| /****************************************************************************** |
| * |
| * Copyright(c) 2009-2012 Realtek Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., |
| * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA |
| * |
| * The full GNU General Public License is included in this distribution in the |
| * file called LICENSE. |
| * |
| * Contact Information: |
| * wlanfae <wlanfae@realtek.com> |
| * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park, |
| * Hsinchu 300, Taiwan. |
| * |
| * Larry Finger <Larry.Finger@lwfinger.net> |
| * |
| *****************************************************************************/ |
| |
| #include "../wifi.h" |
| #include "../efuse.h" |
| #include "../base.h" |
| #include "../regd.h" |
| #include "../cam.h" |
| #include "../ps.h" |
| #include "../pci.h" |
| #include "reg.h" |
| #include "def.h" |
| #include "phy.h" |
| #include "dm.h" |
| #include "fw.h" |
| #include "led.h" |
| #include "hw.h" |
| |
| void rtl92se_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| |
| switch (variable) { |
| case HW_VAR_RCR: { |
| *((u32 *) (val)) = rtlpci->receive_config; |
| break; |
| } |
| case HW_VAR_RF_STATE: { |
| *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state; |
| break; |
| } |
| case HW_VAR_FW_PSMODE_STATUS: { |
| *((bool *) (val)) = ppsc->fw_current_inpsmode; |
| break; |
| } |
| case HW_VAR_CORRECT_TSF: { |
| u64 tsf; |
| u32 *ptsf_low = (u32 *)&tsf; |
| u32 *ptsf_high = ((u32 *)&tsf) + 1; |
| |
| *ptsf_high = rtl_read_dword(rtlpriv, (TSFR + 4)); |
| *ptsf_low = rtl_read_dword(rtlpriv, TSFR); |
| |
| *((u64 *) (val)) = tsf; |
| |
| break; |
| } |
| case HW_VAR_MRC: { |
| *((bool *)(val)) = rtlpriv->dm.current_mrc_switch; |
| break; |
| } |
| default: { |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, |
| "switch case not processed\n"); |
| break; |
| } |
| } |
| } |
| |
| void rtl92se_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); |
| |
| switch (variable) { |
| case HW_VAR_ETHER_ADDR:{ |
| rtl_write_dword(rtlpriv, IDR0, ((u32 *)(val))[0]); |
| rtl_write_word(rtlpriv, IDR4, ((u16 *)(val + 4))[0]); |
| break; |
| } |
| case HW_VAR_BASIC_RATE:{ |
| u16 rate_cfg = ((u16 *) val)[0]; |
| u8 rate_index = 0; |
| |
| if (rtlhal->version == VERSION_8192S_ACUT) |
| rate_cfg = rate_cfg & 0x150; |
| else |
| rate_cfg = rate_cfg & 0x15f; |
| |
| rate_cfg |= 0x01; |
| |
| rtl_write_byte(rtlpriv, RRSR, rate_cfg & 0xff); |
| rtl_write_byte(rtlpriv, RRSR + 1, |
| (rate_cfg >> 8) & 0xff); |
| |
| while (rate_cfg > 0x1) { |
| rate_cfg = (rate_cfg >> 1); |
| rate_index++; |
| } |
| rtl_write_byte(rtlpriv, INIRTSMCS_SEL, rate_index); |
| |
| break; |
| } |
| case HW_VAR_BSSID:{ |
| rtl_write_dword(rtlpriv, BSSIDR, ((u32 *)(val))[0]); |
| rtl_write_word(rtlpriv, BSSIDR + 4, |
| ((u16 *)(val + 4))[0]); |
| break; |
| } |
| case HW_VAR_SIFS:{ |
| rtl_write_byte(rtlpriv, SIFS_OFDM, val[0]); |
| rtl_write_byte(rtlpriv, SIFS_OFDM + 1, val[1]); |
| break; |
| } |
| case HW_VAR_SLOT_TIME:{ |
| u8 e_aci; |
| |
| RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, |
| "HW_VAR_SLOT_TIME %x\n", val[0]); |
| |
| rtl_write_byte(rtlpriv, SLOT_TIME, val[0]); |
| |
| for (e_aci = 0; e_aci < AC_MAX; e_aci++) { |
| rtlpriv->cfg->ops->set_hw_reg(hw, |
| HW_VAR_AC_PARAM, |
| (&e_aci)); |
| } |
| break; |
| } |
| case HW_VAR_ACK_PREAMBLE:{ |
| u8 reg_tmp; |
| u8 short_preamble = (bool) (*val); |
| reg_tmp = (mac->cur_40_prime_sc) << 5; |
| if (short_preamble) |
| reg_tmp |= 0x80; |
| |
| rtl_write_byte(rtlpriv, RRSR + 2, reg_tmp); |
| break; |
| } |
| case HW_VAR_AMPDU_MIN_SPACE:{ |
| u8 min_spacing_to_set; |
| u8 sec_min_space; |
| |
| min_spacing_to_set = *val; |
| if (min_spacing_to_set <= 7) { |
| if (rtlpriv->sec.pairwise_enc_algorithm == |
| NO_ENCRYPTION) |
| sec_min_space = 0; |
| else |
| sec_min_space = 1; |
| |
| if (min_spacing_to_set < sec_min_space) |
| min_spacing_to_set = sec_min_space; |
| if (min_spacing_to_set > 5) |
| min_spacing_to_set = 5; |
| |
| mac->min_space_cfg = |
| ((mac->min_space_cfg & 0xf8) | |
| min_spacing_to_set); |
| |
| *val = min_spacing_to_set; |
| |
| RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, |
| "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n", |
| mac->min_space_cfg); |
| |
| rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, |
| mac->min_space_cfg); |
| } |
| break; |
| } |
| case HW_VAR_SHORTGI_DENSITY:{ |
| u8 density_to_set; |
| |
| density_to_set = *val; |
| mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg; |
| mac->min_space_cfg |= (density_to_set << 3); |
| |
| RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, |
| "Set HW_VAR_SHORTGI_DENSITY: %#x\n", |
| mac->min_space_cfg); |
| |
| rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, |
| mac->min_space_cfg); |
| |
| break; |
| } |
| case HW_VAR_AMPDU_FACTOR:{ |
| u8 factor_toset; |
| u8 regtoset; |
| u8 factorlevel[18] = { |
| 2, 4, 4, 7, 7, 13, 13, |
| 13, 2, 7, 7, 13, 13, |
| 15, 15, 15, 15, 0}; |
| u8 index = 0; |
| |
| factor_toset = *val; |
| if (factor_toset <= 3) { |
| factor_toset = (1 << (factor_toset + 2)); |
| if (factor_toset > 0xf) |
| factor_toset = 0xf; |
| |
| for (index = 0; index < 17; index++) { |
| if (factorlevel[index] > factor_toset) |
| factorlevel[index] = |
| factor_toset; |
| } |
| |
| for (index = 0; index < 8; index++) { |
| regtoset = ((factorlevel[index * 2]) | |
| (factorlevel[index * |
| 2 + 1] << 4)); |
| rtl_write_byte(rtlpriv, |
| AGGLEN_LMT_L + index, |
| regtoset); |
| } |
| |
| regtoset = ((factorlevel[16]) | |
| (factorlevel[17] << 4)); |
| rtl_write_byte(rtlpriv, AGGLEN_LMT_H, regtoset); |
| |
| RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, |
| "Set HW_VAR_AMPDU_FACTOR: %#x\n", |
| factor_toset); |
| } |
| break; |
| } |
| case HW_VAR_AC_PARAM:{ |
| u8 e_aci = *val; |
| rtl92s_dm_init_edca_turbo(hw); |
| |
| if (rtlpci->acm_method != eAcmWay2_SW) |
| rtlpriv->cfg->ops->set_hw_reg(hw, |
| HW_VAR_ACM_CTRL, |
| &e_aci); |
| break; |
| } |
| case HW_VAR_ACM_CTRL:{ |
| u8 e_aci = *val; |
| union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)(&( |
| mac->ac[0].aifs)); |
| u8 acm = p_aci_aifsn->f.acm; |
| u8 acm_ctrl = rtl_read_byte(rtlpriv, AcmHwCtrl); |
| |
| acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ? |
| 0x0 : 0x1); |
| |
| if (acm) { |
| switch (e_aci) { |
| case AC0_BE: |
| acm_ctrl |= AcmHw_BeqEn; |
| break; |
| case AC2_VI: |
| acm_ctrl |= AcmHw_ViqEn; |
| break; |
| case AC3_VO: |
| acm_ctrl |= AcmHw_VoqEn; |
| break; |
| default: |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, |
| "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n", |
| acm); |
| break; |
| } |
| } else { |
| switch (e_aci) { |
| case AC0_BE: |
| acm_ctrl &= (~AcmHw_BeqEn); |
| break; |
| case AC2_VI: |
| acm_ctrl &= (~AcmHw_ViqEn); |
| break; |
| case AC3_VO: |
| acm_ctrl &= (~AcmHw_BeqEn); |
| break; |
| default: |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, |
| "switch case not processed\n"); |
| break; |
| } |
| } |
| |
| RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE, |
| "HW_VAR_ACM_CTRL Write 0x%X\n", acm_ctrl); |
| rtl_write_byte(rtlpriv, AcmHwCtrl, acm_ctrl); |
| break; |
| } |
| case HW_VAR_RCR:{ |
| rtl_write_dword(rtlpriv, RCR, ((u32 *) (val))[0]); |
| rtlpci->receive_config = ((u32 *) (val))[0]; |
| break; |
| } |
| case HW_VAR_RETRY_LIMIT:{ |
| u8 retry_limit = val[0]; |
| |
| rtl_write_word(rtlpriv, RETRY_LIMIT, |
| retry_limit << RETRY_LIMIT_SHORT_SHIFT | |
| retry_limit << RETRY_LIMIT_LONG_SHIFT); |
| break; |
| } |
| case HW_VAR_DUAL_TSF_RST: { |
| break; |
| } |
| case HW_VAR_EFUSE_BYTES: { |
| rtlefuse->efuse_usedbytes = *((u16 *) val); |
| break; |
| } |
| case HW_VAR_EFUSE_USAGE: { |
| rtlefuse->efuse_usedpercentage = *val; |
| break; |
| } |
| case HW_VAR_IO_CMD: { |
| break; |
| } |
| case HW_VAR_WPA_CONFIG: { |
| rtl_write_byte(rtlpriv, REG_SECR, *val); |
| break; |
| } |
| case HW_VAR_SET_RPWM:{ |
| break; |
| } |
| case HW_VAR_H2C_FW_PWRMODE:{ |
| break; |
| } |
| case HW_VAR_FW_PSMODE_STATUS: { |
| ppsc->fw_current_inpsmode = *((bool *) val); |
| break; |
| } |
| case HW_VAR_H2C_FW_JOINBSSRPT:{ |
| break; |
| } |
| case HW_VAR_AID:{ |
| break; |
| } |
| case HW_VAR_CORRECT_TSF:{ |
| break; |
| } |
| case HW_VAR_MRC: { |
| bool bmrc_toset = *((bool *)val); |
| u8 u1bdata = 0; |
| |
| if (bmrc_toset) { |
| rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, |
| MASKBYTE0, 0x33); |
| u1bdata = (u8)rtl_get_bbreg(hw, |
| ROFDM1_TRXPATHENABLE, |
| MASKBYTE0); |
| rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, |
| MASKBYTE0, |
| ((u1bdata & 0xf0) | 0x03)); |
| u1bdata = (u8)rtl_get_bbreg(hw, |
| ROFDM0_TRXPATHENABLE, |
| MASKBYTE1); |
| rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, |
| MASKBYTE1, |
| (u1bdata | 0x04)); |
| |
| /* Update current settings. */ |
| rtlpriv->dm.current_mrc_switch = bmrc_toset; |
| } else { |
| rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, |
| MASKBYTE0, 0x13); |
| u1bdata = (u8)rtl_get_bbreg(hw, |
| ROFDM1_TRXPATHENABLE, |
| MASKBYTE0); |
| rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, |
| MASKBYTE0, |
| ((u1bdata & 0xf0) | 0x01)); |
| u1bdata = (u8)rtl_get_bbreg(hw, |
| ROFDM0_TRXPATHENABLE, |
| MASKBYTE1); |
| rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, |
| MASKBYTE1, (u1bdata & 0xfb)); |
| |
| /* Update current settings. */ |
| rtlpriv->dm.current_mrc_switch = bmrc_toset; |
| } |
| |
| break; |
| } |
| case HW_VAR_FW_LPS_ACTION: { |
| bool enter_fwlps = *((bool *)val); |
| u8 rpwm_val, fw_pwrmode; |
| bool fw_current_inps; |
| |
| if (enter_fwlps) { |
| rpwm_val = 0x02; /* RF off */ |
| fw_current_inps = true; |
| rtlpriv->cfg->ops->set_hw_reg(hw, |
| HW_VAR_FW_PSMODE_STATUS, |
| (u8 *)(&fw_current_inps)); |
| rtlpriv->cfg->ops->set_hw_reg(hw, |
| HW_VAR_H2C_FW_PWRMODE, |
| (u8 *)(&ppsc->fwctrl_psmode)); |
| |
| rtlpriv->cfg->ops->set_hw_reg(hw, |
| HW_VAR_SET_RPWM, |
| (u8 *)(&rpwm_val)); |
| } else { |
| rpwm_val = 0x0C; /* RF on */ |
| fw_pwrmode = FW_PS_ACTIVE_MODE; |
| fw_current_inps = false; |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, |
| (u8 *)(&rpwm_val)); |
| rtlpriv->cfg->ops->set_hw_reg(hw, |
| HW_VAR_H2C_FW_PWRMODE, |
| (u8 *)(&fw_pwrmode)); |
| |
| rtlpriv->cfg->ops->set_hw_reg(hw, |
| HW_VAR_FW_PSMODE_STATUS, |
| (u8 *)(&fw_current_inps)); |
| } |
| break; } |
| default: |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, |
| "switch case not processed\n"); |
| break; |
| } |
| |
| } |
| |
| void rtl92se_enable_hw_security_config(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u8 sec_reg_value = 0x0; |
| |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n", |
| rtlpriv->sec.pairwise_enc_algorithm, |
| rtlpriv->sec.group_enc_algorithm); |
| |
| if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) { |
| RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, |
| "not open hw encryption\n"); |
| return; |
| } |
| |
| sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE; |
| |
| if (rtlpriv->sec.use_defaultkey) { |
| sec_reg_value |= SCR_TXUSEDK; |
| sec_reg_value |= SCR_RXUSEDK; |
| } |
| |
| RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, "The SECR-value %x\n", |
| sec_reg_value); |
| |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value); |
| |
| } |
| |
| static u8 _rtl92se_halset_sysclk(struct ieee80211_hw *hw, u8 data) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u8 waitcount = 100; |
| bool bresult = false; |
| u8 tmpvalue; |
| |
| rtl_write_byte(rtlpriv, SYS_CLKR + 1, data); |
| |
| /* Wait the MAC synchronized. */ |
| udelay(400); |
| |
| /* Check if it is set ready. */ |
| tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1); |
| bresult = ((tmpvalue & BIT(7)) == (data & BIT(7))); |
| |
| if ((data & (BIT(6) | BIT(7))) == false) { |
| waitcount = 100; |
| tmpvalue = 0; |
| |
| while (1) { |
| waitcount--; |
| |
| tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1); |
| if ((tmpvalue & BIT(6))) |
| break; |
| |
| pr_err("wait for BIT(6) return value %x\n", tmpvalue); |
| if (waitcount == 0) |
| break; |
| |
| udelay(10); |
| } |
| |
| if (waitcount == 0) |
| bresult = false; |
| else |
| bresult = true; |
| } |
| |
| return bresult; |
| } |
| |
| void rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u8 u1tmp; |
| |
| /* The following config GPIO function */ |
| rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO)); |
| u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL); |
| |
| /* config GPIO3 to input */ |
| u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK; |
| rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp); |
| |
| } |
| |
| static u8 _rtl92se_rf_onoff_detect(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u8 u1tmp; |
| u8 retval = ERFON; |
| |
| /* The following config GPIO function */ |
| rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO)); |
| u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL); |
| |
| /* config GPIO3 to input */ |
| u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK; |
| rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp); |
| |
| /* On some of the platform, driver cannot read correct |
| * value without delay between Write_GPIO_SEL and Read_GPIO_IN */ |
| mdelay(10); |
| |
| /* check GPIO3 */ |
| u1tmp = rtl_read_byte(rtlpriv, GPIO_IN_SE); |
| retval = (u1tmp & HAL_8192S_HW_GPIO_OFF_BIT) ? ERFON : ERFOFF; |
| |
| return retval; |
| } |
| |
| static void _rtl92se_macconfig_before_fwdownload(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); |
| |
| u8 i; |
| u8 tmpu1b; |
| u16 tmpu2b; |
| u8 pollingcnt = 20; |
| |
| if (rtlpci->first_init) { |
| /* Reset PCIE Digital */ |
| tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1); |
| tmpu1b &= 0xFE; |
| rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b); |
| udelay(1); |
| rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b | BIT(0)); |
| } |
| |
| /* Switch to SW IO control */ |
| tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1)); |
| if (tmpu1b & BIT(7)) { |
| tmpu1b &= ~(BIT(6) | BIT(7)); |
| |
| /* Set failed, return to prevent hang. */ |
| if (!_rtl92se_halset_sysclk(hw, tmpu1b)) |
| return; |
| } |
| |
| rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0); |
| udelay(50); |
| rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34); |
| udelay(50); |
| |
| /* Clear FW RPWM for FW control LPS.*/ |
| rtl_write_byte(rtlpriv, RPWM, 0x0); |
| |
| /* Reset MAC-IO and CPU and Core Digital BIT(10)/11/15 */ |
| tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1); |
| tmpu1b &= 0x73; |
| rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b); |
| /* wait for BIT 10/11/15 to pull high automatically!! */ |
| mdelay(1); |
| |
| rtl_write_byte(rtlpriv, CMDR, 0); |
| rtl_write_byte(rtlpriv, TCR, 0); |
| |
| /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */ |
| tmpu1b = rtl_read_byte(rtlpriv, 0x562); |
| tmpu1b |= 0x08; |
| rtl_write_byte(rtlpriv, 0x562, tmpu1b); |
| tmpu1b &= ~(BIT(3)); |
| rtl_write_byte(rtlpriv, 0x562, tmpu1b); |
| |
| /* Enable AFE clock source */ |
| tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL); |
| rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01)); |
| /* Delay 1.5ms */ |
| mdelay(2); |
| tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1); |
| rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb)); |
| |
| /* Enable AFE Macro Block's Bandgap */ |
| tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC); |
| rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0))); |
| mdelay(1); |
| |
| /* Enable AFE Mbias */ |
| tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC); |
| rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02)); |
| mdelay(1); |
| |
| /* Enable LDOA15 block */ |
| tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL); |
| rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0))); |
| |
| /* Set Digital Vdd to Retention isolation Path. */ |
| tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL); |
| rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11))); |
| |
| /* For warm reboot NIC disappera bug. */ |
| tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN); |
| rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13))); |
| |
| rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68); |
| |
| /* Enable AFE PLL Macro Block */ |
| /* We need to delay 100u before enabling PLL. */ |
| udelay(200); |
| tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL); |
| rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4))); |
| |
| /* for divider reset */ |
| udelay(100); |
| rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | |
| BIT(4) | BIT(6))); |
| udelay(10); |
| rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4))); |
| udelay(10); |
| |
| /* Enable MAC 80MHZ clock */ |
| tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1); |
| rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0))); |
| mdelay(1); |
| |
| /* Release isolation AFE PLL & MD */ |
| rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6); |
| |
| /* Enable MAC clock */ |
| tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR); |
| rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11))); |
| |
| /* Enable Core digital and enable IOREG R/W */ |
| tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN); |
| rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11))); |
| |
| tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1); |
| rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b & ~(BIT(7))); |
| |
| /* enable REG_EN */ |
| rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15))); |
| |
| /* Switch the control path. */ |
| tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR); |
| rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2)))); |
| |
| tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1)); |
| tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6))); |
| if (!_rtl92se_halset_sysclk(hw, tmpu1b)) |
| return; /* Set failed, return to prevent hang. */ |
| |
| rtl_write_word(rtlpriv, CMDR, 0x07FC); |
| |
| /* MH We must enable the section of code to prevent load IMEM fail. */ |
| /* Load MAC register from WMAc temporarily We simulate macreg. */ |
| /* txt HW will provide MAC txt later */ |
| rtl_write_byte(rtlpriv, 0x6, 0x30); |
| rtl_write_byte(rtlpriv, 0x49, 0xf0); |
| |
| rtl_write_byte(rtlpriv, 0x4b, 0x81); |
| |
| rtl_write_byte(rtlpriv, 0xb5, 0x21); |
| |
| rtl_write_byte(rtlpriv, 0xdc, 0xff); |
| rtl_write_byte(rtlpriv, 0xdd, 0xff); |
| rtl_write_byte(rtlpriv, 0xde, 0xff); |
| rtl_write_byte(rtlpriv, 0xdf, 0xff); |
| |
| rtl_write_byte(rtlpriv, 0x11a, 0x00); |
| rtl_write_byte(rtlpriv, 0x11b, 0x00); |
| |
| for (i = 0; i < 32; i++) |
| rtl_write_byte(rtlpriv, INIMCS_SEL + i, 0x1b); |
| |
| rtl_write_byte(rtlpriv, 0x236, 0xff); |
| |
| rtl_write_byte(rtlpriv, 0x503, 0x22); |
| |
| if (ppsc->support_aspm && !ppsc->support_backdoor) |
| rtl_write_byte(rtlpriv, 0x560, 0x40); |
| else |
| rtl_write_byte(rtlpriv, 0x560, 0x00); |
| |
| rtl_write_byte(rtlpriv, DBG_PORT, 0x91); |
| |
| /* Set RX Desc Address */ |
| rtl_write_dword(rtlpriv, RDQDA, rtlpci->rx_ring[RX_MPDU_QUEUE].dma); |
| rtl_write_dword(rtlpriv, RCDA, rtlpci->rx_ring[RX_CMD_QUEUE].dma); |
| |
| /* Set TX Desc Address */ |
| rtl_write_dword(rtlpriv, TBKDA, rtlpci->tx_ring[BK_QUEUE].dma); |
| rtl_write_dword(rtlpriv, TBEDA, rtlpci->tx_ring[BE_QUEUE].dma); |
| rtl_write_dword(rtlpriv, TVIDA, rtlpci->tx_ring[VI_QUEUE].dma); |
| rtl_write_dword(rtlpriv, TVODA, rtlpci->tx_ring[VO_QUEUE].dma); |
| rtl_write_dword(rtlpriv, TBDA, rtlpci->tx_ring[BEACON_QUEUE].dma); |
| rtl_write_dword(rtlpriv, TCDA, rtlpci->tx_ring[TXCMD_QUEUE].dma); |
| rtl_write_dword(rtlpriv, TMDA, rtlpci->tx_ring[MGNT_QUEUE].dma); |
| rtl_write_dword(rtlpriv, THPDA, rtlpci->tx_ring[HIGH_QUEUE].dma); |
| rtl_write_dword(rtlpriv, HDA, rtlpci->tx_ring[HCCA_QUEUE].dma); |
| |
| rtl_write_word(rtlpriv, CMDR, 0x37FC); |
| |
| /* To make sure that TxDMA can ready to download FW. */ |
| /* We should reset TxDMA if IMEM RPT was not ready. */ |
| do { |
| tmpu1b = rtl_read_byte(rtlpriv, TCR); |
| if ((tmpu1b & TXDMA_INIT_VALUE) == TXDMA_INIT_VALUE) |
| break; |
| |
| udelay(5); |
| } while (pollingcnt--); |
| |
| if (pollingcnt <= 0) { |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, |
| "Polling TXDMA_INIT_VALUE timeout!! Current TCR(%#x)\n", |
| tmpu1b); |
| tmpu1b = rtl_read_byte(rtlpriv, CMDR); |
| rtl_write_byte(rtlpriv, CMDR, tmpu1b & (~TXDMA_EN)); |
| udelay(2); |
| /* Reset TxDMA */ |
| rtl_write_byte(rtlpriv, CMDR, tmpu1b | TXDMA_EN); |
| } |
| |
| /* After MACIO reset,we must refresh LED state. */ |
| if ((ppsc->rfoff_reason == RF_CHANGE_BY_IPS) || |
| (ppsc->rfoff_reason == 0)) { |
| struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); |
| struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0); |
| enum rf_pwrstate rfpwr_state_toset; |
| rfpwr_state_toset = _rtl92se_rf_onoff_detect(hw); |
| |
| if (rfpwr_state_toset == ERFON) |
| rtl92se_sw_led_on(hw, pLed0); |
| } |
| } |
| |
| static void _rtl92se_macconfig_after_fwdownload(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| u8 i; |
| u16 tmpu2b; |
| |
| /* 1. System Configure Register (Offset: 0x0000 - 0x003F) */ |
| |
| /* 2. Command Control Register (Offset: 0x0040 - 0x004F) */ |
| /* Turn on 0x40 Command register */ |
| rtl_write_word(rtlpriv, CMDR, (BBRSTN | BB_GLB_RSTN | |
| SCHEDULE_EN | MACRXEN | MACTXEN | DDMA_EN | FW2HW_EN | |
| RXDMA_EN | TXDMA_EN | HCI_RXDMA_EN | HCI_TXDMA_EN)); |
| |
| /* Set TCR TX DMA pre 2 FULL enable bit */ |
| rtl_write_dword(rtlpriv, TCR, rtl_read_dword(rtlpriv, TCR) | |
| TXDMAPRE2FULL); |
| |
| /* Set RCR */ |
| rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config); |
| |
| /* 3. MACID Setting Register (Offset: 0x0050 - 0x007F) */ |
| |
| /* 4. Timing Control Register (Offset: 0x0080 - 0x009F) */ |
| /* Set CCK/OFDM SIFS */ |
| /* CCK SIFS shall always be 10us. */ |
| rtl_write_word(rtlpriv, SIFS_CCK, 0x0a0a); |
| rtl_write_word(rtlpriv, SIFS_OFDM, 0x1010); |
| |
| /* Set AckTimeout */ |
| rtl_write_byte(rtlpriv, ACK_TIMEOUT, 0x40); |
| |
| /* Beacon related */ |
| rtl_write_word(rtlpriv, BCN_INTERVAL, 100); |
| rtl_write_word(rtlpriv, ATIMWND, 2); |
| |
| /* 5. FIFO Control Register (Offset: 0x00A0 - 0x015F) */ |
| /* 5.1 Initialize Number of Reserved Pages in Firmware Queue */ |
| /* Firmware allocate now, associate with FW internal setting.!!! */ |
| |
| /* 5.2 Setting TX/RX page size 0/1/2/3/4=64/128/256/512/1024 */ |
| /* 5.3 Set driver info, we only accept PHY status now. */ |
| /* 5.4 Set RXDMA arbitration to control RXDMA/MAC/FW R/W for RXFIFO */ |
| rtl_write_byte(rtlpriv, RXDMA, rtl_read_byte(rtlpriv, RXDMA) | BIT(6)); |
| |
| /* 6. Adaptive Control Register (Offset: 0x0160 - 0x01CF) */ |
| /* Set RRSR to all legacy rate and HT rate |
| * CCK rate is supported by default. |
| * CCK rate will be filtered out only when associated |
| * AP does not support it. |
| * Only enable ACK rate to OFDM 24M |
| * Disable RRSR for CCK rate in A-Cut */ |
| |
| if (rtlhal->version == VERSION_8192S_ACUT) |
| rtl_write_byte(rtlpriv, RRSR, 0xf0); |
| else if (rtlhal->version == VERSION_8192S_BCUT) |
| rtl_write_byte(rtlpriv, RRSR, 0xff); |
| rtl_write_byte(rtlpriv, RRSR + 1, 0x01); |
| rtl_write_byte(rtlpriv, RRSR + 2, 0x00); |
| |
| /* A-Cut IC do not support CCK rate. We forbid ARFR to */ |
| /* fallback to CCK rate */ |
| for (i = 0; i < 8; i++) { |
| /*Disable RRSR for CCK rate in A-Cut */ |
| if (rtlhal->version == VERSION_8192S_ACUT) |
| rtl_write_dword(rtlpriv, ARFR0 + i * 4, 0x1f0ff0f0); |
| } |
| |
| /* Different rate use different AMPDU size */ |
| /* MCS32/ MCS15_SG use max AMPDU size 15*2=30K */ |
| rtl_write_byte(rtlpriv, AGGLEN_LMT_H, 0x0f); |
| /* MCS0/1/2/3 use max AMPDU size 4*2=8K */ |
| rtl_write_word(rtlpriv, AGGLEN_LMT_L, 0x7442); |
| /* MCS4/5 use max AMPDU size 8*2=16K 6/7 use 10*2=20K */ |
| rtl_write_word(rtlpriv, AGGLEN_LMT_L + 2, 0xddd7); |
| /* MCS8/9 use max AMPDU size 8*2=16K 10/11 use 10*2=20K */ |
| rtl_write_word(rtlpriv, AGGLEN_LMT_L + 4, 0xd772); |
| /* MCS12/13/14/15 use max AMPDU size 15*2=30K */ |
| rtl_write_word(rtlpriv, AGGLEN_LMT_L + 6, 0xfffd); |
| |
| /* Set Data / Response auto rate fallack retry count */ |
| rtl_write_dword(rtlpriv, DARFRC, 0x04010000); |
| rtl_write_dword(rtlpriv, DARFRC + 4, 0x09070605); |
| rtl_write_dword(rtlpriv, RARFRC, 0x04010000); |
| rtl_write_dword(rtlpriv, RARFRC + 4, 0x09070605); |
| |
| /* 7. EDCA Setting Register (Offset: 0x01D0 - 0x01FF) */ |
| /* Set all rate to support SG */ |
| rtl_write_word(rtlpriv, SG_RATE, 0xFFFF); |
| |
| /* 8. WMAC, BA, and CCX related Register (Offset: 0x0200 - 0x023F) */ |
| /* Set NAV protection length */ |
| rtl_write_word(rtlpriv, NAV_PROT_LEN, 0x0080); |
| /* CF-END Threshold */ |
| rtl_write_byte(rtlpriv, CFEND_TH, 0xFF); |
| /* Set AMPDU minimum space */ |
| rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, 0x07); |
| /* Set TXOP stall control for several queue/HI/BCN/MGT/ */ |
| rtl_write_byte(rtlpriv, TXOP_STALL_CTRL, 0x00); |
| |
| /* 9. Security Control Register (Offset: 0x0240 - 0x025F) */ |
| /* 10. Power Save Control Register (Offset: 0x0260 - 0x02DF) */ |
| /* 11. General Purpose Register (Offset: 0x02E0 - 0x02FF) */ |
| /* 12. Host Interrupt Status Register (Offset: 0x0300 - 0x030F) */ |
| /* 13. Test Mode and Debug Control Register (Offset: 0x0310 - 0x034F) */ |
| |
| /* 14. Set driver info, we only accept PHY status now. */ |
| rtl_write_byte(rtlpriv, RXDRVINFO_SZ, 4); |
| |
| /* 15. For EEPROM R/W Workaround */ |
| /* 16. For EFUSE to share REG_SYS_FUNC_EN with EEPROM!!! */ |
| tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN); |
| rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, tmpu2b | BIT(13)); |
| tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL); |
| rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, tmpu2b & (~BIT(8))); |
| |
| /* 17. For EFUSE */ |
| /* We may R/W EFUSE in EEPROM mode */ |
| if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) { |
| u8 tempval; |
| |
| tempval = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL + 1); |
| tempval &= 0xFE; |
| rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, tempval); |
| |
| /* Change Program timing */ |
| rtl_write_byte(rtlpriv, REG_EFUSE_CTRL + 3, 0x72); |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "EFUSE CONFIG OK\n"); |
| } |
| |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "OK\n"); |
| |
| } |
| |
| static void _rtl92se_hw_configure(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| struct rtl_phy *rtlphy = &(rtlpriv->phy); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| |
| u8 reg_bw_opmode = 0; |
| u32 reg_rrsr = 0; |
| u8 regtmp = 0; |
| |
| reg_bw_opmode = BW_OPMODE_20MHZ; |
| reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG; |
| |
| regtmp = rtl_read_byte(rtlpriv, INIRTSMCS_SEL); |
| reg_rrsr = ((reg_rrsr & 0x000fffff) << 8) | regtmp; |
| rtl_write_dword(rtlpriv, INIRTSMCS_SEL, reg_rrsr); |
| rtl_write_byte(rtlpriv, BW_OPMODE, reg_bw_opmode); |
| |
| /* Set Retry Limit here */ |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RETRY_LIMIT, |
| (u8 *)(&rtlpci->shortretry_limit)); |
| |
| rtl_write_byte(rtlpriv, MLT, 0x8f); |
| |
| /* For Min Spacing configuration. */ |
| switch (rtlphy->rf_type) { |
| case RF_1T2R: |
| case RF_1T1R: |
| rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3); |
| break; |
| case RF_2T2R: |
| case RF_2T2R_GREEN: |
| rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3); |
| break; |
| } |
| rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, rtlhal->minspace_cfg); |
| } |
| |
| int rtl92se_hw_init(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| struct rtl_phy *rtlphy = &(rtlpriv->phy); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| u8 tmp_byte = 0; |
| |
| bool rtstatus = true; |
| u8 tmp_u1b; |
| int err = false; |
| u8 i; |
| int wdcapra_add[] = { |
| EDCAPARA_BE, EDCAPARA_BK, |
| EDCAPARA_VI, EDCAPARA_VO}; |
| u8 secr_value = 0x0; |
| |
| rtlpci->being_init_adapter = true; |
| |
| rtlpriv->intf_ops->disable_aspm(hw); |
| |
| /* 1. MAC Initialize */ |
| /* Before FW download, we have to set some MAC register */ |
| _rtl92se_macconfig_before_fwdownload(hw); |
| |
| rtlhal->version = (enum version_8192s)((rtl_read_dword(rtlpriv, |
| PMC_FSM) >> 16) & 0xF); |
| |
| rtl8192se_gpiobit3_cfg_inputmode(hw); |
| |
| /* 2. download firmware */ |
| rtstatus = rtl92s_download_fw(hw); |
| if (!rtstatus) { |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, |
| "Failed to download FW. Init HW without FW now... " |
| "Please copy FW into /lib/firmware/rtlwifi\n"); |
| return 1; |
| } |
| |
| /* After FW download, we have to reset MAC register */ |
| _rtl92se_macconfig_after_fwdownload(hw); |
| |
| /*Retrieve default FW Cmd IO map. */ |
| rtlhal->fwcmd_iomap = rtl_read_word(rtlpriv, LBUS_MON_ADDR); |
| rtlhal->fwcmd_ioparam = rtl_read_dword(rtlpriv, LBUS_ADDR_MASK); |
| |
| /* 3. Initialize MAC/PHY Config by MACPHY_reg.txt */ |
| if (!rtl92s_phy_mac_config(hw)) { |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "MAC Config failed\n"); |
| return rtstatus; |
| } |
| |
| /* because last function modify RCR, so we update |
| * rcr var here, or TP will unstable for receive_config |
| * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx |
| * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252 |
| */ |
| rtlpci->receive_config = rtl_read_dword(rtlpriv, RCR); |
| rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV); |
| rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config); |
| |
| /* Make sure BB/RF write OK. We should prevent enter IPS. radio off. */ |
| /* We must set flag avoid BB/RF config period later!! */ |
| rtl_write_dword(rtlpriv, CMDR, 0x37FC); |
| |
| /* 4. Initialize BB After MAC Config PHY_reg.txt, AGC_Tab.txt */ |
| if (!rtl92s_phy_bb_config(hw)) { |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "BB Config failed\n"); |
| return rtstatus; |
| } |
| |
| /* 5. Initiailze RF RAIO_A.txt RF RAIO_B.txt */ |
| /* Before initalizing RF. We can not use FW to do RF-R/W. */ |
| |
| rtlphy->rf_mode = RF_OP_BY_SW_3WIRE; |
| |
| /* Before RF-R/W we must execute the IO from Scott's suggestion. */ |
| rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, 0xDB); |
| if (rtlhal->version == VERSION_8192S_ACUT) |
| rtl_write_byte(rtlpriv, SPS1_CTRL + 3, 0x07); |
| else |
| rtl_write_byte(rtlpriv, RF_CTRL, 0x07); |
| |
| if (!rtl92s_phy_rf_config(hw)) { |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "RF Config failed\n"); |
| return rtstatus; |
| } |
| |
| /* After read predefined TXT, we must set BB/MAC/RF |
| * register as our requirement */ |
| |
| rtlphy->rfreg_chnlval[0] = rtl92s_phy_query_rf_reg(hw, |
| (enum radio_path)0, |
| RF_CHNLBW, |
| RFREG_OFFSET_MASK); |
| rtlphy->rfreg_chnlval[1] = rtl92s_phy_query_rf_reg(hw, |
| (enum radio_path)1, |
| RF_CHNLBW, |
| RFREG_OFFSET_MASK); |
| |
| /*---- Set CCK and OFDM Block "ON"----*/ |
| rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1); |
| rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1); |
| |
| /*3 Set Hardware(Do nothing now) */ |
| _rtl92se_hw_configure(hw); |
| |
| /* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */ |
| /* TX power index for different rate set. */ |
| /* Get original hw reg values */ |
| rtl92s_phy_get_hw_reg_originalvalue(hw); |
| /* Write correct tx power index */ |
| rtl92s_phy_set_txpower(hw, rtlphy->current_channel); |
| |
| /* We must set MAC address after firmware download. */ |
| for (i = 0; i < 6; i++) |
| rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]); |
| |
| /* EEPROM R/W workaround */ |
| tmp_u1b = rtl_read_byte(rtlpriv, MAC_PINMUX_CFG); |
| rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, tmp_u1b & (~BIT(3))); |
| |
| rtl_write_byte(rtlpriv, 0x4d, 0x0); |
| |
| if (hal_get_firmwareversion(rtlpriv) >= 0x49) { |
| tmp_byte = rtl_read_byte(rtlpriv, FW_RSVD_PG_CRTL) & (~BIT(4)); |
| tmp_byte = tmp_byte | BIT(5); |
| rtl_write_byte(rtlpriv, FW_RSVD_PG_CRTL, tmp_byte); |
| rtl_write_dword(rtlpriv, TXDESC_MSK, 0xFFFFCFFF); |
| } |
| |
| /* We enable high power and RA related mechanism after NIC |
| * initialized. */ |
| if (hal_get_firmwareversion(rtlpriv) >= 0x35) { |
| /* Fw v.53 and later. */ |
| rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_INIT); |
| } else if (hal_get_firmwareversion(rtlpriv) == 0x34) { |
| /* Fw v.52. */ |
| rtl_write_dword(rtlpriv, WFM5, FW_RA_INIT); |
| rtl92s_phy_chk_fwcmd_iodone(hw); |
| } else { |
| /* Compatible earlier FW version. */ |
| rtl_write_dword(rtlpriv, WFM5, FW_RA_RESET); |
| rtl92s_phy_chk_fwcmd_iodone(hw); |
| rtl_write_dword(rtlpriv, WFM5, FW_RA_ACTIVE); |
| rtl92s_phy_chk_fwcmd_iodone(hw); |
| rtl_write_dword(rtlpriv, WFM5, FW_RA_REFRESH); |
| rtl92s_phy_chk_fwcmd_iodone(hw); |
| } |
| |
| /* Add to prevent ASPM bug. */ |
| /* Always enable hst and NIC clock request. */ |
| rtl92s_phy_switch_ephy_parameter(hw); |
| |
| /* Security related |
| * 1. Clear all H/W keys. |
| * 2. Enable H/W encryption/decryption. */ |
| rtl_cam_reset_all_entry(hw); |
| secr_value |= SCR_TXENCENABLE; |
| secr_value |= SCR_RXENCENABLE; |
| secr_value |= SCR_NOSKMC; |
| rtl_write_byte(rtlpriv, REG_SECR, secr_value); |
| |
| for (i = 0; i < 4; i++) |
| rtl_write_dword(rtlpriv, wdcapra_add[i], 0x5e4322); |
| |
| if (rtlphy->rf_type == RF_1T2R) { |
| bool mrc2set = true; |
| /* Turn on B-Path */ |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_MRC, (u8 *)&mrc2set); |
| } |
| |
| rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_ON); |
| rtl92s_dm_init(hw); |
| rtlpci->being_init_adapter = false; |
| |
| return err; |
| } |
| |
| void rtl92se_set_mac_addr(struct rtl_io *io, const u8 *addr) |
| { |
| /* This is a stub. */ |
| } |
| |
| void rtl92se_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u32 reg_rcr; |
| |
| if (rtlpriv->psc.rfpwr_state != ERFON) |
| return; |
| |
| rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); |
| |
| if (check_bssid) { |
| reg_rcr |= (RCR_CBSSID); |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); |
| } else if (!check_bssid) { |
| reg_rcr &= (~RCR_CBSSID); |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); |
| } |
| |
| } |
| |
| static int _rtl92se_set_media_status(struct ieee80211_hw *hw, |
| enum nl80211_iftype type) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u8 bt_msr = rtl_read_byte(rtlpriv, MSR); |
| u32 temp; |
| bt_msr &= ~MSR_LINK_MASK; |
| |
| switch (type) { |
| case NL80211_IFTYPE_UNSPECIFIED: |
| bt_msr |= (MSR_LINK_NONE << MSR_LINK_SHIFT); |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, |
| "Set Network type to NO LINK!\n"); |
| break; |
| case NL80211_IFTYPE_ADHOC: |
| bt_msr |= (MSR_LINK_ADHOC << MSR_LINK_SHIFT); |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, |
| "Set Network type to Ad Hoc!\n"); |
| break; |
| case NL80211_IFTYPE_STATION: |
| bt_msr |= (MSR_LINK_MANAGED << MSR_LINK_SHIFT); |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, |
| "Set Network type to STA!\n"); |
| break; |
| case NL80211_IFTYPE_AP: |
| bt_msr |= (MSR_LINK_MASTER << MSR_LINK_SHIFT); |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, |
| "Set Network type to AP!\n"); |
| break; |
| default: |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, |
| "Network type %d not supported!\n", type); |
| return 1; |
| break; |
| |
| } |
| |
| rtl_write_byte(rtlpriv, (MSR), bt_msr); |
| |
| temp = rtl_read_dword(rtlpriv, TCR); |
| rtl_write_dword(rtlpriv, TCR, temp & (~BIT(8))); |
| rtl_write_dword(rtlpriv, TCR, temp | BIT(8)); |
| |
| |
| return 0; |
| } |
| |
| /* HW_VAR_MEDIA_STATUS & HW_VAR_CECHK_BSSID */ |
| int rtl92se_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| |
| if (_rtl92se_set_media_status(hw, type)) |
| return -EOPNOTSUPP; |
| |
| if (rtlpriv->mac80211.link_state == MAC80211_LINKED) { |
| if (type != NL80211_IFTYPE_AP) |
| rtl92se_set_check_bssid(hw, true); |
| } else { |
| rtl92se_set_check_bssid(hw, false); |
| } |
| |
| return 0; |
| } |
| |
| /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */ |
| void rtl92se_set_qos(struct ieee80211_hw *hw, int aci) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| rtl92s_dm_init_edca_turbo(hw); |
| |
| switch (aci) { |
| case AC1_BK: |
| rtl_write_dword(rtlpriv, EDCAPARA_BK, 0xa44f); |
| break; |
| case AC0_BE: |
| /* rtl_write_dword(rtlpriv, EDCAPARA_BE, u4b_ac_param); */ |
| break; |
| case AC2_VI: |
| rtl_write_dword(rtlpriv, EDCAPARA_VI, 0x5e4322); |
| break; |
| case AC3_VO: |
| rtl_write_dword(rtlpriv, EDCAPARA_VO, 0x2f3222); |
| break; |
| default: |
| RT_ASSERT(false, "invalid aci: %d !\n", aci); |
| break; |
| } |
| } |
| |
| void rtl92se_enable_interrupt(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| |
| rtl_write_dword(rtlpriv, INTA_MASK, rtlpci->irq_mask[0]); |
| /* Support Bit 32-37(Assign as Bit 0-5) interrupt setting now */ |
| rtl_write_dword(rtlpriv, INTA_MASK + 4, rtlpci->irq_mask[1] & 0x3F); |
| } |
| |
| void rtl92se_disable_interrupt(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv; |
| struct rtl_pci *rtlpci; |
| |
| rtlpriv = rtl_priv(hw); |
| /* if firmware not available, no interrupts */ |
| if (!rtlpriv || !rtlpriv->max_fw_size) |
| return; |
| rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| rtl_write_dword(rtlpriv, INTA_MASK, 0); |
| rtl_write_dword(rtlpriv, INTA_MASK + 4, 0); |
| |
| synchronize_irq(rtlpci->pdev->irq); |
| } |
| |
| static u8 _rtl92s_set_sysclk(struct ieee80211_hw *hw, u8 data) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u8 waitcnt = 100; |
| bool result = false; |
| u8 tmp; |
| |
| rtl_write_byte(rtlpriv, SYS_CLKR + 1, data); |
| |
| /* Wait the MAC synchronized. */ |
| udelay(400); |
| |
| /* Check if it is set ready. */ |
| tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1); |
| result = ((tmp & BIT(7)) == (data & BIT(7))); |
| |
| if ((data & (BIT(6) | BIT(7))) == false) { |
| waitcnt = 100; |
| tmp = 0; |
| |
| while (1) { |
| waitcnt--; |
| tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1); |
| |
| if ((tmp & BIT(6))) |
| break; |
| |
| pr_err("wait for BIT(6) return value %x\n", tmp); |
| |
| if (waitcnt == 0) |
| break; |
| udelay(10); |
| } |
| |
| if (waitcnt == 0) |
| result = false; |
| else |
| result = true; |
| } |
| |
| return result; |
| } |
| |
| static void _rtl92s_phy_set_rfhalt(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); |
| u8 u1btmp; |
| |
| if (rtlhal->driver_going2unload) |
| rtl_write_byte(rtlpriv, 0x560, 0x0); |
| |
| /* Power save for BB/RF */ |
| u1btmp = rtl_read_byte(rtlpriv, LDOV12D_CTRL); |
| u1btmp |= BIT(0); |
| rtl_write_byte(rtlpriv, LDOV12D_CTRL, u1btmp); |
| rtl_write_byte(rtlpriv, SPS1_CTRL, 0x0); |
| rtl_write_byte(rtlpriv, TXPAUSE, 0xFF); |
| rtl_write_word(rtlpriv, CMDR, 0x57FC); |
| udelay(100); |
| rtl_write_word(rtlpriv, CMDR, 0x77FC); |
| rtl_write_byte(rtlpriv, PHY_CCA, 0x0); |
| udelay(10); |
| rtl_write_word(rtlpriv, CMDR, 0x37FC); |
| udelay(10); |
| rtl_write_word(rtlpriv, CMDR, 0x77FC); |
| udelay(10); |
| rtl_write_word(rtlpriv, CMDR, 0x57FC); |
| rtl_write_word(rtlpriv, CMDR, 0x0000); |
| |
| if (rtlhal->driver_going2unload) { |
| u1btmp = rtl_read_byte(rtlpriv, (REG_SYS_FUNC_EN + 1)); |
| u1btmp &= ~(BIT(0)); |
| rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, u1btmp); |
| } |
| |
| u1btmp = rtl_read_byte(rtlpriv, (SYS_CLKR + 1)); |
| |
| /* Add description. After switch control path. register |
| * after page1 will be invisible. We can not do any IO |
| * for register>0x40. After resume&MACIO reset, we need |
| * to remember previous reg content. */ |
| if (u1btmp & BIT(7)) { |
| u1btmp &= ~(BIT(6) | BIT(7)); |
| if (!_rtl92s_set_sysclk(hw, u1btmp)) { |
| pr_err("Switch ctrl path fail\n"); |
| return; |
| } |
| } |
| |
| /* Power save for MAC */ |
| if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS && |
| !rtlhal->driver_going2unload) { |
| /* enable LED function */ |
| rtl_write_byte(rtlpriv, 0x03, 0xF9); |
| /* SW/HW radio off or halt adapter!! For example S3/S4 */ |
| } else { |
| /* LED function disable. Power range is about 8mA now. */ |
| /* if write 0xF1 disconnet_pci power |
| * ifconfig wlan0 down power are both high 35:70 */ |
| /* if write oxF9 disconnet_pci power |
| * ifconfig wlan0 down power are both low 12:45*/ |
| rtl_write_byte(rtlpriv, 0x03, 0xF9); |
| } |
| |
| rtl_write_byte(rtlpriv, SYS_CLKR + 1, 0x70); |
| rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, 0x68); |
| rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x00); |
| rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34); |
| rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, 0x0E); |
| RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); |
| |
| } |
| |
| static void _rtl92se_gen_refreshledstate(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); |
| struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0); |
| |
| if (rtlpci->up_first_time == 1) |
| return; |
| |
| if (rtlpriv->psc.rfoff_reason == RF_CHANGE_BY_IPS) |
| rtl92se_sw_led_on(hw, pLed0); |
| else |
| rtl92se_sw_led_off(hw, pLed0); |
| } |
| |
| |
| static void _rtl92se_power_domain_init(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u16 tmpu2b; |
| u8 tmpu1b; |
| |
| rtlpriv->psc.pwrdomain_protect = true; |
| |
| tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1)); |
| if (tmpu1b & BIT(7)) { |
| tmpu1b &= ~(BIT(6) | BIT(7)); |
| if (!_rtl92s_set_sysclk(hw, tmpu1b)) { |
| rtlpriv->psc.pwrdomain_protect = false; |
| return; |
| } |
| } |
| |
| rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0); |
| rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34); |
| |
| /* Reset MAC-IO and CPU and Core Digital BIT10/11/15 */ |
| tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1); |
| |
| /* If IPS we need to turn LED on. So we not |
| * not disable BIT 3/7 of reg3. */ |
| if (rtlpriv->psc.rfoff_reason & (RF_CHANGE_BY_IPS | RF_CHANGE_BY_HW)) |
| tmpu1b &= 0xFB; |
| else |
| tmpu1b &= 0x73; |
| |
| rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b); |
| /* wait for BIT 10/11/15 to pull high automatically!! */ |
| mdelay(1); |
| |
| rtl_write_byte(rtlpriv, CMDR, 0); |
| rtl_write_byte(rtlpriv, TCR, 0); |
| |
| /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */ |
| tmpu1b = rtl_read_byte(rtlpriv, 0x562); |
| tmpu1b |= 0x08; |
| rtl_write_byte(rtlpriv, 0x562, tmpu1b); |
| tmpu1b &= ~(BIT(3)); |
| rtl_write_byte(rtlpriv, 0x562, tmpu1b); |
| |
| /* Enable AFE clock source */ |
| tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL); |
| rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01)); |
| /* Delay 1.5ms */ |
| udelay(1500); |
| tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1); |
| rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb)); |
| |
| /* Enable AFE Macro Block's Bandgap */ |
| tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC); |
| rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0))); |
| mdelay(1); |
| |
| /* Enable AFE Mbias */ |
| tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC); |
| rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02)); |
| mdelay(1); |
| |
| /* Enable LDOA15 block */ |
| tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL); |
| rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0))); |
| |
| /* Set Digital Vdd to Retention isolation Path. */ |
| tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL); |
| rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11))); |
| |
| |
| /* For warm reboot NIC disappera bug. */ |
| tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN); |
| rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13))); |
| |
| rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68); |
| |
| /* Enable AFE PLL Macro Block */ |
| tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL); |
| rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4))); |
| /* Enable MAC 80MHZ clock */ |
| tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1); |
| rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0))); |
| mdelay(1); |
| |
| /* Release isolation AFE PLL & MD */ |
| rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6); |
| |
| /* Enable MAC clock */ |
| tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR); |
| rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11))); |
| |
| /* Enable Core digital and enable IOREG R/W */ |
| tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN); |
| rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11))); |
| /* enable REG_EN */ |
| rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15))); |
| |
| /* Switch the control path. */ |
| tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR); |
| rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2)))); |
| |
| tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1)); |
| tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6))); |
| if (!_rtl92s_set_sysclk(hw, tmpu1b)) { |
| rtlpriv->psc.pwrdomain_protect = false; |
| return; |
| } |
| |
| rtl_write_word(rtlpriv, CMDR, 0x37FC); |
| |
| /* After MACIO reset,we must refresh LED state. */ |
| _rtl92se_gen_refreshledstate(hw); |
| |
| rtlpriv->psc.pwrdomain_protect = false; |
| } |
| |
| void rtl92se_card_disable(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); |
| enum nl80211_iftype opmode; |
| u8 wait = 30; |
| |
| rtlpriv->intf_ops->enable_aspm(hw); |
| |
| if (rtlpci->driver_is_goingto_unload || |
| ppsc->rfoff_reason > RF_CHANGE_BY_PS) |
| rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF); |
| |
| /* we should chnge GPIO to input mode |
| * this will drop away current about 25mA*/ |
| rtl8192se_gpiobit3_cfg_inputmode(hw); |
| |
| /* this is very important for ips power save */ |
| while (wait-- >= 10 && rtlpriv->psc.pwrdomain_protect) { |
| if (rtlpriv->psc.pwrdomain_protect) |
| mdelay(20); |
| else |
| break; |
| } |
| |
| mac->link_state = MAC80211_NOLINK; |
| opmode = NL80211_IFTYPE_UNSPECIFIED; |
| _rtl92se_set_media_status(hw, opmode); |
| |
| _rtl92s_phy_set_rfhalt(hw); |
| udelay(100); |
| } |
| |
| void rtl92se_interrupt_recognized(struct ieee80211_hw *hw, u32 *p_inta, |
| u32 *p_intb) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| |
| *p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0]; |
| rtl_write_dword(rtlpriv, ISR, *p_inta); |
| |
| *p_intb = rtl_read_dword(rtlpriv, ISR + 4) & rtlpci->irq_mask[1]; |
| rtl_write_dword(rtlpriv, ISR + 4, *p_intb); |
| } |
| |
| void rtl92se_set_beacon_related_registers(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| u16 bcntime_cfg = 0; |
| u16 bcn_cw = 6, bcn_ifs = 0xf; |
| u16 atim_window = 2; |
| |
| /* ATIM Window (in unit of TU). */ |
| rtl_write_word(rtlpriv, ATIMWND, atim_window); |
| |
| /* Beacon interval (in unit of TU). */ |
| rtl_write_word(rtlpriv, BCN_INTERVAL, mac->beacon_interval); |
| |
| /* DrvErlyInt (in unit of TU). (Time to send |
| * interrupt to notify driver to change |
| * beacon content) */ |
| rtl_write_word(rtlpriv, BCN_DRV_EARLY_INT, 10 << 4); |
| |
| /* BcnDMATIM(in unit of us). Indicates the |
| * time before TBTT to perform beacon queue DMA */ |
| rtl_write_word(rtlpriv, BCN_DMATIME, 256); |
| |
| /* Force beacon frame transmission even |
| * after receiving beacon frame from |
| * other ad hoc STA */ |
| rtl_write_byte(rtlpriv, BCN_ERR_THRESH, 100); |
| |
| /* Beacon Time Configuration */ |
| if (mac->opmode == NL80211_IFTYPE_ADHOC) |
| bcntime_cfg |= (bcn_cw << BCN_TCFG_CW_SHIFT); |
| |
| /* TODO: bcn_ifs may required to be changed on ASIC */ |
| bcntime_cfg |= bcn_ifs << BCN_TCFG_IFS; |
| |
| /*for beacon changed */ |
| rtl92s_phy_set_beacon_hwreg(hw, mac->beacon_interval); |
| } |
| |
| void rtl92se_set_beacon_interval(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| u16 bcn_interval = mac->beacon_interval; |
| |
| /* Beacon interval (in unit of TU). */ |
| rtl_write_word(rtlpriv, BCN_INTERVAL, bcn_interval); |
| /* 2008.10.24 added by tynli for beacon changed. */ |
| rtl92s_phy_set_beacon_hwreg(hw, bcn_interval); |
| } |
| |
| void rtl92se_update_interrupt_mask(struct ieee80211_hw *hw, |
| u32 add_msr, u32 rm_msr) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| |
| RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n", |
| add_msr, rm_msr); |
| |
| if (add_msr) |
| rtlpci->irq_mask[0] |= add_msr; |
| |
| if (rm_msr) |
| rtlpci->irq_mask[0] &= (~rm_msr); |
| |
| rtl92se_disable_interrupt(hw); |
| rtl92se_enable_interrupt(hw); |
| } |
| |
| static void _rtl8192se_get_IC_Inferiority(struct ieee80211_hw *hw) |
| { |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| u8 efuse_id; |
| |
| rtlhal->ic_class = IC_INFERIORITY_A; |
| |
| /* Only retrieving while using EFUSE. */ |
| if ((rtlefuse->epromtype == EEPROM_BOOT_EFUSE) && |
| !rtlefuse->autoload_failflag) { |
| efuse_id = efuse_read_1byte(hw, EFUSE_IC_ID_OFFSET); |
| |
| if (efuse_id == 0xfe) |
| rtlhal->ic_class = IC_INFERIORITY_B; |
| } |
| } |
| |
| static void _rtl92se_read_adapter_info(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| struct rtl_phy *rtlphy = &(rtlpriv->phy); |
| u16 i, usvalue; |
| u16 eeprom_id; |
| u8 tempval; |
| u8 hwinfo[HWSET_MAX_SIZE_92S]; |
| u8 rf_path, index; |
| |
| if (rtlefuse->epromtype == EEPROM_93C46) { |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, |
| "RTL819X Not boot from eeprom, check it !!\n"); |
| } else if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) { |
| rtl_efuse_shadow_map_update(hw); |
| |
| memcpy((void *)hwinfo, (void *) |
| &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], |
| HWSET_MAX_SIZE_92S); |
| } |
| |
| RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP", |
| hwinfo, HWSET_MAX_SIZE_92S); |
| |
| eeprom_id = *((u16 *)&hwinfo[0]); |
| if (eeprom_id != RTL8190_EEPROM_ID) { |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, |
| "EEPROM ID(%#x) is invalid!!\n", eeprom_id); |
| rtlefuse->autoload_failflag = true; |
| } else { |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n"); |
| rtlefuse->autoload_failflag = false; |
| } |
| |
| if (rtlefuse->autoload_failflag) |
| return; |
| |
| _rtl8192se_get_IC_Inferiority(hw); |
| |
| /* Read IC Version && Channel Plan */ |
| /* VID, DID SE 0xA-D */ |
| rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID]; |
| rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID]; |
| rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID]; |
| rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID]; |
| rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION]; |
| |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "EEPROMId = 0x%4x\n", eeprom_id); |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid); |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did); |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid); |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid); |
| |
| for (i = 0; i < 6; i += 2) { |
| usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i]; |
| *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue; |
| } |
| |
| for (i = 0; i < 6; i++) |
| rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]); |
| |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr); |
| |
| /* Get Tx Power Level by Channel */ |
| /* Read Tx power of Channel 1 ~ 14 from EEPROM. */ |
| /* 92S suupport RF A & B */ |
| for (rf_path = 0; rf_path < 2; rf_path++) { |
| for (i = 0; i < 3; i++) { |
| /* Read CCK RF A & B Tx power */ |
| rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][i] = |
| hwinfo[EEPROM_TXPOWERBASE + rf_path * 3 + i]; |
| |
| /* Read OFDM RF A & B Tx power for 1T */ |
| rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] = |
| hwinfo[EEPROM_TXPOWERBASE + 6 + rf_path * 3 + i]; |
| |
| /* Read OFDM RF A & B Tx power for 2T */ |
| rtlefuse->eprom_chnl_txpwr_ht40_2sdf[rf_path][i] |
| = hwinfo[EEPROM_TXPOWERBASE + 12 + |
| rf_path * 3 + i]; |
| } |
| } |
| |
| for (rf_path = 0; rf_path < 2; rf_path++) |
| for (i = 0; i < 3; i++) |
| RTPRINT(rtlpriv, FINIT, INIT_EEPROM, |
| "RF(%d) EEPROM CCK Area(%d) = 0x%x\n", |
| rf_path, i, |
| rtlefuse->eeprom_chnlarea_txpwr_cck |
| [rf_path][i]); |
| for (rf_path = 0; rf_path < 2; rf_path++) |
| for (i = 0; i < 3; i++) |
| RTPRINT(rtlpriv, FINIT, INIT_EEPROM, |
| "RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n", |
| rf_path, i, |
| rtlefuse->eeprom_chnlarea_txpwr_ht40_1s |
| [rf_path][i]); |
| for (rf_path = 0; rf_path < 2; rf_path++) |
| for (i = 0; i < 3; i++) |
| RTPRINT(rtlpriv, FINIT, INIT_EEPROM, |
| "RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n", |
| rf_path, i, |
| rtlefuse->eprom_chnl_txpwr_ht40_2sdf |
| [rf_path][i]); |
| |
| for (rf_path = 0; rf_path < 2; rf_path++) { |
| |
| /* Assign dedicated channel tx power */ |
| for (i = 0; i < 14; i++) { |
| /* channel 1~3 use the same Tx Power Level. */ |
| if (i < 3) |
| index = 0; |
| /* Channel 4-8 */ |
| else if (i < 8) |
| index = 1; |
| /* Channel 9-14 */ |
| else |
| index = 2; |
| |
| /* Record A & B CCK /OFDM - 1T/2T Channel area |
| * tx power */ |
| rtlefuse->txpwrlevel_cck[rf_path][i] = |
| rtlefuse->eeprom_chnlarea_txpwr_cck |
| [rf_path][index]; |
| rtlefuse->txpwrlevel_ht40_1s[rf_path][i] = |
| rtlefuse->eeprom_chnlarea_txpwr_ht40_1s |
| [rf_path][index]; |
| rtlefuse->txpwrlevel_ht40_2s[rf_path][i] = |
| rtlefuse->eprom_chnl_txpwr_ht40_2sdf |
| [rf_path][index]; |
| } |
| |
| for (i = 0; i < 14; i++) { |
| RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, |
| "RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n", |
| rf_path, i, |
| rtlefuse->txpwrlevel_cck[rf_path][i], |
| rtlefuse->txpwrlevel_ht40_1s[rf_path][i], |
| rtlefuse->txpwrlevel_ht40_2s[rf_path][i]); |
| } |
| } |
| |
| for (rf_path = 0; rf_path < 2; rf_path++) { |
| for (i = 0; i < 3; i++) { |
| /* Read Power diff limit. */ |
| rtlefuse->eeprom_pwrgroup[rf_path][i] = |
| hwinfo[EEPROM_TXPWRGROUP + rf_path * 3 + i]; |
| } |
| } |
| |
| for (rf_path = 0; rf_path < 2; rf_path++) { |
| /* Fill Pwr group */ |
| for (i = 0; i < 14; i++) { |
| /* Chanel 1-3 */ |
| if (i < 3) |
| index = 0; |
| /* Channel 4-8 */ |
| else if (i < 8) |
| index = 1; |
| /* Channel 9-13 */ |
| else |
| index = 2; |
| |
| rtlefuse->pwrgroup_ht20[rf_path][i] = |
| (rtlefuse->eeprom_pwrgroup[rf_path][index] & |
| 0xf); |
| rtlefuse->pwrgroup_ht40[rf_path][i] = |
| ((rtlefuse->eeprom_pwrgroup[rf_path][index] & |
| 0xf0) >> 4); |
| |
| RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, |
| "RF-%d pwrgroup_ht20[%d] = 0x%x\n", |
| rf_path, i, |
| rtlefuse->pwrgroup_ht20[rf_path][i]); |
| RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, |
| "RF-%d pwrgroup_ht40[%d] = 0x%x\n", |
| rf_path, i, |
| rtlefuse->pwrgroup_ht40[rf_path][i]); |
| } |
| } |
| |
| for (i = 0; i < 14; i++) { |
| /* Read tx power difference between HT OFDM 20/40 MHZ */ |
| /* channel 1-3 */ |
| if (i < 3) |
| index = 0; |
| /* Channel 4-8 */ |
| else if (i < 8) |
| index = 1; |
| /* Channel 9-14 */ |
| else |
| index = 2; |
| |
| tempval = hwinfo[EEPROM_TX_PWR_HT20_DIFF + index] & 0xff; |
| rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF); |
| rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] = |
| ((tempval >> 4) & 0xF); |
| |
| /* Read OFDM<->HT tx power diff */ |
| /* Channel 1-3 */ |
| if (i < 3) |
| index = 0; |
| /* Channel 4-8 */ |
| else if (i < 8) |
| index = 0x11; |
| /* Channel 9-14 */ |
| else |
| index = 1; |
| |
| tempval = hwinfo[EEPROM_TX_PWR_OFDM_DIFF + index] & 0xff; |
| rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] = |
| (tempval & 0xF); |
| rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] = |
| ((tempval >> 4) & 0xF); |
| |
| tempval = hwinfo[TX_PWR_SAFETY_CHK]; |
| rtlefuse->txpwr_safetyflag = (tempval & 0x01); |
| } |
| |
| rtlefuse->eeprom_regulatory = 0; |
| if (rtlefuse->eeprom_version >= 2) { |
| /* BIT(0)~2 */ |
| if (rtlefuse->eeprom_version >= 4) |
| rtlefuse->eeprom_regulatory = |
| (hwinfo[EEPROM_REGULATORY] & 0x7); |
| else /* BIT(0) */ |
| rtlefuse->eeprom_regulatory = |
| (hwinfo[EEPROM_REGULATORY] & 0x1); |
| } |
| RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, |
| "eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory); |
| |
| for (i = 0; i < 14; i++) |
| RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, |
| "RF-A Ht20 to HT40 Diff[%d] = 0x%x\n", |
| i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]); |
| for (i = 0; i < 14; i++) |
| RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, |
| "RF-A Legacy to Ht40 Diff[%d] = 0x%x\n", |
| i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]); |
| for (i = 0; i < 14; i++) |
| RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, |
| "RF-B Ht20 to HT40 Diff[%d] = 0x%x\n", |
| i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]); |
| for (i = 0; i < 14; i++) |
| RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, |
| "RF-B Legacy to HT40 Diff[%d] = 0x%x\n", |
| i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]); |
| |
| RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, |
| "TxPwrSafetyFlag = %d\n", rtlefuse->txpwr_safetyflag); |
| |
| /* Read RF-indication and Tx Power gain |
| * index diff of legacy to HT OFDM rate. */ |
| tempval = hwinfo[EEPROM_RFIND_POWERDIFF] & 0xff; |
| rtlefuse->eeprom_txpowerdiff = tempval; |
| rtlefuse->legacy_httxpowerdiff = |
| rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][0]; |
| |
| RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, |
| "TxPowerDiff = %#x\n", rtlefuse->eeprom_txpowerdiff); |
| |
| /* Get TSSI value for each path. */ |
| usvalue = *(u16 *)&hwinfo[EEPROM_TSSI_A]; |
| rtlefuse->eeprom_tssi[RF90_PATH_A] = (u8)((usvalue & 0xff00) >> 8); |
| usvalue = hwinfo[EEPROM_TSSI_B]; |
| rtlefuse->eeprom_tssi[RF90_PATH_B] = (u8)(usvalue & 0xff); |
| |
| RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "TSSI_A = 0x%x, TSSI_B = 0x%x\n", |
| rtlefuse->eeprom_tssi[RF90_PATH_A], |
| rtlefuse->eeprom_tssi[RF90_PATH_B]); |
| |
| /* Read antenna tx power offset of B/C/D to A from EEPROM */ |
| /* and read ThermalMeter from EEPROM */ |
| tempval = hwinfo[EEPROM_THERMALMETER]; |
| rtlefuse->eeprom_thermalmeter = tempval; |
| RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, |
| "thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter); |
| |
| /* ThermalMeter, BIT(0)~3 for RFIC1, BIT(4)~7 for RFIC2 */ |
| rtlefuse->thermalmeter[0] = (rtlefuse->eeprom_thermalmeter & 0x1f); |
| rtlefuse->tssi_13dbm = rtlefuse->eeprom_thermalmeter * 100; |
| |
| /* Read CrystalCap from EEPROM */ |
| tempval = hwinfo[EEPROM_CRYSTALCAP] >> 4; |
| rtlefuse->eeprom_crystalcap = tempval; |
| /* CrystalCap, BIT(12)~15 */ |
| rtlefuse->crystalcap = rtlefuse->eeprom_crystalcap; |
| |
| /* Read IC Version && Channel Plan */ |
| /* Version ID, Channel plan */ |
| rtlefuse->eeprom_channelplan = hwinfo[EEPROM_CHANNELPLAN]; |
| rtlefuse->txpwr_fromeprom = true; |
| RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, |
| "EEPROM ChannelPlan = 0x%4x\n", rtlefuse->eeprom_channelplan); |
| |
| /* Read Customer ID or Board Type!!! */ |
| tempval = hwinfo[EEPROM_BOARDTYPE]; |
| /* Change RF type definition */ |
| if (tempval == 0) |
| rtlphy->rf_type = RF_2T2R; |
| else if (tempval == 1) |
| rtlphy->rf_type = RF_1T2R; |
| else if (tempval == 2) |
| rtlphy->rf_type = RF_1T2R; |
| else if (tempval == 3) |
| rtlphy->rf_type = RF_1T1R; |
| |
| /* 1T2R but 1SS (1x1 receive combining) */ |
| rtlefuse->b1x1_recvcombine = false; |
| if (rtlphy->rf_type == RF_1T2R) { |
| tempval = rtl_read_byte(rtlpriv, 0x07); |
| if (!(tempval & BIT(0))) { |
| rtlefuse->b1x1_recvcombine = true; |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "RF_TYPE=1T2R but only 1SS\n"); |
| } |
| } |
| rtlefuse->b1ss_support = rtlefuse->b1x1_recvcombine; |
| rtlefuse->eeprom_oemid = *&hwinfo[EEPROM_CUSTOMID]; |
| |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM Customer ID: 0x%2x", |
| rtlefuse->eeprom_oemid); |
| |
| /* set channel paln to world wide 13 */ |
| rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13; |
| } |
| |
| void rtl92se_read_eeprom_info(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| u8 tmp_u1b = 0; |
| |
| tmp_u1b = rtl_read_byte(rtlpriv, EPROM_CMD); |
| |
| if (tmp_u1b & BIT(4)) { |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n"); |
| rtlefuse->epromtype = EEPROM_93C46; |
| } else { |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n"); |
| rtlefuse->epromtype = EEPROM_BOOT_EFUSE; |
| } |
| |
| if (tmp_u1b & BIT(5)) { |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n"); |
| rtlefuse->autoload_failflag = false; |
| _rtl92se_read_adapter_info(hw); |
| } else { |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n"); |
| rtlefuse->autoload_failflag = true; |
| } |
| } |
| |
| static void rtl92se_update_hal_rate_table(struct ieee80211_hw *hw, |
| struct ieee80211_sta *sta) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_phy *rtlphy = &(rtlpriv->phy); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| u32 ratr_value; |
| u8 ratr_index = 0; |
| u8 nmode = mac->ht_enable; |
| u8 mimo_ps = IEEE80211_SMPS_OFF; |
| u16 shortgi_rate = 0; |
| u32 tmp_ratr_value = 0; |
| u8 curtxbw_40mhz = mac->bw_40; |
| u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ? |
| 1 : 0; |
| u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ? |
| 1 : 0; |
| enum wireless_mode wirelessmode = mac->mode; |
| |
| if (rtlhal->current_bandtype == BAND_ON_5G) |
| ratr_value = sta->supp_rates[1] << 4; |
| else |
| ratr_value = sta->supp_rates[0]; |
| if (mac->opmode == NL80211_IFTYPE_ADHOC) |
| ratr_value = 0xfff; |
| ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 | |
| sta->ht_cap.mcs.rx_mask[0] << 12); |
| switch (wirelessmode) { |
| case WIRELESS_MODE_B: |
| ratr_value &= 0x0000000D; |
| break; |
| case WIRELESS_MODE_G: |
| ratr_value &= 0x00000FF5; |
| break; |
| case WIRELESS_MODE_N_24G: |
| case WIRELESS_MODE_N_5G: |
| nmode = 1; |
| if (mimo_ps == IEEE80211_SMPS_STATIC) { |
| ratr_value &= 0x0007F005; |
| } else { |
| u32 ratr_mask; |
| |
| if (get_rf_type(rtlphy) == RF_1T2R || |
| get_rf_type(rtlphy) == RF_1T1R) { |
| if (curtxbw_40mhz) |
| ratr_mask = 0x000ff015; |
| else |
| ratr_mask = 0x000ff005; |
| } else { |
| if (curtxbw_40mhz) |
| ratr_mask = 0x0f0ff015; |
| else |
| ratr_mask = 0x0f0ff005; |
| } |
| |
| ratr_value &= ratr_mask; |
| } |
| break; |
| default: |
| if (rtlphy->rf_type == RF_1T2R) |
| ratr_value &= 0x000ff0ff; |
| else |
| ratr_value &= 0x0f0ff0ff; |
| |
| break; |
| } |
| |
| if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT) |
| ratr_value &= 0x0FFFFFFF; |
| else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT) |
| ratr_value &= 0x0FFFFFF0; |
| |
| if (nmode && ((curtxbw_40mhz && |
| curshortgi_40mhz) || (!curtxbw_40mhz && |
| curshortgi_20mhz))) { |
| |
| ratr_value |= 0x10000000; |
| tmp_ratr_value = (ratr_value >> 12); |
| |
| for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) { |
| if ((1 << shortgi_rate) & tmp_ratr_value) |
| break; |
| } |
| |
| shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) | |
| (shortgi_rate << 4) | (shortgi_rate); |
| |
| rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate); |
| } |
| |
| rtl_write_dword(rtlpriv, ARFR0 + ratr_index * 4, ratr_value); |
| if (ratr_value & 0xfffff000) |
| rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_N); |
| else |
| rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_BG); |
| |
| RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n", |
| rtl_read_dword(rtlpriv, ARFR0)); |
| } |
| |
| static void rtl92se_update_hal_rate_mask(struct ieee80211_hw *hw, |
| struct ieee80211_sta *sta, |
| u8 rssi_level) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_phy *rtlphy = &(rtlpriv->phy); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| struct rtl_sta_info *sta_entry = NULL; |
| u32 ratr_bitmap; |
| u8 ratr_index = 0; |
| u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0; |
| u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ? |
| 1 : 0; |
| u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ? |
| 1 : 0; |
| enum wireless_mode wirelessmode = 0; |
| bool shortgi = false; |
| u32 ratr_value = 0; |
| u8 shortgi_rate = 0; |
| u32 mask = 0; |
| u32 band = 0; |
| bool bmulticast = false; |
| u8 macid = 0; |
| u8 mimo_ps = IEEE80211_SMPS_OFF; |
| |
| sta_entry = (struct rtl_sta_info *) sta->drv_priv; |
| wirelessmode = sta_entry->wireless_mode; |
| if (mac->opmode == NL80211_IFTYPE_STATION) |
| curtxbw_40mhz = mac->bw_40; |
| else if (mac->opmode == NL80211_IFTYPE_AP || |
| mac->opmode == NL80211_IFTYPE_ADHOC) |
| macid = sta->aid + 1; |
| |
| if (rtlhal->current_bandtype == BAND_ON_5G) |
| ratr_bitmap = sta->supp_rates[1] << 4; |
| else |
| ratr_bitmap = sta->supp_rates[0]; |
| if (mac->opmode == NL80211_IFTYPE_ADHOC) |
| ratr_bitmap = 0xfff; |
| ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 | |
| sta->ht_cap.mcs.rx_mask[0] << 12); |
| switch (wirelessmode) { |
| case WIRELESS_MODE_B: |
| band |= WIRELESS_11B; |
| ratr_index = RATR_INX_WIRELESS_B; |
| if (ratr_bitmap & 0x0000000c) |
| ratr_bitmap &= 0x0000000d; |
| else |
| ratr_bitmap &= 0x0000000f; |
| break; |
| case WIRELESS_MODE_G: |
| band |= (WIRELESS_11G | WIRELESS_11B); |
| ratr_index = RATR_INX_WIRELESS_GB; |
| |
| if (rssi_level == 1) |
| ratr_bitmap &= 0x00000f00; |
| else if (rssi_level == 2) |
| ratr_bitmap &= 0x00000ff0; |
| else |
| ratr_bitmap &= 0x00000ff5; |
| break; |
| case WIRELESS_MODE_A: |
| band |= WIRELESS_11A; |
| ratr_index = RATR_INX_WIRELESS_A; |
| ratr_bitmap &= 0x00000ff0; |
| break; |
| case WIRELESS_MODE_N_24G: |
| case WIRELESS_MODE_N_5G: |
| band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B); |
| ratr_index = RATR_INX_WIRELESS_NGB; |
| |
| if (mimo_ps == IEEE80211_SMPS_STATIC) { |
| if (rssi_level == 1) |
| ratr_bitmap &= 0x00070000; |
| else if (rssi_level == 2) |
| ratr_bitmap &= 0x0007f000; |
| else |
| ratr_bitmap &= 0x0007f005; |
| } else { |
| if (rtlphy->rf_type == RF_1T2R || |
| rtlphy->rf_type == RF_1T1R) { |
| if (rssi_level == 1) { |
| ratr_bitmap &= 0x000f0000; |
| } else if (rssi_level == 3) { |
| ratr_bitmap &= 0x000fc000; |
| } else if (rssi_level == 5) { |
| ratr_bitmap &= 0x000ff000; |
| } else { |
| if (curtxbw_40mhz) |
| ratr_bitmap &= 0x000ff015; |
| else |
| ratr_bitmap &= 0x000ff005; |
| } |
| } else { |
| if (rssi_level == 1) { |
| ratr_bitmap &= 0x0f8f0000; |
| } else if (rssi_level == 3) { |
| ratr_bitmap &= 0x0f8fc000; |
| } else if (rssi_level == 5) { |
| ratr_bitmap &= 0x0f8ff000; |
| } else { |
| if (curtxbw_40mhz) |
| ratr_bitmap &= 0x0f8ff015; |
| else |
| ratr_bitmap &= 0x0f8ff005; |
| } |
| } |
| } |
| |
| if ((curtxbw_40mhz && curshortgi_40mhz) || |
| (!curtxbw_40mhz && curshortgi_20mhz)) { |
| if (macid == 0) |
| shortgi = true; |
| else if (macid == 1) |
| shortgi = false; |
| } |
| break; |
| default: |
| band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B); |
| ratr_index = RATR_INX_WIRELESS_NGB; |
| |
| if (rtlphy->rf_type == RF_1T2R) |
| ratr_bitmap &= 0x000ff0ff; |
| else |
| ratr_bitmap &= 0x0f8ff0ff; |
| break; |
| } |
| sta_entry->ratr_index = ratr_index; |
| |
| if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT) |
| ratr_bitmap &= 0x0FFFFFFF; |
| else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT) |
| ratr_bitmap &= 0x0FFFFFF0; |
| |
| if (shortgi) { |
| ratr_bitmap |= 0x10000000; |
| /* Get MAX MCS available. */ |
| ratr_value = (ratr_bitmap >> 12); |
| for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) { |
| if ((1 << shortgi_rate) & ratr_value) |
| break; |
| } |
| |
| shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) | |
| (shortgi_rate << 4) | (shortgi_rate); |
| rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate); |
| } |
| |
| mask |= (bmulticast ? 1 : 0) << 9 | (macid & 0x1f) << 4 | (band & 0xf); |
| |
| RT_TRACE(rtlpriv, COMP_RATR, DBG_TRACE, "mask = %x, bitmap = %x\n", |
| mask, ratr_bitmap); |
| rtl_write_dword(rtlpriv, 0x2c4, ratr_bitmap); |
| rtl_write_dword(rtlpriv, WFM5, (FW_RA_UPDATE_MASK | (mask << 8))); |
| |
| if (macid != 0) |
| sta_entry->ratr_index = ratr_index; |
| } |
| |
| void rtl92se_update_hal_rate_tbl(struct ieee80211_hw *hw, |
| struct ieee80211_sta *sta, u8 rssi_level) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| |
| if (rtlpriv->dm.useramask) |
| rtl92se_update_hal_rate_mask(hw, sta, rssi_level); |
| else |
| rtl92se_update_hal_rate_table(hw, sta); |
| } |
| |
| void rtl92se_update_channel_access_setting(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| u16 sifs_timer; |
| |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME, |
| &mac->slot_time); |
| sifs_timer = 0x0e0e; |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer); |
| |
| } |
| |
| /* this ifunction is for RFKILL, it's different with windows, |
| * because UI will disable wireless when GPIO Radio Off. |
| * And here we not check or Disable/Enable ASPM like windows*/ |
| bool rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| enum rf_pwrstate rfpwr_toset /*, cur_rfstate */; |
| unsigned long flag = 0; |
| bool actuallyset = false; |
| bool turnonbypowerdomain = false; |
| |
| /* just 8191se can check gpio before firstup, 92c/92d have fixed it */ |
| if ((rtlpci->up_first_time == 1) || (rtlpci->being_init_adapter)) |
| return false; |
| |
| if (ppsc->swrf_processing) |
| return false; |
| |
| spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); |
| if (ppsc->rfchange_inprogress) { |
| spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); |
| return false; |
| } else { |
| ppsc->rfchange_inprogress = true; |
| spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); |
| } |
| |
| /* cur_rfstate = ppsc->rfpwr_state;*/ |
| |
| /* because after _rtl92s_phy_set_rfhalt, all power |
| * closed, so we must open some power for GPIO check, |
| * or we will always check GPIO RFOFF here, |
| * And we should close power after GPIO check */ |
| if (RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) { |
| _rtl92se_power_domain_init(hw); |
| turnonbypowerdomain = true; |
| } |
| |
| rfpwr_toset = _rtl92se_rf_onoff_detect(hw); |
| |
| if ((ppsc->hwradiooff) && (rfpwr_toset == ERFON)) { |
| RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG, |
| "RFKILL-HW Radio ON, RF ON\n"); |
| |
| rfpwr_toset = ERFON; |
| ppsc->hwradiooff = false; |
| actuallyset = true; |
| } else if ((!ppsc->hwradiooff) && (rfpwr_toset == ERFOFF)) { |
| RT_TRACE(rtlpriv, COMP_RF, |
| DBG_DMESG, "RFKILL-HW Radio OFF, RF OFF\n"); |
| |
| rfpwr_toset = ERFOFF; |
| ppsc->hwradiooff = true; |
| actuallyset = true; |
| } |
| |
| if (actuallyset) { |
| spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); |
| ppsc->rfchange_inprogress = false; |
| spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); |
| |
| /* this not include ifconfig wlan0 down case */ |
| /* } else if (rfpwr_toset == ERFOFF || cur_rfstate == ERFOFF) { */ |
| } else { |
| /* because power_domain_init may be happen when |
| * _rtl92s_phy_set_rfhalt, this will open some powers |
| * and cause current increasing about 40 mA for ips, |
| * rfoff and ifconfig down, so we set |
| * _rtl92s_phy_set_rfhalt again here */ |
| if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC && |
| turnonbypowerdomain) { |
| _rtl92s_phy_set_rfhalt(hw); |
| RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); |
| } |
| |
| spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); |
| ppsc->rfchange_inprogress = false; |
| spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); |
| } |
| |
| *valid = 1; |
| return !ppsc->hwradiooff; |
| |
| } |
| |
| /* Is_wepkey just used for WEP used as group & pairwise key |
| * if pairwise is AES ang group is WEP Is_wepkey == false.*/ |
| void rtl92se_set_key(struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr, |
| bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| u8 *macaddr = p_macaddr; |
| |
| u32 entry_id = 0; |
| bool is_pairwise = false; |
| |
| static u8 cam_const_addr[4][6] = { |
| {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, |
| {0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, |
| {0x00, 0x00, 0x00, 0x00, 0x00, 0x02}, |
| {0x00, 0x00, 0x00, 0x00, 0x00, 0x03} |
| }; |
| static u8 cam_const_broad[] = { |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff |
| }; |
| |
| if (clear_all) { |
| u8 idx = 0; |
| u8 cam_offset = 0; |
| u8 clear_number = 5; |
| |
| RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n"); |
| |
| for (idx = 0; idx < clear_number; idx++) { |
| rtl_cam_mark_invalid(hw, cam_offset + idx); |
| rtl_cam_empty_entry(hw, cam_offset + idx); |
| |
| if (idx < 5) { |
| memset(rtlpriv->sec.key_buf[idx], 0, |
| MAX_KEY_LEN); |
| rtlpriv->sec.key_len[idx] = 0; |
| } |
| } |
| |
| } else { |
| switch (enc_algo) { |
| case WEP40_ENCRYPTION: |
| enc_algo = CAM_WEP40; |
| break; |
| case WEP104_ENCRYPTION: |
| enc_algo = CAM_WEP104; |
| break; |
| case TKIP_ENCRYPTION: |
| enc_algo = CAM_TKIP; |
| break; |
| case AESCCMP_ENCRYPTION: |
| enc_algo = CAM_AES; |
| break; |
| default: |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, |
| "switch case not processed\n"); |
| enc_algo = CAM_TKIP; |
| break; |
| } |
| |
| if (is_wepkey || rtlpriv->sec.use_defaultkey) { |
| macaddr = cam_const_addr[key_index]; |
| entry_id = key_index; |
| } else { |
| if (is_group) { |
| macaddr = cam_const_broad; |
| entry_id = key_index; |
| } else { |
| if (mac->opmode == NL80211_IFTYPE_AP) { |
| entry_id = rtl_cam_get_free_entry(hw, |
| p_macaddr); |
| if (entry_id >= TOTAL_CAM_ENTRY) { |
| RT_TRACE(rtlpriv, |
| COMP_SEC, DBG_EMERG, |
| "Can not find free hw security cam entry\n"); |
| return; |
| } |
| } else { |
| entry_id = CAM_PAIRWISE_KEY_POSITION; |
| } |
| |
| key_index = PAIRWISE_KEYIDX; |
| is_pairwise = true; |
| } |
| } |
| |
| if (rtlpriv->sec.key_len[key_index] == 0) { |
| RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, |
| "delete one entry, entry_id is %d\n", |
| entry_id); |
| if (mac->opmode == NL80211_IFTYPE_AP) |
| rtl_cam_del_entry(hw, p_macaddr); |
| rtl_cam_delete_one_entry(hw, p_macaddr, entry_id); |
| } else { |
| RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, |
| "add one entry\n"); |
| if (is_pairwise) { |
| RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, |
| "set Pairwise key\n"); |
| |
| rtl_cam_add_one_entry(hw, macaddr, key_index, |
| entry_id, enc_algo, |
| CAM_CONFIG_NO_USEDK, |
| rtlpriv->sec.key_buf[key_index]); |
| } else { |
| RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, |
| "set group key\n"); |
| |
| if (mac->opmode == NL80211_IFTYPE_ADHOC) { |
| rtl_cam_add_one_entry(hw, |
| rtlefuse->dev_addr, |
| PAIRWISE_KEYIDX, |
| CAM_PAIRWISE_KEY_POSITION, |
| enc_algo, CAM_CONFIG_NO_USEDK, |
| rtlpriv->sec.key_buf[entry_id]); |
| } |
| |
| rtl_cam_add_one_entry(hw, macaddr, key_index, |
| entry_id, enc_algo, |
| CAM_CONFIG_NO_USEDK, |
| rtlpriv->sec.key_buf[entry_id]); |
| } |
| |
| } |
| } |
| } |
| |
| void rtl92se_suspend(struct ieee80211_hw *hw) |
| { |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| |
| rtlpci->up_first_time = true; |
| } |
| |
| void rtl92se_resume(struct ieee80211_hw *hw) |
| { |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| u32 val; |
| |
| pci_read_config_dword(rtlpci->pdev, 0x40, &val); |
| if ((val & 0x0000ff00) != 0) |
| pci_write_config_dword(rtlpci->pdev, 0x40, |
| val & 0xffff00ff); |
| } |
| |
| /* Turn on AAP (RCR:bit 0) for promicuous mode. */ |
| void rtl92se_allow_all_destaddr(struct ieee80211_hw *hw, |
| bool allow_all_da, bool write_into_reg) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| |
| if (allow_all_da) /* Set BIT0 */ |
| rtlpci->receive_config |= RCR_AAP; |
| else /* Clear BIT0 */ |
| rtlpci->receive_config &= ~RCR_AAP; |
| |
| if (write_into_reg) |
| rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config); |
| |
| RT_TRACE(rtlpriv, COMP_TURBO | COMP_INIT, DBG_LOUD, |
| "receive_config=0x%08X, write_into_reg=%d\n", |
| rtlpci->receive_config, write_into_reg); |
| } |