| /* |
| * Interfaces to retrieve and set PDC Stable options (firmware) |
| * |
| * Copyright (C) 2005-2006 Thibaut VARENE <varenet@parisc-linux.org> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License, version 2, as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| * |
| * DEV NOTE: the PDC Procedures reference states that: |
| * "A minimum of 96 bytes of Stable Storage is required. Providing more than |
| * 96 bytes of Stable Storage is optional [...]. Failure to provide the |
| * optional locations from 96 to 192 results in the loss of certain |
| * functionality during boot." |
| * |
| * Since locations between 96 and 192 are the various paths, most (if not |
| * all) PA-RISC machines should have them. Anyway, for safety reasons, the |
| * following code can deal with just 96 bytes of Stable Storage, and all |
| * sizes between 96 and 192 bytes (provided they are multiple of struct |
| * device_path size, eg: 128, 160 and 192) to provide full information. |
| * One last word: there's one path we can always count on: the primary path. |
| * Anything above 224 bytes is used for 'osdep2' OS-dependent storage area. |
| * |
| * The first OS-dependent area should always be available. Obviously, this is |
| * not true for the other one. Also bear in mind that reading/writing from/to |
| * osdep2 is much more expensive than from/to osdep1. |
| * NOTE: We do not handle the 2 bytes OS-dep area at 0x5D, nor the first |
| * 2 bytes of storage available right after OSID. That's a total of 4 bytes |
| * sacrificed: -ETOOLAZY :P |
| * |
| * The current policy wrt file permissions is: |
| * - write: root only |
| * - read: (reading triggers PDC calls) ? root only : everyone |
| * The rationale is that PDC calls could hog (DoS) the machine. |
| * |
| * TODO: |
| * - timer/fastsize write calls |
| */ |
| |
| #undef PDCS_DEBUG |
| #ifdef PDCS_DEBUG |
| #define DPRINTK(fmt, args...) printk(KERN_DEBUG fmt, ## args) |
| #else |
| #define DPRINTK(fmt, args...) |
| #endif |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/capability.h> |
| #include <linux/ctype.h> |
| #include <linux/sysfs.h> |
| #include <linux/kobject.h> |
| #include <linux/device.h> |
| #include <linux/errno.h> |
| #include <linux/spinlock.h> |
| |
| #include <asm/pdc.h> |
| #include <asm/page.h> |
| #include <linux/uaccess.h> |
| #include <asm/hardware.h> |
| |
| #define PDCS_VERSION "0.30" |
| #define PDCS_PREFIX "PDC Stable Storage" |
| |
| #define PDCS_ADDR_PPRI 0x00 |
| #define PDCS_ADDR_OSID 0x40 |
| #define PDCS_ADDR_OSD1 0x48 |
| #define PDCS_ADDR_DIAG 0x58 |
| #define PDCS_ADDR_FSIZ 0x5C |
| #define PDCS_ADDR_PCON 0x60 |
| #define PDCS_ADDR_PALT 0x80 |
| #define PDCS_ADDR_PKBD 0xA0 |
| #define PDCS_ADDR_OSD2 0xE0 |
| |
| MODULE_AUTHOR("Thibaut VARENE <varenet@parisc-linux.org>"); |
| MODULE_DESCRIPTION("sysfs interface to HP PDC Stable Storage data"); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION(PDCS_VERSION); |
| |
| /* holds Stable Storage size. Initialized once and for all, no lock needed */ |
| static unsigned long pdcs_size __read_mostly; |
| |
| /* holds OS ID. Initialized once and for all, hopefully to 0x0006 */ |
| static u16 pdcs_osid __read_mostly; |
| |
| /* This struct defines what we need to deal with a parisc pdc path entry */ |
| struct pdcspath_entry { |
| rwlock_t rw_lock; /* to protect path entry access */ |
| short ready; /* entry record is valid if != 0 */ |
| unsigned long addr; /* entry address in stable storage */ |
| char *name; /* entry name */ |
| struct device_path devpath; /* device path in parisc representation */ |
| struct device *dev; /* corresponding device */ |
| struct kobject kobj; |
| }; |
| |
| struct pdcspath_attribute { |
| struct attribute attr; |
| ssize_t (*show)(struct pdcspath_entry *entry, char *buf); |
| ssize_t (*store)(struct pdcspath_entry *entry, const char *buf, size_t count); |
| }; |
| |
| #define PDCSPATH_ENTRY(_addr, _name) \ |
| struct pdcspath_entry pdcspath_entry_##_name = { \ |
| .ready = 0, \ |
| .addr = _addr, \ |
| .name = __stringify(_name), \ |
| }; |
| |
| #define PDCS_ATTR(_name, _mode, _show, _store) \ |
| struct kobj_attribute pdcs_attr_##_name = { \ |
| .attr = {.name = __stringify(_name), .mode = _mode}, \ |
| .show = _show, \ |
| .store = _store, \ |
| }; |
| |
| #define PATHS_ATTR(_name, _mode, _show, _store) \ |
| struct pdcspath_attribute paths_attr_##_name = { \ |
| .attr = {.name = __stringify(_name), .mode = _mode}, \ |
| .show = _show, \ |
| .store = _store, \ |
| }; |
| |
| #define to_pdcspath_attribute(_attr) container_of(_attr, struct pdcspath_attribute, attr) |
| #define to_pdcspath_entry(obj) container_of(obj, struct pdcspath_entry, kobj) |
| |
| /** |
| * pdcspath_fetch - This function populates the path entry structs. |
| * @entry: A pointer to an allocated pdcspath_entry. |
| * |
| * The general idea is that you don't read from the Stable Storage every time |
| * you access the files provided by the facilities. We store a copy of the |
| * content of the stable storage WRT various paths in these structs. We read |
| * these structs when reading the files, and we will write to these structs when |
| * writing to the files, and only then write them back to the Stable Storage. |
| * |
| * This function expects to be called with @entry->rw_lock write-hold. |
| */ |
| static int |
| pdcspath_fetch(struct pdcspath_entry *entry) |
| { |
| struct device_path *devpath; |
| |
| if (!entry) |
| return -EINVAL; |
| |
| devpath = &entry->devpath; |
| |
| DPRINTK("%s: fetch: 0x%p, 0x%p, addr: 0x%lx\n", __func__, |
| entry, devpath, entry->addr); |
| |
| /* addr, devpath and count must be word aligned */ |
| if (pdc_stable_read(entry->addr, devpath, sizeof(*devpath)) != PDC_OK) |
| return -EIO; |
| |
| /* Find the matching device. |
| NOTE: hardware_path overlays with device_path, so the nice cast can |
| be used */ |
| entry->dev = hwpath_to_device((struct hardware_path *)devpath); |
| |
| entry->ready = 1; |
| |
| DPRINTK("%s: device: 0x%p\n", __func__, entry->dev); |
| |
| return 0; |
| } |
| |
| /** |
| * pdcspath_store - This function writes a path to stable storage. |
| * @entry: A pointer to an allocated pdcspath_entry. |
| * |
| * It can be used in two ways: either by passing it a preset devpath struct |
| * containing an already computed hardware path, or by passing it a device |
| * pointer, from which it'll find out the corresponding hardware path. |
| * For now we do not handle the case where there's an error in writing to the |
| * Stable Storage area, so you'd better not mess up the data :P |
| * |
| * This function expects to be called with @entry->rw_lock write-hold. |
| */ |
| static void |
| pdcspath_store(struct pdcspath_entry *entry) |
| { |
| struct device_path *devpath; |
| |
| BUG_ON(!entry); |
| |
| devpath = &entry->devpath; |
| |
| /* We expect the caller to set the ready flag to 0 if the hardware |
| path struct provided is invalid, so that we know we have to fill it. |
| First case, we don't have a preset hwpath... */ |
| if (!entry->ready) { |
| /* ...but we have a device, map it */ |
| BUG_ON(!entry->dev); |
| device_to_hwpath(entry->dev, (struct hardware_path *)devpath); |
| } |
| /* else, we expect the provided hwpath to be valid. */ |
| |
| DPRINTK("%s: store: 0x%p, 0x%p, addr: 0x%lx\n", __func__, |
| entry, devpath, entry->addr); |
| |
| /* addr, devpath and count must be word aligned */ |
| if (pdc_stable_write(entry->addr, devpath, sizeof(*devpath)) != PDC_OK) |
| WARN(1, KERN_ERR "%s: an error occurred when writing to PDC.\n" |
| "It is likely that the Stable Storage data has been corrupted.\n" |
| "Please check it carefully upon next reboot.\n", __func__); |
| |
| /* kobject is already registered */ |
| entry->ready = 2; |
| |
| DPRINTK("%s: device: 0x%p\n", __func__, entry->dev); |
| } |
| |
| /** |
| * pdcspath_hwpath_read - This function handles hardware path pretty printing. |
| * @entry: An allocated and populated pdscpath_entry struct. |
| * @buf: The output buffer to write to. |
| * |
| * We will call this function to format the output of the hwpath attribute file. |
| */ |
| static ssize_t |
| pdcspath_hwpath_read(struct pdcspath_entry *entry, char *buf) |
| { |
| char *out = buf; |
| struct device_path *devpath; |
| short i; |
| |
| if (!entry || !buf) |
| return -EINVAL; |
| |
| read_lock(&entry->rw_lock); |
| devpath = &entry->devpath; |
| i = entry->ready; |
| read_unlock(&entry->rw_lock); |
| |
| if (!i) /* entry is not ready */ |
| return -ENODATA; |
| |
| for (i = 0; i < 6; i++) { |
| if (devpath->bc[i] >= 128) |
| continue; |
| out += sprintf(out, "%u/", (unsigned char)devpath->bc[i]); |
| } |
| out += sprintf(out, "%u\n", (unsigned char)devpath->mod); |
| |
| return out - buf; |
| } |
| |
| /** |
| * pdcspath_hwpath_write - This function handles hardware path modifying. |
| * @entry: An allocated and populated pdscpath_entry struct. |
| * @buf: The input buffer to read from. |
| * @count: The number of bytes to be read. |
| * |
| * We will call this function to change the current hardware path. |
| * Hardware paths are to be given '/'-delimited, without brackets. |
| * We make sure that the provided path actually maps to an existing |
| * device, BUT nothing would prevent some foolish user to set the path to some |
| * PCI bridge or even a CPU... |
| * A better work around would be to make sure we are at the end of a device tree |
| * for instance, but it would be IMHO beyond the simple scope of that driver. |
| * The aim is to provide a facility. Data correctness is left to userland. |
| */ |
| static ssize_t |
| pdcspath_hwpath_write(struct pdcspath_entry *entry, const char *buf, size_t count) |
| { |
| struct hardware_path hwpath; |
| unsigned short i; |
| char in[64], *temp; |
| struct device *dev; |
| int ret; |
| |
| if (!entry || !buf || !count) |
| return -EINVAL; |
| |
| /* We'll use a local copy of buf */ |
| count = min_t(size_t, count, sizeof(in)-1); |
| strncpy(in, buf, count); |
| in[count] = '\0'; |
| |
| /* Let's clean up the target. 0xff is a blank pattern */ |
| memset(&hwpath, 0xff, sizeof(hwpath)); |
| |
| /* First, pick the mod field (the last one of the input string) */ |
| if (!(temp = strrchr(in, '/'))) |
| return -EINVAL; |
| |
| hwpath.mod = simple_strtoul(temp+1, NULL, 10); |
| in[temp-in] = '\0'; /* truncate the remaining string. just precaution */ |
| DPRINTK("%s: mod: %d\n", __func__, hwpath.mod); |
| |
| /* Then, loop for each delimiter, making sure we don't have too many. |
| we write the bc fields in a down-top way. No matter what, we stop |
| before writing the last field. If there are too many fields anyway, |
| then the user is a moron and it'll be caught up later when we'll |
| check the consistency of the given hwpath. */ |
| for (i=5; ((temp = strrchr(in, '/'))) && (temp-in > 0) && (likely(i)); i--) { |
| hwpath.bc[i] = simple_strtoul(temp+1, NULL, 10); |
| in[temp-in] = '\0'; |
| DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]); |
| } |
| |
| /* Store the final field */ |
| hwpath.bc[i] = simple_strtoul(in, NULL, 10); |
| DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]); |
| |
| /* Now we check that the user isn't trying to lure us */ |
| if (!(dev = hwpath_to_device((struct hardware_path *)&hwpath))) { |
| printk(KERN_WARNING "%s: attempt to set invalid \"%s\" " |
| "hardware path: %s\n", __func__, entry->name, buf); |
| return -EINVAL; |
| } |
| |
| /* So far so good, let's get in deep */ |
| write_lock(&entry->rw_lock); |
| entry->ready = 0; |
| entry->dev = dev; |
| |
| /* Now, dive in. Write back to the hardware */ |
| pdcspath_store(entry); |
| |
| /* Update the symlink to the real device */ |
| sysfs_remove_link(&entry->kobj, "device"); |
| ret = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device"); |
| WARN_ON(ret); |
| |
| write_unlock(&entry->rw_lock); |
| |
| printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" path to \"%s\"\n", |
| entry->name, buf); |
| |
| return count; |
| } |
| |
| /** |
| * pdcspath_layer_read - Extended layer (eg. SCSI ids) pretty printing. |
| * @entry: An allocated and populated pdscpath_entry struct. |
| * @buf: The output buffer to write to. |
| * |
| * We will call this function to format the output of the layer attribute file. |
| */ |
| static ssize_t |
| pdcspath_layer_read(struct pdcspath_entry *entry, char *buf) |
| { |
| char *out = buf; |
| struct device_path *devpath; |
| short i; |
| |
| if (!entry || !buf) |
| return -EINVAL; |
| |
| read_lock(&entry->rw_lock); |
| devpath = &entry->devpath; |
| i = entry->ready; |
| read_unlock(&entry->rw_lock); |
| |
| if (!i) /* entry is not ready */ |
| return -ENODATA; |
| |
| for (i = 0; i < 6 && devpath->layers[i]; i++) |
| out += sprintf(out, "%u ", devpath->layers[i]); |
| |
| out += sprintf(out, "\n"); |
| |
| return out - buf; |
| } |
| |
| /** |
| * pdcspath_layer_write - This function handles extended layer modifying. |
| * @entry: An allocated and populated pdscpath_entry struct. |
| * @buf: The input buffer to read from. |
| * @count: The number of bytes to be read. |
| * |
| * We will call this function to change the current layer value. |
| * Layers are to be given '.'-delimited, without brackets. |
| * XXX beware we are far less checky WRT input data provided than for hwpath. |
| * Potential harm can be done, since there's no way to check the validity of |
| * the layer fields. |
| */ |
| static ssize_t |
| pdcspath_layer_write(struct pdcspath_entry *entry, const char *buf, size_t count) |
| { |
| unsigned int layers[6]; /* device-specific info (ctlr#, unit#, ...) */ |
| unsigned short i; |
| char in[64], *temp; |
| |
| if (!entry || !buf || !count) |
| return -EINVAL; |
| |
| /* We'll use a local copy of buf */ |
| count = min_t(size_t, count, sizeof(in)-1); |
| strncpy(in, buf, count); |
| in[count] = '\0'; |
| |
| /* Let's clean up the target. 0 is a blank pattern */ |
| memset(&layers, 0, sizeof(layers)); |
| |
| /* First, pick the first layer */ |
| if (unlikely(!isdigit(*in))) |
| return -EINVAL; |
| layers[0] = simple_strtoul(in, NULL, 10); |
| DPRINTK("%s: layer[0]: %d\n", __func__, layers[0]); |
| |
| temp = in; |
| for (i=1; ((temp = strchr(temp, '.'))) && (likely(i<6)); i++) { |
| if (unlikely(!isdigit(*(++temp)))) |
| return -EINVAL; |
| layers[i] = simple_strtoul(temp, NULL, 10); |
| DPRINTK("%s: layer[%d]: %d\n", __func__, i, layers[i]); |
| } |
| |
| /* So far so good, let's get in deep */ |
| write_lock(&entry->rw_lock); |
| |
| /* First, overwrite the current layers with the new ones, not touching |
| the hardware path. */ |
| memcpy(&entry->devpath.layers, &layers, sizeof(layers)); |
| |
| /* Now, dive in. Write back to the hardware */ |
| pdcspath_store(entry); |
| write_unlock(&entry->rw_lock); |
| |
| printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" layers to \"%s\"\n", |
| entry->name, buf); |
| |
| return count; |
| } |
| |
| /** |
| * pdcspath_attr_show - Generic read function call wrapper. |
| * @kobj: The kobject to get info from. |
| * @attr: The attribute looked upon. |
| * @buf: The output buffer. |
| */ |
| static ssize_t |
| pdcspath_attr_show(struct kobject *kobj, struct attribute *attr, char *buf) |
| { |
| struct pdcspath_entry *entry = to_pdcspath_entry(kobj); |
| struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr); |
| ssize_t ret = 0; |
| |
| if (pdcs_attr->show) |
| ret = pdcs_attr->show(entry, buf); |
| |
| return ret; |
| } |
| |
| /** |
| * pdcspath_attr_store - Generic write function call wrapper. |
| * @kobj: The kobject to write info to. |
| * @attr: The attribute to be modified. |
| * @buf: The input buffer. |
| * @count: The size of the buffer. |
| */ |
| static ssize_t |
| pdcspath_attr_store(struct kobject *kobj, struct attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct pdcspath_entry *entry = to_pdcspath_entry(kobj); |
| struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr); |
| ssize_t ret = 0; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EACCES; |
| |
| if (pdcs_attr->store) |
| ret = pdcs_attr->store(entry, buf, count); |
| |
| return ret; |
| } |
| |
| static const struct sysfs_ops pdcspath_attr_ops = { |
| .show = pdcspath_attr_show, |
| .store = pdcspath_attr_store, |
| }; |
| |
| /* These are the two attributes of any PDC path. */ |
| static PATHS_ATTR(hwpath, 0644, pdcspath_hwpath_read, pdcspath_hwpath_write); |
| static PATHS_ATTR(layer, 0644, pdcspath_layer_read, pdcspath_layer_write); |
| |
| static struct attribute *paths_subsys_attrs[] = { |
| &paths_attr_hwpath.attr, |
| &paths_attr_layer.attr, |
| NULL, |
| }; |
| |
| /* Specific kobject type for our PDC paths */ |
| static struct kobj_type ktype_pdcspath = { |
| .sysfs_ops = &pdcspath_attr_ops, |
| .default_attrs = paths_subsys_attrs, |
| }; |
| |
| /* We hard define the 4 types of path we expect to find */ |
| static PDCSPATH_ENTRY(PDCS_ADDR_PPRI, primary); |
| static PDCSPATH_ENTRY(PDCS_ADDR_PCON, console); |
| static PDCSPATH_ENTRY(PDCS_ADDR_PALT, alternative); |
| static PDCSPATH_ENTRY(PDCS_ADDR_PKBD, keyboard); |
| |
| /* An array containing all PDC paths we will deal with */ |
| static struct pdcspath_entry *pdcspath_entries[] = { |
| &pdcspath_entry_primary, |
| &pdcspath_entry_alternative, |
| &pdcspath_entry_console, |
| &pdcspath_entry_keyboard, |
| NULL, |
| }; |
| |
| |
| /* For more insight of what's going on here, refer to PDC Procedures doc, |
| * Section PDC_STABLE */ |
| |
| /** |
| * pdcs_size_read - Stable Storage size output. |
| * @buf: The output buffer to write to. |
| */ |
| static ssize_t pdcs_size_read(struct kobject *kobj, |
| struct kobj_attribute *attr, |
| char *buf) |
| { |
| char *out = buf; |
| |
| if (!buf) |
| return -EINVAL; |
| |
| /* show the size of the stable storage */ |
| out += sprintf(out, "%ld\n", pdcs_size); |
| |
| return out - buf; |
| } |
| |
| /** |
| * pdcs_auto_read - Stable Storage autoboot/search flag output. |
| * @buf: The output buffer to write to. |
| * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag |
| */ |
| static ssize_t pdcs_auto_read(struct kobject *kobj, |
| struct kobj_attribute *attr, |
| char *buf, int knob) |
| { |
| char *out = buf; |
| struct pdcspath_entry *pathentry; |
| |
| if (!buf) |
| return -EINVAL; |
| |
| /* Current flags are stored in primary boot path entry */ |
| pathentry = &pdcspath_entry_primary; |
| |
| read_lock(&pathentry->rw_lock); |
| out += sprintf(out, "%s\n", (pathentry->devpath.flags & knob) ? |
| "On" : "Off"); |
| read_unlock(&pathentry->rw_lock); |
| |
| return out - buf; |
| } |
| |
| /** |
| * pdcs_autoboot_read - Stable Storage autoboot flag output. |
| * @buf: The output buffer to write to. |
| */ |
| static ssize_t pdcs_autoboot_read(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| return pdcs_auto_read(kobj, attr, buf, PF_AUTOBOOT); |
| } |
| |
| /** |
| * pdcs_autosearch_read - Stable Storage autoboot flag output. |
| * @buf: The output buffer to write to. |
| */ |
| static ssize_t pdcs_autosearch_read(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| return pdcs_auto_read(kobj, attr, buf, PF_AUTOSEARCH); |
| } |
| |
| /** |
| * pdcs_timer_read - Stable Storage timer count output (in seconds). |
| * @buf: The output buffer to write to. |
| * |
| * The value of the timer field correponds to a number of seconds in powers of 2. |
| */ |
| static ssize_t pdcs_timer_read(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| char *out = buf; |
| struct pdcspath_entry *pathentry; |
| |
| if (!buf) |
| return -EINVAL; |
| |
| /* Current flags are stored in primary boot path entry */ |
| pathentry = &pdcspath_entry_primary; |
| |
| /* print the timer value in seconds */ |
| read_lock(&pathentry->rw_lock); |
| out += sprintf(out, "%u\n", (pathentry->devpath.flags & PF_TIMER) ? |
| (1 << (pathentry->devpath.flags & PF_TIMER)) : 0); |
| read_unlock(&pathentry->rw_lock); |
| |
| return out - buf; |
| } |
| |
| /** |
| * pdcs_osid_read - Stable Storage OS ID register output. |
| * @buf: The output buffer to write to. |
| */ |
| static ssize_t pdcs_osid_read(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| char *out = buf; |
| |
| if (!buf) |
| return -EINVAL; |
| |
| out += sprintf(out, "%s dependent data (0x%.4x)\n", |
| os_id_to_string(pdcs_osid), pdcs_osid); |
| |
| return out - buf; |
| } |
| |
| /** |
| * pdcs_osdep1_read - Stable Storage OS-Dependent data area 1 output. |
| * @buf: The output buffer to write to. |
| * |
| * This can hold 16 bytes of OS-Dependent data. |
| */ |
| static ssize_t pdcs_osdep1_read(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| char *out = buf; |
| u32 result[4]; |
| |
| if (!buf) |
| return -EINVAL; |
| |
| if (pdc_stable_read(PDCS_ADDR_OSD1, &result, sizeof(result)) != PDC_OK) |
| return -EIO; |
| |
| out += sprintf(out, "0x%.8x\n", result[0]); |
| out += sprintf(out, "0x%.8x\n", result[1]); |
| out += sprintf(out, "0x%.8x\n", result[2]); |
| out += sprintf(out, "0x%.8x\n", result[3]); |
| |
| return out - buf; |
| } |
| |
| /** |
| * pdcs_diagnostic_read - Stable Storage Diagnostic register output. |
| * @buf: The output buffer to write to. |
| * |
| * I have NFC how to interpret the content of that register ;-). |
| */ |
| static ssize_t pdcs_diagnostic_read(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| char *out = buf; |
| u32 result; |
| |
| if (!buf) |
| return -EINVAL; |
| |
| /* get diagnostic */ |
| if (pdc_stable_read(PDCS_ADDR_DIAG, &result, sizeof(result)) != PDC_OK) |
| return -EIO; |
| |
| out += sprintf(out, "0x%.4x\n", (result >> 16)); |
| |
| return out - buf; |
| } |
| |
| /** |
| * pdcs_fastsize_read - Stable Storage FastSize register output. |
| * @buf: The output buffer to write to. |
| * |
| * This register holds the amount of system RAM to be tested during boot sequence. |
| */ |
| static ssize_t pdcs_fastsize_read(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| char *out = buf; |
| u32 result; |
| |
| if (!buf) |
| return -EINVAL; |
| |
| /* get fast-size */ |
| if (pdc_stable_read(PDCS_ADDR_FSIZ, &result, sizeof(result)) != PDC_OK) |
| return -EIO; |
| |
| if ((result & 0x0F) < 0x0E) |
| out += sprintf(out, "%d kB", (1<<(result & 0x0F))*256); |
| else |
| out += sprintf(out, "All"); |
| out += sprintf(out, "\n"); |
| |
| return out - buf; |
| } |
| |
| /** |
| * pdcs_osdep2_read - Stable Storage OS-Dependent data area 2 output. |
| * @buf: The output buffer to write to. |
| * |
| * This can hold pdcs_size - 224 bytes of OS-Dependent data, when available. |
| */ |
| static ssize_t pdcs_osdep2_read(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| char *out = buf; |
| unsigned long size; |
| unsigned short i; |
| u32 result; |
| |
| if (unlikely(pdcs_size <= 224)) |
| return -ENODATA; |
| |
| size = pdcs_size - 224; |
| |
| if (!buf) |
| return -EINVAL; |
| |
| for (i=0; i<size; i+=4) { |
| if (unlikely(pdc_stable_read(PDCS_ADDR_OSD2 + i, &result, |
| sizeof(result)) != PDC_OK)) |
| return -EIO; |
| out += sprintf(out, "0x%.8x\n", result); |
| } |
| |
| return out - buf; |
| } |
| |
| /** |
| * pdcs_auto_write - This function handles autoboot/search flag modifying. |
| * @buf: The input buffer to read from. |
| * @count: The number of bytes to be read. |
| * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag |
| * |
| * We will call this function to change the current autoboot flag. |
| * We expect a precise syntax: |
| * \"n\" (n == 0 or 1) to toggle AutoBoot Off or On |
| */ |
| static ssize_t pdcs_auto_write(struct kobject *kobj, |
| struct kobj_attribute *attr, const char *buf, |
| size_t count, int knob) |
| { |
| struct pdcspath_entry *pathentry; |
| unsigned char flags; |
| char in[8], *temp; |
| char c; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EACCES; |
| |
| if (!buf || !count) |
| return -EINVAL; |
| |
| /* We'll use a local copy of buf */ |
| count = min_t(size_t, count, sizeof(in)-1); |
| strncpy(in, buf, count); |
| in[count] = '\0'; |
| |
| /* Current flags are stored in primary boot path entry */ |
| pathentry = &pdcspath_entry_primary; |
| |
| /* Be nice to the existing flag record */ |
| read_lock(&pathentry->rw_lock); |
| flags = pathentry->devpath.flags; |
| read_unlock(&pathentry->rw_lock); |
| |
| DPRINTK("%s: flags before: 0x%X\n", __func__, flags); |
| |
| temp = skip_spaces(in); |
| |
| c = *temp++ - '0'; |
| if ((c != 0) && (c != 1)) |
| goto parse_error; |
| if (c == 0) |
| flags &= ~knob; |
| else |
| flags |= knob; |
| |
| DPRINTK("%s: flags after: 0x%X\n", __func__, flags); |
| |
| /* So far so good, let's get in deep */ |
| write_lock(&pathentry->rw_lock); |
| |
| /* Change the path entry flags first */ |
| pathentry->devpath.flags = flags; |
| |
| /* Now, dive in. Write back to the hardware */ |
| pdcspath_store(pathentry); |
| write_unlock(&pathentry->rw_lock); |
| |
| printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" to \"%s\"\n", |
| (knob & PF_AUTOBOOT) ? "autoboot" : "autosearch", |
| (flags & knob) ? "On" : "Off"); |
| |
| return count; |
| |
| parse_error: |
| printk(KERN_WARNING "%s: Parse error: expect \"n\" (n == 0 or 1)\n", __func__); |
| return -EINVAL; |
| } |
| |
| /** |
| * pdcs_autoboot_write - This function handles autoboot flag modifying. |
| * @buf: The input buffer to read from. |
| * @count: The number of bytes to be read. |
| * |
| * We will call this function to change the current boot flags. |
| * We expect a precise syntax: |
| * \"n\" (n == 0 or 1) to toggle AutoSearch Off or On |
| */ |
| static ssize_t pdcs_autoboot_write(struct kobject *kobj, |
| struct kobj_attribute *attr, |
| const char *buf, size_t count) |
| { |
| return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOBOOT); |
| } |
| |
| /** |
| * pdcs_autosearch_write - This function handles autosearch flag modifying. |
| * @buf: The input buffer to read from. |
| * @count: The number of bytes to be read. |
| * |
| * We will call this function to change the current boot flags. |
| * We expect a precise syntax: |
| * \"n\" (n == 0 or 1) to toggle AutoSearch Off or On |
| */ |
| static ssize_t pdcs_autosearch_write(struct kobject *kobj, |
| struct kobj_attribute *attr, |
| const char *buf, size_t count) |
| { |
| return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOSEARCH); |
| } |
| |
| /** |
| * pdcs_osdep1_write - Stable Storage OS-Dependent data area 1 input. |
| * @buf: The input buffer to read from. |
| * @count: The number of bytes to be read. |
| * |
| * This can store 16 bytes of OS-Dependent data. We use a byte-by-byte |
| * write approach. It's up to userspace to deal with it when constructing |
| * its input buffer. |
| */ |
| static ssize_t pdcs_osdep1_write(struct kobject *kobj, |
| struct kobj_attribute *attr, |
| const char *buf, size_t count) |
| { |
| u8 in[16]; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EACCES; |
| |
| if (!buf || !count) |
| return -EINVAL; |
| |
| if (unlikely(pdcs_osid != OS_ID_LINUX)) |
| return -EPERM; |
| |
| if (count > 16) |
| return -EMSGSIZE; |
| |
| /* We'll use a local copy of buf */ |
| memset(in, 0, 16); |
| memcpy(in, buf, count); |
| |
| if (pdc_stable_write(PDCS_ADDR_OSD1, &in, sizeof(in)) != PDC_OK) |
| return -EIO; |
| |
| return count; |
| } |
| |
| /** |
| * pdcs_osdep2_write - Stable Storage OS-Dependent data area 2 input. |
| * @buf: The input buffer to read from. |
| * @count: The number of bytes to be read. |
| * |
| * This can store pdcs_size - 224 bytes of OS-Dependent data. We use a |
| * byte-by-byte write approach. It's up to userspace to deal with it when |
| * constructing its input buffer. |
| */ |
| static ssize_t pdcs_osdep2_write(struct kobject *kobj, |
| struct kobj_attribute *attr, |
| const char *buf, size_t count) |
| { |
| unsigned long size; |
| unsigned short i; |
| u8 in[4]; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EACCES; |
| |
| if (!buf || !count) |
| return -EINVAL; |
| |
| if (unlikely(pdcs_size <= 224)) |
| return -ENOSYS; |
| |
| if (unlikely(pdcs_osid != OS_ID_LINUX)) |
| return -EPERM; |
| |
| size = pdcs_size - 224; |
| |
| if (count > size) |
| return -EMSGSIZE; |
| |
| /* We'll use a local copy of buf */ |
| |
| for (i=0; i<count; i+=4) { |
| memset(in, 0, 4); |
| memcpy(in, buf+i, (count-i < 4) ? count-i : 4); |
| if (unlikely(pdc_stable_write(PDCS_ADDR_OSD2 + i, &in, |
| sizeof(in)) != PDC_OK)) |
| return -EIO; |
| } |
| |
| return count; |
| } |
| |
| /* The remaining attributes. */ |
| static PDCS_ATTR(size, 0444, pdcs_size_read, NULL); |
| static PDCS_ATTR(autoboot, 0644, pdcs_autoboot_read, pdcs_autoboot_write); |
| static PDCS_ATTR(autosearch, 0644, pdcs_autosearch_read, pdcs_autosearch_write); |
| static PDCS_ATTR(timer, 0444, pdcs_timer_read, NULL); |
| static PDCS_ATTR(osid, 0444, pdcs_osid_read, NULL); |
| static PDCS_ATTR(osdep1, 0600, pdcs_osdep1_read, pdcs_osdep1_write); |
| static PDCS_ATTR(diagnostic, 0400, pdcs_diagnostic_read, NULL); |
| static PDCS_ATTR(fastsize, 0400, pdcs_fastsize_read, NULL); |
| static PDCS_ATTR(osdep2, 0600, pdcs_osdep2_read, pdcs_osdep2_write); |
| |
| static struct attribute *pdcs_subsys_attrs[] = { |
| &pdcs_attr_size.attr, |
| &pdcs_attr_autoboot.attr, |
| &pdcs_attr_autosearch.attr, |
| &pdcs_attr_timer.attr, |
| &pdcs_attr_osid.attr, |
| &pdcs_attr_osdep1.attr, |
| &pdcs_attr_diagnostic.attr, |
| &pdcs_attr_fastsize.attr, |
| &pdcs_attr_osdep2.attr, |
| NULL, |
| }; |
| |
| static struct attribute_group pdcs_attr_group = { |
| .attrs = pdcs_subsys_attrs, |
| }; |
| |
| static struct kobject *stable_kobj; |
| static struct kset *paths_kset; |
| |
| /** |
| * pdcs_register_pathentries - Prepares path entries kobjects for sysfs usage. |
| * |
| * It creates kobjects corresponding to each path entry with nice sysfs |
| * links to the real device. This is where the magic takes place: when |
| * registering the subsystem attributes during module init, each kobject hereby |
| * created will show in the sysfs tree as a folder containing files as defined |
| * by path_subsys_attr[]. |
| */ |
| static inline int __init |
| pdcs_register_pathentries(void) |
| { |
| unsigned short i; |
| struct pdcspath_entry *entry; |
| int err; |
| |
| /* Initialize the entries rw_lock before anything else */ |
| for (i = 0; (entry = pdcspath_entries[i]); i++) |
| rwlock_init(&entry->rw_lock); |
| |
| for (i = 0; (entry = pdcspath_entries[i]); i++) { |
| write_lock(&entry->rw_lock); |
| err = pdcspath_fetch(entry); |
| write_unlock(&entry->rw_lock); |
| |
| if (err < 0) |
| continue; |
| |
| entry->kobj.kset = paths_kset; |
| err = kobject_init_and_add(&entry->kobj, &ktype_pdcspath, NULL, |
| "%s", entry->name); |
| if (err) |
| return err; |
| |
| /* kobject is now registered */ |
| write_lock(&entry->rw_lock); |
| entry->ready = 2; |
| |
| /* Add a nice symlink to the real device */ |
| if (entry->dev) { |
| err = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device"); |
| WARN_ON(err); |
| } |
| |
| write_unlock(&entry->rw_lock); |
| kobject_uevent(&entry->kobj, KOBJ_ADD); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * pdcs_unregister_pathentries - Routine called when unregistering the module. |
| */ |
| static inline void |
| pdcs_unregister_pathentries(void) |
| { |
| unsigned short i; |
| struct pdcspath_entry *entry; |
| |
| for (i = 0; (entry = pdcspath_entries[i]); i++) { |
| read_lock(&entry->rw_lock); |
| if (entry->ready >= 2) |
| kobject_put(&entry->kobj); |
| read_unlock(&entry->rw_lock); |
| } |
| } |
| |
| /* |
| * For now we register the stable subsystem with the firmware subsystem |
| * and the paths subsystem with the stable subsystem |
| */ |
| static int __init |
| pdc_stable_init(void) |
| { |
| int rc = 0, error = 0; |
| u32 result; |
| |
| /* find the size of the stable storage */ |
| if (pdc_stable_get_size(&pdcs_size) != PDC_OK) |
| return -ENODEV; |
| |
| /* make sure we have enough data */ |
| if (pdcs_size < 96) |
| return -ENODATA; |
| |
| printk(KERN_INFO PDCS_PREFIX " facility v%s\n", PDCS_VERSION); |
| |
| /* get OSID */ |
| if (pdc_stable_read(PDCS_ADDR_OSID, &result, sizeof(result)) != PDC_OK) |
| return -EIO; |
| |
| /* the actual result is 16 bits away */ |
| pdcs_osid = (u16)(result >> 16); |
| |
| /* For now we'll register the directory at /sys/firmware/stable */ |
| stable_kobj = kobject_create_and_add("stable", firmware_kobj); |
| if (!stable_kobj) { |
| rc = -ENOMEM; |
| goto fail_firmreg; |
| } |
| |
| /* Don't forget the root entries */ |
| error = sysfs_create_group(stable_kobj, &pdcs_attr_group); |
| |
| /* register the paths kset as a child of the stable kset */ |
| paths_kset = kset_create_and_add("paths", NULL, stable_kobj); |
| if (!paths_kset) { |
| rc = -ENOMEM; |
| goto fail_ksetreg; |
| } |
| |
| /* now we create all "files" for the paths kset */ |
| if ((rc = pdcs_register_pathentries())) |
| goto fail_pdcsreg; |
| |
| return rc; |
| |
| fail_pdcsreg: |
| pdcs_unregister_pathentries(); |
| kset_unregister(paths_kset); |
| |
| fail_ksetreg: |
| kobject_put(stable_kobj); |
| |
| fail_firmreg: |
| printk(KERN_INFO PDCS_PREFIX " bailing out\n"); |
| return rc; |
| } |
| |
| static void __exit |
| pdc_stable_exit(void) |
| { |
| pdcs_unregister_pathentries(); |
| kset_unregister(paths_kset); |
| kobject_put(stable_kobj); |
| } |
| |
| |
| module_init(pdc_stable_init); |
| module_exit(pdc_stable_exit); |