| /* |
| * Copyright (c) 2007 Mellanox Technologies. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| * |
| */ |
| |
| #include <net/busy_poll.h> |
| #include <linux/mlx4/cq.h> |
| #include <linux/slab.h> |
| #include <linux/mlx4/qp.h> |
| #include <linux/skbuff.h> |
| #include <linux/rculist.h> |
| #include <linux/if_ether.h> |
| #include <linux/if_vlan.h> |
| #include <linux/vmalloc.h> |
| #include <linux/irq.h> |
| |
| #if IS_ENABLED(CONFIG_IPV6) |
| #include <net/ip6_checksum.h> |
| #endif |
| |
| #include "mlx4_en.h" |
| |
| static int mlx4_alloc_pages(struct mlx4_en_priv *priv, |
| struct mlx4_en_rx_alloc *page_alloc, |
| const struct mlx4_en_frag_info *frag_info, |
| gfp_t _gfp) |
| { |
| int order; |
| struct page *page; |
| dma_addr_t dma; |
| |
| for (order = MLX4_EN_ALLOC_PREFER_ORDER; ;) { |
| gfp_t gfp = _gfp; |
| |
| if (order) |
| gfp |= __GFP_COMP | __GFP_NOWARN; |
| page = alloc_pages(gfp, order); |
| if (likely(page)) |
| break; |
| if (--order < 0 || |
| ((PAGE_SIZE << order) < frag_info->frag_size)) |
| return -ENOMEM; |
| } |
| dma = dma_map_page(priv->ddev, page, 0, PAGE_SIZE << order, |
| PCI_DMA_FROMDEVICE); |
| if (dma_mapping_error(priv->ddev, dma)) { |
| put_page(page); |
| return -ENOMEM; |
| } |
| page_alloc->page_size = PAGE_SIZE << order; |
| page_alloc->page = page; |
| page_alloc->dma = dma; |
| page_alloc->page_offset = 0; |
| /* Not doing get_page() for each frag is a big win |
| * on asymetric workloads. Note we can not use atomic_set(). |
| */ |
| atomic_add(page_alloc->page_size / frag_info->frag_stride - 1, |
| &page->_count); |
| return 0; |
| } |
| |
| static int mlx4_en_alloc_frags(struct mlx4_en_priv *priv, |
| struct mlx4_en_rx_desc *rx_desc, |
| struct mlx4_en_rx_alloc *frags, |
| struct mlx4_en_rx_alloc *ring_alloc, |
| gfp_t gfp) |
| { |
| struct mlx4_en_rx_alloc page_alloc[MLX4_EN_MAX_RX_FRAGS]; |
| const struct mlx4_en_frag_info *frag_info; |
| struct page *page; |
| dma_addr_t dma; |
| int i; |
| |
| for (i = 0; i < priv->num_frags; i++) { |
| frag_info = &priv->frag_info[i]; |
| page_alloc[i] = ring_alloc[i]; |
| page_alloc[i].page_offset += frag_info->frag_stride; |
| |
| if (page_alloc[i].page_offset + frag_info->frag_stride <= |
| ring_alloc[i].page_size) |
| continue; |
| |
| if (mlx4_alloc_pages(priv, &page_alloc[i], frag_info, gfp)) |
| goto out; |
| } |
| |
| for (i = 0; i < priv->num_frags; i++) { |
| frags[i] = ring_alloc[i]; |
| dma = ring_alloc[i].dma + ring_alloc[i].page_offset; |
| ring_alloc[i] = page_alloc[i]; |
| rx_desc->data[i].addr = cpu_to_be64(dma); |
| } |
| |
| return 0; |
| |
| out: |
| while (i--) { |
| if (page_alloc[i].page != ring_alloc[i].page) { |
| dma_unmap_page(priv->ddev, page_alloc[i].dma, |
| page_alloc[i].page_size, PCI_DMA_FROMDEVICE); |
| page = page_alloc[i].page; |
| atomic_set(&page->_count, 1); |
| put_page(page); |
| } |
| } |
| return -ENOMEM; |
| } |
| |
| static void mlx4_en_free_frag(struct mlx4_en_priv *priv, |
| struct mlx4_en_rx_alloc *frags, |
| int i) |
| { |
| const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i]; |
| u32 next_frag_end = frags[i].page_offset + 2 * frag_info->frag_stride; |
| |
| |
| if (next_frag_end > frags[i].page_size) |
| dma_unmap_page(priv->ddev, frags[i].dma, frags[i].page_size, |
| PCI_DMA_FROMDEVICE); |
| |
| if (frags[i].page) |
| put_page(frags[i].page); |
| } |
| |
| static int mlx4_en_init_allocator(struct mlx4_en_priv *priv, |
| struct mlx4_en_rx_ring *ring) |
| { |
| int i; |
| struct mlx4_en_rx_alloc *page_alloc; |
| |
| for (i = 0; i < priv->num_frags; i++) { |
| const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i]; |
| |
| if (mlx4_alloc_pages(priv, &ring->page_alloc[i], |
| frag_info, GFP_KERNEL | __GFP_COLD)) |
| goto out; |
| |
| en_dbg(DRV, priv, " frag %d allocator: - size:%d frags:%d\n", |
| i, ring->page_alloc[i].page_size, |
| atomic_read(&ring->page_alloc[i].page->_count)); |
| } |
| return 0; |
| |
| out: |
| while (i--) { |
| struct page *page; |
| |
| page_alloc = &ring->page_alloc[i]; |
| dma_unmap_page(priv->ddev, page_alloc->dma, |
| page_alloc->page_size, PCI_DMA_FROMDEVICE); |
| page = page_alloc->page; |
| atomic_set(&page->_count, 1); |
| put_page(page); |
| page_alloc->page = NULL; |
| } |
| return -ENOMEM; |
| } |
| |
| static void mlx4_en_destroy_allocator(struct mlx4_en_priv *priv, |
| struct mlx4_en_rx_ring *ring) |
| { |
| struct mlx4_en_rx_alloc *page_alloc; |
| int i; |
| |
| for (i = 0; i < priv->num_frags; i++) { |
| const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i]; |
| |
| page_alloc = &ring->page_alloc[i]; |
| en_dbg(DRV, priv, "Freeing allocator:%d count:%d\n", |
| i, page_count(page_alloc->page)); |
| |
| dma_unmap_page(priv->ddev, page_alloc->dma, |
| page_alloc->page_size, PCI_DMA_FROMDEVICE); |
| while (page_alloc->page_offset + frag_info->frag_stride < |
| page_alloc->page_size) { |
| put_page(page_alloc->page); |
| page_alloc->page_offset += frag_info->frag_stride; |
| } |
| page_alloc->page = NULL; |
| } |
| } |
| |
| static void mlx4_en_init_rx_desc(struct mlx4_en_priv *priv, |
| struct mlx4_en_rx_ring *ring, int index) |
| { |
| struct mlx4_en_rx_desc *rx_desc = ring->buf + ring->stride * index; |
| int possible_frags; |
| int i; |
| |
| /* Set size and memtype fields */ |
| for (i = 0; i < priv->num_frags; i++) { |
| rx_desc->data[i].byte_count = |
| cpu_to_be32(priv->frag_info[i].frag_size); |
| rx_desc->data[i].lkey = cpu_to_be32(priv->mdev->mr.key); |
| } |
| |
| /* If the number of used fragments does not fill up the ring stride, |
| * remaining (unused) fragments must be padded with null address/size |
| * and a special memory key */ |
| possible_frags = (ring->stride - sizeof(struct mlx4_en_rx_desc)) / DS_SIZE; |
| for (i = priv->num_frags; i < possible_frags; i++) { |
| rx_desc->data[i].byte_count = 0; |
| rx_desc->data[i].lkey = cpu_to_be32(MLX4_EN_MEMTYPE_PAD); |
| rx_desc->data[i].addr = 0; |
| } |
| } |
| |
| static int mlx4_en_prepare_rx_desc(struct mlx4_en_priv *priv, |
| struct mlx4_en_rx_ring *ring, int index, |
| gfp_t gfp) |
| { |
| struct mlx4_en_rx_desc *rx_desc = ring->buf + (index * ring->stride); |
| struct mlx4_en_rx_alloc *frags = ring->rx_info + |
| (index << priv->log_rx_info); |
| |
| return mlx4_en_alloc_frags(priv, rx_desc, frags, ring->page_alloc, gfp); |
| } |
| |
| static inline void mlx4_en_update_rx_prod_db(struct mlx4_en_rx_ring *ring) |
| { |
| *ring->wqres.db.db = cpu_to_be32(ring->prod & 0xffff); |
| } |
| |
| static void mlx4_en_free_rx_desc(struct mlx4_en_priv *priv, |
| struct mlx4_en_rx_ring *ring, |
| int index) |
| { |
| struct mlx4_en_rx_alloc *frags; |
| int nr; |
| |
| frags = ring->rx_info + (index << priv->log_rx_info); |
| for (nr = 0; nr < priv->num_frags; nr++) { |
| en_dbg(DRV, priv, "Freeing fragment:%d\n", nr); |
| mlx4_en_free_frag(priv, frags, nr); |
| } |
| } |
| |
| static int mlx4_en_fill_rx_buffers(struct mlx4_en_priv *priv) |
| { |
| struct mlx4_en_rx_ring *ring; |
| int ring_ind; |
| int buf_ind; |
| int new_size; |
| |
| for (buf_ind = 0; buf_ind < priv->prof->rx_ring_size; buf_ind++) { |
| for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { |
| ring = priv->rx_ring[ring_ind]; |
| |
| if (mlx4_en_prepare_rx_desc(priv, ring, |
| ring->actual_size, |
| GFP_KERNEL | __GFP_COLD)) { |
| if (ring->actual_size < MLX4_EN_MIN_RX_SIZE) { |
| en_err(priv, "Failed to allocate enough rx buffers\n"); |
| return -ENOMEM; |
| } else { |
| new_size = rounddown_pow_of_two(ring->actual_size); |
| en_warn(priv, "Only %d buffers allocated reducing ring size to %d\n", |
| ring->actual_size, new_size); |
| goto reduce_rings; |
| } |
| } |
| ring->actual_size++; |
| ring->prod++; |
| } |
| } |
| return 0; |
| |
| reduce_rings: |
| for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { |
| ring = priv->rx_ring[ring_ind]; |
| while (ring->actual_size > new_size) { |
| ring->actual_size--; |
| ring->prod--; |
| mlx4_en_free_rx_desc(priv, ring, ring->actual_size); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void mlx4_en_free_rx_buf(struct mlx4_en_priv *priv, |
| struct mlx4_en_rx_ring *ring) |
| { |
| int index; |
| |
| en_dbg(DRV, priv, "Freeing Rx buf - cons:%d prod:%d\n", |
| ring->cons, ring->prod); |
| |
| /* Unmap and free Rx buffers */ |
| BUG_ON((u32) (ring->prod - ring->cons) > ring->actual_size); |
| while (ring->cons != ring->prod) { |
| index = ring->cons & ring->size_mask; |
| en_dbg(DRV, priv, "Processing descriptor:%d\n", index); |
| mlx4_en_free_rx_desc(priv, ring, index); |
| ++ring->cons; |
| } |
| } |
| |
| void mlx4_en_set_num_rx_rings(struct mlx4_en_dev *mdev) |
| { |
| int i; |
| int num_of_eqs; |
| int num_rx_rings; |
| struct mlx4_dev *dev = mdev->dev; |
| |
| mlx4_foreach_port(i, dev, MLX4_PORT_TYPE_ETH) { |
| if (!dev->caps.comp_pool) |
| num_of_eqs = max_t(int, MIN_RX_RINGS, |
| min_t(int, |
| dev->caps.num_comp_vectors, |
| DEF_RX_RINGS)); |
| else |
| num_of_eqs = min_t(int, MAX_MSIX_P_PORT, |
| dev->caps.comp_pool/ |
| dev->caps.num_ports) - 1; |
| |
| num_rx_rings = mlx4_low_memory_profile() ? MIN_RX_RINGS : |
| min_t(int, num_of_eqs, |
| netif_get_num_default_rss_queues()); |
| mdev->profile.prof[i].rx_ring_num = |
| rounddown_pow_of_two(num_rx_rings); |
| } |
| } |
| |
| int mlx4_en_create_rx_ring(struct mlx4_en_priv *priv, |
| struct mlx4_en_rx_ring **pring, |
| u32 size, u16 stride, int node) |
| { |
| struct mlx4_en_dev *mdev = priv->mdev; |
| struct mlx4_en_rx_ring *ring; |
| int err = -ENOMEM; |
| int tmp; |
| |
| ring = kzalloc_node(sizeof(*ring), GFP_KERNEL, node); |
| if (!ring) { |
| ring = kzalloc(sizeof(*ring), GFP_KERNEL); |
| if (!ring) { |
| en_err(priv, "Failed to allocate RX ring structure\n"); |
| return -ENOMEM; |
| } |
| } |
| |
| ring->prod = 0; |
| ring->cons = 0; |
| ring->size = size; |
| ring->size_mask = size - 1; |
| ring->stride = stride; |
| ring->log_stride = ffs(ring->stride) - 1; |
| ring->buf_size = ring->size * ring->stride + TXBB_SIZE; |
| |
| tmp = size * roundup_pow_of_two(MLX4_EN_MAX_RX_FRAGS * |
| sizeof(struct mlx4_en_rx_alloc)); |
| ring->rx_info = vmalloc_node(tmp, node); |
| if (!ring->rx_info) { |
| ring->rx_info = vmalloc(tmp); |
| if (!ring->rx_info) { |
| err = -ENOMEM; |
| goto err_ring; |
| } |
| } |
| |
| en_dbg(DRV, priv, "Allocated rx_info ring at addr:%p size:%d\n", |
| ring->rx_info, tmp); |
| |
| /* Allocate HW buffers on provided NUMA node */ |
| set_dev_node(&mdev->dev->persist->pdev->dev, node); |
| err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, |
| ring->buf_size, 2 * PAGE_SIZE); |
| set_dev_node(&mdev->dev->persist->pdev->dev, mdev->dev->numa_node); |
| if (err) |
| goto err_info; |
| |
| err = mlx4_en_map_buffer(&ring->wqres.buf); |
| if (err) { |
| en_err(priv, "Failed to map RX buffer\n"); |
| goto err_hwq; |
| } |
| ring->buf = ring->wqres.buf.direct.buf; |
| |
| ring->hwtstamp_rx_filter = priv->hwtstamp_config.rx_filter; |
| |
| *pring = ring; |
| return 0; |
| |
| err_hwq: |
| mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size); |
| err_info: |
| vfree(ring->rx_info); |
| ring->rx_info = NULL; |
| err_ring: |
| kfree(ring); |
| *pring = NULL; |
| |
| return err; |
| } |
| |
| int mlx4_en_activate_rx_rings(struct mlx4_en_priv *priv) |
| { |
| struct mlx4_en_rx_ring *ring; |
| int i; |
| int ring_ind; |
| int err; |
| int stride = roundup_pow_of_two(sizeof(struct mlx4_en_rx_desc) + |
| DS_SIZE * priv->num_frags); |
| |
| for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { |
| ring = priv->rx_ring[ring_ind]; |
| |
| ring->prod = 0; |
| ring->cons = 0; |
| ring->actual_size = 0; |
| ring->cqn = priv->rx_cq[ring_ind]->mcq.cqn; |
| |
| ring->stride = stride; |
| if (ring->stride <= TXBB_SIZE) |
| ring->buf += TXBB_SIZE; |
| |
| ring->log_stride = ffs(ring->stride) - 1; |
| ring->buf_size = ring->size * ring->stride; |
| |
| memset(ring->buf, 0, ring->buf_size); |
| mlx4_en_update_rx_prod_db(ring); |
| |
| /* Initialize all descriptors */ |
| for (i = 0; i < ring->size; i++) |
| mlx4_en_init_rx_desc(priv, ring, i); |
| |
| /* Initialize page allocators */ |
| err = mlx4_en_init_allocator(priv, ring); |
| if (err) { |
| en_err(priv, "Failed initializing ring allocator\n"); |
| if (ring->stride <= TXBB_SIZE) |
| ring->buf -= TXBB_SIZE; |
| ring_ind--; |
| goto err_allocator; |
| } |
| } |
| err = mlx4_en_fill_rx_buffers(priv); |
| if (err) |
| goto err_buffers; |
| |
| for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { |
| ring = priv->rx_ring[ring_ind]; |
| |
| ring->size_mask = ring->actual_size - 1; |
| mlx4_en_update_rx_prod_db(ring); |
| } |
| |
| return 0; |
| |
| err_buffers: |
| for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) |
| mlx4_en_free_rx_buf(priv, priv->rx_ring[ring_ind]); |
| |
| ring_ind = priv->rx_ring_num - 1; |
| err_allocator: |
| while (ring_ind >= 0) { |
| if (priv->rx_ring[ring_ind]->stride <= TXBB_SIZE) |
| priv->rx_ring[ring_ind]->buf -= TXBB_SIZE; |
| mlx4_en_destroy_allocator(priv, priv->rx_ring[ring_ind]); |
| ring_ind--; |
| } |
| return err; |
| } |
| |
| void mlx4_en_destroy_rx_ring(struct mlx4_en_priv *priv, |
| struct mlx4_en_rx_ring **pring, |
| u32 size, u16 stride) |
| { |
| struct mlx4_en_dev *mdev = priv->mdev; |
| struct mlx4_en_rx_ring *ring = *pring; |
| |
| mlx4_en_unmap_buffer(&ring->wqres.buf); |
| mlx4_free_hwq_res(mdev->dev, &ring->wqres, size * stride + TXBB_SIZE); |
| vfree(ring->rx_info); |
| ring->rx_info = NULL; |
| kfree(ring); |
| *pring = NULL; |
| #ifdef CONFIG_RFS_ACCEL |
| mlx4_en_cleanup_filters(priv); |
| #endif |
| } |
| |
| void mlx4_en_deactivate_rx_ring(struct mlx4_en_priv *priv, |
| struct mlx4_en_rx_ring *ring) |
| { |
| mlx4_en_free_rx_buf(priv, ring); |
| if (ring->stride <= TXBB_SIZE) |
| ring->buf -= TXBB_SIZE; |
| mlx4_en_destroy_allocator(priv, ring); |
| } |
| |
| |
| static int mlx4_en_complete_rx_desc(struct mlx4_en_priv *priv, |
| struct mlx4_en_rx_desc *rx_desc, |
| struct mlx4_en_rx_alloc *frags, |
| struct sk_buff *skb, |
| int length) |
| { |
| struct skb_frag_struct *skb_frags_rx = skb_shinfo(skb)->frags; |
| struct mlx4_en_frag_info *frag_info; |
| int nr; |
| dma_addr_t dma; |
| |
| /* Collect used fragments while replacing them in the HW descriptors */ |
| for (nr = 0; nr < priv->num_frags; nr++) { |
| frag_info = &priv->frag_info[nr]; |
| if (length <= frag_info->frag_prefix_size) |
| break; |
| if (!frags[nr].page) |
| goto fail; |
| |
| dma = be64_to_cpu(rx_desc->data[nr].addr); |
| dma_sync_single_for_cpu(priv->ddev, dma, frag_info->frag_size, |
| DMA_FROM_DEVICE); |
| |
| /* Save page reference in skb */ |
| __skb_frag_set_page(&skb_frags_rx[nr], frags[nr].page); |
| skb_frag_size_set(&skb_frags_rx[nr], frag_info->frag_size); |
| skb_frags_rx[nr].page_offset = frags[nr].page_offset; |
| skb->truesize += frag_info->frag_stride; |
| frags[nr].page = NULL; |
| } |
| /* Adjust size of last fragment to match actual length */ |
| if (nr > 0) |
| skb_frag_size_set(&skb_frags_rx[nr - 1], |
| length - priv->frag_info[nr - 1].frag_prefix_size); |
| return nr; |
| |
| fail: |
| while (nr > 0) { |
| nr--; |
| __skb_frag_unref(&skb_frags_rx[nr]); |
| } |
| return 0; |
| } |
| |
| |
| static struct sk_buff *mlx4_en_rx_skb(struct mlx4_en_priv *priv, |
| struct mlx4_en_rx_desc *rx_desc, |
| struct mlx4_en_rx_alloc *frags, |
| unsigned int length) |
| { |
| struct sk_buff *skb; |
| void *va; |
| int used_frags; |
| dma_addr_t dma; |
| |
| skb = netdev_alloc_skb(priv->dev, SMALL_PACKET_SIZE + NET_IP_ALIGN); |
| if (!skb) { |
| en_dbg(RX_ERR, priv, "Failed allocating skb\n"); |
| return NULL; |
| } |
| skb_reserve(skb, NET_IP_ALIGN); |
| skb->len = length; |
| |
| /* Get pointer to first fragment so we could copy the headers into the |
| * (linear part of the) skb */ |
| va = page_address(frags[0].page) + frags[0].page_offset; |
| |
| if (length <= SMALL_PACKET_SIZE) { |
| /* We are copying all relevant data to the skb - temporarily |
| * sync buffers for the copy */ |
| dma = be64_to_cpu(rx_desc->data[0].addr); |
| dma_sync_single_for_cpu(priv->ddev, dma, length, |
| DMA_FROM_DEVICE); |
| skb_copy_to_linear_data(skb, va, length); |
| skb->tail += length; |
| } else { |
| unsigned int pull_len; |
| |
| /* Move relevant fragments to skb */ |
| used_frags = mlx4_en_complete_rx_desc(priv, rx_desc, frags, |
| skb, length); |
| if (unlikely(!used_frags)) { |
| kfree_skb(skb); |
| return NULL; |
| } |
| skb_shinfo(skb)->nr_frags = used_frags; |
| |
| pull_len = eth_get_headlen(va, SMALL_PACKET_SIZE); |
| /* Copy headers into the skb linear buffer */ |
| memcpy(skb->data, va, pull_len); |
| skb->tail += pull_len; |
| |
| /* Skip headers in first fragment */ |
| skb_shinfo(skb)->frags[0].page_offset += pull_len; |
| |
| /* Adjust size of first fragment */ |
| skb_frag_size_sub(&skb_shinfo(skb)->frags[0], pull_len); |
| skb->data_len = length - pull_len; |
| } |
| return skb; |
| } |
| |
| static void validate_loopback(struct mlx4_en_priv *priv, struct sk_buff *skb) |
| { |
| int i; |
| int offset = ETH_HLEN; |
| |
| for (i = 0; i < MLX4_LOOPBACK_TEST_PAYLOAD; i++, offset++) { |
| if (*(skb->data + offset) != (unsigned char) (i & 0xff)) |
| goto out_loopback; |
| } |
| /* Loopback found */ |
| priv->loopback_ok = 1; |
| |
| out_loopback: |
| dev_kfree_skb_any(skb); |
| } |
| |
| static void mlx4_en_refill_rx_buffers(struct mlx4_en_priv *priv, |
| struct mlx4_en_rx_ring *ring) |
| { |
| int index = ring->prod & ring->size_mask; |
| |
| while ((u32) (ring->prod - ring->cons) < ring->actual_size) { |
| if (mlx4_en_prepare_rx_desc(priv, ring, index, |
| GFP_ATOMIC | __GFP_COLD)) |
| break; |
| ring->prod++; |
| index = ring->prod & ring->size_mask; |
| } |
| } |
| |
| /* When hardware doesn't strip the vlan, we need to calculate the checksum |
| * over it and add it to the hardware's checksum calculation |
| */ |
| static inline __wsum get_fixed_vlan_csum(__wsum hw_checksum, |
| struct vlan_hdr *vlanh) |
| { |
| return csum_add(hw_checksum, *(__wsum *)vlanh); |
| } |
| |
| /* Although the stack expects checksum which doesn't include the pseudo |
| * header, the HW adds it. To address that, we are subtracting the pseudo |
| * header checksum from the checksum value provided by the HW. |
| */ |
| static void get_fixed_ipv4_csum(__wsum hw_checksum, struct sk_buff *skb, |
| struct iphdr *iph) |
| { |
| __u16 length_for_csum = 0; |
| __wsum csum_pseudo_header = 0; |
| |
| length_for_csum = (be16_to_cpu(iph->tot_len) - (iph->ihl << 2)); |
| csum_pseudo_header = csum_tcpudp_nofold(iph->saddr, iph->daddr, |
| length_for_csum, iph->protocol, 0); |
| skb->csum = csum_sub(hw_checksum, csum_pseudo_header); |
| } |
| |
| #if IS_ENABLED(CONFIG_IPV6) |
| /* In IPv6 packets, besides subtracting the pseudo header checksum, |
| * we also compute/add the IP header checksum which |
| * is not added by the HW. |
| */ |
| static int get_fixed_ipv6_csum(__wsum hw_checksum, struct sk_buff *skb, |
| struct ipv6hdr *ipv6h) |
| { |
| __wsum csum_pseudo_hdr = 0; |
| |
| if (ipv6h->nexthdr == IPPROTO_FRAGMENT || ipv6h->nexthdr == IPPROTO_HOPOPTS) |
| return -1; |
| hw_checksum = csum_add(hw_checksum, (__force __wsum)(ipv6h->nexthdr << 8)); |
| |
| csum_pseudo_hdr = csum_partial(&ipv6h->saddr, |
| sizeof(ipv6h->saddr) + sizeof(ipv6h->daddr), 0); |
| csum_pseudo_hdr = csum_add(csum_pseudo_hdr, (__force __wsum)ipv6h->payload_len); |
| csum_pseudo_hdr = csum_add(csum_pseudo_hdr, (__force __wsum)ntohs(ipv6h->nexthdr)); |
| |
| skb->csum = csum_sub(hw_checksum, csum_pseudo_hdr); |
| skb->csum = csum_add(skb->csum, csum_partial(ipv6h, sizeof(struct ipv6hdr), 0)); |
| return 0; |
| } |
| #endif |
| static int check_csum(struct mlx4_cqe *cqe, struct sk_buff *skb, void *va, |
| int hwtstamp_rx_filter) |
| { |
| __wsum hw_checksum = 0; |
| |
| void *hdr = (u8 *)va + sizeof(struct ethhdr); |
| |
| hw_checksum = csum_unfold((__force __sum16)cqe->checksum); |
| |
| if (((struct ethhdr *)va)->h_proto == htons(ETH_P_8021Q) && |
| hwtstamp_rx_filter != HWTSTAMP_FILTER_NONE) { |
| /* next protocol non IPv4 or IPv6 */ |
| if (((struct vlan_hdr *)hdr)->h_vlan_encapsulated_proto |
| != htons(ETH_P_IP) && |
| ((struct vlan_hdr *)hdr)->h_vlan_encapsulated_proto |
| != htons(ETH_P_IPV6)) |
| return -1; |
| hw_checksum = get_fixed_vlan_csum(hw_checksum, hdr); |
| hdr += sizeof(struct vlan_hdr); |
| } |
| |
| if (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPV4)) |
| get_fixed_ipv4_csum(hw_checksum, skb, hdr); |
| #if IS_ENABLED(CONFIG_IPV6) |
| else if (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPV6)) |
| if (get_fixed_ipv6_csum(hw_checksum, skb, hdr)) |
| return -1; |
| #endif |
| return 0; |
| } |
| |
| int mlx4_en_process_rx_cq(struct net_device *dev, struct mlx4_en_cq *cq, int budget) |
| { |
| struct mlx4_en_priv *priv = netdev_priv(dev); |
| struct mlx4_en_dev *mdev = priv->mdev; |
| struct mlx4_cqe *cqe; |
| struct mlx4_en_rx_ring *ring = priv->rx_ring[cq->ring]; |
| struct mlx4_en_rx_alloc *frags; |
| struct mlx4_en_rx_desc *rx_desc; |
| struct sk_buff *skb; |
| int index; |
| int nr; |
| unsigned int length; |
| int polled = 0; |
| int ip_summed; |
| int factor = priv->cqe_factor; |
| u64 timestamp; |
| bool l2_tunnel; |
| |
| if (!priv->port_up) |
| return 0; |
| |
| if (budget <= 0) |
| return polled; |
| |
| /* We assume a 1:1 mapping between CQEs and Rx descriptors, so Rx |
| * descriptor offset can be deduced from the CQE index instead of |
| * reading 'cqe->index' */ |
| index = cq->mcq.cons_index & ring->size_mask; |
| cqe = mlx4_en_get_cqe(cq->buf, index, priv->cqe_size) + factor; |
| |
| /* Process all completed CQEs */ |
| while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK, |
| cq->mcq.cons_index & cq->size)) { |
| |
| frags = ring->rx_info + (index << priv->log_rx_info); |
| rx_desc = ring->buf + (index << ring->log_stride); |
| |
| /* |
| * make sure we read the CQE after we read the ownership bit |
| */ |
| dma_rmb(); |
| |
| /* Drop packet on bad receive or bad checksum */ |
| if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) == |
| MLX4_CQE_OPCODE_ERROR)) { |
| en_err(priv, "CQE completed in error - vendor syndrom:%d syndrom:%d\n", |
| ((struct mlx4_err_cqe *)cqe)->vendor_err_syndrome, |
| ((struct mlx4_err_cqe *)cqe)->syndrome); |
| goto next; |
| } |
| if (unlikely(cqe->badfcs_enc & MLX4_CQE_BAD_FCS)) { |
| en_dbg(RX_ERR, priv, "Accepted frame with bad FCS\n"); |
| goto next; |
| } |
| |
| /* Check if we need to drop the packet if SRIOV is not enabled |
| * and not performing the selftest or flb disabled |
| */ |
| if (priv->flags & MLX4_EN_FLAG_RX_FILTER_NEEDED) { |
| struct ethhdr *ethh; |
| dma_addr_t dma; |
| /* Get pointer to first fragment since we haven't |
| * skb yet and cast it to ethhdr struct |
| */ |
| dma = be64_to_cpu(rx_desc->data[0].addr); |
| dma_sync_single_for_cpu(priv->ddev, dma, sizeof(*ethh), |
| DMA_FROM_DEVICE); |
| ethh = (struct ethhdr *)(page_address(frags[0].page) + |
| frags[0].page_offset); |
| |
| if (is_multicast_ether_addr(ethh->h_dest)) { |
| struct mlx4_mac_entry *entry; |
| struct hlist_head *bucket; |
| unsigned int mac_hash; |
| |
| /* Drop the packet, since HW loopback-ed it */ |
| mac_hash = ethh->h_source[MLX4_EN_MAC_HASH_IDX]; |
| bucket = &priv->mac_hash[mac_hash]; |
| rcu_read_lock(); |
| hlist_for_each_entry_rcu(entry, bucket, hlist) { |
| if (ether_addr_equal_64bits(entry->mac, |
| ethh->h_source)) { |
| rcu_read_unlock(); |
| goto next; |
| } |
| } |
| rcu_read_unlock(); |
| } |
| } |
| |
| /* |
| * Packet is OK - process it. |
| */ |
| length = be32_to_cpu(cqe->byte_cnt); |
| length -= ring->fcs_del; |
| ring->bytes += length; |
| ring->packets++; |
| l2_tunnel = (dev->hw_enc_features & NETIF_F_RXCSUM) && |
| (cqe->vlan_my_qpn & cpu_to_be32(MLX4_CQE_L2_TUNNEL)); |
| |
| if (likely(dev->features & NETIF_F_RXCSUM)) { |
| if (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_TCP | |
| MLX4_CQE_STATUS_UDP)) { |
| if ((cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPOK)) && |
| cqe->checksum == cpu_to_be16(0xffff)) { |
| ip_summed = CHECKSUM_UNNECESSARY; |
| ring->csum_ok++; |
| } else { |
| ip_summed = CHECKSUM_NONE; |
| ring->csum_none++; |
| } |
| } else { |
| if (priv->flags & MLX4_EN_FLAG_RX_CSUM_NON_TCP_UDP && |
| (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPV4 | |
| MLX4_CQE_STATUS_IPV6))) { |
| ip_summed = CHECKSUM_COMPLETE; |
| ring->csum_complete++; |
| } else { |
| ip_summed = CHECKSUM_NONE; |
| ring->csum_none++; |
| } |
| } |
| } else { |
| ip_summed = CHECKSUM_NONE; |
| ring->csum_none++; |
| } |
| |
| /* This packet is eligible for GRO if it is: |
| * - DIX Ethernet (type interpretation) |
| * - TCP/IP (v4) |
| * - without IP options |
| * - not an IP fragment |
| * - no LLS polling in progress |
| */ |
| if (!mlx4_en_cq_busy_polling(cq) && |
| (dev->features & NETIF_F_GRO)) { |
| struct sk_buff *gro_skb = napi_get_frags(&cq->napi); |
| if (!gro_skb) |
| goto next; |
| |
| nr = mlx4_en_complete_rx_desc(priv, |
| rx_desc, frags, gro_skb, |
| length); |
| if (!nr) |
| goto next; |
| |
| if (ip_summed == CHECKSUM_COMPLETE) { |
| void *va = skb_frag_address(skb_shinfo(gro_skb)->frags); |
| if (check_csum(cqe, gro_skb, va, ring->hwtstamp_rx_filter)) { |
| ip_summed = CHECKSUM_NONE; |
| ring->csum_none++; |
| ring->csum_complete--; |
| } |
| } |
| |
| skb_shinfo(gro_skb)->nr_frags = nr; |
| gro_skb->len = length; |
| gro_skb->data_len = length; |
| gro_skb->ip_summed = ip_summed; |
| |
| if (l2_tunnel && ip_summed == CHECKSUM_UNNECESSARY) |
| gro_skb->csum_level = 1; |
| |
| if ((cqe->vlan_my_qpn & |
| cpu_to_be32(MLX4_CQE_VLAN_PRESENT_MASK)) && |
| (dev->features & NETIF_F_HW_VLAN_CTAG_RX)) { |
| u16 vid = be16_to_cpu(cqe->sl_vid); |
| |
| __vlan_hwaccel_put_tag(gro_skb, htons(ETH_P_8021Q), vid); |
| } |
| |
| if (dev->features & NETIF_F_RXHASH) |
| skb_set_hash(gro_skb, |
| be32_to_cpu(cqe->immed_rss_invalid), |
| PKT_HASH_TYPE_L3); |
| |
| skb_record_rx_queue(gro_skb, cq->ring); |
| skb_mark_napi_id(gro_skb, &cq->napi); |
| |
| if (ring->hwtstamp_rx_filter == HWTSTAMP_FILTER_ALL) { |
| timestamp = mlx4_en_get_cqe_ts(cqe); |
| mlx4_en_fill_hwtstamps(mdev, |
| skb_hwtstamps(gro_skb), |
| timestamp); |
| } |
| |
| napi_gro_frags(&cq->napi); |
| goto next; |
| } |
| |
| /* GRO not possible, complete processing here */ |
| skb = mlx4_en_rx_skb(priv, rx_desc, frags, length); |
| if (!skb) { |
| priv->stats.rx_dropped++; |
| goto next; |
| } |
| |
| if (unlikely(priv->validate_loopback)) { |
| validate_loopback(priv, skb); |
| goto next; |
| } |
| |
| if (ip_summed == CHECKSUM_COMPLETE) { |
| if (check_csum(cqe, skb, skb->data, ring->hwtstamp_rx_filter)) { |
| ip_summed = CHECKSUM_NONE; |
| ring->csum_complete--; |
| ring->csum_none++; |
| } |
| } |
| |
| skb->ip_summed = ip_summed; |
| skb->protocol = eth_type_trans(skb, dev); |
| skb_record_rx_queue(skb, cq->ring); |
| |
| if (l2_tunnel && ip_summed == CHECKSUM_UNNECESSARY) |
| skb->csum_level = 1; |
| |
| if (dev->features & NETIF_F_RXHASH) |
| skb_set_hash(skb, |
| be32_to_cpu(cqe->immed_rss_invalid), |
| PKT_HASH_TYPE_L3); |
| |
| if ((be32_to_cpu(cqe->vlan_my_qpn) & |
| MLX4_CQE_VLAN_PRESENT_MASK) && |
| (dev->features & NETIF_F_HW_VLAN_CTAG_RX)) |
| __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), be16_to_cpu(cqe->sl_vid)); |
| |
| if (ring->hwtstamp_rx_filter == HWTSTAMP_FILTER_ALL) { |
| timestamp = mlx4_en_get_cqe_ts(cqe); |
| mlx4_en_fill_hwtstamps(mdev, skb_hwtstamps(skb), |
| timestamp); |
| } |
| |
| skb_mark_napi_id(skb, &cq->napi); |
| |
| if (!mlx4_en_cq_busy_polling(cq)) |
| napi_gro_receive(&cq->napi, skb); |
| else |
| netif_receive_skb(skb); |
| |
| next: |
| for (nr = 0; nr < priv->num_frags; nr++) |
| mlx4_en_free_frag(priv, frags, nr); |
| |
| ++cq->mcq.cons_index; |
| index = (cq->mcq.cons_index) & ring->size_mask; |
| cqe = mlx4_en_get_cqe(cq->buf, index, priv->cqe_size) + factor; |
| if (++polled == budget) |
| goto out; |
| } |
| |
| out: |
| AVG_PERF_COUNTER(priv->pstats.rx_coal_avg, polled); |
| mlx4_cq_set_ci(&cq->mcq); |
| wmb(); /* ensure HW sees CQ consumer before we post new buffers */ |
| ring->cons = cq->mcq.cons_index; |
| mlx4_en_refill_rx_buffers(priv, ring); |
| mlx4_en_update_rx_prod_db(ring); |
| return polled; |
| } |
| |
| |
| void mlx4_en_rx_irq(struct mlx4_cq *mcq) |
| { |
| struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq); |
| struct mlx4_en_priv *priv = netdev_priv(cq->dev); |
| |
| if (likely(priv->port_up)) |
| napi_schedule_irqoff(&cq->napi); |
| else |
| mlx4_en_arm_cq(priv, cq); |
| } |
| |
| /* Rx CQ polling - called by NAPI */ |
| int mlx4_en_poll_rx_cq(struct napi_struct *napi, int budget) |
| { |
| struct mlx4_en_cq *cq = container_of(napi, struct mlx4_en_cq, napi); |
| struct net_device *dev = cq->dev; |
| struct mlx4_en_priv *priv = netdev_priv(dev); |
| int done; |
| |
| if (!mlx4_en_cq_lock_napi(cq)) |
| return budget; |
| |
| done = mlx4_en_process_rx_cq(dev, cq, budget); |
| |
| mlx4_en_cq_unlock_napi(cq); |
| |
| /* If we used up all the quota - we're probably not done yet... */ |
| if (done == budget) { |
| int cpu_curr; |
| const struct cpumask *aff; |
| |
| INC_PERF_COUNTER(priv->pstats.napi_quota); |
| |
| cpu_curr = smp_processor_id(); |
| aff = irq_desc_get_irq_data(cq->irq_desc)->affinity; |
| |
| if (likely(cpumask_test_cpu(cpu_curr, aff))) |
| return budget; |
| |
| /* Current cpu is not according to smp_irq_affinity - |
| * probably affinity changed. need to stop this NAPI |
| * poll, and restart it on the right CPU |
| */ |
| done = 0; |
| } |
| /* Done for now */ |
| napi_complete_done(napi, done); |
| mlx4_en_arm_cq(priv, cq); |
| return done; |
| } |
| |
| static const int frag_sizes[] = { |
| FRAG_SZ0, |
| FRAG_SZ1, |
| FRAG_SZ2, |
| FRAG_SZ3 |
| }; |
| |
| void mlx4_en_calc_rx_buf(struct net_device *dev) |
| { |
| struct mlx4_en_priv *priv = netdev_priv(dev); |
| int eff_mtu = dev->mtu + ETH_HLEN + VLAN_HLEN; |
| int buf_size = 0; |
| int i = 0; |
| |
| while (buf_size < eff_mtu) { |
| priv->frag_info[i].frag_size = |
| (eff_mtu > buf_size + frag_sizes[i]) ? |
| frag_sizes[i] : eff_mtu - buf_size; |
| priv->frag_info[i].frag_prefix_size = buf_size; |
| priv->frag_info[i].frag_stride = |
| ALIGN(priv->frag_info[i].frag_size, |
| SMP_CACHE_BYTES); |
| buf_size += priv->frag_info[i].frag_size; |
| i++; |
| } |
| |
| priv->num_frags = i; |
| priv->rx_skb_size = eff_mtu; |
| priv->log_rx_info = ROUNDUP_LOG2(i * sizeof(struct mlx4_en_rx_alloc)); |
| |
| en_dbg(DRV, priv, "Rx buffer scatter-list (effective-mtu:%d num_frags:%d):\n", |
| eff_mtu, priv->num_frags); |
| for (i = 0; i < priv->num_frags; i++) { |
| en_err(priv, |
| " frag:%d - size:%d prefix:%d stride:%d\n", |
| i, |
| priv->frag_info[i].frag_size, |
| priv->frag_info[i].frag_prefix_size, |
| priv->frag_info[i].frag_stride); |
| } |
| } |
| |
| /* RSS related functions */ |
| |
| static int mlx4_en_config_rss_qp(struct mlx4_en_priv *priv, int qpn, |
| struct mlx4_en_rx_ring *ring, |
| enum mlx4_qp_state *state, |
| struct mlx4_qp *qp) |
| { |
| struct mlx4_en_dev *mdev = priv->mdev; |
| struct mlx4_qp_context *context; |
| int err = 0; |
| |
| context = kmalloc(sizeof(*context), GFP_KERNEL); |
| if (!context) |
| return -ENOMEM; |
| |
| err = mlx4_qp_alloc(mdev->dev, qpn, qp, GFP_KERNEL); |
| if (err) { |
| en_err(priv, "Failed to allocate qp #%x\n", qpn); |
| goto out; |
| } |
| qp->event = mlx4_en_sqp_event; |
| |
| memset(context, 0, sizeof *context); |
| mlx4_en_fill_qp_context(priv, ring->actual_size, ring->stride, 0, 0, |
| qpn, ring->cqn, -1, context); |
| context->db_rec_addr = cpu_to_be64(ring->wqres.db.dma); |
| |
| /* Cancel FCS removal if FW allows */ |
| if (mdev->dev->caps.flags & MLX4_DEV_CAP_FLAG_FCS_KEEP) { |
| context->param3 |= cpu_to_be32(1 << 29); |
| if (priv->dev->features & NETIF_F_RXFCS) |
| ring->fcs_del = 0; |
| else |
| ring->fcs_del = ETH_FCS_LEN; |
| } else |
| ring->fcs_del = 0; |
| |
| err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, context, qp, state); |
| if (err) { |
| mlx4_qp_remove(mdev->dev, qp); |
| mlx4_qp_free(mdev->dev, qp); |
| } |
| mlx4_en_update_rx_prod_db(ring); |
| out: |
| kfree(context); |
| return err; |
| } |
| |
| int mlx4_en_create_drop_qp(struct mlx4_en_priv *priv) |
| { |
| int err; |
| u32 qpn; |
| |
| err = mlx4_qp_reserve_range(priv->mdev->dev, 1, 1, &qpn, |
| MLX4_RESERVE_A0_QP); |
| if (err) { |
| en_err(priv, "Failed reserving drop qpn\n"); |
| return err; |
| } |
| err = mlx4_qp_alloc(priv->mdev->dev, qpn, &priv->drop_qp, GFP_KERNEL); |
| if (err) { |
| en_err(priv, "Failed allocating drop qp\n"); |
| mlx4_qp_release_range(priv->mdev->dev, qpn, 1); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| void mlx4_en_destroy_drop_qp(struct mlx4_en_priv *priv) |
| { |
| u32 qpn; |
| |
| qpn = priv->drop_qp.qpn; |
| mlx4_qp_remove(priv->mdev->dev, &priv->drop_qp); |
| mlx4_qp_free(priv->mdev->dev, &priv->drop_qp); |
| mlx4_qp_release_range(priv->mdev->dev, qpn, 1); |
| } |
| |
| /* Allocate rx qp's and configure them according to rss map */ |
| int mlx4_en_config_rss_steer(struct mlx4_en_priv *priv) |
| { |
| struct mlx4_en_dev *mdev = priv->mdev; |
| struct mlx4_en_rss_map *rss_map = &priv->rss_map; |
| struct mlx4_qp_context context; |
| struct mlx4_rss_context *rss_context; |
| int rss_rings; |
| void *ptr; |
| u8 rss_mask = (MLX4_RSS_IPV4 | MLX4_RSS_TCP_IPV4 | MLX4_RSS_IPV6 | |
| MLX4_RSS_TCP_IPV6); |
| int i, qpn; |
| int err = 0; |
| int good_qps = 0; |
| |
| en_dbg(DRV, priv, "Configuring rss steering\n"); |
| err = mlx4_qp_reserve_range(mdev->dev, priv->rx_ring_num, |
| priv->rx_ring_num, |
| &rss_map->base_qpn, 0); |
| if (err) { |
| en_err(priv, "Failed reserving %d qps\n", priv->rx_ring_num); |
| return err; |
| } |
| |
| for (i = 0; i < priv->rx_ring_num; i++) { |
| qpn = rss_map->base_qpn + i; |
| err = mlx4_en_config_rss_qp(priv, qpn, priv->rx_ring[i], |
| &rss_map->state[i], |
| &rss_map->qps[i]); |
| if (err) |
| goto rss_err; |
| |
| ++good_qps; |
| } |
| |
| /* Configure RSS indirection qp */ |
| err = mlx4_qp_alloc(mdev->dev, priv->base_qpn, &rss_map->indir_qp, GFP_KERNEL); |
| if (err) { |
| en_err(priv, "Failed to allocate RSS indirection QP\n"); |
| goto rss_err; |
| } |
| rss_map->indir_qp.event = mlx4_en_sqp_event; |
| mlx4_en_fill_qp_context(priv, 0, 0, 0, 1, priv->base_qpn, |
| priv->rx_ring[0]->cqn, -1, &context); |
| |
| if (!priv->prof->rss_rings || priv->prof->rss_rings > priv->rx_ring_num) |
| rss_rings = priv->rx_ring_num; |
| else |
| rss_rings = priv->prof->rss_rings; |
| |
| ptr = ((void *) &context) + offsetof(struct mlx4_qp_context, pri_path) |
| + MLX4_RSS_OFFSET_IN_QPC_PRI_PATH; |
| rss_context = ptr; |
| rss_context->base_qpn = cpu_to_be32(ilog2(rss_rings) << 24 | |
| (rss_map->base_qpn)); |
| rss_context->default_qpn = cpu_to_be32(rss_map->base_qpn); |
| if (priv->mdev->profile.udp_rss) { |
| rss_mask |= MLX4_RSS_UDP_IPV4 | MLX4_RSS_UDP_IPV6; |
| rss_context->base_qpn_udp = rss_context->default_qpn; |
| } |
| |
| if (mdev->dev->caps.tunnel_offload_mode == MLX4_TUNNEL_OFFLOAD_MODE_VXLAN) { |
| en_info(priv, "Setting RSS context tunnel type to RSS on inner headers\n"); |
| rss_mask |= MLX4_RSS_BY_INNER_HEADERS; |
| } |
| |
| rss_context->flags = rss_mask; |
| rss_context->hash_fn = MLX4_RSS_HASH_TOP; |
| if (priv->rss_hash_fn == ETH_RSS_HASH_XOR) { |
| rss_context->hash_fn = MLX4_RSS_HASH_XOR; |
| } else if (priv->rss_hash_fn == ETH_RSS_HASH_TOP) { |
| rss_context->hash_fn = MLX4_RSS_HASH_TOP; |
| memcpy(rss_context->rss_key, priv->rss_key, |
| MLX4_EN_RSS_KEY_SIZE); |
| netdev_rss_key_fill(rss_context->rss_key, |
| MLX4_EN_RSS_KEY_SIZE); |
| } else { |
| en_err(priv, "Unknown RSS hash function requested\n"); |
| err = -EINVAL; |
| goto indir_err; |
| } |
| err = mlx4_qp_to_ready(mdev->dev, &priv->res.mtt, &context, |
| &rss_map->indir_qp, &rss_map->indir_state); |
| if (err) |
| goto indir_err; |
| |
| return 0; |
| |
| indir_err: |
| mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state, |
| MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->indir_qp); |
| mlx4_qp_remove(mdev->dev, &rss_map->indir_qp); |
| mlx4_qp_free(mdev->dev, &rss_map->indir_qp); |
| rss_err: |
| for (i = 0; i < good_qps; i++) { |
| mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i], |
| MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]); |
| mlx4_qp_remove(mdev->dev, &rss_map->qps[i]); |
| mlx4_qp_free(mdev->dev, &rss_map->qps[i]); |
| } |
| mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num); |
| return err; |
| } |
| |
| void mlx4_en_release_rss_steer(struct mlx4_en_priv *priv) |
| { |
| struct mlx4_en_dev *mdev = priv->mdev; |
| struct mlx4_en_rss_map *rss_map = &priv->rss_map; |
| int i; |
| |
| mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state, |
| MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->indir_qp); |
| mlx4_qp_remove(mdev->dev, &rss_map->indir_qp); |
| mlx4_qp_free(mdev->dev, &rss_map->indir_qp); |
| |
| for (i = 0; i < priv->rx_ring_num; i++) { |
| mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i], |
| MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]); |
| mlx4_qp_remove(mdev->dev, &rss_map->qps[i]); |
| mlx4_qp_free(mdev->dev, &rss_map->qps[i]); |
| } |
| mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num); |
| } |