MIPS: math-emu: Add support for the MIPS R6 MADDF FPU instruction
MIPS R6 introduced the following instruction:
Floating Point Fused Multiply Add:
MADDF.fmt To perform a fused multiply-add of FP values.
MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft])
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/10956/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
diff --git a/arch/mips/math-emu/dp_maddf.c b/arch/mips/math-emu/dp_maddf.c
new file mode 100644
index 0000000..119eda9
--- /dev/null
+++ b/arch/mips/math-emu/dp_maddf.c
@@ -0,0 +1,265 @@
+/*
+ * IEEE754 floating point arithmetic
+ * double precision: MADDF.f (Fused Multiply Add)
+ * MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft])
+ *
+ * MIPS floating point support
+ * Copyright (C) 2015 Imagination Technologies, Ltd.
+ * Author: Markos Chandras <markos.chandras@imgtec.com>
+ *
+ * This program is free software; you can distribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; version 2 of the License.
+ */
+
+#include "ieee754dp.h"
+
+union ieee754dp ieee754dp_maddf(union ieee754dp z, union ieee754dp x,
+ union ieee754dp y)
+{
+ int re;
+ int rs;
+ u64 rm;
+ unsigned lxm;
+ unsigned hxm;
+ unsigned lym;
+ unsigned hym;
+ u64 lrm;
+ u64 hrm;
+ u64 t;
+ u64 at;
+ int s;
+
+ COMPXDP;
+ COMPYDP;
+
+ u64 zm; int ze; int zs __maybe_unused; int zc;
+
+ EXPLODEXDP;
+ EXPLODEYDP;
+ EXPLODEDP(z, zc, zs, ze, zm)
+
+ FLUSHXDP;
+ FLUSHYDP;
+ FLUSHDP(z, zc, zs, ze, zm);
+
+ ieee754_clearcx();
+
+ switch (zc) {
+ case IEEE754_CLASS_SNAN:
+ ieee754_setcx(IEEE754_INVALID_OPERATION);
+ return ieee754dp_nanxcpt(z);
+ case IEEE754_CLASS_DNORM:
+ DPDNORMx(zm, ze);
+ /* QNAN is handled separately below */
+ }
+
+ switch (CLPAIR(xc, yc)) {
+ case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_SNAN):
+ case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_SNAN):
+ case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_SNAN):
+ case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_SNAN):
+ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_SNAN):
+ return ieee754dp_nanxcpt(y);
+
+ case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_SNAN):
+ case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_QNAN):
+ case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_ZERO):
+ case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_NORM):
+ case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_DNORM):
+ case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_INF):
+ return ieee754dp_nanxcpt(x);
+
+ case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_QNAN):
+ case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_QNAN):
+ case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_QNAN):
+ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_QNAN):
+ return y;
+
+ case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_QNAN):
+ case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_ZERO):
+ case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_NORM):
+ case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_DNORM):
+ case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_INF):
+ return x;
+
+
+ /*
+ * Infinity handling
+ */
+ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO):
+ case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF):
+ if (zc == IEEE754_CLASS_QNAN)
+ return z;
+ ieee754_setcx(IEEE754_INVALID_OPERATION);
+ return ieee754dp_indef();
+
+ case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF):
+ case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF):
+ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM):
+ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM):
+ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF):
+ if (zc == IEEE754_CLASS_QNAN)
+ return z;
+ return ieee754dp_inf(xs ^ ys);
+
+ case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO):
+ case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM):
+ case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM):
+ case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO):
+ case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO):
+ if (zc == IEEE754_CLASS_INF)
+ return ieee754dp_inf(zs);
+ /* Multiplication is 0 so just return z */
+ return z;
+
+ case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM):
+ DPDNORMX;
+
+ case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM):
+ if (zc == IEEE754_CLASS_QNAN)
+ return z;
+ else if (zc == IEEE754_CLASS_INF)
+ return ieee754dp_inf(zs);
+ DPDNORMY;
+ break;
+
+ case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM):
+ if (zc == IEEE754_CLASS_QNAN)
+ return z;
+ else if (zc == IEEE754_CLASS_INF)
+ return ieee754dp_inf(zs);
+ DPDNORMX;
+ break;
+
+ case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM):
+ if (zc == IEEE754_CLASS_QNAN)
+ return z;
+ else if (zc == IEEE754_CLASS_INF)
+ return ieee754dp_inf(zs);
+ /* fall through to real computations */
+ }
+
+ /* Finally get to do some computation */
+
+ /*
+ * Do the multiplication bit first
+ *
+ * rm = xm * ym, re = xe + ye basically
+ *
+ * At this point xm and ym should have been normalized.
+ */
+ assert(xm & DP_HIDDEN_BIT);
+ assert(ym & DP_HIDDEN_BIT);
+
+ re = xe + ye;
+ rs = xs ^ ys;
+
+ /* shunt to top of word */
+ xm <<= 64 - (DP_FBITS + 1);
+ ym <<= 64 - (DP_FBITS + 1);
+
+ /*
+ * Multiply 32 bits xm, ym to give high 32 bits rm with stickness.
+ */
+
+ /* 32 * 32 => 64 */
+#define DPXMULT(x, y) ((u64)(x) * (u64)y)
+
+ lxm = xm;
+ hxm = xm >> 32;
+ lym = ym;
+ hym = ym >> 32;
+
+ lrm = DPXMULT(lxm, lym);
+ hrm = DPXMULT(hxm, hym);
+
+ t = DPXMULT(lxm, hym);
+
+ at = lrm + (t << 32);
+ hrm += at < lrm;
+ lrm = at;
+
+ hrm = hrm + (t >> 32);
+
+ t = DPXMULT(hxm, lym);
+
+ at = lrm + (t << 32);
+ hrm += at < lrm;
+ lrm = at;
+
+ hrm = hrm + (t >> 32);
+
+ rm = hrm | (lrm != 0);
+
+ /*
+ * Sticky shift down to normal rounding precision.
+ */
+ if ((s64) rm < 0) {
+ rm = (rm >> (64 - (DP_FBITS + 1 + 3))) |
+ ((rm << (DP_FBITS + 1 + 3)) != 0);
+ re++;
+ } else {
+ rm = (rm >> (64 - (DP_FBITS + 1 + 3 + 1))) |
+ ((rm << (DP_FBITS + 1 + 3 + 1)) != 0);
+ }
+ assert(rm & (DP_HIDDEN_BIT << 3));
+
+ /* And now the addition */
+ assert(zm & DP_HIDDEN_BIT);
+
+ /*
+ * Provide guard,round and stick bit space.
+ */
+ zm <<= 3;
+
+ if (ze > re) {
+ /*
+ * Have to shift y fraction right to align.
+ */
+ s = ze - re;
+ rm = XDPSRS(rm, s);
+ re += s;
+ } else if (re > ze) {
+ /*
+ * Have to shift x fraction right to align.
+ */
+ s = re - ze;
+ zm = XDPSRS(zm, s);
+ ze += s;
+ }
+ assert(ze == re);
+ assert(ze <= DP_EMAX);
+
+ if (zs == rs) {
+ /*
+ * Generate 28 bit result of adding two 27 bit numbers
+ * leaving result in xm, xs and xe.
+ */
+ zm = zm + rm;
+
+ if (zm >> (DP_FBITS + 1 + 3)) { /* carry out */
+ zm = XDPSRS1(zm);
+ ze++;
+ }
+ } else {
+ if (zm >= rm) {
+ zm = zm - rm;
+ } else {
+ zm = rm - zm;
+ zs = rs;
+ }
+ if (zm == 0)
+ return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD);
+
+ /*
+ * Normalize to rounding precision.
+ */
+ while ((zm >> (DP_FBITS + 3)) == 0) {
+ zm <<= 1;
+ ze--;
+ }
+ }
+
+ return ieee754dp_format(zs, ze, zm);
+}