| /* |
| * NXP LPC32XX NAND SLC driver |
| * |
| * Authors: |
| * Kevin Wells <kevin.wells@nxp.com> |
| * Roland Stigge <stigge@antcom.de> |
| * |
| * Copyright © 2011 NXP Semiconductors |
| * Copyright © 2012 Roland Stigge |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/module.h> |
| #include <linux/platform_device.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/nand.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/clk.h> |
| #include <linux/err.h> |
| #include <linux/delay.h> |
| #include <linux/io.h> |
| #include <linux/mm.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmaengine.h> |
| #include <linux/mtd/nand_ecc.h> |
| #include <linux/gpio.h> |
| #include <linux/of.h> |
| #include <linux/of_mtd.h> |
| #include <linux/of_gpio.h> |
| #include <linux/mtd/lpc32xx_slc.h> |
| |
| #define LPC32XX_MODNAME "lpc32xx-nand" |
| |
| /********************************************************************** |
| * SLC NAND controller register offsets |
| **********************************************************************/ |
| |
| #define SLC_DATA(x) (x + 0x000) |
| #define SLC_ADDR(x) (x + 0x004) |
| #define SLC_CMD(x) (x + 0x008) |
| #define SLC_STOP(x) (x + 0x00C) |
| #define SLC_CTRL(x) (x + 0x010) |
| #define SLC_CFG(x) (x + 0x014) |
| #define SLC_STAT(x) (x + 0x018) |
| #define SLC_INT_STAT(x) (x + 0x01C) |
| #define SLC_IEN(x) (x + 0x020) |
| #define SLC_ISR(x) (x + 0x024) |
| #define SLC_ICR(x) (x + 0x028) |
| #define SLC_TAC(x) (x + 0x02C) |
| #define SLC_TC(x) (x + 0x030) |
| #define SLC_ECC(x) (x + 0x034) |
| #define SLC_DMA_DATA(x) (x + 0x038) |
| |
| /********************************************************************** |
| * slc_ctrl register definitions |
| **********************************************************************/ |
| #define SLCCTRL_SW_RESET (1 << 2) /* Reset the NAND controller bit */ |
| #define SLCCTRL_ECC_CLEAR (1 << 1) /* Reset ECC bit */ |
| #define SLCCTRL_DMA_START (1 << 0) /* Start DMA channel bit */ |
| |
| /********************************************************************** |
| * slc_cfg register definitions |
| **********************************************************************/ |
| #define SLCCFG_CE_LOW (1 << 5) /* Force CE low bit */ |
| #define SLCCFG_DMA_ECC (1 << 4) /* Enable DMA ECC bit */ |
| #define SLCCFG_ECC_EN (1 << 3) /* ECC enable bit */ |
| #define SLCCFG_DMA_BURST (1 << 2) /* DMA burst bit */ |
| #define SLCCFG_DMA_DIR (1 << 1) /* DMA write(0)/read(1) bit */ |
| #define SLCCFG_WIDTH (1 << 0) /* External device width, 0=8bit */ |
| |
| /********************************************************************** |
| * slc_stat register definitions |
| **********************************************************************/ |
| #define SLCSTAT_DMA_FIFO (1 << 2) /* DMA FIFO has data bit */ |
| #define SLCSTAT_SLC_FIFO (1 << 1) /* SLC FIFO has data bit */ |
| #define SLCSTAT_NAND_READY (1 << 0) /* NAND device is ready bit */ |
| |
| /********************************************************************** |
| * slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions |
| **********************************************************************/ |
| #define SLCSTAT_INT_TC (1 << 1) /* Transfer count bit */ |
| #define SLCSTAT_INT_RDY_EN (1 << 0) /* Ready interrupt bit */ |
| |
| /********************************************************************** |
| * slc_tac register definitions |
| **********************************************************************/ |
| /* Clock setting for RDY write sample wait time in 2*n clocks */ |
| #define SLCTAC_WDR(n) (((n) & 0xF) << 28) |
| /* Write pulse width in clock cycles, 1 to 16 clocks */ |
| #define SLCTAC_WWIDTH(n) (((n) & 0xF) << 24) |
| /* Write hold time of control and data signals, 1 to 16 clocks */ |
| #define SLCTAC_WHOLD(n) (((n) & 0xF) << 20) |
| /* Write setup time of control and data signals, 1 to 16 clocks */ |
| #define SLCTAC_WSETUP(n) (((n) & 0xF) << 16) |
| /* Clock setting for RDY read sample wait time in 2*n clocks */ |
| #define SLCTAC_RDR(n) (((n) & 0xF) << 12) |
| /* Read pulse width in clock cycles, 1 to 16 clocks */ |
| #define SLCTAC_RWIDTH(n) (((n) & 0xF) << 8) |
| /* Read hold time of control and data signals, 1 to 16 clocks */ |
| #define SLCTAC_RHOLD(n) (((n) & 0xF) << 4) |
| /* Read setup time of control and data signals, 1 to 16 clocks */ |
| #define SLCTAC_RSETUP(n) (((n) & 0xF) << 0) |
| |
| /********************************************************************** |
| * slc_ecc register definitions |
| **********************************************************************/ |
| /* ECC line party fetch macro */ |
| #define SLCECC_TO_LINEPAR(n) (((n) >> 6) & 0x7FFF) |
| #define SLCECC_TO_COLPAR(n) ((n) & 0x3F) |
| |
| /* |
| * DMA requires storage space for the DMA local buffer and the hardware ECC |
| * storage area. The DMA local buffer is only used if DMA mapping fails |
| * during runtime. |
| */ |
| #define LPC32XX_DMA_DATA_SIZE 4096 |
| #define LPC32XX_ECC_SAVE_SIZE ((4096 / 256) * 4) |
| |
| /* Number of bytes used for ECC stored in NAND per 256 bytes */ |
| #define LPC32XX_SLC_DEV_ECC_BYTES 3 |
| |
| /* |
| * If the NAND base clock frequency can't be fetched, this frequency will be |
| * used instead as the base. This rate is used to setup the timing registers |
| * used for NAND accesses. |
| */ |
| #define LPC32XX_DEF_BUS_RATE 133250000 |
| |
| /* Milliseconds for DMA FIFO timeout (unlikely anyway) */ |
| #define LPC32XX_DMA_TIMEOUT 100 |
| |
| /* |
| * NAND ECC Layout for small page NAND devices |
| * Note: For large and huge page devices, the default layouts are used |
| */ |
| static struct nand_ecclayout lpc32xx_nand_oob_16 = { |
| .eccbytes = 6, |
| .eccpos = {10, 11, 12, 13, 14, 15}, |
| .oobfree = { |
| { .offset = 0, .length = 4 }, |
| { .offset = 6, .length = 4 }, |
| }, |
| }; |
| |
| static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; |
| static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; |
| |
| /* |
| * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6 |
| * Note: Large page devices used the default layout |
| */ |
| static struct nand_bbt_descr bbt_smallpage_main_descr = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
| | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, |
| .offs = 0, |
| .len = 4, |
| .veroffs = 6, |
| .maxblocks = 4, |
| .pattern = bbt_pattern |
| }; |
| |
| static struct nand_bbt_descr bbt_smallpage_mirror_descr = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
| | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, |
| .offs = 0, |
| .len = 4, |
| .veroffs = 6, |
| .maxblocks = 4, |
| .pattern = mirror_pattern |
| }; |
| |
| /* |
| * NAND platform configuration structure |
| */ |
| struct lpc32xx_nand_cfg_slc { |
| uint32_t wdr_clks; |
| uint32_t wwidth; |
| uint32_t whold; |
| uint32_t wsetup; |
| uint32_t rdr_clks; |
| uint32_t rwidth; |
| uint32_t rhold; |
| uint32_t rsetup; |
| bool use_bbt; |
| int wp_gpio; |
| struct mtd_partition *parts; |
| unsigned num_parts; |
| }; |
| |
| struct lpc32xx_nand_host { |
| struct nand_chip nand_chip; |
| struct lpc32xx_slc_platform_data *pdata; |
| struct clk *clk; |
| struct mtd_info mtd; |
| void __iomem *io_base; |
| struct lpc32xx_nand_cfg_slc *ncfg; |
| |
| struct completion comp; |
| struct dma_chan *dma_chan; |
| uint32_t dma_buf_len; |
| struct dma_slave_config dma_slave_config; |
| struct scatterlist sgl; |
| |
| /* |
| * DMA and CPU addresses of ECC work area and data buffer |
| */ |
| uint32_t *ecc_buf; |
| uint8_t *data_buf; |
| dma_addr_t io_base_dma; |
| }; |
| |
| static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host) |
| { |
| uint32_t clkrate, tmp; |
| |
| /* Reset SLC controller */ |
| writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base)); |
| udelay(1000); |
| |
| /* Basic setup */ |
| writel(0, SLC_CFG(host->io_base)); |
| writel(0, SLC_IEN(host->io_base)); |
| writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN), |
| SLC_ICR(host->io_base)); |
| |
| /* Get base clock for SLC block */ |
| clkrate = clk_get_rate(host->clk); |
| if (clkrate == 0) |
| clkrate = LPC32XX_DEF_BUS_RATE; |
| |
| /* Compute clock setup values */ |
| tmp = SLCTAC_WDR(host->ncfg->wdr_clks) | |
| SLCTAC_WWIDTH(1 + (clkrate / host->ncfg->wwidth)) | |
| SLCTAC_WHOLD(1 + (clkrate / host->ncfg->whold)) | |
| SLCTAC_WSETUP(1 + (clkrate / host->ncfg->wsetup)) | |
| SLCTAC_RDR(host->ncfg->rdr_clks) | |
| SLCTAC_RWIDTH(1 + (clkrate / host->ncfg->rwidth)) | |
| SLCTAC_RHOLD(1 + (clkrate / host->ncfg->rhold)) | |
| SLCTAC_RSETUP(1 + (clkrate / host->ncfg->rsetup)); |
| writel(tmp, SLC_TAC(host->io_base)); |
| } |
| |
| /* |
| * Hardware specific access to control lines |
| */ |
| static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, |
| unsigned int ctrl) |
| { |
| uint32_t tmp; |
| struct nand_chip *chip = mtd->priv; |
| struct lpc32xx_nand_host *host = chip->priv; |
| |
| /* Does CE state need to be changed? */ |
| tmp = readl(SLC_CFG(host->io_base)); |
| if (ctrl & NAND_NCE) |
| tmp |= SLCCFG_CE_LOW; |
| else |
| tmp &= ~SLCCFG_CE_LOW; |
| writel(tmp, SLC_CFG(host->io_base)); |
| |
| if (cmd != NAND_CMD_NONE) { |
| if (ctrl & NAND_CLE) |
| writel(cmd, SLC_CMD(host->io_base)); |
| else |
| writel(cmd, SLC_ADDR(host->io_base)); |
| } |
| } |
| |
| /* |
| * Read the Device Ready pin |
| */ |
| static int lpc32xx_nand_device_ready(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct lpc32xx_nand_host *host = chip->priv; |
| int rdy = 0; |
| |
| if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0) |
| rdy = 1; |
| |
| return rdy; |
| } |
| |
| /* |
| * Enable NAND write protect |
| */ |
| static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host) |
| { |
| if (gpio_is_valid(host->ncfg->wp_gpio)) |
| gpio_set_value(host->ncfg->wp_gpio, 0); |
| } |
| |
| /* |
| * Disable NAND write protect |
| */ |
| static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host) |
| { |
| if (gpio_is_valid(host->ncfg->wp_gpio)) |
| gpio_set_value(host->ncfg->wp_gpio, 1); |
| } |
| |
| /* |
| * Prepares SLC for transfers with H/W ECC enabled |
| */ |
| static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode) |
| { |
| /* Hardware ECC is enabled automatically in hardware as needed */ |
| } |
| |
| /* |
| * Calculates the ECC for the data |
| */ |
| static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd, |
| const unsigned char *buf, |
| unsigned char *code) |
| { |
| /* |
| * ECC is calculated automatically in hardware during syndrome read |
| * and write operations, so it doesn't need to be calculated here. |
| */ |
| return 0; |
| } |
| |
| /* |
| * Read a single byte from NAND device |
| */ |
| static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct lpc32xx_nand_host *host = chip->priv; |
| |
| return (uint8_t)readl(SLC_DATA(host->io_base)); |
| } |
| |
| /* |
| * Simple device read without ECC |
| */ |
| static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct lpc32xx_nand_host *host = chip->priv; |
| |
| /* Direct device read with no ECC */ |
| while (len-- > 0) |
| *buf++ = (uint8_t)readl(SLC_DATA(host->io_base)); |
| } |
| |
| /* |
| * Simple device write without ECC |
| */ |
| static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct lpc32xx_nand_host *host = chip->priv; |
| |
| /* Direct device write with no ECC */ |
| while (len-- > 0) |
| writel((uint32_t)*buf++, SLC_DATA(host->io_base)); |
| } |
| |
| /* |
| * Read the OOB data from the device without ECC using FIFO method |
| */ |
| static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd, |
| struct nand_chip *chip, int page) |
| { |
| chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); |
| chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); |
| |
| return 0; |
| } |
| |
| /* |
| * Write the OOB data to the device without ECC using FIFO method |
| */ |
| static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd, |
| struct nand_chip *chip, int page) |
| { |
| int status; |
| |
| chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); |
| chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); |
| |
| /* Send command to program the OOB data */ |
| chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); |
| |
| status = chip->waitfunc(mtd, chip); |
| |
| return status & NAND_STATUS_FAIL ? -EIO : 0; |
| } |
| |
| /* |
| * Fills in the ECC fields in the OOB buffer with the hardware generated ECC |
| */ |
| static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count) |
| { |
| int i; |
| |
| for (i = 0; i < (count * 3); i += 3) { |
| uint32_t ce = ecc[i / 3]; |
| ce = ~(ce << 2) & 0xFFFFFF; |
| spare[i + 2] = (uint8_t)(ce & 0xFF); |
| ce >>= 8; |
| spare[i + 1] = (uint8_t)(ce & 0xFF); |
| ce >>= 8; |
| spare[i] = (uint8_t)(ce & 0xFF); |
| } |
| } |
| |
| static void lpc32xx_dma_complete_func(void *completion) |
| { |
| complete(completion); |
| } |
| |
| static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma, |
| void *mem, int len, enum dma_transfer_direction dir) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct lpc32xx_nand_host *host = chip->priv; |
| struct dma_async_tx_descriptor *desc; |
| int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; |
| int res; |
| |
| host->dma_slave_config.direction = dir; |
| host->dma_slave_config.src_addr = dma; |
| host->dma_slave_config.dst_addr = dma; |
| host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| host->dma_slave_config.src_maxburst = 4; |
| host->dma_slave_config.dst_maxburst = 4; |
| /* DMA controller does flow control: */ |
| host->dma_slave_config.device_fc = false; |
| if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) { |
| dev_err(mtd->dev.parent, "Failed to setup DMA slave\n"); |
| return -ENXIO; |
| } |
| |
| sg_init_one(&host->sgl, mem, len); |
| |
| res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1, |
| DMA_BIDIRECTIONAL); |
| if (res != 1) { |
| dev_err(mtd->dev.parent, "Failed to map sg list\n"); |
| return -ENXIO; |
| } |
| desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir, |
| flags); |
| if (!desc) { |
| dev_err(mtd->dev.parent, "Failed to prepare slave sg\n"); |
| goto out1; |
| } |
| |
| init_completion(&host->comp); |
| desc->callback = lpc32xx_dma_complete_func; |
| desc->callback_param = &host->comp; |
| |
| dmaengine_submit(desc); |
| dma_async_issue_pending(host->dma_chan); |
| |
| wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000)); |
| |
| dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, |
| DMA_BIDIRECTIONAL); |
| |
| return 0; |
| out1: |
| dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, |
| DMA_BIDIRECTIONAL); |
| return -ENXIO; |
| } |
| |
| /* |
| * DMA read/write transfers with ECC support |
| */ |
| static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages, |
| int read) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct lpc32xx_nand_host *host = chip->priv; |
| int i, status = 0; |
| unsigned long timeout; |
| int res; |
| enum dma_transfer_direction dir = |
| read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV; |
| uint8_t *dma_buf; |
| bool dma_mapped; |
| |
| if ((void *)buf <= high_memory) { |
| dma_buf = buf; |
| dma_mapped = true; |
| } else { |
| dma_buf = host->data_buf; |
| dma_mapped = false; |
| if (!read) |
| memcpy(host->data_buf, buf, mtd->writesize); |
| } |
| |
| if (read) { |
| writel(readl(SLC_CFG(host->io_base)) | |
| SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC | |
| SLCCFG_DMA_BURST, SLC_CFG(host->io_base)); |
| } else { |
| writel((readl(SLC_CFG(host->io_base)) | |
| SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) & |
| ~SLCCFG_DMA_DIR, |
| SLC_CFG(host->io_base)); |
| } |
| |
| /* Clear initial ECC */ |
| writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base)); |
| |
| /* Transfer size is data area only */ |
| writel(mtd->writesize, SLC_TC(host->io_base)); |
| |
| /* Start transfer in the NAND controller */ |
| writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START, |
| SLC_CTRL(host->io_base)); |
| |
| for (i = 0; i < chip->ecc.steps; i++) { |
| /* Data */ |
| res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma), |
| dma_buf + i * chip->ecc.size, |
| mtd->writesize / chip->ecc.steps, dir); |
| if (res) |
| return res; |
| |
| /* Always _read_ ECC */ |
| if (i == chip->ecc.steps - 1) |
| break; |
| if (!read) /* ECC availability delayed on write */ |
| udelay(10); |
| res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma), |
| &host->ecc_buf[i], 4, DMA_DEV_TO_MEM); |
| if (res) |
| return res; |
| } |
| |
| /* |
| * According to NXP, the DMA can be finished here, but the NAND |
| * controller may still have buffered data. After porting to using the |
| * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty) |
| * appears to be always true, according to tests. Keeping the check for |
| * safety reasons for now. |
| */ |
| if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) { |
| dev_warn(mtd->dev.parent, "FIFO not empty!\n"); |
| timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT); |
| while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) && |
| time_before(jiffies, timeout)) |
| cpu_relax(); |
| if (!time_before(jiffies, timeout)) { |
| dev_err(mtd->dev.parent, "FIFO held data too long\n"); |
| status = -EIO; |
| } |
| } |
| |
| /* Read last calculated ECC value */ |
| if (!read) |
| udelay(10); |
| host->ecc_buf[chip->ecc.steps - 1] = |
| readl(SLC_ECC(host->io_base)); |
| |
| /* Flush DMA */ |
| dmaengine_terminate_all(host->dma_chan); |
| |
| if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO || |
| readl(SLC_TC(host->io_base))) { |
| /* Something is left in the FIFO, something is wrong */ |
| dev_err(mtd->dev.parent, "DMA FIFO failure\n"); |
| status = -EIO; |
| } |
| |
| /* Stop DMA & HW ECC */ |
| writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START, |
| SLC_CTRL(host->io_base)); |
| writel(readl(SLC_CFG(host->io_base)) & |
| ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC | |
| SLCCFG_DMA_BURST), SLC_CFG(host->io_base)); |
| |
| if (!dma_mapped && read) |
| memcpy(buf, host->data_buf, mtd->writesize); |
| |
| return status; |
| } |
| |
| /* |
| * Read the data and OOB data from the device, use ECC correction with the |
| * data, disable ECC for the OOB data |
| */ |
| static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd, |
| struct nand_chip *chip, uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct lpc32xx_nand_host *host = chip->priv; |
| int stat, i, status; |
| uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE]; |
| |
| /* Issue read command */ |
| chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); |
| |
| /* Read data and oob, calculate ECC */ |
| status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1); |
| |
| /* Get OOB data */ |
| chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); |
| |
| /* Convert to stored ECC format */ |
| lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps); |
| |
| /* Pointer to ECC data retrieved from NAND spare area */ |
| oobecc = chip->oob_poi + chip->ecc.layout->eccpos[0]; |
| |
| for (i = 0; i < chip->ecc.steps; i++) { |
| stat = chip->ecc.correct(mtd, buf, oobecc, |
| &tmpecc[i * chip->ecc.bytes]); |
| if (stat < 0) |
| mtd->ecc_stats.failed++; |
| else |
| mtd->ecc_stats.corrected += stat; |
| |
| buf += chip->ecc.size; |
| oobecc += chip->ecc.bytes; |
| } |
| |
| return status; |
| } |
| |
| /* |
| * Read the data and OOB data from the device, no ECC correction with the |
| * data or OOB data |
| */ |
| static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd, |
| struct nand_chip *chip, |
| uint8_t *buf, int oob_required, |
| int page) |
| { |
| /* Issue read command */ |
| chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); |
| |
| /* Raw reads can just use the FIFO interface */ |
| chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps); |
| chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); |
| |
| return 0; |
| } |
| |
| /* |
| * Write the data and OOB data to the device, use ECC with the data, |
| * disable ECC for the OOB data |
| */ |
| static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd, |
| struct nand_chip *chip, |
| const uint8_t *buf, int oob_required) |
| { |
| struct lpc32xx_nand_host *host = chip->priv; |
| uint8_t *pb = chip->oob_poi + chip->ecc.layout->eccpos[0]; |
| int error; |
| |
| /* Write data, calculate ECC on outbound data */ |
| error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0); |
| if (error) |
| return error; |
| |
| /* |
| * The calculated ECC needs some manual work done to it before |
| * committing it to NAND. Process the calculated ECC and place |
| * the resultant values directly into the OOB buffer. */ |
| lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps); |
| |
| /* Write ECC data to device */ |
| chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); |
| return 0; |
| } |
| |
| /* |
| * Write the data and OOB data to the device, no ECC correction with the |
| * data or OOB data |
| */ |
| static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd, |
| struct nand_chip *chip, |
| const uint8_t *buf, |
| int oob_required) |
| { |
| /* Raw writes can just use the FIFO interface */ |
| chip->write_buf(mtd, buf, chip->ecc.size * chip->ecc.steps); |
| chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); |
| return 0; |
| } |
| |
| static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host) |
| { |
| struct mtd_info *mtd = &host->mtd; |
| dma_cap_mask_t mask; |
| |
| if (!host->pdata || !host->pdata->dma_filter) { |
| dev_err(mtd->dev.parent, "no DMA platform data\n"); |
| return -ENOENT; |
| } |
| |
| dma_cap_zero(mask); |
| dma_cap_set(DMA_SLAVE, mask); |
| host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter, |
| "nand-slc"); |
| if (!host->dma_chan) { |
| dev_err(mtd->dev.parent, "Failed to request DMA channel\n"); |
| return -EBUSY; |
| } |
| |
| return 0; |
| } |
| |
| static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev) |
| { |
| struct lpc32xx_nand_cfg_slc *ncfg; |
| struct device_node *np = dev->of_node; |
| |
| ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL); |
| if (!ncfg) { |
| dev_err(dev, "could not allocate memory for NAND config\n"); |
| return NULL; |
| } |
| |
| of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks); |
| of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth); |
| of_property_read_u32(np, "nxp,whold", &ncfg->whold); |
| of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup); |
| of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks); |
| of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth); |
| of_property_read_u32(np, "nxp,rhold", &ncfg->rhold); |
| of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup); |
| |
| if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold || |
| !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth || |
| !ncfg->rhold || !ncfg->rsetup) { |
| dev_err(dev, "chip parameters not specified correctly\n"); |
| return NULL; |
| } |
| |
| ncfg->use_bbt = of_get_nand_on_flash_bbt(np); |
| ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0); |
| |
| return ncfg; |
| } |
| |
| /* |
| * Probe for NAND controller |
| */ |
| static int lpc32xx_nand_probe(struct platform_device *pdev) |
| { |
| struct lpc32xx_nand_host *host; |
| struct mtd_info *mtd; |
| struct nand_chip *chip; |
| struct resource *rc; |
| struct mtd_part_parser_data ppdata = {}; |
| int res; |
| |
| rc = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (rc == NULL) { |
| dev_err(&pdev->dev, "No memory resource found for device\n"); |
| return -EBUSY; |
| } |
| |
| /* Allocate memory for the device structure (and zero it) */ |
| host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); |
| if (!host) { |
| dev_err(&pdev->dev, "failed to allocate device structure\n"); |
| return -ENOMEM; |
| } |
| host->io_base_dma = rc->start; |
| |
| host->io_base = devm_ioremap_resource(&pdev->dev, rc); |
| if (IS_ERR(host->io_base)) |
| return PTR_ERR(host->io_base); |
| |
| if (pdev->dev.of_node) |
| host->ncfg = lpc32xx_parse_dt(&pdev->dev); |
| if (!host->ncfg) { |
| dev_err(&pdev->dev, |
| "Missing or bad NAND config from device tree\n"); |
| return -ENOENT; |
| } |
| if (host->ncfg->wp_gpio == -EPROBE_DEFER) |
| return -EPROBE_DEFER; |
| if (gpio_is_valid(host->ncfg->wp_gpio) && |
| gpio_request(host->ncfg->wp_gpio, "NAND WP")) { |
| dev_err(&pdev->dev, "GPIO not available\n"); |
| return -EBUSY; |
| } |
| lpc32xx_wp_disable(host); |
| |
| host->pdata = pdev->dev.platform_data; |
| |
| mtd = &host->mtd; |
| chip = &host->nand_chip; |
| chip->priv = host; |
| mtd->priv = chip; |
| mtd->owner = THIS_MODULE; |
| mtd->dev.parent = &pdev->dev; |
| |
| /* Get NAND clock */ |
| host->clk = clk_get(&pdev->dev, NULL); |
| if (IS_ERR(host->clk)) { |
| dev_err(&pdev->dev, "Clock failure\n"); |
| res = -ENOENT; |
| goto err_exit1; |
| } |
| clk_enable(host->clk); |
| |
| /* Set NAND IO addresses and command/ready functions */ |
| chip->IO_ADDR_R = SLC_DATA(host->io_base); |
| chip->IO_ADDR_W = SLC_DATA(host->io_base); |
| chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl; |
| chip->dev_ready = lpc32xx_nand_device_ready; |
| chip->chip_delay = 20; /* 20us command delay time */ |
| |
| /* Init NAND controller */ |
| lpc32xx_nand_setup(host); |
| |
| platform_set_drvdata(pdev, host); |
| |
| /* NAND callbacks for LPC32xx SLC hardware */ |
| chip->ecc.mode = NAND_ECC_HW_SYNDROME; |
| chip->read_byte = lpc32xx_nand_read_byte; |
| chip->read_buf = lpc32xx_nand_read_buf; |
| chip->write_buf = lpc32xx_nand_write_buf; |
| chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome; |
| chip->ecc.read_page = lpc32xx_nand_read_page_syndrome; |
| chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome; |
| chip->ecc.write_page = lpc32xx_nand_write_page_syndrome; |
| chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome; |
| chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome; |
| chip->ecc.calculate = lpc32xx_nand_ecc_calculate; |
| chip->ecc.correct = nand_correct_data; |
| chip->ecc.strength = 1; |
| chip->ecc.hwctl = lpc32xx_nand_ecc_enable; |
| |
| /* bitflip_threshold's default is defined as ecc_strength anyway. |
| * Unfortunately, it is set only later at add_mtd_device(). Meanwhile |
| * being 0, it causes bad block table scanning errors in |
| * nand_scan_tail(), so preparing it here already. */ |
| mtd->bitflip_threshold = chip->ecc.strength; |
| |
| /* |
| * Allocate a large enough buffer for a single huge page plus |
| * extra space for the spare area and ECC storage area |
| */ |
| host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE; |
| host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len, |
| GFP_KERNEL); |
| if (host->data_buf == NULL) { |
| dev_err(&pdev->dev, "Error allocating memory\n"); |
| res = -ENOMEM; |
| goto err_exit2; |
| } |
| |
| res = lpc32xx_nand_dma_setup(host); |
| if (res) { |
| res = -EIO; |
| goto err_exit2; |
| } |
| |
| /* Find NAND device */ |
| if (nand_scan_ident(mtd, 1, NULL)) { |
| res = -ENXIO; |
| goto err_exit3; |
| } |
| |
| /* OOB and ECC CPU and DMA work areas */ |
| host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE); |
| |
| /* |
| * Small page FLASH has a unique OOB layout, but large and huge |
| * page FLASH use the standard layout. Small page FLASH uses a |
| * custom BBT marker layout. |
| */ |
| if (mtd->writesize <= 512) |
| chip->ecc.layout = &lpc32xx_nand_oob_16; |
| |
| /* These sizes remain the same regardless of page size */ |
| chip->ecc.size = 256; |
| chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES; |
| chip->ecc.prepad = chip->ecc.postpad = 0; |
| |
| /* Avoid extra scan if using BBT, setup BBT support */ |
| if (host->ncfg->use_bbt) { |
| chip->options |= NAND_SKIP_BBTSCAN; |
| chip->bbt_options |= NAND_BBT_USE_FLASH; |
| |
| /* |
| * Use a custom BBT marker setup for small page FLASH that |
| * won't interfere with the ECC layout. Large and huge page |
| * FLASH use the standard layout. |
| */ |
| if (mtd->writesize <= 512) { |
| chip->bbt_td = &bbt_smallpage_main_descr; |
| chip->bbt_md = &bbt_smallpage_mirror_descr; |
| } |
| } |
| |
| /* |
| * Fills out all the uninitialized function pointers with the defaults |
| */ |
| if (nand_scan_tail(mtd)) { |
| res = -ENXIO; |
| goto err_exit3; |
| } |
| |
| /* Standard layout in FLASH for bad block tables */ |
| if (host->ncfg->use_bbt) { |
| if (nand_default_bbt(mtd) < 0) |
| dev_err(&pdev->dev, |
| "Error initializing default bad block tables\n"); |
| } |
| |
| mtd->name = "nxp_lpc3220_slc"; |
| ppdata.of_node = pdev->dev.of_node; |
| res = mtd_device_parse_register(mtd, NULL, &ppdata, host->ncfg->parts, |
| host->ncfg->num_parts); |
| if (!res) |
| return res; |
| |
| nand_release(mtd); |
| |
| err_exit3: |
| dma_release_channel(host->dma_chan); |
| err_exit2: |
| clk_disable(host->clk); |
| clk_put(host->clk); |
| platform_set_drvdata(pdev, NULL); |
| err_exit1: |
| lpc32xx_wp_enable(host); |
| gpio_free(host->ncfg->wp_gpio); |
| |
| return res; |
| } |
| |
| /* |
| * Remove NAND device. |
| */ |
| static int lpc32xx_nand_remove(struct platform_device *pdev) |
| { |
| uint32_t tmp; |
| struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); |
| struct mtd_info *mtd = &host->mtd; |
| |
| nand_release(mtd); |
| dma_release_channel(host->dma_chan); |
| |
| /* Force CE high */ |
| tmp = readl(SLC_CTRL(host->io_base)); |
| tmp &= ~SLCCFG_CE_LOW; |
| writel(tmp, SLC_CTRL(host->io_base)); |
| |
| clk_disable(host->clk); |
| clk_put(host->clk); |
| platform_set_drvdata(pdev, NULL); |
| lpc32xx_wp_enable(host); |
| gpio_free(host->ncfg->wp_gpio); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM |
| static int lpc32xx_nand_resume(struct platform_device *pdev) |
| { |
| struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); |
| |
| /* Re-enable NAND clock */ |
| clk_enable(host->clk); |
| |
| /* Fresh init of NAND controller */ |
| lpc32xx_nand_setup(host); |
| |
| /* Disable write protect */ |
| lpc32xx_wp_disable(host); |
| |
| return 0; |
| } |
| |
| static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm) |
| { |
| uint32_t tmp; |
| struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); |
| |
| /* Force CE high */ |
| tmp = readl(SLC_CTRL(host->io_base)); |
| tmp &= ~SLCCFG_CE_LOW; |
| writel(tmp, SLC_CTRL(host->io_base)); |
| |
| /* Enable write protect for safety */ |
| lpc32xx_wp_enable(host); |
| |
| /* Disable clock */ |
| clk_disable(host->clk); |
| |
| return 0; |
| } |
| |
| #else |
| #define lpc32xx_nand_resume NULL |
| #define lpc32xx_nand_suspend NULL |
| #endif |
| |
| static const struct of_device_id lpc32xx_nand_match[] = { |
| { .compatible = "nxp,lpc3220-slc" }, |
| { /* sentinel */ }, |
| }; |
| MODULE_DEVICE_TABLE(of, lpc32xx_nand_match); |
| |
| static struct platform_driver lpc32xx_nand_driver = { |
| .probe = lpc32xx_nand_probe, |
| .remove = lpc32xx_nand_remove, |
| .resume = lpc32xx_nand_resume, |
| .suspend = lpc32xx_nand_suspend, |
| .driver = { |
| .name = LPC32XX_MODNAME, |
| .owner = THIS_MODULE, |
| .of_match_table = of_match_ptr(lpc32xx_nand_match), |
| }, |
| }; |
| |
| module_platform_driver(lpc32xx_nand_driver); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>"); |
| MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>"); |
| MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller"); |