets the PHY's DSP |
| * |
| * hw - Struct containing variables accessed by shared code |
| ******************************************************************************/ |
| static int32_t |
| e1000_phy_reset_dsp(struct e1000_hw *hw) |
| { |
| int32_t ret_val; |
| DEBUGFUNC("e1000_phy_reset_dsp"); |
| |
| do { |
| if (hw->phy_type != e1000_phy_gg82563) { |
| ret_val = e1000_write_phy_reg(hw, 29, 0x001d); |
| if (ret_val) break; |
| } |
| ret_val = e1000_write_phy_reg(hw, 30, 0x00c1); |
| if (ret_val) break; |
| ret_val = e1000_write_phy_reg(hw, 30, 0x0000); |
| if (ret_val) break; |
| ret_val = E1000_SUCCESS; |
| } while (0); |
| |
| return ret_val; |
| } |
| |
| /****************************************************************************** |
| * Get PHY information from various PHY registers for igp PHY only. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * phy_info - PHY information structure |
| ******************************************************************************/ |
| static int32_t |
| e1000_phy_igp_get_info(struct e1000_hw *hw, |
| struct e1000_phy_info *phy_info) |
| { |
| int32_t ret_val; |
| uint16_t phy_data, min_length, max_length, average; |
| e1000_rev_polarity polarity; |
| |
| DEBUGFUNC("e1000_phy_igp_get_info"); |
| |
| /* The downshift status is checked only once, after link is established, |
| * and it stored in the hw->speed_downgraded parameter. */ |
| phy_info->downshift = (e1000_downshift)hw->speed_downgraded; |
| |
| /* IGP01E1000 does not need to support it. */ |
| phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; |
| |
| /* IGP01E1000 always correct polarity reversal */ |
| phy_info->polarity_correction = e1000_polarity_reversal_enabled; |
| |
| /* Check polarity status */ |
| ret_val = e1000_check_polarity(hw, &polarity); |
| if (ret_val) |
| return ret_val; |
| |
| phy_info->cable_polarity = polarity; |
| |
| ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & IGP01E1000_PSSR_MDIX) >> |
| IGP01E1000_PSSR_MDIX_SHIFT); |
| |
| if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == |
| IGP01E1000_PSSR_SPEED_1000MBPS) { |
| /* Local/Remote Receiver Information are only valid at 1000 Mbps */ |
| ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> |
| SR_1000T_LOCAL_RX_STATUS_SHIFT) ? |
| e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; |
| phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> |
| SR_1000T_REMOTE_RX_STATUS_SHIFT) ? |
| e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; |
| |
| /* Get cable length */ |
| ret_val = e1000_get_cable_length(hw, &min_length, &max_length); |
| if (ret_val) |
| return ret_val; |
| |
| /* Translate to old method */ |
| average = (max_length + min_length) / 2; |
| |
| if (average <= e1000_igp_cable_length_50) |
| phy_info->cable_length = e1000_cable_length_50; |
| else if (average <= e1000_igp_cable_length_80) |
| phy_info->cable_length = e1000_cable_length_50_80; |
| else if (average <= e1000_igp_cable_length_110) |
| phy_info->cable_length = e1000_cable_length_80_110; |
| else if (average <= e1000_igp_cable_length_140) |
| phy_info->cable_length = e1000_cable_length_110_140; |
| else |
| phy_info->cable_length = e1000_cable_length_140; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Get PHY information from various PHY registers for ife PHY only. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * phy_info - PHY information structure |
| ******************************************************************************/ |
| static int32_t |
| e1000_phy_ife_get_info(struct e1000_hw *hw, |
| struct e1000_phy_info *phy_info) |
| { |
| int32_t ret_val; |
| uint16_t phy_data; |
| e1000_rev_polarity polarity; |
| |
| DEBUGFUNC("e1000_phy_ife_get_info"); |
| |
| phy_info->downshift = (e1000_downshift)hw->speed_downgraded; |
| phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; |
| |
| ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| phy_info->polarity_correction = |
| ((phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >> |
| IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT) ? |
| e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled; |
| |
| if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) { |
| ret_val = e1000_check_polarity(hw, &polarity); |
| if (ret_val) |
| return ret_val; |
| } else { |
| /* Polarity is forced. */ |
| polarity = ((phy_data & IFE_PSC_FORCE_POLARITY) >> |
| IFE_PSC_FORCE_POLARITY_SHIFT) ? |
| e1000_rev_polarity_reversed : e1000_rev_polarity_normal; |
| } |
| phy_info->cable_polarity = polarity; |
| |
| ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_info->mdix_mode = (e1000_auto_x_mode) |
| ((phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >> |
| IFE_PMC_MDIX_MODE_SHIFT); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Get PHY information from various PHY registers fot m88 PHY only. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * phy_info - PHY information structure |
| ******************************************************************************/ |
| static int32_t |
| e1000_phy_m88_get_info(struct e1000_hw *hw, |
| struct e1000_phy_info *phy_info) |
| { |
| int32_t ret_val; |
| uint16_t phy_data; |
| e1000_rev_polarity polarity; |
| |
| DEBUGFUNC("e1000_phy_m88_get_info"); |
| |
| /* The downshift status is checked only once, after link is established, |
| * and it stored in the hw->speed_downgraded parameter. */ |
| phy_info->downshift = (e1000_downshift)hw->speed_downgraded; |
| |
| ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_info->extended_10bt_distance = |
| ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >> |
| M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ? |
| e1000_10bt_ext_dist_enable_lower : e1000_10bt_ext_dist_enable_normal; |
| |
| phy_info->polarity_correction = |
| ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >> |
| M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ? |
| e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled; |
| |
| /* Check polarity status */ |
| ret_val = e1000_check_polarity(hw, &polarity); |
| if (ret_val) |
| return ret_val; |
| phy_info->cable_polarity = polarity; |
| |
| ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & M88E1000_PSSR_MDIX) >> |
| M88E1000_PSSR_MDIX_SHIFT); |
| |
| if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { |
| /* Cable Length Estimation and Local/Remote Receiver Information |
| * are only valid at 1000 Mbps. |
| */ |
| if (hw->phy_type != e1000_phy_gg82563) { |
| phy_info->cable_length = (e1000_cable_length)((phy_data & M88E1000_PSSR_CABLE_LENGTH) >> |
| M88E1000_PSSR_CABLE_LENGTH_SHIFT); |
| } else { |
| ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_info->cable_length = (e1000_cable_length)(phy_data & GG82563_DSPD_CABLE_LENGTH); |
| } |
| |
| ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> |
| SR_1000T_LOCAL_RX_STATUS_SHIFT) ? |
| e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; |
| phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> |
| SR_1000T_REMOTE_RX_STATUS_SHIFT) ? |
| e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; |
| |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Get PHY information from various PHY registers |
| * |
| * hw - Struct containing variables accessed by shared code |
| * phy_info - PHY information structure |
| ******************************************************************************/ |
| int32_t |
| e1000_phy_get_info(struct e1000_hw *hw, |
| struct e1000_phy_info *phy_info) |
| { |
| int32_t ret_val; |
| uint16_t phy_data; |
| |
| DEBUGFUNC("e1000_phy_get_info"); |
| |
| phy_info->cable_length = e1000_cable_length_undefined; |
| phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined; |
| phy_info->cable_polarity = e1000_rev_polarity_undefined; |
| phy_info->downshift = e1000_downshift_undefined; |
| phy_info->polarity_correction = e1000_polarity_reversal_undefined; |
| phy_info->mdix_mode = e1000_auto_x_mode_undefined; |
| phy_info->local_rx = e1000_1000t_rx_status_undefined; |
| phy_info->remote_rx = e1000_1000t_rx_status_undefined; |
| |
| if (hw->media_type != e1000_media_type_copper) { |
| DEBUGOUT("PHY info is only valid for copper media\n"); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { |
| DEBUGOUT("PHY info is only valid if link is up\n"); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| if (hw->phy_type == e1000_phy_igp || |
| hw->phy_type == e1000_phy_igp_3 || |
| hw->phy_type == e1000_phy_igp_2) |
| return e1000_phy_igp_get_info(hw, phy_info); |
| else if (hw->phy_type == e1000_phy_ife) |
| return e1000_phy_ife_get_info(hw, phy_info); |
| else |
| return e1000_phy_m88_get_info(hw, phy_info); |
| } |
| |
| int32_t |
| e1000_validate_mdi_setting(struct e1000_hw *hw) |
| { |
| DEBUGFUNC("e1000_validate_mdi_settings"); |
| |
| if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { |
| DEBUGOUT("Invalid MDI setting detected\n"); |
| hw->mdix = 1; |
| return -E1000_ERR_CONFIG; |
| } |
| return E1000_SUCCESS; |
| } |
| |
| |
| /****************************************************************************** |
| * Sets up eeprom variables in the hw struct. Must be called after mac_type |
| * is configured. Additionally, if this is ICH8, the flash controller GbE |
| * registers must be mapped, or this will crash. |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| int32_t |
| e1000_init_eeprom_params(struct e1000_hw *hw) |
| { |
| struct e1000_eeprom_info *eeprom = &hw->eeprom; |
| uint32_t eecd = E1000_READ_REG(hw, EECD); |
| int32_t ret_val = E1000_SUCCESS; |
| uint16_t eeprom_size; |
| |
| DEBUGFUNC("e1000_init_eeprom_params"); |
| |
| switch (hw->mac_type) { |
| case e1000_82542_rev2_0: |
| case e1000_82542_rev2_1: |
| case e1000_82543: |
| case e1000_82544: |
| eeprom->type = e1000_eeprom_microwire; |
| eeprom->word_size = 64; |
| eeprom->opcode_bits = 3; |
| eeprom->address_bits = 6; |
| eeprom->delay_usec = 50; |
| eeprom->use_eerd = FALSE; |
| eeprom->use_eewr = FALSE; |
| break; |
| case e1000_82540: |
| case e1000_82545: |
| case e1000_82545_rev_3: |
| case e1000_82546: |
| case e1000_82546_rev_3: |
| eeprom->type = e1000_eeprom_microwire; |
| eeprom->opcode_bits = 3; |
| eeprom->delay_usec = 50; |
| if (eecd & E1000_EECD_SIZE) { |
| eeprom->word_size = 256; |
| eeprom->address_bits = 8; |
| } else { |
| eeprom->word_size = 64; |
| eeprom->address_bits = 6; |
| } |
| eeprom->use_eerd = FALSE; |
| eeprom->use_eewr = FALSE; |
| break; |
| case e1000_82541: |
| case e1000_82541_rev_2: |
| case e1000_82547: |
| case e1000_82547_rev_2: |
| if (eecd & E1000_EECD_TYPE) { |
| eeprom->type = e1000_eeprom_spi; |
| eeprom->opcode_bits = 8; |
| eeprom->delay_usec = 1; |
| if (eecd & E1000_EECD_ADDR_BITS) { |
| eeprom->page_size = 32; |
| eeprom->address_bits = 16; |
| } else { |
| eeprom->page_size = 8; |
| eeprom->address_bits = 8; |
| } |
| } else { |
| eeprom->type = e1000_eeprom_microwire; |
| eeprom->opcode_bits = 3; |
| eeprom->delay_usec = 50; |
| if (eecd & E1000_EECD_ADDR_BITS) { |
| eeprom->word_size = 256; |
| eeprom->address_bits = 8; |
| } else { |
| eeprom->word_size = 64; |
| eeprom->address_bits = 6; |
| } |
| } |
| eeprom->use_eerd = FALSE; |
| eeprom->use_eewr = FALSE; |
| break; |
| case e1000_82571: |
| case e1000_82572: |
| eeprom->type = e1000_eeprom_spi; |
| eeprom->opcode_bits = 8; |
| eeprom->delay_usec = 1; |
| if (eecd & E1000_EECD_ADDR_BITS) { |
| eeprom->page_size = 32; |
| eeprom->address_bits = 16; |
| } else { |
| eeprom->page_size = 8; |
| eeprom->address_bits = 8; |
| } |
| eeprom->use_eerd = FALSE; |
| eeprom->use_eewr = FALSE; |
| break; |
| case e1000_82573: |
| eeprom->type = e1000_eeprom_spi; |
| eeprom->opcode_bits = 8; |
| eeprom->delay_usec = 1; |
| if (eecd & E1000_EECD_ADDR_BITS) { |
| eeprom->page_size = 32; |
| eeprom->address_bits = 16; |
| } else { |
| eeprom->page_size = 8; |
| eeprom->address_bits = 8; |
| } |
| eeprom->use_eerd = TRUE; |
| eeprom->use_eewr = TRUE; |
| if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) { |
| eeprom->type = e1000_eeprom_flash; |
| eeprom->word_size = 2048; |
| |
| /* Ensure that the Autonomous FLASH update bit is cleared due to |
| * Flash update issue on parts which use a FLASH for NVM. */ |
| eecd &= ~E1000_EECD_AUPDEN; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| } |
| break; |
| case e1000_80003es2lan: |
| eeprom->type = e1000_eeprom_spi; |
| eeprom->opcode_bits = 8; |
| eeprom->delay_usec = 1; |
| if (eecd & E1000_EECD_ADDR_BITS) { |
| eeprom->page_size = 32; |
| eeprom->address_bits = 16; |
| } else { |
| eeprom->page_size = 8; |
| eeprom->address_bits = 8; |
| } |
| eeprom->use_eerd = TRUE; |
| eeprom->use_eewr = FALSE; |
| break; |
| case e1000_ich8lan: |
| { |
| int32_t i = 0; |
| uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_GFPREG); |
| |
| eeprom->type = e1000_eeprom_ich8; |
| eeprom->use_eerd = FALSE; |
| eeprom->use_eewr = FALSE; |
| eeprom->word_size = E1000_SHADOW_RAM_WORDS; |
| |
| /* Zero the shadow RAM structure. But don't load it from NVM |
| * so as to save time for driver init */ |
| if (hw->eeprom_shadow_ram != NULL) { |
| for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { |
| hw->eeprom_shadow_ram[i].modified = FALSE; |
| hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; |
| } |
| } |
| |
| hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) * |
| ICH_FLASH_SECTOR_SIZE; |
| |
| hw->flash_bank_size = ((flash_size >> 16) & ICH_GFPREG_BASE_MASK) + 1; |
| hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK); |
| |
| hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE; |
| |
| hw->flash_bank_size /= 2 * sizeof(uint16_t); |
| |
| break; |
| } |
| default: |
| break; |
| } |
| |
| if (eeprom->type == e1000_eeprom_spi) { |
| /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to |
| * 32KB (incremented by powers of 2). |
| */ |
| if (hw->mac_type <= e1000_82547_rev_2) { |
| /* Set to default value for initial eeprom read. */ |
| eeprom->word_size = 64; |
| ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); |
| if (ret_val) |
| return ret_val; |
| eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; |
| /* 256B eeprom size was not supported in earlier hardware, so we |
| * bump eeprom_size up one to ensure that "1" (which maps to 256B) |
| * is never the result used in the shifting logic below. */ |
| if (eeprom_size) |
| eeprom_size++; |
| } else { |
| eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >> |
| E1000_EECD_SIZE_EX_SHIFT); |
| } |
| |
| eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); |
| } |
| return ret_val; |
| } |
| |
| /****************************************************************************** |
| * Raises the EEPROM's clock input. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * eecd - EECD's current value |
| *****************************************************************************/ |
| static void |
| e1000_raise_ee_clk(struct e1000_hw *hw, |
| uint32_t *eecd) |
| { |
| /* Raise the clock input to the EEPROM (by setting the SK bit), and then |
| * wait <delay> microseconds. |
| */ |
| *eecd = *eecd | E1000_EECD_SK; |
| E1000_WRITE_REG(hw, EECD, *eecd); |
| E1000_WRITE_FLUSH(hw); |
| udelay(hw->eeprom.delay_usec); |
| } |
| |
| /****************************************************************************** |
| * Lowers the EEPROM's clock input. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * eecd - EECD's current value |
| *****************************************************************************/ |
| static void |
| e1000_lower_ee_clk(struct e1000_hw *hw, |
| uint32_t *eecd) |
| { |
| /* Lower the clock input to the EEPROM (by clearing the SK bit), and then |
| * wait 50 microseconds. |
| */ |
| *eecd = *eecd & ~E1000_EECD_SK; |
| E1000_WRITE_REG(hw, EECD, *eecd); |
| E1000_WRITE_FLUSH(hw); |
| udelay(hw->eeprom.delay_usec); |
| } |
| |
| /****************************************************************************** |
| * Shift data bits out to the EEPROM. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * data - data to send to the EEPROM |
| * count - number of bits to shift out |
| *****************************************************************************/ |
| static void |
| e1000_shift_out_ee_bits(struct e1000_hw *hw, |
| uint16_t data, |
| uint16_t count) |
| { |
| struct e1000_eeprom_info *eeprom = &hw->eeprom; |
| uint32_t eecd; |
| uint32_t mask; |
| |
| /* We need to shift "count" bits out to the EEPROM. So, value in the |
| * "data" parameter will be shifted out to the EEPROM one bit at a time. |
| * In order to do this, "data" must be broken down into bits. |
| */ |
| mask = 0x01 << (count - 1); |
| eecd = E1000_READ_REG(hw, EECD); |
| if (eeprom->type == e1000_eeprom_microwire) { |
| eecd &= ~E1000_EECD_DO; |
| } else if (eeprom->type == e1000_eeprom_spi) { |
| eecd |= E1000_EECD_DO; |
| } |
| do { |
| /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", |
| * and then raising and then lowering the clock (the SK bit controls |
| * the clock input to the EEPROM). A "0" is shifted out to the EEPROM |
| * by setting "DI" to "0" and then raising and then lowering the clock. |
| */ |
| eecd &= ~E1000_EECD_DI; |
| |
| if (data & mask) |
| eecd |= E1000_EECD_DI; |
| |
| E1000_WRITE_REG(hw, EECD, eecd); |
| E1000_WRITE_FLUSH(hw); |
| |
| udelay(eeprom->delay_usec); |
| |
| e1000_raise_ee_clk(hw, &eecd); |
| e1000_lower_ee_clk(hw, &eecd); |
| |
| mask = mask >> 1; |
| |
| } while (mask); |
| |
| /* We leave the "DI" bit set to "0" when we leave this routine. */ |
| eecd &= ~E1000_EECD_DI; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| } |
| |
| /****************************************************************************** |
| * Shift data bits in from the EEPROM |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| static uint16_t |
| e1000_shift_in_ee_bits(struct e1000_hw *hw, |
| uint16_t count) |
| { |
| uint32_t eecd; |
| uint32_t i; |
| uint16_t data; |
| |
| /* In order to read a register from the EEPROM, we need to shift 'count' |
| * bits in from the EEPROM. Bits are "shifted in" by raising the clock |
| * input to the EEPROM (setting the SK bit), and then reading the value of |
| * the "DO" bit. During this "shifting in" process the "DI" bit should |
| * always be clear. |
| */ |
| |
| eecd = E1000_READ_REG(hw, EECD); |
| |
| eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); |
| data = 0; |
| |
| for (i = 0; i < count; i++) { |
| data = data << 1; |
| e1000_raise_ee_clk(hw, &eecd); |
| |
| eecd = E1000_READ_REG(hw, EECD); |
| |
| eecd &= ~(E1000_EECD_DI); |
| if (eecd & E1000_EECD_DO) |
| data |= 1; |
| |
| e1000_lower_ee_clk(hw, &eecd); |
| } |
| |
| return data; |
| } |
| |
| /****************************************************************************** |
| * Prepares EEPROM for access |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This |
| * function should be called before issuing a command to the EEPROM. |
| *****************************************************************************/ |
| static int32_t |
| e1000_acquire_eeprom(struct e1000_hw *hw) |
| { |
| struct e1000_eeprom_info *eeprom = &hw->eeprom; |
| uint32_t eecd, i=0; |
| |
| DEBUGFUNC("e1000_acquire_eeprom"); |
| |
| if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM)) |
| return -E1000_ERR_SWFW_SYNC; |
| eecd = E1000_READ_REG(hw, EECD); |
| |
| if (hw->mac_type != e1000_82573) { |
| /* Request EEPROM Access */ |
| if (hw->mac_type > e1000_82544) { |
| eecd |= E1000_EECD_REQ; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| eecd = E1000_READ_REG(hw, EECD); |
| while ((!(eecd & E1000_EECD_GNT)) && |
| (i < E1000_EEPROM_GRANT_ATTEMPTS)) { |
| i++; |
| udelay(5); |
| eecd = E1000_READ_REG(hw, EECD); |
| } |
| if (!(eecd & E1000_EECD_GNT)) { |
| eecd &= ~E1000_EECD_REQ; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| DEBUGOUT("Could not acquire EEPROM grant\n"); |
| e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM); |
| return -E1000_ERR_EEPROM; |
| } |
| } |
| } |
| |
| /* Setup EEPROM for Read/Write */ |
| |
| if (eeprom->type == e1000_eeprom_microwire) { |
| /* Clear SK and DI */ |
| eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); |
| E1000_WRITE_REG(hw, EECD, eecd); |
| |
| /* Set CS */ |
| eecd |= E1000_EECD_CS; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| } else if (eeprom->type == e1000_eeprom_spi) { |
| /* Clear SK and CS */ |
| eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
| E1000_WRITE_REG(hw, EECD, eecd); |
| udelay(1); |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Returns EEPROM to a "standby" state |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| static void |
| e1000_standby_eeprom(struct e1000_hw *hw) |
| { |
| struct e1000_eeprom_info *eeprom = &hw->eeprom; |
| uint32_t eecd; |
| |
| eecd = E1000_READ_REG(hw, EECD); |
| |
| if (eeprom->type == e1000_eeprom_microwire) { |
| eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
| E1000_WRITE_REG(hw, EECD, eecd); |
| E1000_WRITE_FLUSH(hw); |
| udelay(eeprom->delay_usec); |
| |
| /* Clock high */ |
| eecd |= E1000_EECD_SK; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| E1000_WRITE_FLUSH(hw); |
| udelay(eeprom->delay_usec); |
| |
| /* Select EEPROM */ |
| eecd |= E1000_EECD_CS; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| E1000_WRITE_FLUSH(hw); |
| udelay(eeprom->delay_usec); |
| |
| /* Clock low */ |
| eecd &= ~E1000_EECD_SK; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| E1000_WRITE_FLUSH(hw); |
| udelay(eeprom->delay_usec); |
| } else if (eeprom->type == e1000_eeprom_spi) { |
| /* Toggle CS to flush commands */ |
| eecd |= E1000_EECD_CS; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| E1000_WRITE_FLUSH(hw); |
| udelay(eeprom->delay_usec); |
| eecd &= ~E1000_EECD_CS; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| E1000_WRITE_FLUSH(hw); |
| udelay(eeprom->delay_usec); |
| } |
| } |
| |
| /****************************************************************************** |
| * Terminates a command by inverting the EEPROM's chip select pin |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| static void |
| e1000_release_eeprom(struct e1000_hw *hw) |
| { |
| uint32_t eecd; |
| |
| DEBUGFUNC("e1000_release_eeprom"); |
| |
| eecd = E1000_READ_REG(hw, EECD); |
| |
| if (hw->eeprom.type == e1000_eeprom_spi) { |
| eecd |= E1000_EECD_CS; /* Pull CS high */ |
| eecd &= ~E1000_EECD_SK; /* Lower SCK */ |
| |
| E1000_WRITE_REG(hw, EECD, eecd); |
| |
| udelay(hw->eeprom.delay_usec); |
| } else if (hw->eeprom.type == e1000_eeprom_microwire) { |
| /* cleanup eeprom */ |
| |
| /* CS on Microwire is active-high */ |
| eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); |
| |
| E1000_WRITE_REG(hw, EECD, eecd); |
| |
| /* Rising edge of clock */ |
| eecd |= E1000_EECD_SK; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| E1000_WRITE_FLUSH(hw); |
| udelay(hw->eeprom.delay_usec); |
| |
| /* Falling edge of clock */ |
| eecd &= ~E1000_EECD_SK; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| E1000_WRITE_FLUSH(hw); |
| udelay(hw->eeprom.delay_usec); |
| } |
| |
| /* Stop requesting EEPROM access */ |
| if (hw->mac_type > e1000_82544) { |
| eecd &= ~E1000_EECD_REQ; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| } |
| |
| e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM); |
| } |
| |
| /****************************************************************************** |
| * Reads a 16 bit word from the EEPROM. |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| static int32_t |
| e1000_spi_eeprom_ready(struct e1000_hw *hw) |
| { |
| uint16_t retry_count = 0; |
| uint8_t spi_stat_reg; |
| |
| DEBUGFUNC("e1000_spi_eeprom_ready"); |
| |
| /* Read "Status Register" repeatedly until the LSB is cleared. The |
| * EEPROM will signal that the command has been completed by clearing |
| * bit 0 of the internal status register. If it's not cleared within |
| * 5 milliseconds, then error out. |
| */ |
| retry_count = 0; |
| do { |
| e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, |
| hw->eeprom.opcode_bits); |
| spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8); |
| if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) |
| break; |
| |
| udelay(5); |
| retry_count += 5; |
| |
| e1000_standby_eeprom(hw); |
| } while (retry_count < EEPROM_MAX_RETRY_SPI); |
| |
| /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and |
| * only 0-5mSec on 5V devices) |
| */ |
| if (retry_count >= EEPROM_MAX_RETRY_SPI) { |
| DEBUGOUT("SPI EEPROM Status error\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Reads a 16 bit word from the EEPROM. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * offset - offset of word in the EEPROM to read |
| * data - word read from the EEPROM |
| * words - number of words to read |
| *****************************************************************************/ |
| int32_t |
| e1000_read_eeprom(struct e1000_hw *hw, |
| uint16_t offset, |
| uint16_t words, |
| uint16_t *data) |
| { |
| struct e1000_eeprom_info *eeprom = &hw->eeprom; |
| uint32_t i = 0; |
| |
| DEBUGFUNC("e1000_read_eeprom"); |
| |
| /* If eeprom is not yet detected, do so now */ |
| if (eeprom->word_size == 0) |
| e1000_init_eeprom_params(hw); |
| |
| /* A check for invalid values: offset too large, too many words, and not |
| * enough words. |
| */ |
| if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || |
| (words == 0)) { |
| DEBUGOUT2("\"words\" parameter out of bounds. Words = %d, size = %d\n", offset, eeprom->word_size); |
| return -E1000_ERR_EEPROM; |
| } |
| |
| /* EEPROM's that don't use EERD to read require us to bit-bang the SPI |
| * directly. In this case, we need to acquire the EEPROM so that |
| * FW or other port software does not interrupt. |
| */ |
| if (e1000_is_onboard_nvm_eeprom(hw) == TRUE && |
| hw->eeprom.use_eerd == FALSE) { |
| /* Prepare the EEPROM for bit-bang reading */ |
| if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) |
| return -E1000_ERR_EEPROM; |
| } |
| |
| /* Eerd register EEPROM access requires no eeprom aquire/release */ |
| if (eeprom->use_eerd == TRUE) |
| return e1000_read_eeprom_eerd(hw, offset, words, data); |
| |
| /* ICH EEPROM access is done via the ICH flash controller */ |
| if (eeprom->type == e1000_eeprom_ich8) |
| return e1000_read_eeprom_ich8(hw, offset, words, data); |
| |
| /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have |
| * acquired the EEPROM at this point, so any returns should relase it */ |
| if (eeprom->type == e1000_eeprom_spi) { |
| uint16_t word_in; |
| uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; |
| |
| if (e1000_spi_eeprom_ready(hw)) { |
| e1000_release_eeprom(hw); |
| return -E1000_ERR_EEPROM; |
| } |
| |
| e1000_standby_eeprom(hw); |
| |
| /* Some SPI eeproms use the 8th address bit embedded in the opcode */ |
| if ((eeprom->address_bits == 8) && (offset >= 128)) |
| read_opcode |= EEPROM_A8_OPCODE_SPI; |
| |
| /* Send the READ command (opcode + addr) */ |
| e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); |
| e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits); |
| |
| /* Read the data. The address of the eeprom internally increments with |
| * each byte (spi) being read, saving on the overhead of eeprom setup |
| * and tear-down. The address counter will roll over if reading beyond |
| * the size of the eeprom, thus allowing the entire memory to be read |
| * starting from any offset. */ |
| for (i = 0; i < words; i++) { |
| word_in = e1000_shift_in_ee_bits(hw, 16); |
| data[i] = (word_in >> 8) | (word_in << 8); |
| } |
| } else if (eeprom->type == e1000_eeprom_microwire) { |
| for (i = 0; i < words; i++) { |
| /* Send the READ command (opcode + addr) */ |
| e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE, |
| eeprom->opcode_bits); |
| e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i), |
| eeprom->address_bits); |
| |
| /* Read the data. For microwire, each word requires the overhead |
| * of eeprom setup and tear-down. */ |
| data[i] = e1000_shift_in_ee_bits(hw, 16); |
| e1000_standby_eeprom(hw); |
| } |
| } |
| |
| /* End this read operation */ |
| e1000_release_eeprom(hw); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Reads a 16 bit word from the EEPROM using the EERD register. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * offset - offset of word in the EEPROM to read |
| * data - word read from the EEPROM |
| * words - number of words to read |
| *****************************************************************************/ |
| static int32_t |
| e1000_read_eeprom_eerd(struct e1000_hw *hw, |
| uint16_t offset, |
| uint16_t words, |
| uint16_t *data) |
| { |
| uint32_t i, eerd = 0; |
| int32_t error = 0; |
| |
| for (i = 0; i < words; i++) { |
| eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) + |
| E1000_EEPROM_RW_REG_START; |
| |
| E1000_WRITE_REG(hw, EERD, eerd); |
| error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ); |
| |
| if (error) { |
| break; |
| } |
| data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA); |
| |
| } |
| |
| return error; |
| } |
| |
| /****************************************************************************** |
| * Writes a 16 bit word from the EEPROM using the EEWR register. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * offset - offset of word in the EEPROM to read |
| * data - word read from the EEPROM |
| * words - number of words to read |
| *****************************************************************************/ |
| static int32_t |
| e1000_write_eeprom_eewr(struct e1000_hw *hw, |
| uint16_t offset, |
| uint16_t words, |
| uint16_t *data) |
| { |
| uint32_t register_value = 0; |
| uint32_t i = 0; |
| int32_t error = 0; |
| |
| if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM)) |
| return -E1000_ERR_SWFW_SYNC; |
| |
| for (i = 0; i < words; i++) { |
| register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) | |
| ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) | |
| E1000_EEPROM_RW_REG_START; |
| |
| error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); |
| if (error) { |
| break; |
| } |
| |
| E1000_WRITE_REG(hw, EEWR, register_value); |
| |
| error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); |
| |
| if (error) { |
| break; |
| } |
| } |
| |
| e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM); |
| return error; |
| } |
| |
| /****************************************************************************** |
| * Polls the status bit (bit 1) of the EERD to determine when the read is done. |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| static int32_t |
| e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd) |
| { |
| uint32_t attempts = 100000; |
| uint32_t i, reg = 0; |
| int32_t done = E1000_ERR_EEPROM; |
| |
| for (i = 0; i < attempts; i++) { |
| if (eerd == E1000_EEPROM_POLL_READ) |
| reg = E1000_READ_REG(hw, EERD); |
| else |
| reg = E1000_READ_REG(hw, EEWR); |
| |
| if (reg & E1000_EEPROM_RW_REG_DONE) { |
| done = E1000_SUCCESS; |
| break; |
| } |
| udelay(5); |
| } |
| |
| return done; |
| } |
| |
| /*************************************************************************** |
| * Description: Determines if the onboard NVM is FLASH or EEPROM. |
| * |
| * hw - Struct containing variables accessed by shared code |
| ****************************************************************************/ |
| static boolean_t |
| e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw) |
| { |
| uint32_t eecd = 0; |
| |
| DEBUGFUNC("e1000_is_onboard_nvm_eeprom"); |
| |
| if (hw->mac_type == e1000_ich8lan) |
| return FALSE; |
| |
| if (hw->mac_type == e1000_82573) { |
| eecd = E1000_READ_REG(hw, EECD); |
| |
| /* Isolate bits 15 & 16 */ |
| eecd = ((eecd >> 15) & 0x03); |
| |
| /* If both bits are set, device is Flash type */ |
| if (eecd == 0x03) { |
| return FALSE; |
| } |
| } |
| return TRUE; |
| } |
| |
| /****************************************************************************** |
| * Verifies that the EEPROM has a valid checksum |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Reads the first 64 16 bit words of the EEPROM and sums the values read. |
| * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is |
| * valid. |
| *****************************************************************************/ |
| int32_t |
| e1000_validate_eeprom_checksum(struct e1000_hw *hw) |
| { |
| uint16_t checksum = 0; |
| uint16_t i, eeprom_data; |
| |
| DEBUGFUNC("e1000_validate_eeprom_checksum"); |
| |
| if ((hw->mac_type == e1000_82573) && |
| (e1000_is_onboard_nvm_eeprom(hw) == FALSE)) { |
| /* Check bit 4 of word 10h. If it is 0, firmware is done updating |
| * 10h-12h. Checksum may need to be fixed. */ |
| e1000_read_eeprom(hw, 0x10, 1, &eeprom_data); |
| if ((eeprom_data & 0x10) == 0) { |
| /* Read 0x23 and check bit 15. This bit is a 1 when the checksum |
| * has already been fixed. If the checksum is still wrong and this |
| * bit is a 1, we need to return bad checksum. Otherwise, we need |
| * to set this bit to a 1 and update the checksum. */ |
| e1000_read_eeprom(hw, 0x23, 1, &eeprom_data); |
| if ((eeprom_data & 0x8000) == 0) { |
| eeprom_data |= 0x8000; |
| e1000_write_eeprom(hw, 0x23, 1, &eeprom_data); |
| e1000_update_eeprom_checksum(hw); |
| } |
| } |
| } |
| |
| if (hw->mac_type == e1000_ich8lan) { |
| /* Drivers must allocate the shadow ram structure for the |
| * EEPROM checksum to be updated. Otherwise, this bit as well |
| * as the checksum must both be set correctly for this |
| * validation to pass. |
| */ |
| e1000_read_eeprom(hw, 0x19, 1, &eeprom_data); |
| if ((eeprom_data & 0x40) == 0) { |
| eeprom_data |= 0x40; |
| e1000_write_eeprom(hw, 0x19, 1, &eeprom_data); |
| e1000_update_eeprom_checksum(hw); |
| } |
| } |
| |
| for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { |
| if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { |
| DEBUGOUT("EEPROM Read Error\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| checksum += eeprom_data; |
| } |
| |
| if (checksum == (uint16_t) EEPROM_SUM) |
| return E1000_SUCCESS; |
| else { |
| DEBUGOUT("EEPROM Checksum Invalid\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| } |
| |
| /****************************************************************************** |
| * Calculates the EEPROM checksum and writes it to the EEPROM |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA. |
| * Writes the difference to word offset 63 of the EEPROM. |
| *****************************************************************************/ |
| int32_t |
| e1000_update_eeprom_checksum(struct e1000_hw *hw) |
| { |
| uint32_t ctrl_ext; |
| uint16_t checksum = 0; |
| uint16_t i, eeprom_data; |
| |
| DEBUGFUNC("e1000_update_eeprom_checksum"); |
| |
| for (i = 0; i < EEPROM_CHECKSUM_REG; i++) { |
| if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { |
| DEBUGOUT("EEPROM Read Error\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| checksum += eeprom_data; |
| } |
| checksum = (uint16_t) EEPROM_SUM - checksum; |
| if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { |
| DEBUGOUT("EEPROM Write Error\n"); |
| return -E1000_ERR_EEPROM; |
| } else if (hw->eeprom.type == e1000_eeprom_flash) { |
| e1000_commit_shadow_ram(hw); |
| } else if (hw->eeprom.type == e1000_eeprom_ich8) { |
| e1000_commit_shadow_ram(hw); |
| /* Reload the EEPROM, or else modifications will not appear |
| * until after next adapter reset. */ |
| ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| ctrl_ext |= E1000_CTRL_EXT_EE_RST; |
| E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| msleep(10); |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Parent function for writing words to the different EEPROM types. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * offset - offset within the EEPROM to be written to |
| * words - number of words to write |
| * data - 16 bit word to be written to the EEPROM |
| * |
| * If e1000_update_eeprom_checksum is not called after this function, the |
| * EEPROM will most likely contain an invalid checksum. |
| *****************************************************************************/ |
| int32_t |
| e1000_write_eeprom(struct e1000_hw *hw, |
| uint16_t offset, |
| uint16_t words, |
| uint16_t *data) |
| { |
| struct e1000_eeprom_info *eeprom = &hw->eeprom; |
| int32_t status = 0; |
| |
| DEBUGFUNC("e1000_write_eeprom"); |
| |
| /* If eeprom is not yet detected, do so now */ |
| if (eeprom->word_size == 0) |
| e1000_init_eeprom_params(hw); |
| |
| /* A check for invalid values: offset too large, too many words, and not |
| * enough words. |
| */ |
| if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || |
| (words == 0)) { |
| DEBUGOUT("\"words\" parameter out of bounds\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| |
| /* 82573 writes only through eewr */ |
| if (eeprom->use_eewr == TRUE) |
| return e1000_write_eeprom_eewr(hw, offset, words, data); |
| |
| if (eeprom->type == e1000_eeprom_ich8) |
| return e1000_write_eeprom_ich8(hw, offset, words, data); |
| |
| /* Prepare the EEPROM for writing */ |
| if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) |
| return -E1000_ERR_EEPROM; |
| |
| if (eeprom->type == e1000_eeprom_microwire) { |
| status = e1000_write_eeprom_microwire(hw, offset, words, data); |
| } else { |
| status = e1000_write_eeprom_spi(hw, offset, words, data); |
| msleep(10); |
| } |
| |
| /* Done with writing */ |
| e1000_release_eeprom(hw); |
| |
| return status; |
| } |
| |
| /****************************************************************************** |
| * Writes a 16 bit word to a given offset in an SPI EEPROM. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * offset - offset within the EEPROM to be written to |
| * words - number of words to write |
| * data - pointer to array of 8 bit words to be written to the EEPROM |
| * |
| *****************************************************************************/ |
| static int32_t |
| e1000_write_eeprom_spi(struct e1000_hw *hw, |
| uint16_t offset, |
| uint16_t words, |
| uint16_t *data) |
| { |
| struct e1000_eeprom_info *eeprom = &hw->eeprom; |
| uint16_t widx = 0; |
| |
| DEBUGFUNC("e1000_write_eeprom_spi"); |
| |
| while (widx < words) { |
| uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI; |
| |
| if (e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM; |
| |
| e1000_standby_eeprom(hw); |
| |
| /* Send the WRITE ENABLE command (8 bit opcode ) */ |
| e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI, |
| eeprom->opcode_bits); |
| |
| e1000_standby_eeprom(hw); |
| |
| /* Some SPI eeproms use the 8th address bit embedded in the opcode */ |
| if ((eeprom->address_bits == 8) && (offset >= 128)) |
| write_opcode |= EEPROM_A8_OPCODE_SPI; |
| |
| /* Send the Write command (8-bit opcode + addr) */ |
| e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits); |
| |
| e1000_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2), |
| eeprom->address_bits); |
| |
| /* Send the data */ |
| |
| /* Loop to allow for up to whole page write (32 bytes) of eeprom */ |
| while (widx < words) { |
| uint16_t word_out = data[widx]; |
| word_out = (word_out >> 8) | (word_out << 8); |
| e1000_shift_out_ee_bits(hw, word_out, 16); |
| widx++; |
| |
| /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE |
| * operation, while the smaller eeproms are capable of an 8-byte |
| * PAGE WRITE operation. Break the inner loop to pass new address |
| */ |
| if ((((offset + widx)*2) % eeprom->page_size) == 0) { |
| e1000_standby_eeprom(hw); |
| break; |
| } |
| } |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Writes a 16 bit word to a given offset in a Microwire EEPROM. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * offset - offset within the EEPROM to be written to |
| * words - number of words to write |
| * data - pointer to array of 16 bit words to be written to the EEPROM |
| * |
| *****************************************************************************/ |
| static int32_t |
| e1000_write_eeprom_microwire(struct e1000_hw *hw, |
| uint16_t offset, |
| uint16_t words, |
| uint16_t *data) |
| { |
| struct e1000_eeprom_info *eeprom = &hw->eeprom; |
| uint32_t eecd; |
| uint16_t words_written = 0; |
| uint16_t i = 0; |
| |
| DEBUGFUNC("e1000_write_eeprom_microwire"); |
| |
| /* Send the write enable command to the EEPROM (3-bit opcode plus |
| * 6/8-bit dummy address beginning with 11). It's less work to include |
| * the 11 of the dummy address as part of the opcode than it is to shift |
| * it over the correct number of bits for the address. This puts the |
| * EEPROM into write/erase mode. |
| */ |
| e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE, |
| (uint16_t)(eeprom->opcode_bits + 2)); |
| |
| e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2)); |
| |
| /* Prepare the EEPROM */ |
| e1000_standby_eeprom(hw); |
| |
| while (words_written < words) { |
| /* Send the Write command (3-bit opcode + addr) */ |
| e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE, |
| eeprom->opcode_bits); |
| |
| e1000_shift_out_ee_bits(hw, (uint16_t)(offset + words_written), |
| eeprom->address_bits); |
| |
| /* Send the data */ |
| e1000_shift_out_ee_bits(hw, data[words_written], 16); |
| |
| /* Toggle the CS line. This in effect tells the EEPROM to execute |
| * the previous command. |
| */ |
| e1000_standby_eeprom(hw); |
| |
| /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will |
| * signal that the command has been completed by raising the DO signal. |
| * If DO does not go high in 10 milliseconds, then error out. |
| */ |
| for (i = 0; i < 200; i++) { |
| eecd = E1000_READ_REG(hw, EECD); |
| if (eecd & E1000_EECD_DO) break; |
| udelay(50); |
| } |
| if (i == 200) { |
| DEBUGOUT("EEPROM Write did not complete\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| |
| /* Recover from write */ |
| e1000_standby_eeprom(hw); |
| |
| words_written++; |
| } |
| |
| /* Send the write disable command to the EEPROM (3-bit opcode plus |
| * 6/8-bit dummy address beginning with 10). It's less work to include |
| * the 10 of the dummy address as part of the opcode than it is to shift |
| * it over the correct number of bits for the address. This takes the |
| * EEPROM out of write/erase mode. |
| */ |
| e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE, |
| (uint16_t)(eeprom->opcode_bits + 2)); |
| |
| e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2)); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Flushes the cached eeprom to NVM. This is done by saving the modified values |
| * in the eeprom cache and the non modified values in the currently active bank |
| * to the new bank. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * offset - offset of word in the EEPROM to read |
| * data - word read from the EEPROM |
| * words - number of words to read |
| *****************************************************************************/ |
| static int32_t |
| e1000_commit_shadow_ram(struct e1000_hw *hw) |
| { |
| uint32_t attempts = 100000; |
| uint32_t eecd = 0; |
| uint32_t flop = 0; |
| uint32_t i = 0; |
| int32_t error = E1000_SUCCESS; |
| uint32_t old_bank_offset = 0; |
| uint32_t new_bank_offset = 0; |
| uint8_t low_byte = 0; |
| uint8_t high_byte = 0; |
| boolean_t sector_write_failed = FALSE; |
| |
| if (hw->mac_type == e1000_82573) { |
| /* The flop register will be used to determine if flash type is STM */ |
| flop = E1000_READ_REG(hw, FLOP); |
| for (i=0; i < attempts; i++) { |
| eecd = E1000_READ_REG(hw, EECD); |
| if ((eecd & E1000_EECD_FLUPD) == 0) { |
| break; |
| } |
| udelay(5); |
| } |
| |
| if (i == attempts) { |
| return -E1000_ERR_EEPROM; |
| } |
| |
| /* If STM opcode located in bits 15:8 of flop, reset firmware */ |
| if ((flop & 0xFF00) == E1000_STM_OPCODE) { |
| E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET); |
| } |
| |
| /* Perform the flash update */ |
| E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD); |
| |
| for (i=0; i < attempts; i++) { |
| eecd = E1000_READ_REG(hw, EECD); |
| if ((eecd & E1000_EECD_FLUPD) == 0) { |
| break; |
| } |
| udelay(5); |
| } |
| |
| if (i == attempts) { |
| return -E1000_ERR_EEPROM; |
| } |
| } |
| |
| if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) { |
| /* We're writing to the opposite bank so if we're on bank 1, |
| * write to bank 0 etc. We also need to erase the segment that |
| * is going to be written */ |
| if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) { |
| new_bank_offset = hw->flash_bank_size * 2; |
| old_bank_offset = 0; |
| e1000_erase_ich8_4k_segment(hw, 1); |
| } else { |
| old_bank_offset = hw->flash_bank_size * 2; |
| new_bank_offset = 0; |
| e1000_erase_ich8_4k_segment(hw, 0); |
| } |
| |
| sector_write_failed = FALSE; |
| /* Loop for every byte in the shadow RAM, |
| * which is in units of words. */ |
| for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { |
| /* Determine whether to write the value stored |
| * in the other NVM bank or a modified value stored |
| * in the shadow RAM */ |
| if (hw->eeprom_shadow_ram[i].modified == TRUE) { |
| low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word; |
| udelay(100); |
| error = e1000_verify_write_ich8_byte(hw, |
| (i << 1) + new_bank_offset, low_byte); |
| |
| if (error != E1000_SUCCESS) |
| sector_write_failed = TRUE; |
| else { |
| high_byte = |
| (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8); |
| udelay(100); |
| } |
| } else { |
| e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset, |
| &low_byte); |
| udelay(100); |
| error = e1000_verify_write_ich8_byte(hw, |
| (i << 1) + new_bank_offset, low_byte); |
| |
| if (error != E1000_SUCCESS) |
| sector_write_failed = TRUE; |
| else { |
| e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1, |
| &high_byte); |
| udelay(100); |
| } |
| } |
| |
| /* If the write of the low byte was successful, go ahread and |
| * write the high byte while checking to make sure that if it |
| * is the signature byte, then it is handled properly */ |
| if (sector_write_failed == FALSE) { |
| /* If the word is 0x13, then make sure the signature bits |
| * (15:14) are 11b until the commit has completed. |
| * This will allow us to write 10b which indicates the |
| * signature is valid. We want to do this after the write |
| * has completed so that we don't mark the segment valid |
| * while the write is still in progress */ |
| if (i == E1000_ICH_NVM_SIG_WORD) |
| high_byte = E1000_ICH_NVM_SIG_MASK | high_byte; |
| |
| error = e1000_verify_write_ich8_byte(hw, |
| (i << 1) + new_bank_offset + 1, high_byte); |
| if (error != E1000_SUCCESS) |
| sector_write_failed = TRUE; |
| |
| } else { |
| /* If the write failed then break from the loop and |
| * return an error */ |
| break; |
| } |
| } |
| |
| /* Don't bother writing the segment valid bits if sector |
| * programming failed. */ |
| if (sector_write_failed == FALSE) { |
| /* Finally validate the new segment by setting bit 15:14 |
| * to 10b in word 0x13 , this can be done without an |
| * erase as well since these bits are 11 to start with |
| * and we need to change bit 14 to 0b */ |
| e1000_read_ich8_byte(hw, |
| E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, |
| &high_byte); |
| high_byte &= 0xBF; |
| error = e1000_verify_write_ich8_byte(hw, |
| E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, high_byte); |
| /* And invalidate the previously valid segment by setting |
| * its signature word (0x13) high_byte to 0b. This can be |
| * done without an erase because flash erase sets all bits |
| * to 1's. We can write 1's to 0's without an erase */ |
| if (error == E1000_SUCCESS) { |
| error = e1000_verify_write_ich8_byte(hw, |
| E1000_ICH_NVM_SIG_WORD * 2 + 1 + old_bank_offset, 0); |
| } |
| |
| /* Clear the now not used entry in the cache */ |
| for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { |
| hw->eeprom_shadow_ram[i].modified = FALSE; |
| hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; |
| } |
| } |
| } |
| |
| return error; |
| } |
| |
| /****************************************************************************** |
| * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the |
| * second function of dual function devices |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| int32_t |
| e1000_read_mac_addr(struct e1000_hw * hw) |
| { |
| uint16_t offset; |
| uint16_t eeprom_data, i; |
| |
| DEBUGFUNC("e1000_read_mac_addr"); |
| |
| for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { |
| offset = i >> 1; |
| if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { |
| DEBUGOUT("EEPROM Read Error\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF); |
| hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8); |
| } |
| |
| switch (hw->mac_type) { |
| default: |
| break; |
| case e1000_82546: |
| case e1000_82546_rev_3: |
| case e1000_82571: |
| case e1000_80003es2lan: |
| if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) |
| hw->perm_mac_addr[5] ^= 0x01; |
| break; |
| } |
| |
| for (i = 0; i < NODE_ADDRESS_SIZE; i++) |
| hw->mac_addr[i] = hw->perm_mac_addr[i]; |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Initializes receive address filters. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Places the MAC address in receive address register 0 and clears the rest |
| * of the receive addresss registers. Clears the multicast table. Assumes |
| * the receiver is in reset when the routine is called. |
| *****************************************************************************/ |
| static void |
| e1000_init_rx_addrs(struct e1000_hw *hw) |
| { |
| uint32_t i; |
| uint32_t rar_num; |
| |
| DEBUGFUNC("e1000_init_rx_addrs"); |
| |
| /* Setup the receive address. */ |
| DEBUGOUT("Programming MAC Address into RAR[0]\n"); |
| |
| e1000_rar_set(hw, hw->mac_addr, 0); |
| |
| rar_num = E1000_RAR_ENTRIES; |
| |
| /* Reserve a spot for the Locally Administered Address to work around |
| * an 82571 issue in which a reset on one port will reload the MAC on |
| * the other port. */ |
| if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE)) |
| rar_num -= 1; |
| if (hw->mac_type == e1000_ich8lan) |
| rar_num = E1000_RAR_ENTRIES_ICH8LAN; |
| |
| /* Zero out the other 15 receive addresses. */ |
| DEBUGOUT("Clearing RAR[1-15]\n"); |
| for (i = 1; i < rar_num; i++) { |
| E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); |
| E1000_WRITE_FLUSH(hw); |
| E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); |
| E1000_WRITE_FLUSH(hw); |
| } |
| } |
| |
| /****************************************************************************** |
| * Hashes an address to determine its location in the multicast table |
| * |
| * hw - Struct containing variables accessed by shared code |
| * mc_addr - the multicast address to hash |
| *****************************************************************************/ |
| uint32_t |
| e1000_hash_mc_addr(struct e1000_hw *hw, |
| uint8_t *mc_addr) |
| { |
| uint32_t hash_value = 0; |
| |
| /* The portion of the address that is used for the hash table is |
| * determined by the mc_filter_type setting. |
| */ |
| switch (hw->mc_filter_type) { |
| /* [0] [1] [2] [3] [4] [5] |
| * 01 AA 00 12 34 56 |
| * LSB MSB |
| */ |
| case 0: |
| if (hw->mac_type == e1000_ich8lan) { |
| /* [47:38] i.e. 0x158 for above example address */ |
| hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2)); |
| } else { |
| /* [47:36] i.e. 0x563 for above example address */ |
| hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); |
| } |
| break; |
| case 1: |
| if (hw->mac_type == e1000_ich8lan) { |
| /* [46:37] i.e. 0x2B1 for above example address */ |
| hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3)); |
| } else { |
| /* [46:35] i.e. 0xAC6 for above example address */ |
| hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5)); |
| } |
| break; |
| case 2: |
| if (hw->mac_type == e1000_ich8lan) { |
| /*[45:36] i.e. 0x163 for above example address */ |
| hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); |
| } else { |
| /* [45:34] i.e. 0x5D8 for above example address */ |
| hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); |
| } |
| break; |
| case 3: |
| if (hw->mac_type == e1000_ich8lan) { |
| /* [43:34] i.e. 0x18D for above example address */ |
| hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); |
| } else { |
| /* [43:32] i.e. 0x634 for above example address */ |
| hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8)); |
| } |
| break; |
| } |
| |
| hash_value &= 0xFFF; |
| if (hw->mac_type == e1000_ich8lan) |
| hash_value &= 0x3FF; |
| |
| return hash_value; |
| } |
| |
| /****************************************************************************** |
| * Sets the bit in the multicast table corresponding to the hash value. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * hash_value - Multicast address hash value |
| *****************************************************************************/ |
| void |
| e1000_mta_set(struct e1000_hw *hw, |
| uint32_t hash_value) |
| { |
| uint32_t hash_bit, hash_reg; |
| uint32_t mta; |
| uint32_t temp; |
| |
| /* The MTA is a register array of 128 32-bit registers. |
| * It is treated like an array of 4096 bits. We want to set |
| * bit BitArray[hash_value]. So we figure out what register |
| * the bit is in, read it, OR in the new bit, then write |
| * back the new value. The register is determined by the |
| * upper 7 bits of the hash value and the bit within that |
| * register are determined by the lower 5 bits of the value. |
| */ |
| hash_reg = (hash_value >> 5) & 0x7F; |
| if (hw->mac_type == e1000_ich8lan) |
| hash_reg &= 0x1F; |
| |
| hash_bit = hash_value & 0x1F; |
| |
| mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg); |
| |
| mta |= (1 << hash_bit); |
| |
| /* If we are on an 82544 and we are trying to write an odd offset |
| * in the MTA, save off the previous entry before writing and |
| * restore the old value after writing. |
| */ |
| if ((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) { |
| temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1)); |
| E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); |
| E1000_WRITE_FLUSH(hw); |
| E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp); |
| E1000_WRITE_FLUSH(hw); |
| } else { |
| E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); |
| E1000_WRITE_FLUSH(hw); |
| } |
| } |
| |
| /****************************************************************************** |
| * Puts an ethernet address into a receive address register. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * addr - Address to put into receive address register |
| * index - Receive address register to write |
| *****************************************************************************/ |
| void |
| e1000_rar_set(struct e1000_hw *hw, |
| uint8_t *addr, |
| uint32_t index) |
| { |
| uint32_t rar_low, rar_high; |
| |
| /* HW expects these in little endian so we reverse the byte order |
| * from network order (big endian) to little endian |
| */ |
| rar_low = ((uint32_t) addr[0] | |
| ((uint32_t) addr[1] << 8) | |
| ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24)); |
| rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8)); |
| |
| /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx |
| * unit hang. |
| * |
| * Description: |
| * If there are any Rx frames queued up or otherwise present in the HW |
| * before RSS is enabled, and then we enable RSS, the HW Rx unit will |
| * hang. To work around this issue, we have to disable receives and |
| * flush out all Rx frames before we enable RSS. To do so, we modify we |
| * redirect all Rx traffic to manageability and then reset the HW. |
| * This flushes away Rx frames, and (since the redirections to |
| * manageability persists across resets) keeps new ones from coming in |
| * while we work. Then, we clear the Address Valid AV bit for all MAC |
| * addresses and undo the re-direction to manageability. |
| * Now, frames are coming in again, but the MAC won't accept them, so |
| * far so good. We now proceed to initialize RSS (if necessary) and |
| * configure the Rx unit. Last, we re-enable the AV bits and continue |
| * on our merry way. |
| */ |
| switch (hw->mac_type) { |
| case e1000_82571: |
| case e1000_82572: |
| case e1000_80003es2lan: |
| if (hw->leave_av_bit_off == TRUE) |
| break; |
| default: |
| /* Indicate to hardware the Address is Valid. */ |
| rar_high |= E1000_RAH_AV; |
| break; |
| } |
| |
| E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); |
| E1000_WRITE_FLUSH(hw); |
| E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); |
| E1000_WRITE_FLUSH(hw); |
| } |
| |
| /****************************************************************************** |
| * Writes a value to the specified offset in the VLAN filter table. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * offset - Offset in VLAN filer table to write |
| * value - Value to write into VLAN filter table |
| *****************************************************************************/ |
| void |
| e1000_write_vfta(struct e1000_hw *hw, |
| uint32_t offset, |
| uint32_t value) |
| { |
| uint32_t temp; |
| |
| if (hw->mac_type == e1000_ich8lan) |
| return; |
| |
| if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { |
| temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); |
| E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); |
| E1000_WRITE_FLUSH(hw); |
| E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); |
| E1000_WRITE_FLUSH(hw); |
| } else { |
| E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); |
| E1000_WRITE_FLUSH(hw); |
| } |
| } |
| |
| /****************************************************************************** |
| * Clears the VLAN filer table |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| static void |
| e1000_clear_vfta(struct e1000_hw *hw) |
| { |
| uint32_t offset; |
| uint32_t vfta_value = 0; |
| uint32_t vfta_offset = 0; |
| uint32_t vfta_bit_in_reg = 0; |
| |
| if (hw->mac_type == e1000_ich8lan) |
| return; |
| |
| if (hw->mac_type == e1000_82573) { |
| if (hw->mng_cookie.vlan_id != 0) { |
| /* The VFTA is a 4096b bit-field, each identifying a single VLAN |
| * ID. The following operations determine which 32b entry |
| * (i.e. offset) into the array we want to set the VLAN ID |
| * (i.e. bit) of the manageability unit. */ |
| vfta_offset = (hw->mng_cookie.vlan_id >> |
| E1000_VFTA_ENTRY_SHIFT) & |
| E1000_VFTA_ENTRY_MASK; |
| vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & |
| E1000_VFTA_ENTRY_BIT_SHIFT_MASK); |
| } |
| } |
| for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { |
| /* If the offset we want to clear is the same offset of the |
| * manageability VLAN ID, then clear all bits except that of the |
| * manageability unit */ |
| vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; |
| E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); |
| E1000_WRITE_FLUSH(hw); |
| } |
| } |
| |
| static int32_t |
| e1000_id_led_init(struct e1000_hw * hw) |
| { |
| uint32_t ledctl; |
| const uint32_t ledctl_mask = 0x000000FF; |
| const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON; |
| const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF; |
| uint16_t eeprom_data, i, temp; |
| const uint16_t led_mask = 0x0F; |
| |
| DEBUGFUNC("e1000_id_led_init"); |
| |
| if (hw->mac_type < e1000_82540) { |
| /* Nothing to do */ |
| return E1000_SUCCESS; |
| } |
| |
| ledctl = E1000_READ_REG(hw, LEDCTL); |
| hw->ledctl_default = ledctl; |
| hw->ledctl_mode1 = hw->ledctl_default; |
| hw->ledctl_mode2 = hw->ledctl_default; |
| |
| if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { |
| DEBUGOUT("EEPROM Read Error\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| |
| if ((hw->mac_type == e1000_82573) && |
| (eeprom_data == ID_LED_RESERVED_82573)) |
| eeprom_data = ID_LED_DEFAULT_82573; |
| else if ((eeprom_data == ID_LED_RESERVED_0000) || |
| (eeprom_data == ID_LED_RESERVED_FFFF)) { |
| if (hw->mac_type == e1000_ich8lan) |
| eeprom_data = ID_LED_DEFAULT_ICH8LAN; |
| else |
| eeprom_data = ID_LED_DEFAULT; |
| } |
| |
| for (i = 0; i < 4; i++) { |
| temp = (eeprom_data >> (i << 2)) & led_mask; |
| switch (temp) { |
| case ID_LED_ON1_DEF2: |
| case ID_LED_ON1_ON2: |
| case ID_LED_ON1_OFF2: |
| hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); |
| hw->ledctl_mode1 |= ledctl_on << (i << 3); |
| break; |
| case ID_LED_OFF1_DEF2: |
| case ID_LED_OFF1_ON2: |
| case ID_LED_OFF1_OFF2: |
| hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); |
| hw->ledctl_mode1 |= ledctl_off << (i << 3); |
| break; |
| default: |
| /* Do nothing */ |
| break; |
| } |
| switch (temp) { |
| case ID_LED_DEF1_ON2: |
| case ID_LED_ON1_ON2: |
| case ID_LED_OFF1_ON2: |
| hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); |
| hw->ledctl_mode2 |= ledctl_on << (i << 3); |
| break; |
| case ID_LED_DEF1_OFF2: |
| case ID_LED_ON1_OFF2: |
| case ID_LED_OFF1_OFF2: |
| hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); |
| hw->ledctl_mode2 |= ledctl_off << (i << 3); |
| break; |
| default: |
| /* Do nothing */ |
| break; |
| } |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Prepares SW controlable LED for use and saves the current state of the LED. |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| int32_t |
| e1000_setup_led(struct e1000_hw *hw) |
| { |
| uint32_t ledctl; |
| int32_t ret_val = E1000_SUCCESS; |
| |
| DEBUGFUNC("e1000_setup_led"); |
| |
| switch (hw->mac_type) { |
| case e1000_82542_rev2_0: |
| case e1000_82542_rev2_1: |
| case e1000_82543: |
| case e1000_82544: |
| /* No setup necessary */ |
| break; |
| case e1000_82541: |
| case e1000_82547: |
| case e1000_82541_rev_2: |
| case e1000_82547_rev_2: |
| /* Turn off PHY Smart Power Down (if enabled) */ |
| ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, |
| &hw->phy_spd_default); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, |
| (uint16_t)(hw->phy_spd_default & |
| ~IGP01E1000_GMII_SPD)); |
| if (ret_val) |
| return ret_val; |
| /* Fall Through */ |
| default: |
| if (hw->media_type == e1000_media_type_fiber) { |
| ledctl = E1000_READ_REG(hw, LEDCTL); |
| /* Save current LEDCTL settings */ |
| hw->ledctl_default = ledctl; |
| /* Turn off LED0 */ |
| ledctl &= ~(E1000_LEDCTL_LED0_IVRT | |
| E1000_LEDCTL_LED0_BLINK | |
| E1000_LEDCTL_LED0_MODE_MASK); |
| ledctl |= (E1000_LEDCTL_MODE_LED_OFF << |
| E1000_LEDCTL_LED0_MODE_SHIFT); |
| E1000_WRITE_REG(hw, LEDCTL, ledctl); |
| } else if (hw->media_type == e1000_media_type_copper) |
| E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); |
| break; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| |
| /****************************************************************************** |
| * Used on 82571 and later Si that has LED blink bits. |
| * Callers must use their own timer and should have already called |
| * e1000_id_led_init() |
| * Call e1000_cleanup led() to stop blinking |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| int32_t |
| e1000_blink_led_start(struct e1000_hw *hw) |
| { |
| int16_t i; |
| uint32_t ledctl_blink = 0; |
| |
| DEBUGFUNC("e1000_id_led_blink_on"); |
| |
| if (hw->mac_type < e1000_82571) { |
| /* Nothing to do */ |
| return E1000_SUCCESS; |
| } |
| if (hw->media_type == e1000_media_type_fiber) { |
| /* always blink LED0 for PCI-E fiber */ |
| ledctl_blink = E1000_LEDCTL_LED0_BLINK | |
| (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); |
| } else { |
| /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */ |
| ledctl_blink = hw->ledctl_mode2; |
| for (i=0; i < 4; i++) |
| if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) == |
| E1000_LEDCTL_MODE_LED_ON) |
| ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8)); |
| } |
| |
| E1000_WRITE_REG(hw, LEDCTL, ledctl_blink); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Restores the saved state of the SW controlable LED. |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| int32_t |
| e1000_cleanup_led(struct e1000_hw *hw) |
| { |
| int32_t ret_val = E1000_SUCCESS; |
| |
| DEBUGFUNC("e1000_cleanup_led"); |
| |
| switch (hw->mac_type) { |
| case e1000_82542_rev2_0: |
| case e1000_82542_rev2_1: |
| case e1000_82543: |
| case e1000_82544: |
| /* No cleanup necessary */ |
| break; |
| case e1000_82541: |
| case e1000_82547: |
| case e1000_82541_rev_2: |
| case e1000_82547_rev_2: |
| /* Turn on PHY Smart Power Down (if previously enabled) */ |
| ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, |
| hw->phy_spd_default); |
| if (ret_val) |
| return ret_val; |
| /* Fall Through */ |
| default: |
| if (hw->phy_type == e1000_phy_ife) { |
| e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); |
| break; |
| } |
| /* Restore LEDCTL settings */ |
| E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default); |
| break; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Turns on the software controllable LED |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| int32_t |
| e1000_led_on(struct e1000_hw *hw) |
| { |
| uint32_t ctrl = E1000_READ_REG(hw, CTRL); |
| |
| DEBUGFUNC("e1000_led_on"); |
| |
| switch (hw->mac_type) { |
| case e1000_82542_rev2_0: |
| case e1000_82542_rev2_1: |
| case e1000_82543: |
| /* Set SW Defineable Pin 0 to turn on the LED */ |
| ctrl |= E1000_CTRL_SWDPIN0; |
| ctrl |= E1000_CTRL_SWDPIO0; |
| break; |
| case e1000_82544: |
| if (hw->media_type == e1000_media_type_fiber) { |
| /* Set SW Defineable Pin 0 to turn on the LED */ |
| ctrl |= E1000_CTRL_SWDPIN0; |
| ctrl |= E1000_CTRL_SWDPIO0; |
| } else { |
| /* Clear SW Defineable Pin 0 to turn on the LED */ |
| ctrl &= ~E1000_CTRL_SWDPIN0; |
| ctrl |= E1000_CTRL_SWDPIO0; |
| } |
| break; |
| default: |
| if (hw->media_type == e1000_media_type_fiber) { |
| /* Clear SW Defineable Pin 0 to turn on the LED */ |
| ctrl &= ~E1000_CTRL_SWDPIN0; |
| ctrl |= E1000_CTRL_SWDPIO0; |
| } else if (hw->phy_type == e1000_phy_ife) { |
| e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, |
| (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); |
| } else if (hw->media_type == e1000_media_type_copper) { |
| E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2); |
| return E1000_SUCCESS; |
| } |
| break; |
| } |
| |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Turns off the software controllable LED |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| int32_t |
| e1000_led_off(struct e1000_hw *hw) |
| { |
| uint32_t ctrl = E1000_READ_REG(hw, CTRL); |
| |
| DEBUGFUNC("e1000_led_off"); |
| |
| switch (hw->mac_type) { |
| case e1000_82542_rev2_0: |
| case e1000_82542_rev2_1: |
| case e1000_82543: |
| /* Clear SW Defineable Pin 0 to turn off the LED */ |
| ctrl &= ~E1000_CTRL_SWDPIN0; |
| ctrl |= E1000_CTRL_SWDPIO0; |
| break; |
| case e1000_82544: |
| if (hw->media_type == e1000_media_type_fiber) { |
| /* Clear SW Defineable Pin 0 to turn off the LED */ |
| ctrl &= ~E1000_CTRL_SWDPIN0; |
| ctrl |= E1000_CTRL_SWDPIO0; |
| } else { |
| /* Set SW Defineable Pin 0 to turn off the LED */ |
| ctrl |= E1000_CTRL_SWDPIN0; |
| ctrl |= E1000_CTRL_SWDPIO0; |
| } |
| break; |
| default: |
| if (hw->media_type == e1000_media_type_fiber) { |
| /* Set SW Defineable Pin 0 to turn off the LED */ |
| ctrl |= E1000_CTRL_SWDPIN0; |
| ctrl |= E1000_CTRL_SWDPIO0; |
| } else if (hw->phy_type == e1000_phy_ife) { |
| e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, |
| (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF)); |
| } else if (hw->media_type == e1000_media_type_copper) { |
| E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); |
| return E1000_SUCCESS; |
| } |
| break; |
| } |
| |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Clears all hardware statistics counters. |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| static void |
| e1000_clear_hw_cntrs(struct e1000_hw *hw) |
| { |
| volatile uint32_t temp; |
| |
| temp = E1000_READ_REG(hw, CRCERRS); |
| temp = E1000_READ_REG(hw, SYMERRS); |
| temp = E1000_READ_REG(hw, MPC); |
| temp = E1000_READ_REG(hw, SCC); |
| temp = E1000_READ_REG(hw, ECOL); |
| temp = E1000_READ_REG(hw, MCC); |
| temp = E1000_READ_REG(hw, LATECOL); |
| temp = E1000_READ_REG(hw, COLC); |
| temp = E1000_READ_REG(hw, DC); |
| temp = E1000_READ_REG(hw, SEC); |
| temp = E1000_READ_REG(hw, RLEC); |
| temp = E1000_READ_REG(hw, XONRXC); |
| temp = E1000_READ_REG(hw, XONTXC); |
| temp = E1000_READ_REG(hw, XOFFRXC); |
| temp = E1000_READ_REG(hw, XOFFTXC); |
| temp = E1000_READ_REG(hw, FCRUC); |
| |
| if (hw->mac_type != e1000_ich8lan) { |
| temp = E1000_READ_REG(hw, PRC64); |
| temp = E1000_READ_REG(hw, PRC127); |
| temp = E1000_READ_REG(hw, PRC255); |
| temp = E1000_READ_REG(hw, PRC511); |
| temp = E1000_READ_REG(hw, PRC1023); |
| temp = E1000_READ_REG(hw, PRC1522); |
| } |
| |
| temp = E1000_READ_REG(hw, GPRC); |
| temp = E1000_READ_REG(hw, BPRC); |
| temp = E1000_READ_REG(hw, MPRC); |
| temp = E1000_READ_REG(hw, GPTC); |
| temp = E1000_READ_REG(hw, GORCL); |
| temp = E1000_READ_REG(hw, GORCH); |
| temp = E1000_READ_REG(hw, GOTCL); |
| temp = E1000_READ_REG(hw, GOTCH); |
| temp = E1000_READ_REG(hw, RNBC); |
| temp = E1000_READ_REG(hw, RUC); |
| temp = E1000_READ_REG(hw, RFC); |
| temp = E1000_READ_REG(hw, ROC); |
| temp = E1000_READ_REG(hw, RJC); |
| temp = E1000_READ_REG(hw, TORL); |
| temp = E1000_READ_REG(hw, TORH); |
| temp = E1000_READ_REG(hw, TOTL); |
| temp = E1000_READ_REG(hw, TOTH); |
| temp = E1000_READ_REG(hw, TPR); |
| temp = E1000_READ_REG(hw, TPT); |
| |
| if (hw->mac_type != e1000_ich8lan) { |
| temp = E1000_READ_REG(hw, PTC64); |
| temp = E1000_READ_REG(hw, PTC127); |
| temp = E1000_READ_REG(hw, PTC255); |
| temp = E1000_READ_REG(hw, PTC511); |
| temp = E1000_READ_REG(hw, PTC1023); |
| temp = E1000_READ_REG(hw, PTC1522); |
| } |
| |
| temp = E1000_READ_REG(hw, MPTC); |
| temp = E1000_READ_REG(hw, BPTC); |
| |
| if (hw->mac_type < e1000_82543) return; |
| |
| temp = E1000_READ_REG(hw, ALGNERRC); |
| temp = E1000_READ_REG(hw, RXERRC); |
| temp = E1000_READ_REG(hw, TNCRS); |
| temp = E1000_READ_REG(hw, CEXTERR); |
| temp = E1000_READ_REG(hw, TSCTC); |
| temp = E1000_READ_REG(hw, TSCTFC); |
| |
| if (hw->mac_type <= e1000_82544) return; |
| |
| temp = E1000_READ_REG(hw, MGTPRC); |
| temp = E1000_READ_REG(hw, MGTPDC); |
| temp = E1000_READ_REG(hw, MGTPTC); |
| |
| if (hw->mac_type <= e1000_82547_rev_2) return; |
| |
| temp = E1000_READ_REG(hw, IAC); |
| temp = E1000_READ_REG(hw, ICRXOC); |
| |
| if (hw->mac_type == e1000_ich8lan) return; |
| |
| temp = E1000_READ_REG(hw, ICRXPTC); |
| temp = E1000_READ_REG(hw, ICRXATC); |
| temp = E1000_READ_REG(hw, ICTXPTC); |
| temp = E1000_READ_REG(hw, ICTXATC); |
| temp = E1000_READ_REG(hw, ICTXQEC); |
| temp = E1000_READ_REG(hw, ICTXQMTC); |
| temp = E1000_READ_REG(hw, ICRXDMTC); |
| } |
| |
| /****************************************************************************** |
| * Resets Adaptive IFS to its default state. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Call this after e1000_init_hw. You may override the IFS defaults by setting |
| * hw->ifs_params_forced to TRUE. However, you must initialize hw-> |
| * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio |
| * before calling this function. |
| *****************************************************************************/ |
| void |
| e1000_reset_adaptive(struct e1000_hw *hw) |
| { |
| DEBUGFUNC("e1000_reset_adaptive"); |
| |
| if (hw->adaptive_ifs) { |
| if (!hw->ifs_params_forced) { |
| hw->current_ifs_val = 0; |
| hw->ifs_min_val = IFS_MIN; |
| hw->ifs_max_val = IFS_MAX; |
| hw->ifs_step_size = IFS_STEP; |
| hw->ifs_ratio = IFS_RATIO; |
| } |
| hw->in_ifs_mode = FALSE; |
| E1000_WRITE_REG(hw, AIT, 0); |
| } else { |
| DEBUGOUT("Not in Adaptive IFS mode!\n"); |
| } |
| } |
| |
| /****************************************************************************** |
| * Called during the callback/watchdog routine to update IFS value based on |
| * the ratio of transmits to collisions. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * tx_packets - Number of transmits since last callback |
| * total_collisions - Number of collisions since last callback |
| *****************************************************************************/ |
| void |
| e1000_update_adaptive(struct e1000_hw *hw) |
| { |
| DEBUGFUNC("e1000_update_adaptive"); |
| |
| if (hw->adaptive_ifs) { |
| if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) { |
| if (hw->tx_packet_delta > MIN_NUM_XMITS) { |
| hw->in_ifs_mode = TRUE; |
| if (hw->current_ifs_val < hw->ifs_max_val) { |
| if (hw->current_ifs_val == 0) |
| hw->current_ifs_val = hw->ifs_min_val; |
| else |
| hw->current_ifs_val += hw->ifs_step_size; |
| E1000_WRITE_REG(hw, AIT, hw->current_ifs_val); |
| } |
| } |
| } else { |
| if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { |
| hw->current_ifs_val = 0; |
| hw->in_ifs_mode = FALSE; |
| E1000_WRITE_REG(hw, AIT, 0); |
| } |
| } |
| } else { |
| DEBUGOUT("Not in Adaptive IFS mode!\n"); |
| } |
| } |
| |
| /****************************************************************************** |
| * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT |
| * |
| * hw - Struct containing variables accessed by shared code |
| * frame_len - The length of the frame in question |
| * mac_addr - The Ethernet destination address of the frame in question |
| *****************************************************************************/ |
| void |
| e1000_tbi_adjust_stats(struct e1000_hw *hw, |
| struct e1000_hw_stats *stats, |
| uint32_t frame_len, |
| uint8_t *mac_addr) |
| { |
| uint64_t carry_bit; |
| |
| /* First adjust the frame length. */ |
| frame_len--; |
| /* We need to adjust the statistics counters, since the hardware |
| * counters overcount this packet as a CRC error and undercount |
| * the packet as a good packet |
| */ |
| /* This packet should not be counted as a CRC error. */ |
| stats->crcerrs--; |
| /* This packet does count as a Good Packet Received. */ |
| stats->gprc++; |
| |
| /* Adjust the Good Octets received counters */ |
| carry_bit = 0x80000000 & stats->gorcl; |
| stats->gorcl += frame_len; |
| /* If the high bit of Gorcl (the low 32 bits of the Good Octets |
| * Received Count) was one before the addition, |
| * AND it is zero after, then we lost the carry out, |
| * need to add one to Gorch (Good Octets Received Count High). |
| * This could be simplified if all environments supported |
| * 64-bit integers. |
| */ |
| if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) |
| stats->gorch++; |
| /* Is this a broadcast or multicast? Check broadcast first, |
| * since the test for a multicast frame will test positive on |
| * a broadcast frame. |
| */ |
| if ((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff)) |
| /* Broadcast packet */ |
| stats->bprc++; |
| else if (*mac_addr & 0x01) |
| /* Multicast packet */ |
| stats->mprc++; |
| |
| if (frame_len == hw->max_frame_size) { |
| /* In this case, the hardware has overcounted the number of |
| * oversize frames. |
| */ |
| if (stats->roc > 0) |
| stats->roc--; |
| } |
| |
| /* Adjust the bin counters when the extra byte put the frame in the |
| * wrong bin. Remember that the frame_len was adjusted above. |
| */ |
| if (frame_len == 64) { |
| stats->prc64++; |
| stats->prc127--; |
| } else if (frame_len == 127) { |
| stats->prc127++; |
| stats->prc255--; |
| } else if (frame_len == 255) { |
| stats->prc255++; |
| stats->prc511--; |
| } else if (frame_len == 511) { |
| stats->prc511++; |
| stats->prc1023--; |
| } else if (frame_len == 1023) { |
| stats->prc1023++; |
| stats->prc1522--; |
| } else if (frame_len == 1522) { |
| stats->prc1522++; |
| } |
| } |
| |
| /****************************************************************************** |
| * Gets the current PCI bus type, speed, and width of the hardware |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| void |
| e1000_get_bus_info(struct e1000_hw *hw) |
| { |
| int32_t ret_val; |
| uint16_t pci_ex_link_status; |
| uint32_t status; |
| |
| switch (hw->mac_type) { |
| case e1000_82542_rev2_0: |
| case e1000_82542_rev2_1: |
| hw->bus_type = e1000_bus_type_pci; |
| hw->bus_speed = e1000_bus_speed_unknown; |
| hw->bus_width = e1000_bus_width_unknown; |
| break; |
| case e1000_82571: |
| case e1000_82572: |
| case e1000_82573: |
| case e1000_80003es2lan: |
| hw->bus_type = e1000_bus_type_pci_express; |
| hw->bus_speed = e1000_bus_speed_2500; |
| ret_val = e1000_read_pcie_cap_reg(hw, |
| PCI_EX_LINK_STATUS, |
| &pci_ex_link_status); |
| if (ret_val) |
| hw->bus_width = e1000_bus_width_unknown; |
| else |
| hw->bus_width = (pci_ex_link_status & PCI_EX_LINK_WIDTH_MASK) >> |
| PCI_EX_LINK_WIDTH_SHIFT; |
| break; |
| case e1000_ich8lan: |
| hw->bus_type = e1000_bus_type_pci_express; |
| hw->bus_speed = e1000_bus_speed_2500; |
| hw->bus_width = e1000_bus_width_pciex_1; |
| break; |
| default: |
| status = E1000_READ_REG(hw, STATUS); |
| hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? |
| e1000_bus_type_pcix : e1000_bus_type_pci; |
| |
| if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { |
| hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ? |
| e1000_bus_speed_66 : e1000_bus_speed_120; |
| } else if (hw->bus_type == e1000_bus_type_pci) { |
| hw->bus_speed = (status & E1000_STATUS_PCI66) ? |
| e1000_bus_speed_66 : e1000_bus_speed_33; |
| } else { |
| switch (status & E1000_STATUS_PCIX_SPEED) { |
| case E1000_STATUS_PCIX_SPEED_66: |
| hw->bus_speed = e1000_bus_speed_66; |
| break; |
| case E1000_STATUS_PCIX_SPEED_100: |
| hw->bus_speed = e1000_bus_speed_100; |
| break; |
| case E1000_STATUS_PCIX_SPEED_133: |
| hw->bus_speed = e1000_bus_speed_133; |
| break; |
| default: |
| hw->bus_speed = e1000_bus_speed_reserved; |
| break; |
| } |
| } |
| hw->bus_width = (status & E1000_STATUS_BUS64) ? |
| e1000_bus_width_64 : e1000_bus_width_32; |
| break; |
| } |
| } |
| |
| /****************************************************************************** |
| * Writes a value to one of the devices registers using port I/O (as opposed to |
| * memory mapped I/O). Only 82544 and newer devices support port I/O. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * offset - offset to write to |
| * value - value to write |
| *****************************************************************************/ |
| static void |
| e1000_write_reg_io(struct e1000_hw *hw, |
| uint32_t offset, |
| uint32_t value) |
| { |
| unsigned long io_addr = hw->io_base; |
| unsigned long io_data = hw->io_base + 4; |
| |
| e1000_io_write(hw, io_addr, offset); |
| e1000_io_write(hw, io_data, value); |
| } |
| |
| /****************************************************************************** |
| * Estimates the cable length. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * min_length - The estimated minimum length |
| * max_length - The estimated maximum length |
| * |
| * returns: - E1000_ERR_XXX |
| * E1000_SUCCESS |
| * |
| * This function always returns a ranged length (minimum & maximum). |
| * So for M88 phy's, this function interprets the one value returned from the |
| * register to the minimum and maximum range. |
| * For IGP phy's, the function calculates the range by the AGC registers. |
| *****************************************************************************/ |
| static int32_t |
| e1000_get_cable_length(struct e1000_hw *hw, |
| uint16_t *min_length, |
| uint16_t *max_length) |
| { |
| int32_t ret_val; |
| uint16_t agc_value = 0; |
| uint16_t i, phy_data; |
| uint16_t cable_length; |
| |
| DEBUGFUNC("e1000_get_cable_length"); |
| |
| *min_length = *max_length = 0; |
| |
| /* Use old method for Phy older than IGP */ |
| if (hw->phy_type == e1000_phy_m88) { |
| |
| ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> |
| M88E1000_PSSR_CABLE_LENGTH_SHIFT; |
| |
| /* Convert the enum value to ranged values */ |
| switch (cable_length) { |
| case e1000_cable_length_50: |
| *min_length = 0; |
| *max_length = e1000_igp_cable_length_50; |
| break; |
| case e1000_cable_length_50_80: |
| *min_length = e1000_igp_cable_length_50; |
| *max_length = e1000_igp_cable_length_80; |
| break; |
| case e1000_cable_length_80_110: |
| *min_length = e1000_igp_cable_length_80; |
| *max_length = e1000_igp_cable_length_110; |
| break; |
| case e1000_cable_length_110_140: |
| *min_length = e1000_igp_cable_length_110; |
| *max_length = e1000_igp_cable_length_140; |
| break; |
| case e1000_cable_length_140: |
| *min_length = e1000_igp_cable_length_140; |
| *max_length = e1000_igp_cable_length_170; |
| break; |
| default: |
| return -E1000_ERR_PHY; |
| break; |
| } |
| } else if (hw->phy_type == e1000_phy_gg82563) { |
| ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH; |
| |
| switch (cable_length) { |
| case e1000_gg_cable_length_60: |
| *min_length = 0; |
| *max_length = e1000_igp_cable_length_60; |
| break; |
| case e1000_gg_cable_length_60_115: |
| *min_length = e1000_igp_cable_length_60; |
| *max_length = e1000_igp_cable_length_115; |
| break; |
| case e1000_gg_cable_length_115_150: |
| *min_length = e1000_igp_cable_length_115; |
| *max_length = e1000_igp_cable_length_150; |
| break; |
| case e1000_gg_cable_length_150: |
| *min_length = e1000_igp_cable_length_150; |
| *max_length = e1000_igp_cable_length_180; |
| break; |
| default: |
| return -E1000_ERR_PHY; |
| break; |
| } |
| } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ |
| uint16_t cur_agc_value; |
| uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; |
| uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = |
| {IGP01E1000_PHY_AGC_A, |
| IGP01E1000_PHY_AGC_B, |
| IGP01E1000_PHY_AGC_C, |
| IGP01E1000_PHY_AGC_D}; |
| /* Read the AGC registers for all channels */ |
| for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { |
| |
| ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; |
| |
| /* Value bound check. */ |
| if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || |
| (cur_agc_value == 0)) |
| return -E1000_ERR_PHY; |
| |
| agc_value += cur_agc_value; |
| |
| /* Update minimal AGC value. */ |
| if (min_agc_value > cur_agc_value) |
| min_agc_value = cur_agc_value; |
| } |
| |
| /* Remove the minimal AGC result for length < 50m */ |
| if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { |
| agc_value -= min_agc_value; |
| |
| /* Get the average length of the remaining 3 channels */ |
| agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); |
| } else { |
| /* Get the average length of all the 4 channels. */ |
| agc_value /= IGP01E1000_PHY_CHANNEL_NUM; |
| } |
| |
| /* Set the range of the calculated length. */ |
| *min_length = ((e1000_igp_cable_length_table[agc_value] - |
| IGP01E1000_AGC_RANGE) > 0) ? |
| (e1000_igp_cable_length_table[agc_value] - |
| IGP01E1000_AGC_RANGE) : 0; |
| *max_length = e1000_igp_cable_length_table[agc_value] + |
| IGP01E1000_AGC_RANGE; |
| } else if (hw->phy_type == e1000_phy_igp_2 || |
| hw->phy_type == e1000_phy_igp_3) { |
| uint16_t cur_agc_index, max_agc_index = 0; |
| uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1; |
| uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = |
| {IGP02E1000_PHY_AGC_A, |
| IGP02E1000_PHY_AGC_B, |
| IGP02E1000_PHY_AGC_C, |
| IGP02E1000_PHY_AGC_D}; |
| /* Read the AGC registers for all channels */ |
| for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { |
| ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Getting bits 15:9, which represent the combination of course and |
| * fine gain values. The result is a number that can be put into |
| * the lookup table to obtain the approximate cable length. */ |
| cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & |
| IGP02E1000_AGC_LENGTH_MASK; |
| |
| /* Array index bound check. */ |
| if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) || |
| (cur_agc_index == 0)) |
| return -E1000_ERR_PHY; |
| |
| /* Remove min & max AGC values from calculation. */ |
| if (e1000_igp_2_cable_length_table[min_agc_index] > |
| e1000_igp_2_cable_length_table[cur_agc_index]) |
| min_agc_index = cur_agc_index; |
| if (e1000_igp_2_cable_length_table[max_agc_index] < |
| e1000_igp_2_cable_length_table[cur_agc_index]) |
| max_agc_index = cur_agc_index; |
| |
| agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; |
| } |
| |
| agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + |
| e1000_igp_2_cable_length_table[max_agc_index]); |
| agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); |
| |
| /* Calculate cable length with the error range of +/- 10 meters. */ |
| *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? |
| (agc_value - IGP02E1000_AGC_RANGE) : 0; |
| *max_length = agc_value + IGP02E1000_AGC_RANGE; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Check the cable polarity |
| * |
| * hw - Struct containing variables accessed by shared code |
| * polarity - output parameter : 0 - Polarity is not reversed |
| * 1 - Polarity is reversed. |
| * |
| * returns: - E1000_ERR_XXX |
| * E1000_SUCCESS |
| * |
| * For phy's older then IGP, this function simply reads the polarity bit in the |
| * Phy Status register. For IGP phy's, this bit is valid only if link speed is |
| * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will |
| * return 0. If the link speed is 1000 Mbps the polarity status is in the |
| * IGP01E1000_PHY_PCS_INIT_REG. |
| *****************************************************************************/ |
| static int32_t |
| e1000_check_polarity(struct e1000_hw *hw, |
| e1000_rev_polarity *polarity) |
| { |
| int32_t ret_val; |
| uint16_t phy_data; |
| |
| DEBUGFUNC("e1000_check_polarity"); |
| |
| if ((hw->phy_type == e1000_phy_m88) || |
| (hw->phy_type == e1000_phy_gg82563)) { |
| /* return the Polarity bit in the Status register. */ |
| ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >> |
| M88E1000_PSSR_REV_POLARITY_SHIFT) ? |
| e1000_rev_polarity_reversed : e1000_rev_polarity_normal; |
| |
| } else if (hw->phy_type == e1000_phy_igp || |
| hw->phy_type == e1000_phy_igp_3 || |
| hw->phy_type == e1000_phy_igp_2) { |
| /* Read the Status register to check the speed */ |
| ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to |
| * find the polarity status */ |
| if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == |
| IGP01E1000_PSSR_SPEED_1000MBPS) { |
| |
| /* Read the GIG initialization PCS register (0x00B4) */ |
| ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Check the polarity bits */ |
| *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? |
| e1000_rev_polarity_reversed : e1000_rev_polarity_normal; |
| } else { |
| /* For 10 Mbps, read the polarity bit in the status register. (for |
| * 100 Mbps this bit is always 0) */ |
| *polarity = (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ? |
| e1000_rev_polarity_reversed : e1000_rev_polarity_normal; |
| } |
| } else if (hw->phy_type == e1000_phy_ife) { |
| ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| *polarity = ((phy_data & IFE_PESC_POLARITY_REVERSED) >> |
| IFE_PESC_POLARITY_REVERSED_SHIFT) ? |
| e1000_rev_polarity_reversed : e1000_rev_polarity_normal; |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Check if Downshift occured |
| * |
| * hw - Struct containing variables accessed by shared code |
| * downshift - output parameter : 0 - No Downshift ocured. |
| * 1 - Downshift ocured. |
| * |
| * returns: - E1000_ERR_XXX |
| * E1000_SUCCESS |
| * |
| * For phy's older then IGP, this function reads the Downshift bit in the Phy |
| * Specific Status register. For IGP phy's, it reads the Downgrade bit in the |
| * Link Health register. In IGP this bit is latched high, so the driver must |
| * read it immediately after link is established. |
| *****************************************************************************/ |
| static int32_t |
| e1000_check_downshift(struct e1000_hw *hw) |
| { |
| int32_t ret_val; |
| uint16_t phy_data; |
| |
| DEBUGFUNC("e1000_check_downshift"); |
| |
| if (hw->phy_type == e1000_phy_igp || |
| hw->phy_type == e1000_phy_igp_3 || |
| hw->phy_type == e1000_phy_igp_2) { |
| ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; |
| } else if ((hw->phy_type == e1000_phy_m88) || |
| (hw->phy_type == e1000_phy_gg82563)) { |
| ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> |
| M88E1000_PSSR_DOWNSHIFT_SHIFT; |
| } else if (hw->phy_type == e1000_phy_ife) { |
| /* e1000_phy_ife supports 10/100 speed only */ |
| hw->speed_downgraded = FALSE; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /***************************************************************************** |
| * |
| * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a |
| * gigabit link is achieved to improve link quality. |
| * |
| * hw: Struct containing variables accessed by shared code |
| * |
| * returns: - E1000_ERR_PHY if fail to read/write the PHY |
| * E1000_SUCCESS at any other case. |
| * |
| ****************************************************************************/ |
| |
| static int32_t |
| e1000_config_dsp_after_link_change(struct e1000_hw *hw, |
| boolean_t link_up) |
| { |
| int32_t ret_val; |
| uint16_t phy_data, phy_saved_data, speed, duplex, i; |
| uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = |
| {IGP01E1000_PHY_AGC_PARAM_A, |
| IGP01E1000_PHY_AGC_PARAM_B, |
| IGP01E1000_PHY_AGC_PARAM_C, |
| IGP01E1000_PHY_AGC_PARAM_D}; |
| uint16_t min_length, max_length; |
| |
| DEBUGFUNC("e1000_config_dsp_after_link_change"); |
| |
| if (hw->phy_type != e1000_phy_igp) |
| return E1000_SUCCESS; |
| |
| if (link_up) { |
| ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); |
| if (ret_val) { |
| DEBUGOUT("Error getting link speed and duplex\n"); |
| return ret_val; |
| } |
| |
| if (speed == SPEED_1000) { |
| |
| ret_val = e1000_get_cable_length(hw, &min_length, &max_length); |
| if (ret_val) |
| return ret_val; |
| |
| if ((hw->dsp_config_state == e1000_dsp_config_enabled) && |
| min_length >= e1000_igp_cable_length_50) { |
| |
| for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { |
| ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; |
| |
| ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i], |
| phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| hw->dsp_config_state = e1000_dsp_config_activated; |
| } |
| |
| if ((hw->ffe_config_state == e1000_ffe_config_enabled) && |
| (min_length < e1000_igp_cable_length_50)) { |
| |
| uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20; |
| uint32_t idle_errs = 0; |
| |
| /* clear previous idle error counts */ |
| ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| for (i = 0; i < ffe_idle_err_timeout; i++) { |
| udelay(1000); |
| ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT); |
| if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { |
| hw->ffe_config_state = e1000_ffe_config_active; |
| |
| ret_val = e1000_write_phy_reg(hw, |
| IGP01E1000_PHY_DSP_FFE, |
| IGP01E1000_PHY_DSP_FFE_CM_CP); |
| if (ret_val) |
| return ret_val; |
| break; |
| } |
| |
| if (idle_errs) |
| ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100; |
| } |
| } |
| } |
| } else { |
| if (hw->dsp_config_state == e1000_dsp_config_activated) { |
| /* Save off the current value of register 0x2F5B to be restored at |
| * the end of the routines. */ |
| ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); |
| |
| if (ret_val) |
| return ret_val; |
| |
| /* Disable the PHY transmitter */ |
| ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); |
| |
| if (ret_val) |
| return ret_val; |
| |
| mdelay(20); |
| |
| ret_val = e1000_write_phy_reg(hw, 0x0000, |
| IGP01E1000_IEEE_FORCE_GIGA); |
| if (ret_val) |
| return ret_val; |
| for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { |
| ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; |
| phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; |
| |
| ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| ret_val = e1000_write_phy_reg(hw, 0x0000, |
| IGP01E1000_IEEE_RESTART_AUTONEG); |
| if (ret_val) |
| return ret_val; |
| |
| mdelay(20); |
| |
| /* Now enable the transmitter */ |
| ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); |
| |
| if (ret_val) |
| return ret_val; |
| |
| hw->dsp_config_state = e1000_dsp_config_enabled; |
| } |
| |
| if (hw->ffe_config_state == e1000_ffe_config_active) { |
| /* Save off the current value of register 0x2F5B to be restored at |
| * the end of the routines. */ |
| ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); |
| |
| if (ret_val) |
| return ret_val; |
| |
| /* Disable the PHY transmitter */ |
| ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); |
| |
| if (ret_val) |
| return ret_val; |
| |
| mdelay(20); |
| |
| ret_val = e1000_write_phy_reg(hw, 0x0000, |
| IGP01E1000_IEEE_FORCE_GIGA); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, |
| IGP01E1000_PHY_DSP_FFE_DEFAULT); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_write_phy_reg(hw, 0x0000, |
| IGP01E1000_IEEE_RESTART_AUTONEG); |
| if (ret_val) |
| return ret_val; |
| |
| mdelay(20); |
| |
| /* Now enable the transmitter */ |
| ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); |
| |
| if (ret_val) |
| return ret_val; |
| |
| hw->ffe_config_state = e1000_ffe_config_enabled; |
| } |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /***************************************************************************** |
| * Set PHY to class A mode |
| * Assumes the following operations will follow to enable the new class mode. |
| * 1. Do a PHY soft reset |
| * 2. Restart auto-negotiation or force link. |
| * |
| * hw - Struct containing variables accessed by shared code |
| ****************************************************************************/ |
| static int32_t |
| e1000_set_phy_mode(struct e1000_hw *hw) |
| { |
| int32_t ret_val; |
| uint16_t eeprom_data; |
| |
| DEBUGFUNC("e1000_set_phy_mode"); |
| |
| if ((hw->mac_type == e1000_82545_rev_3) && |
| (hw->media_type == e1000_media_type_copper)) { |
| ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data); |
| if (ret_val) { |
| return ret_val; |
| } |
| |
| if ((eeprom_data != EEPROM_RESERVED_WORD) && |
| (eeprom_data & EEPROM_PHY_CLASS_A)) { |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104); |
| if (ret_val) |
| return ret_val; |
| |
| hw->phy_reset_disable = FALSE; |
| } |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /***************************************************************************** |
| * |
| * This function sets the lplu state according to the active flag. When |
| * activating lplu this function also disables smart speed and vise versa. |
| * lplu will not be activated unless the device autonegotiation advertisment |
| * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. |
| * hw: Struct containing variables accessed by shared code |
| * active - true to enable lplu false to disable lplu. |
| * |
| * returns: - E1000_ERR_PHY if fail to read/write the PHY |
| * E1000_SUCCESS at any other case. |
| * |
| ****************************************************************************/ |
| |
| static int32_t |
| e1000_set_d3_lplu_state(struct e1000_hw *hw, |
| boolean_t active) |
| { |
| uint32_t phy_ctrl = 0; |
| int32_t ret_val; |
| uint16_t phy_data; |
| DEBUGFUNC("e1000_set_d3_lplu_state"); |
| |
| if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2 |
| && hw->phy_type != e1000_phy_igp_3) |
| return E1000_SUCCESS; |
| |
| /* During driver activity LPLU should not be used or it will attain link |
| * from the lowest speeds starting from 10Mbps. The capability is used for |
| * Dx transitions and states */ |
| if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { |
| ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); |
| if (ret_val) |
| return ret_val; |
| } else if (hw->mac_type == e1000_ich8lan) { |
| /* MAC writes into PHY register based on the state transition |
| * and start auto-negotiation. SW driver can overwrite the settings |
| * in CSR PHY power control E1000_PHY_CTRL register. */ |
| phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); |
| } else { |
| ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| if (!active) { |
| if (hw->mac_type == e1000_82541_rev_2 || |
| hw->mac_type == e1000_82547_rev_2) { |
| phy_data &= ~IGP01E1000_GMII_FLEX_SPD; |
| ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); |
| if (ret_val) |
| return ret_val; |
| } else { |
| if (hw->mac_type == e1000_ich8lan) { |
| phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; |
| E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); |
| } else { |
| phy_data &= ~IGP02E1000_PM_D3_LPLU; |
| ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
| phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| } |
| |
| /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during |
| * Dx states where the power conservation is most important. During |
| * driver activity we should enable SmartSpeed, so performance is |
| * maintained. */ |
| if (hw->smart_speed == e1000_smart_speed_on) { |
| ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| phy_data); |
| if (ret_val) |
| return ret_val; |
| } else if (hw->smart_speed == e1000_smart_speed_off) { |
| ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) || |
| (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) || |
| (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { |
| |
| if (hw->mac_type == e1000_82541_rev_2 || |
| hw->mac_type == e1000_82547_rev_2) { |
| phy_data |= IGP01E1000_GMII_FLEX_SPD; |
| ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); |
| if (ret_val) |
| return ret_val; |
| } else { |
| if (hw->mac_type == e1000_ich8lan) { |
| phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; |
| E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); |
| } else { |
| phy_data |= IGP02E1000_PM_D3_LPLU; |
| ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
| phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| } |
| |
| /* When LPLU is enabled we should disable SmartSpeed */ |
| ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /***************************************************************************** |
| * |
| * This function sets the lplu d0 state according to the active flag. When |
| * activating lplu this function also disables smart speed and vise versa. |
| * lplu will not be activated unless the device autonegotiation advertisment |
| * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. |
| * hw: Struct containing variables accessed by shared code |
| * active - true to enable lplu false to disable lplu. |
| * |
| * returns: - E1000_ERR_PHY if fail to read/write the PHY |
| * E1000_SUCCESS at any other case. |
| * |
| ****************************************************************************/ |
| |
| static int32_t |
| e1000_set_d0_lplu_state(struct e1000_hw *hw, |
| boolean_t active) |
| { |
| uint32_t phy_ctrl = 0; |
| int32_t ret_val; |
| uint16_t phy_data; |
| DEBUGFUNC("e1000_set_d0_lplu_state"); |
| |
| if (hw->mac_type <= e1000_82547_rev_2) |
| return E1000_SUCCESS; |
| |
| if (hw->mac_type == e1000_ich8lan) { |
| phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); |
| } else { |
| ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| if (!active) { |
| if (hw->mac_type == e1000_ich8lan) { |
| phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; |
| E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); |
| } else { |
| phy_data &= ~IGP02E1000_PM_D0_LPLU; |
| ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during |
| * Dx states where the power conservation is most important. During |
| * driver activity we should enable SmartSpeed, so performance is |
| * maintained. */ |
| if (hw->smart_speed == e1000_smart_speed_on) { |
| ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| phy_data); |
| if (ret_val) |
| return ret_val; |
| } else if (hw->smart_speed == e1000_smart_speed_off) { |
| ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
| phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| |
| } else { |
| |
| if (hw->mac_type == e1000_ich8lan) { |
| phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; |
| E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); |
| } else { |
| phy_data |= IGP02E1000_PM_D0_LPLU; |
| ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* When LPLU is enabled we should disable SmartSpeed */ |
| ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Change VCO speed register to improve Bit Error Rate performance of SERDES. |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| static int32_t |
| e1000_set_vco_speed(struct e1000_hw *hw) |
| { |
| int32_t ret_val; |
| uint16_t default_page = 0; |
| uint16_t phy_data; |
| |
| DEBUGFUNC("e1000_set_vco_speed"); |
| |
| switch (hw->mac_type) { |
| case e1000_82545_rev_3: |
| case e1000_82546_rev_3: |
| break; |
| default: |
| return E1000_SUCCESS; |
| } |
| |
| /* Set PHY register 30, page 5, bit 8 to 0 */ |
| |
| ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Set PHY register 30, page 4, bit 11 to 1 */ |
| |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| phy_data |= M88E1000_PHY_VCO_REG_BIT11; |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); |
| if (ret_val) |
| return ret_val; |
| |
| return E1000_SUCCESS; |
| } |
| |
| |
| /***************************************************************************** |
| * This function reads the cookie from ARC ram. |
| * |
| * returns: - E1000_SUCCESS . |
| ****************************************************************************/ |
| static int32_t |
| e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer) |
| { |
| uint8_t i; |
| uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET; |
| uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH; |
| |
| length = (length >> 2); |
| offset = (offset >> 2); |
| |
| for (i = 0; i < length; i++) { |
| *((uint32_t *) buffer + i) = |
| E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i); |
| } |
| return E1000_SUCCESS; |
| } |
| |
| |
| /***************************************************************************** |
| * This function checks whether the HOST IF is enabled for command operaton |
| * and also checks whether the previous command is completed. |
| * It busy waits in case of previous command is not completed. |
| * |
| * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or |
| * timeout |
| * - E1000_SUCCESS for success. |
| ****************************************************************************/ |
| static int32_t |
| e1000_mng_enable_host_if(struct e1000_hw * hw) |
| { |
| uint32_t hicr; |
| uint8_t i; |
| |
| /* Check that the host interface is enabled. */ |
| hicr = E1000_READ_REG(hw, HICR); |
| if ((hicr & E1000_HICR_EN) == 0) { |
| DEBUGOUT("E1000_HOST_EN bit disabled.\n"); |
| return -E1000_ERR_HOST_INTERFACE_COMMAND; |
| } |
| /* check the previous command is completed */ |
| for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { |
| hicr = E1000_READ_REG(hw, HICR); |
| if (!(hicr & E1000_HICR_C)) |
| break; |
| mdelay(1); |
| } |
| |
| if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { |
| DEBUGOUT("Previous command timeout failed .\n"); |
| return -E1000_ERR_HOST_INTERFACE_COMMAND; |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /***************************************************************************** |
| * This function writes the buffer content at the offset given on the host if. |
| * It also does alignment considerations to do the writes in most efficient way. |
| * Also fills up the sum of the buffer in *buffer parameter. |
| * |
| * returns - E1000_SUCCESS for success. |
| ****************************************************************************/ |
| static int32_t |
| e1000_mng_host_if_write(struct e1000_hw * hw, uint8_t *buffer, |
| uint16_t length, uint16_t offset, uint8_t *sum) |
| { |
| uint8_t *tmp; |
| uint8_t *bufptr = buffer; |
| uint32_t data = 0; |
| uint16_t remaining, i, j, prev_bytes; |
| |
| /* sum = only sum of the data and it is not checksum */ |
| |
| if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) { |
| return -E1000_ERR_PARAM; |
| } |
| |
| tmp = (uint8_t *)&data; |
| prev_bytes = offset & 0x3; |
| offset &= 0xFFFC; |
| offset >>= 2; |
| |
| if (prev_bytes) { |
| data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset); |
| for (j = prev_bytes; j < sizeof(uint32_t); j++) { |
| *(tmp + j) = *bufptr++; |
| *sum += *(tmp + j); |
| } |
| E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data); |
| length -= j - prev_bytes; |
| offset++; |
| } |
| |
| remaining = length & 0x3; |
| length -= remaining; |
| |
| /* Calculate length in DWORDs */ |
| length >>= 2; |
| |
| /* The device driver writes the relevant command block into the |
| * ram area. */ |
| for (i = 0; i < length; i++) { |
| for (j = 0; j < sizeof(uint32_t); j++) { |
| *(tmp + j) = *bufptr++; |
| *sum += *(tmp + j); |
| } |
| |
| E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data); |
| } |
| if (remaining) { |
| for (j = 0; j < sizeof(uint32_t); j++) { |
| if (j < remaining) |
| *(tmp + j) = *bufptr++; |
| else |
| *(tmp + j) = 0; |
| |
| *sum += *(tmp + j); |
| } |
| E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data); |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| |
| /***************************************************************************** |
| * This function writes the command header after does the checksum calculation. |
| * |
| * returns - E1000_SUCCESS for success. |
| ****************************************************************************/ |
| static int32_t |
| e1000_mng_write_cmd_header(struct e1000_hw * hw, |
| struct e1000_host_mng_command_header * hdr) |
| { |
| uint16_t i; |
| uint8_t sum; |
| uint8_t *buffer; |
| |
| /* Write the whole command header structure which includes sum of |
| * the buffer */ |
| |
| uint16_t length = sizeof(struct e1000_host_mng_command_header); |
| |
| sum = hdr->checksum; |
| hdr->checksum = 0; |
| |
| buffer = (uint8_t *) hdr; |
| i = length; |
| while (i--) |
| sum += buffer[i]; |
| |
| hdr->checksum = 0 - sum; |
| |
| length >>= 2; |
| /* The device driver writes the relevant command block into the ram area. */ |
| for (i = 0; i < length; i++) { |
| E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i)); |
| E1000_WRITE_FLUSH(hw); |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| |
| /***************************************************************************** |
| * This function indicates to ARC that a new command is pending which completes |
| * one write operation by the driver. |
| * |
| * returns - E1000_SUCCESS for success. |
| ****************************************************************************/ |
| static int32_t |
| e1000_mng_write_commit(struct e1000_hw * hw) |
| { |
| uint32_t hicr; |
| |
| hicr = E1000_READ_REG(hw, HICR); |
| /* Setting this bit tells the ARC that a new command is pending. */ |
| E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C); |
| |
| return E1000_SUCCESS; |
| } |
| |
| |
| /***************************************************************************** |
| * This function checks the mode of the firmware. |
| * |
| * returns - TRUE when the mode is IAMT or FALSE. |
| ****************************************************************************/ |
| boolean_t |
| e1000_check_mng_mode(struct e1000_hw *hw) |
| { |
| uint32_t fwsm; |
| |
| fwsm = E1000_READ_REG(hw, FWSM); |
| |
| if (hw->mac_type == e1000_ich8lan) { |
| if ((fwsm & E1000_FWSM_MODE_MASK) == |
| (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) |
| return TRUE; |
| } else if ((fwsm & E1000_FWSM_MODE_MASK) == |
| (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) |
| return TRUE; |
| |
| return FALSE; |
| } |
| |
| |
| /***************************************************************************** |
| * This function writes the dhcp info . |
| ****************************************************************************/ |
| int32_t |
| e1000_mng_write_dhcp_info(struct e1000_hw * hw, uint8_t *buffer, |
| uint16_t length) |
| { |
| int32_t ret_val; |
| struct e1000_host_mng_command_header hdr; |
| |
| hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; |
| hdr.command_length = length; |
| hdr.reserved1 = 0; |
| hdr.reserved2 = 0; |
| hdr.checksum = 0; |
| |
| ret_val = e1000_mng_enable_host_if(hw); |
| if (ret_val == E1000_SUCCESS) { |
| ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr), |
| &(hdr.checksum)); |
| if (ret_val == E1000_SUCCESS) { |
| ret_val = e1000_mng_write_cmd_header(hw, &hdr); |
| if (ret_val == E1000_SUCCESS) |
| ret_val = e1000_mng_write_commit(hw); |
| } |
| } |
| return ret_val; |
| } |
| |
| |
| /***************************************************************************** |
| * This function calculates the checksum. |
| * |
| * returns - checksum of buffer contents. |
| ****************************************************************************/ |
| static uint8_t |
| e1000_calculate_mng_checksum(char *buffer, uint32_t length) |
| { |
| uint8_t sum = 0; |
| uint32_t i; |
| |
| if (!buffer) |
| return 0; |
| |
| for (i=0; i < length; i++) |
| sum += buffer[i]; |
| |
| return (uint8_t) (0 - sum); |
| } |
| |
| /***************************************************************************** |
| * This function checks whether tx pkt filtering needs to be enabled or not. |
| * |
| * returns - TRUE for packet filtering or FALSE. |
| ****************************************************************************/ |
| boolean_t |
| e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) |
| { |
| /* called in init as well as watchdog timer functions */ |
| |
| int32_t ret_val, checksum; |
| boolean_t tx_filter = FALSE; |
| struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie); |
| uint8_t *buffer = (uint8_t *) &(hw->mng_cookie); |
| |
| if (e1000_check_mng_mode(hw)) { |
| ret_val = e1000_mng_enable_host_if(hw); |
| if (ret_val == E1000_SUCCESS) { |
| ret_val = e1000_host_if_read_cookie(hw, buffer); |
| if (ret_val == E1000_SUCCESS) { |
| checksum = hdr->checksum; |
| hdr->checksum = 0; |
| if ((hdr->signature == E1000_IAMT_SIGNATURE) && |
| checksum == e1000_calculate_mng_checksum((char *)buffer, |
| E1000_MNG_DHCP_COOKIE_LENGTH)) { |
| if (hdr->status & |
| E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT) |
| tx_filter = TRUE; |
| } else |
| tx_filter = TRUE; |
| } else |
| tx_filter = TRUE; |
| } |
| } |
| |
| hw->tx_pkt_filtering = tx_filter; |
| return tx_filter; |
| } |
| |
| /****************************************************************************** |
| * Verifies the hardware needs to allow ARPs to be processed by the host |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * returns: - TRUE/FALSE |
| * |
| *****************************************************************************/ |
| uint32_t |
| e1000_enable_mng_pass_thru(struct e1000_hw *hw) |
| { |
| uint32_t manc; |
| uint32_t fwsm, factps; |
| |
| if (hw->asf_firmware_present) { |
| manc = E1000_READ_REG(hw, MANC); |
| |
| if (!(manc & E1000_MANC_RCV_TCO_EN) || |
| !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) |
| return FALSE; |
| if (e1000_arc_subsystem_valid(hw) == TRUE) { |
| fwsm = E1000_READ_REG(hw, FWSM); |
| factps = E1000_READ_REG(hw, FACTPS); |
| |
| if ((((fwsm & E1000_FWSM_MODE_MASK) >> E1000_FWSM_MODE_SHIFT) == |
| e1000_mng_mode_pt) && !(factps & E1000_FACTPS_MNGCG)) |
| return TRUE; |
| } else |
| if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN)) |
| return TRUE; |
| } |
| return FALSE; |
| } |
| |
| static int32_t |
| e1000_polarity_reversal_workaround(struct e1000_hw *hw) |
| { |
| int32_t ret_val; |
| uint16_t mii_status_reg; |
| uint16_t i; |
| |
| /* Polarity reversal workaround for forced 10F/10H links. */ |
| |
| /* Disable the transmitter on the PHY */ |
| |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); |
| if (ret_val) |
| return ret_val; |
| |
| /* This loop will early-out if the NO link condition has been met. */ |
| for (i = PHY_FORCE_TIME; i > 0; i--) { |
| /* Read the MII Status Register and wait for Link Status bit |
| * to be clear. |
| */ |
| |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
| if (ret_val) |
| return ret_val; |
| |
| if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break; |
| mdelay(100); |
| } |
| |
| /* Recommended delay time after link has been lost */ |
| mdelay(1000); |
| |
| /* Now we will re-enable th transmitter on the PHY */ |
| |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); |
| if (ret_val) |
| return ret_val; |
| mdelay(50); |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); |
| if (ret_val) |
| return ret_val; |
| mdelay(50); |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); |
| if (ret_val) |
| return ret_val; |
| mdelay(50); |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); |
| if (ret_val) |
| return ret_val; |
| |
| /* This loop will early-out if the link condition has been met. */ |
| for (i = PHY_FORCE_TIME; i > 0; i--) { |
| /* Read the MII Status Register and wait for Link Status bit |
| * to be set. |
| */ |
| |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
| if (ret_val) |
| return ret_val; |
| |
| if (mii_status_reg & MII_SR_LINK_STATUS) break; |
| mdelay(100); |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /*************************************************************************** |
| * |
| * Disables PCI-Express master access. |
| * |
| * hw: Struct containing variables accessed by shared code |
| * |
| * returns: - none. |
| * |
| ***************************************************************************/ |
| static void |
| e1000_set_pci_express_master_disable(struct e1000_hw *hw) |
| { |
| uint32_t ctrl; |
| |
| DEBUGFUNC("e1000_set_pci_express_master_disable"); |
| |
| if (hw->bus_type != e1000_bus_type_pci_express) |
| return; |
| |
| ctrl = E1000_READ_REG(hw, CTRL); |
| ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| } |
| |
| /******************************************************************************* |
| * |
| * Disables PCI-Express master access and verifies there are no pending requests |
| * |
| * hw: Struct containing variables accessed by shared code |
| * |
| * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't |
| * caused the master requests to be disabled. |
| * E1000_SUCCESS master requests disabled. |
| * |
| ******************************************************************************/ |
| int32_t |
| e1000_disable_pciex_master(struct e1000_hw *hw) |
| { |
| int32_t timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */ |
| |
| DEBUGFUNC("e1000_disable_pciex_master"); |
| |
| if (hw->bus_type != e1000_bus_type_pci_express) |
| return E1000_SUCCESS; |
| |
| e1000_set_pci_express_master_disable(hw); |
| |
| while (timeout) { |
| if (!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) |
| break; |
| else |
| udelay(100); |
| timeout--; |
| } |
| |
| if (!timeout) { |
| DEBUGOUT("Master requests are pending.\n"); |
| return -E1000_ERR_MASTER_REQUESTS_PENDING; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /******************************************************************************* |
| * |
| * Check for EEPROM Auto Read bit done. |
| * |
| * hw: Struct containing variables accessed by shared code |
| * |
| * returns: - E1000_ERR_RESET if fail to reset MAC |
| * E1000_SUCCESS at any other case. |
| * |
| ******************************************************************************/ |
| static int32_t |
| e1000_get_auto_rd_done(struct e1000_hw *hw) |
| { |
| int32_t timeout = AUTO_READ_DONE_TIMEOUT; |
| |
| DEBUGFUNC("e1000_get_auto_rd_done"); |
| |
| switch (hw->mac_type) { |
| default: |
| msleep(5); |
| break; |
| case e1000_82571: |
| case e1000_82572: |
| case e1000_82573: |
| case e1000_80003es2lan: |
| case e1000_ich8lan: |
| while (timeout) { |
| if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) |
| break; |
| else msleep(1); |
| timeout--; |
| } |
| |
| if (!timeout) { |
| DEBUGOUT("Auto read by HW from EEPROM has not completed.\n"); |
| return -E1000_ERR_RESET; |
| } |
| break; |
| } |
| |
| /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high. |
| * Need to wait for PHY configuration completion before accessing NVM |
| * and PHY. */ |
| if (hw->mac_type == e1000_82573) |
| msleep(25); |
| |
| return E1000_SUCCESS; |
| } |
| |
| /*************************************************************************** |
| * Checks if the PHY configuration is done |
| * |
| * hw: Struct containing variables accessed by shared code |
| * |
| * returns: - E1000_ERR_RESET if fail to reset MAC |
| * E1000_SUCCESS at any other case. |
| * |
| ***************************************************************************/ |
| static int32_t |
| e1000_get_phy_cfg_done(struct e1000_hw *hw) |
| { |
| int32_t timeout = PHY_CFG_TIMEOUT; |
| uint32_t cfg_mask = E1000_EEPROM_CFG_DONE; |
| |
| DEBUGFUNC("e1000_get_phy_cfg_done"); |
| |
| switch (hw->mac_type) { |
| default: |
| mdelay(10); |
| break; |
| case e1000_80003es2lan: |
| /* Separate *_CFG_DONE_* bit for each port */ |
| if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) |
| cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1; |
| /* Fall Through */ |
| case e1000_82571: |
| case e1000_82572: |
| while (timeout) { |
| if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask) |
| break; |
| else |
| msleep(1); |
| timeout--; |
| } |
| if (!timeout) { |
| DEBUGOUT("MNG configuration cycle has not completed.\n"); |
| return -E1000_ERR_RESET; |
| } |
| break; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /*************************************************************************** |
| * |
| * Using the combination of SMBI and SWESMBI semaphore bits when resetting |
| * adapter or Eeprom access. |
| * |
| * hw: Struct containing variables accessed by shared code |
| * |
| * returns: - E1000_ERR_EEPROM if fail to access EEPROM. |
| * E1000_SUCCESS at any other case. |
| * |
| ***************************************************************************/ |
| static int32_t |
| e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw) |
| { |
| int32_t timeout; |
| uint32_t swsm; |
| |
| DEBUGFUNC("e1000_get_hw_eeprom_semaphore"); |
| |
| if (!hw->eeprom_semaphore_present) |
| return E1000_SUCCESS; |
| |
| if (hw->mac_type == e1000_80003es2lan) { |
| /* Get the SW semaphore. */ |
| if (e1000_get_software_semaphore(hw) != E1000_SUCCESS) |
| return -E1000_ERR_EEPROM; |
| } |
| |
| /* Get the FW semaphore. */ |
| timeout = hw->eeprom.word_size + 1; |
| while (timeout) { |
| swsm = E1000_READ_REG(hw, SWSM); |
| swsm |= E1000_SWSM_SWESMBI; |
| E1000_WRITE_REG(hw, SWSM, swsm); |
| /* if we managed to set the bit we got the semaphore. */ |
| swsm = E1000_READ_REG(hw, SWSM); |
| if (swsm & E1000_SWSM_SWESMBI) |
| break; |
| |
| udelay(50); |
| timeout--; |
| } |
| |
| if (!timeout) { |
| /* Release semaphores */ |
| e1000_put_hw_eeprom_semaphore(hw); |
| DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /*************************************************************************** |
| * This function clears HW semaphore bits. |
| * |
| * hw: Struct containing variables accessed by shared code |
| * |
| * returns: - None. |
| * |
| ***************************************************************************/ |
| static void |
| e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw) |
| { |
| uint32_t swsm; |
| |
| DEBUGFUNC("e1000_put_hw_eeprom_semaphore"); |
| |
| if (!hw->eeprom_semaphore_present) |
| return; |
| |
| swsm = E1000_READ_REG(hw, SWSM); |
| if (hw->mac_type == e1000_80003es2lan) { |
| /* Release both semaphores. */ |
| swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); |
| } else |
| swsm &= ~(E1000_SWSM_SWESMBI); |
| E1000_WRITE_REG(hw, SWSM, swsm); |
| } |
| |
| /*************************************************************************** |
| * |
| * Obtaining software semaphore bit (SMBI) before resetting PHY. |
| * |
| * hw: Struct containing variables accessed by shared code |
| * |
| * returns: - E1000_ERR_RESET if fail to obtain semaphore. |
| * E1000_SUCCESS at any other case. |
| * |
| ***************************************************************************/ |
| static int32_t |
| e1000_get_software_semaphore(struct e1000_hw *hw) |
| { |
| int32_t timeout = hw->eeprom.word_size + 1; |
| uint32_t swsm; |
| |
| DEBUGFUNC("e1000_get_software_semaphore"); |
| |
| if (hw->mac_type != e1000_80003es2lan) { |
| return E1000_SUCCESS; |
| } |
| |
| while (timeout) { |
| swsm = E1000_READ_REG(hw, SWSM); |
| /* If SMBI bit cleared, it is now set and we hold the semaphore */ |
| if (!(swsm & E1000_SWSM_SMBI)) |
| break; |
| mdelay(1); |
| timeout--; |
| } |
| |
| if (!timeout) { |
| DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); |
| return -E1000_ERR_RESET; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /*************************************************************************** |
| * |
| * Release semaphore bit (SMBI). |
| * |
| * hw: Struct containing variables accessed by shared code |
| * |
| ***************************************************************************/ |
| static void |
| e1000_release_software_semaphore(struct e1000_hw *hw) |
| { |
| uint32_t swsm; |
| |
| DEBUGFUNC("e1000_release_software_semaphore"); |
| |
| if (hw->mac_type != e1000_80003es2lan) { |
| return; |
| } |
| |
| swsm = E1000_READ_REG(hw, SWSM); |
| /* Release the SW semaphores.*/ |
| swsm &= ~E1000_SWSM_SMBI; |
| E1000_WRITE_REG(hw, SWSM, swsm); |
| } |
| |
| /****************************************************************************** |
| * Checks if PHY reset is blocked due to SOL/IDER session, for example. |
| * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to |
| * the caller to figure out how to deal with it. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * returns: - E1000_BLK_PHY_RESET |
| * E1000_SUCCESS |
| * |
| *****************************************************************************/ |
| int32_t |
| e1000_check_phy_reset_block(struct e1000_hw *hw) |
| { |
| uint32_t manc = 0; |
| uint32_t fwsm = 0; |
| |
| if (hw->mac_type == e1000_ich8lan) { |
| fwsm = E1000_READ_REG(hw, FWSM); |
| return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS |
| : E1000_BLK_PHY_RESET; |
| } |
| |
| if (hw->mac_type > e1000_82547_rev_2) |
| manc = E1000_READ_REG(hw, MANC); |
| return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? |
| E1000_BLK_PHY_RESET : E1000_SUCCESS; |
| } |
| |
| static uint8_t |
| e1000_arc_subsystem_valid(struct e1000_hw *hw) |
| { |
| uint32_t fwsm; |
| |
| /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC |
| * may not be provided a DMA clock when no manageability features are |
| * enabled. We do not want to perform any reads/writes to these registers |
| * if this is the case. We read FWSM to determine the manageability mode. |
| */ |
| switch (hw->mac_type) { |
| case e1000_82571: |
| case e1000_82572: |
| case e1000_82573: |
| case e1000_80003es2lan: |
| fwsm = E1000_READ_REG(hw, FWSM); |
| if ((fwsm & E1000_FWSM_MODE_MASK) != 0) |
| return TRUE; |
| break; |
| case e1000_ich8lan: |
| return TRUE; |
| default: |
| break; |
| } |
| return FALSE; |
| } |
| |
| |
| /****************************************************************************** |
| * Configure PCI-Ex no-snoop |
| * |
| * hw - Struct containing variables accessed by shared code. |
| * no_snoop - Bitmap of no-snoop events. |
| * |
| * returns: E1000_SUCCESS |
| * |
| *****************************************************************************/ |
| static int32_t |
| e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop) |
| { |
| uint32_t gcr_reg = 0; |
| |
| DEBUGFUNC("e1000_set_pci_ex_no_snoop"); |
| |
| if (hw->bus_type == e1000_bus_type_unknown) |
| e1000_get_bus_info(hw); |
| |
| if (hw->bus_type != e1000_bus_type_pci_express) |
| return E1000_SUCCESS; |
| |
| if (no_snoop) { |
| gcr_reg = E1000_READ_REG(hw, GCR); |
| gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL); |
| gcr_reg |= no_snoop; |
| E1000_WRITE_REG(hw, GCR, gcr_reg); |
| } |
| if (hw->mac_type == e1000_ich8lan) { |
| uint32_t ctrl_ext; |
| |
| E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL); |
| |
| ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| ctrl_ext |= E1000_CTRL_EXT_RO_DIS; |
| E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /*************************************************************************** |
| * |
| * Get software semaphore FLAG bit (SWFLAG). |
| * SWFLAG is used to synchronize the access to all shared resource between |
| * SW, FW and HW. |
| * |
| * hw: Struct containing variables accessed by shared code |
| * |
| ***************************************************************************/ |
| static int32_t |
| e1000_get_software_flag(struct e1000_hw *hw) |
| { |
| int32_t timeout = PHY_CFG_TIMEOUT; |
| uint32_t extcnf_ctrl; |
| |
| DEBUGFUNC("e1000_get_software_flag"); |
| |
| if (hw->mac_type == e1000_ich8lan) { |
| while (timeout) { |
| extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); |
| extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; |
| E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); |
| |
| extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); |
| if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) |
| break; |
| mdelay(1); |
| timeout--; |
| } |
| |
| if (!timeout) { |
| DEBUGOUT("FW or HW locks the resource too long.\n"); |
| return -E1000_ERR_CONFIG; |
| } |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /*************************************************************************** |
| * |
| * Release software semaphore FLAG bit (SWFLAG). |
| * SWFLAG is used to synchronize the access to all shared resource between |
| * SW, FW and HW. |
| * |
| * hw: Struct containing variables accessed by shared code |
| * |
| ***************************************************************************/ |
| static void |
| e1000_release_software_flag(struct e1000_hw *hw) |
| { |
| uint32_t extcnf_ctrl; |
| |
| DEBUGFUNC("e1000_release_software_flag"); |
| |
| if (hw->mac_type == e1000_ich8lan) { |
| extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL); |
| extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; |
| E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); |
| } |
| |
| return; |
| } |
| |
| /****************************************************************************** |
| * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access |
| * register. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * offset - offset of word in the EEPROM to read |
| * data - word read from the EEPROM |
| * words - number of words to read |
| *****************************************************************************/ |
| static int32_t |
| e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, |
| uint16_t *data) |
| { |
| int32_t error = E1000_SUCCESS; |
| uint32_t flash_bank = 0; |
| uint32_t act_offset = 0; |
| uint32_t bank_offset = 0; |
| uint16_t word = 0; |
| uint16_t i = 0; |
| |
| /* We need to know which is the valid flash bank. In the event |
| * that we didn't allocate eeprom_shadow_ram, we may not be |
| * managing flash_bank. So it cannot be trusted and needs |
| * to be updated with each read. |
| */ |
| /* Value of bit 22 corresponds to the flash bank we're on. */ |
| flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0; |
| |
| /* Adjust offset appropriately if we're on bank 1 - adjust for word size */ |
| bank_offset = flash_bank * (hw->flash_bank_size * 2); |
| |
| error = e1000_get_software_flag(hw); |
| if (error != E1000_SUCCESS) |
| return error; |
| |
| for (i = 0; i < words; i++) { |
| if (hw->eeprom_shadow_ram != NULL && |
| hw->eeprom_shadow_ram[offset+i].modified == TRUE) { |
| data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word; |
| } else { |
| /* The NVM part needs a byte offset, hence * 2 */ |
| act_offset = bank_offset + ((offset + i) * 2); |
| error = e1000_read_ich8_word(hw, act_offset, &word); |
| if (error != E1000_SUCCESS) |
| break; |
| data[i] = word; |
| } |
| } |
| |
| e1000_release_software_flag(hw); |
| |
| return error; |
| } |
| |
| /****************************************************************************** |
| * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access |
| * register. Actually, writes are written to the shadow ram cache in the hw |
| * structure hw->e1000_shadow_ram. e1000_commit_shadow_ram flushes this to |
| * the NVM, which occurs when the NVM checksum is updated. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * offset - offset of word in the EEPROM to write |
| * words - number of words to write |
| * data - words to write to the EEPROM |
| *****************************************************************************/ |
| static int32_t |
| e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, |
| uint16_t *data) |
| { |
| uint32_t i = 0; |
| int32_t error = E1000_SUCCESS; |
| |
| error = e1000_get_software_flag(hw); |
| if (error != E1000_SUCCESS) |
| return error; |
| |
| /* A driver can write to the NVM only if it has eeprom_shadow_ram |
| * allocated. Subsequent reads to the modified words are read from |
| * this cached structure as well. Writes will only go into this |
| * cached structure unless it's followed by a call to |
| * e1000_update_eeprom_checksum() where it will commit the changes |
| * and clear the "modified" field. |
| */ |
| if (hw->eeprom_shadow_ram != NULL) { |
| for (i = 0; i < words; i++) { |
| if ((offset + i) < E1000_SHADOW_RAM_WORDS) { |
| hw->eeprom_shadow_ram[offset+i].modified = TRUE; |
| hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i]; |
| } else { |
| error = -E1000_ERR_EEPROM; |
| break; |
| } |
| } |
| } else { |
| /* Drivers have the option to not allocate eeprom_shadow_ram as long |
| * as they don't perform any NVM writes. An attempt in doing so |
| * will result in this error. |
| */ |
| error = -E1000_ERR_EEPROM; |
| } |
| |
| e1000_release_software_flag(hw); |
| |
| return error; |
| } |
| |
| /****************************************************************************** |
| * This function does initial flash setup so that a new read/write/erase cycle |
| * can be started. |
| * |
| * hw - The pointer to the hw structure |
| ****************************************************************************/ |
| static int32_t |
| e1000_ich8_cycle_init(struct e1000_hw *hw) |
| { |
| union ich8_hws_flash_status hsfsts; |
| int32_t error = E1000_ERR_EEPROM; |
| int32_t i = 0; |
| |
| DEBUGFUNC("e1000_ich8_cycle_init"); |
| |
| hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); |
| |
| /* May be check the Flash Des Valid bit in Hw status */ |
| if (hsfsts.hsf_status.fldesvalid == 0) { |
| DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used."); |
| return error; |
| } |
| |
| /* Clear FCERR in Hw status by writing 1 */ |
| /* Clear DAEL in Hw status by writing a 1 */ |
| hsfsts.hsf_status.flcerr = 1; |
| hsfsts.hsf_status.dael = 1; |
| |
| E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); |
| |
| /* Either we should have a hardware SPI cycle in progress bit to check |
| * against, in order to start a new cycle or FDONE bit should be changed |
| * in the hardware so that it is 1 after harware reset, which can then be |
| * used as an indication whether a cycle is in progress or has been |
| * completed .. we should also have some software semaphore mechanism to |
| * guard FDONE or the cycle in progress bit so that two threads access to |
| * those bits can be sequentiallized or a way so that 2 threads dont |
| * start the cycle at the same time */ |
| |
| if (hsfsts.hsf_status.flcinprog == 0) { |
| /* There is no cycle running at present, so we can start a cycle */ |
| /* Begin by setting Flash Cycle Done. */ |
| hsfsts.hsf_status.flcdone = 1; |
| E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); |
| error = E1000_SUCCESS; |
| } else { |
| /* otherwise poll for sometime so the current cycle has a chance |
| * to end before giving up. */ |
| for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) { |
| hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); |
| if (hsfsts.hsf_status.flcinprog == 0) { |
| error = E1000_SUCCESS; |
| break; |
| } |
| udelay(1); |
| } |
| if (error == E1000_SUCCESS) { |
| /* Successful in waiting for previous cycle to timeout, |
| * now set the Flash Cycle Done. */ |
| hsfsts.hsf_status.flcdone = 1; |
| E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); |
| } else { |
| DEBUGOUT("Flash controller busy, cannot get access"); |
| } |
| } |
| return error; |
| } |
| |
| /****************************************************************************** |
| * This function starts a flash cycle and waits for its completion |
| * |
| * hw - The pointer to the hw structure |
| ****************************************************************************/ |
| static int32_t |
| e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout) |
| { |
| union ich8_hws_flash_ctrl hsflctl; |
| union ich8_hws_flash_status hsfsts; |
| int32_t error = E1000_ERR_EEPROM; |
| uint32_t i = 0; |
| |
| /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ |
| hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); |
| hsflctl.hsf_ctrl.flcgo = 1; |
| E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); |
| |
| /* wait till FDONE bit is set to 1 */ |
| do { |
| hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); |
| if (hsfsts.hsf_status.flcdone == 1) |
| break; |
| udelay(1); |
| i++; |
| } while (i < timeout); |
| if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) { |
| error = E1000_SUCCESS; |
| } |
| return error; |
| } |
| |
| /****************************************************************************** |
| * Reads a byte or word from the NVM using the ICH8 flash access registers. |
| * |
| * hw - The pointer to the hw structure |
| * index - The index of the byte or word to read. |
| * size - Size of data to read, 1=byte 2=word |
| * data - Pointer to the word to store the value read. |
| *****************************************************************************/ |
| static int32_t |
| e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index, |
| uint32_t size, uint16_t* data) |
| { |
| union ich8_hws_flash_status hsfsts; |
| union ich8_hws_flash_ctrl hsflctl; |
| uint32_t flash_linear_address; |
| uint32_t flash_data = 0; |
| int32_t error = -E1000_ERR_EEPROM; |
| int32_t count = 0; |
| |
| DEBUGFUNC("e1000_read_ich8_data"); |
| |
| if (size < 1 || size > 2 || data == 0x0 || |
| index > ICH_FLASH_LINEAR_ADDR_MASK) |
| return error; |
| |
| flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) + |
| hw->flash_base_addr; |
| |
| do { |
| udelay(1); |
| /* Steps */ |
| error = e1000_ich8_cycle_init(hw); |
| if (error != E1000_SUCCESS) |
| break; |
| |
| hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); |
| /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ |
| hsflctl.hsf_ctrl.fldbcount = size - 1; |
| hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; |
| E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); |
| |
| /* Write the last 24 bits of index into Flash Linear address field in |
| * Flash Address */ |
| /* TODO: TBD maybe check the index against the size of flash */ |
| |
| E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address); |
| |
| error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT); |
| |
| /* Check if FCERR is set to 1, if set to 1, clear it and try the whole |
| * sequence a few more times, else read in (shift in) the Flash Data0, |
| * the order is least significant byte first msb to lsb */ |
| if (error == E1000_SUCCESS) { |
| flash_data = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0); |
| if (size == 1) { |
| *data = (uint8_t)(flash_data & 0x000000FF); |
| } else if (size == 2) { |
| *data = (uint16_t)(flash_data & 0x0000FFFF); |
| } |
| break; |
| } else { |
| /* If we've gotten here, then things are probably completely hosed, |
| * but if the error condition is detected, it won't hurt to give |
| * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times. |
| */ |
| hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); |
| if (hsfsts.hsf_status.flcerr == 1) { |
| /* Repeat for some time before giving up. */ |
| continue; |
| } else if (hsfsts.hsf_status.flcdone == 0) { |
| DEBUGOUT("Timeout error - flash cycle did not complete."); |
| break; |
| } |
| } |
| } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); |
| |
| return error; |
| } |
| |
| /****************************************************************************** |
| * Writes One /two bytes to the NVM using the ICH8 flash access registers. |
| * |
| * hw - The pointer to the hw structure |
| * index - The index of the byte/word to read. |
| * size - Size of data to read, 1=byte 2=word |
| * data - The byte(s) to write to the NVM. |
| *****************************************************************************/ |
| static int32_t |
| e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size, |
| uint16_t data) |
| { |
| union ich8_hws_flash_status hsfsts; |
| union ich8_hws_flash_ctrl hsflctl; |
| uint32_t flash_linear_address; |
| uint32_t flash_data = 0; |
| int32_t error = -E1000_ERR_EEPROM; |
| int32_t count = 0; |
| |
| DEBUGFUNC("e1000_write_ich8_data"); |
| |
| if (size < 1 || size > 2 || data > size * 0xff || |
| index > ICH_FLASH_LINEAR_ADDR_MASK) |
| return error; |
| |
| flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) + |
| hw->flash_base_addr; |
| |
| do { |
| udelay(1); |
| /* Steps */ |
| error = e1000_ich8_cycle_init(hw); |
| if (error != E1000_SUCCESS) |
| break; |
| |
| hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); |
| /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ |
| hsflctl.hsf_ctrl.fldbcount = size -1; |
| hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; |
| E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); |
| |
| /* Write the last 24 bits of index into Flash Linear address field in |
| * Flash Address */ |
| E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address); |
| |
| if (size == 1) |
| flash_data = (uint32_t)data & 0x00FF; |
| else |
| flash_data = (uint32_t)data; |
| |
| E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data); |
| |
| /* check if FCERR is set to 1 , if set to 1, clear it and try the whole |
| * sequence a few more times else done */ |
| error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT); |
| if (error == E1000_SUCCESS) { |
| break; |
| } else { |
| /* If we're here, then things are most likely completely hosed, |
| * but if the error condition is detected, it won't hurt to give |
| * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times. |
| */ |
| hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); |
| if (hsfsts.hsf_status.flcerr == 1) { |
| /* Repeat for some time before giving up. */ |
| continue; |
| } else if (hsfsts.hsf_status.flcdone == 0) { |
| DEBUGOUT("Timeout error - flash cycle did not complete."); |
| break; |
| } |
| } |
| } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); |
| |
| return error; |
| } |
| |
| /****************************************************************************** |
| * Reads a single byte from the NVM using the ICH8 flash access registers. |
| * |
| * hw - pointer to e1000_hw structure |
| * index - The index of the byte to read. |
| * data - Pointer to a byte to store the value read. |
| *****************************************************************************/ |
| static int32_t |
| e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t* data) |
| { |
| int32_t status = E1000_SUCCESS; |
| uint16_t word = 0; |
| |
| status = e1000_read_ich8_data(hw, index, 1, &word); |
| if (status == E1000_SUCCESS) { |
| *data = (uint8_t)word; |
| } |
| |
| return status; |
| } |
| |
| /****************************************************************************** |
| * Writes a single byte to the NVM using the ICH8 flash access registers. |
| * Performs verification by reading back the value and then going through |
| * a retry algorithm before giving up. |
| * |
| * hw - pointer to e1000_hw structure |
| * index - The index of the byte to write. |
| * byte - The byte to write to the NVM. |
| *****************************************************************************/ |
| static int32_t |
| e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte) |
| { |
| int32_t error = E1000_SUCCESS; |
| int32_t program_retries = 0; |
| |
| DEBUGOUT2("Byte := %2.2X Offset := %d\n", byte, index); |
| |
| error = e1000_write_ich8_byte(hw, index, byte); |
| |
| if (error != E1000_SUCCESS) { |
| for (program_retries = 0; program_retries < 100; program_retries++) { |
| DEBUGOUT2("Retrying \t Byte := %2.2X Offset := %d\n", byte, index); |
| error = e1000_write_ich8_byte(hw, index, byte); |
| udelay(100); |
| if (error == E1000_SUCCESS) |
| break; |
| } |
| } |
| |
| if (program_retries == 100) |
| error = E1000_ERR_EEPROM; |
| |
| return error; |
| } |
| |
| /****************************************************************************** |
| * Writes a single byte to the NVM using the ICH8 flash access registers. |
| * |
| * hw - pointer to e1000_hw structure |
| * index - The index of the byte to read. |
| * data - The byte to write to the NVM. |
| *****************************************************************************/ |
| static int32_t |
| e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t data) |
| { |
| int32_t status = E1000_SUCCESS; |
| uint16_t word = (uint16_t)data; |
| |
| status = e1000_write_ich8_data(hw, index, 1, word); |
| |
| return status; |
| } |
| |
| /****************************************************************************** |
| * Reads a word from the NVM using the ICH8 flash access registers. |
| * |
| * hw - pointer to e1000_hw structure |
| * index - The starting byte index of the word to read. |
| * data - Pointer to a word to store the value read. |
| *****************************************************************************/ |
| static int32_t |
| e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data) |
| { |
| int32_t status = E1000_SUCCESS; |
| status = e1000_read_ich8_data(hw, index, 2, data); |
| return status; |
| } |
| |
| /****************************************************************************** |
| * Erases the bank specified. Each bank may be a 4, 8 or 64k block. Banks are 0 |
| * based. |
| * |
| * hw - pointer to e1000_hw structure |
| * bank - 0 for first bank, 1 for second bank |
| * |
| * Note that this function may actually erase as much as 8 or 64 KBytes. The |
| * amount of NVM used in each bank is a *minimum* of 4 KBytes, but in fact the |
| * bank size may be 4, 8 or 64 KBytes |
| *****************************************************************************/ |
| int32_t |
| e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t bank) |
| { |
| union ich8_hws_flash_status hsfsts; |
| union ich8_hws_flash_ctrl hsflctl; |
| uint32_t flash_linear_address; |
| int32_t count = 0; |
| int32_t error = E1000_ERR_EEPROM; |
| int32_t iteration; |
| int32_t sub_sector_size = 0; |
| int32_t bank_size; |
| int32_t j = 0; |
| int32_t error_flag = 0; |
| |
| hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); |
| |
| /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */ |
| /* 00: The Hw sector is 256 bytes, hence we need to erase 16 |
| * consecutive sectors. The start index for the nth Hw sector can be |
| * calculated as bank * 4096 + n * 256 |
| * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. |
| * The start index for the nth Hw sector can be calculated |
| * as bank * 4096 |
| * 10: The HW sector is 8K bytes |
| * 11: The Hw sector size is 64K bytes */ |
| if (hsfsts.hsf_status.berasesz == 0x0) { |
| /* Hw sector size 256 */ |
| sub_sector_size = ICH_FLASH_SEG_SIZE_256; |
| bank_size = ICH_FLASH_SECTOR_SIZE; |
| iteration = ICH_FLASH_SECTOR_SIZE / ICH_FLASH_SEG_SIZE_256; |
| } else if (hsfsts.hsf_status.berasesz == 0x1) { |
| bank_size = ICH_FLASH_SEG_SIZE_4K; |
| iteration = 1; |
| } else if (hsfsts.hsf_status.berasesz == 0x3) { |
| bank_size = ICH_FLASH_SEG_SIZE_64K; |
| iteration = 1; |
| } else { |
| return error; |
| } |
| |
| for (j = 0; j < iteration ; j++) { |
| do { |
| count++; |
| /* Steps */ |
| error = e1000_ich8_cycle_init(hw); |
| if (error != E1000_SUCCESS) { |
| error_flag = 1; |
| break; |
| } |
| |
| /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash |
| * Control */ |
| hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); |
| hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; |
| E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); |
| |
| /* Write the last 24 bits of an index within the block into Flash |
| * Linear address field in Flash Address. This probably needs to |
| * be calculated here based off the on-chip erase sector size and |
| * the software bank size (4, 8 or 64 KBytes) */ |
| flash_linear_address = bank * bank_size + j * sub_sector_size; |
| flash_linear_address += hw->flash_base_addr; |
| flash_linear_address &= ICH_FLASH_LINEAR_ADDR_MASK; |
| |
| E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address); |
| |
| error = e1000_ich8_flash_cycle(hw, ICH_FLASH_ERASE_TIMEOUT); |
| /* Check if FCERR is set to 1. If 1, clear it and try the whole |
| * sequence a few more times else Done */ |
| if (error == E1000_SUCCESS) { |
| break; |
| } else { |
| hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); |
| if (hsfsts.hsf_status.flcerr == 1) { |
| /* repeat for some time before giving up */ |
| continue; |
| } else if (hsfsts.hsf_status.flcdone == 0) { |
| error_flag = 1; |
| break; |
| } |
| } |
| } while ((count < ICH_FLASH_CYCLE_REPEAT_COUNT) && !error_flag); |
| if (error_flag == 1) |
| break; |
| } |
| if (error_flag != 1) |
| error = E1000_SUCCESS; |
| return error; |
| } |
| |
| static int32_t |
| e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, |
| uint32_t cnf_base_addr, uint32_t cnf_size) |
| { |
| uint32_t ret_val = E1000_SUCCESS; |
| uint16_t word_addr, reg_data, reg_addr; |
| uint16_t i; |
| |
| /* cnf_base_addr is in DWORD */ |
| word_addr = (uint16_t)(cnf_base_addr << 1); |
| |
| /* cnf_size is returned in size of dwords */ |
| for (i = 0; i < cnf_size; i++) { |
| ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, ®_data); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, ®_addr); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_get_software_flag(hw); |
| if (ret_val != E1000_SUCCESS) |
| return ret_val; |
| |
| ret_val = e1000_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data); |
| |
| e1000_release_software_flag(hw); |
| } |
| |
| return ret_val; |
| } |
| |
| |
| /****************************************************************************** |
| * This function initializes the PHY from the NVM on ICH8 platforms. This |
| * is needed due to an issue where the NVM configuration is not properly |
| * autoloaded after power transitions. Therefore, after each PHY reset, we |
| * will load the configuration data out of the NVM manually. |
| * |
| * hw: Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| static int32_t |
| e1000_init_lcd_from_nvm(struct e1000_hw *hw) |
| { |
| uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop; |
| |
| if (hw->phy_type != e1000_phy_igp_3) |
| return E1000_SUCCESS; |
| |
| /* Check if SW needs configure the PHY */ |
| reg_data = E1000_READ_REG(hw, FEXTNVM); |
| if (!(reg_data & FEXTNVM_SW_CONFIG)) |
| return E1000_SUCCESS; |
| |
| /* Wait for basic configuration completes before proceeding*/ |
| loop = 0; |
| do { |
| reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE; |
| udelay(100); |
| loop++; |
| } while ((!reg_data) && (loop < 50)); |
| |
| /* Clear the Init Done bit for the next init event */ |
| reg_data = E1000_READ_REG(hw, STATUS); |
| reg_data &= ~E1000_STATUS_LAN_INIT_DONE; |
| E1000_WRITE_REG(hw, STATUS, reg_data); |
| |
| /* Make sure HW does not configure LCD from PHY extended configuration |
| before SW configuration */ |
| reg_data = E1000_READ_REG(hw, EXTCNF_CTRL); |
| if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) { |
| reg_data = E1000_READ_REG(hw, EXTCNF_SIZE); |
| cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH; |
| cnf_size >>= 16; |
| if (cnf_size) { |
| reg_data = E1000_READ_REG(hw, EXTCNF_CTRL); |
| cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER; |
| /* cnf_base_addr is in DWORD */ |
| cnf_base_addr >>= 16; |
| |
| /* Configure LCD from extended configuration region. */ |
| ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr, |
| cnf_size); |
| if (ret_val) |
| return ret_val; |
| } |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |