| /* |
| * Copyright © 2006-2007 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: |
| * Eric Anholt <eric@anholt.net> |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/input.h> |
| #include <linux/i2c.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include "drmP.h" |
| #include "intel_drv.h" |
| #include "i915_drm.h" |
| #include "i915_drv.h" |
| #include "drm_dp_helper.h" |
| |
| #include "drm_crtc_helper.h" |
| |
| #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) |
| |
| bool intel_pipe_has_type (struct drm_crtc *crtc, int type); |
| static void intel_update_watermarks(struct drm_device *dev); |
| static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule); |
| |
| typedef struct { |
| /* given values */ |
| int n; |
| int m1, m2; |
| int p1, p2; |
| /* derived values */ |
| int dot; |
| int vco; |
| int m; |
| int p; |
| } intel_clock_t; |
| |
| typedef struct { |
| int min, max; |
| } intel_range_t; |
| |
| typedef struct { |
| int dot_limit; |
| int p2_slow, p2_fast; |
| } intel_p2_t; |
| |
| #define INTEL_P2_NUM 2 |
| typedef struct intel_limit intel_limit_t; |
| struct intel_limit { |
| intel_range_t dot, vco, n, m, m1, m2, p, p1; |
| intel_p2_t p2; |
| bool (* find_pll)(const intel_limit_t *, struct drm_crtc *, |
| int, int, intel_clock_t *); |
| }; |
| |
| #define I8XX_DOT_MIN 25000 |
| #define I8XX_DOT_MAX 350000 |
| #define I8XX_VCO_MIN 930000 |
| #define I8XX_VCO_MAX 1400000 |
| #define I8XX_N_MIN 3 |
| #define I8XX_N_MAX 16 |
| #define I8XX_M_MIN 96 |
| #define I8XX_M_MAX 140 |
| #define I8XX_M1_MIN 18 |
| #define I8XX_M1_MAX 26 |
| #define I8XX_M2_MIN 6 |
| #define I8XX_M2_MAX 16 |
| #define I8XX_P_MIN 4 |
| #define I8XX_P_MAX 128 |
| #define I8XX_P1_MIN 2 |
| #define I8XX_P1_MAX 33 |
| #define I8XX_P1_LVDS_MIN 1 |
| #define I8XX_P1_LVDS_MAX 6 |
| #define I8XX_P2_SLOW 4 |
| #define I8XX_P2_FAST 2 |
| #define I8XX_P2_LVDS_SLOW 14 |
| #define I8XX_P2_LVDS_FAST 7 |
| #define I8XX_P2_SLOW_LIMIT 165000 |
| |
| #define I9XX_DOT_MIN 20000 |
| #define I9XX_DOT_MAX 400000 |
| #define I9XX_VCO_MIN 1400000 |
| #define I9XX_VCO_MAX 2800000 |
| #define PINEVIEW_VCO_MIN 1700000 |
| #define PINEVIEW_VCO_MAX 3500000 |
| #define I9XX_N_MIN 1 |
| #define I9XX_N_MAX 6 |
| /* Pineview's Ncounter is a ring counter */ |
| #define PINEVIEW_N_MIN 3 |
| #define PINEVIEW_N_MAX 6 |
| #define I9XX_M_MIN 70 |
| #define I9XX_M_MAX 120 |
| #define PINEVIEW_M_MIN 2 |
| #define PINEVIEW_M_MAX 256 |
| #define I9XX_M1_MIN 10 |
| #define I9XX_M1_MAX 22 |
| #define I9XX_M2_MIN 5 |
| #define I9XX_M2_MAX 9 |
| /* Pineview M1 is reserved, and must be 0 */ |
| #define PINEVIEW_M1_MIN 0 |
| #define PINEVIEW_M1_MAX 0 |
| #define PINEVIEW_M2_MIN 0 |
| #define PINEVIEW_M2_MAX 254 |
| #define I9XX_P_SDVO_DAC_MIN 5 |
| #define I9XX_P_SDVO_DAC_MAX 80 |
| #define I9XX_P_LVDS_MIN 7 |
| #define I9XX_P_LVDS_MAX 98 |
| #define PINEVIEW_P_LVDS_MIN 7 |
| #define PINEVIEW_P_LVDS_MAX 112 |
| #define I9XX_P1_MIN 1 |
| #define I9XX_P1_MAX 8 |
| #define I9XX_P2_SDVO_DAC_SLOW 10 |
| #define I9XX_P2_SDVO_DAC_FAST 5 |
| #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000 |
| #define I9XX_P2_LVDS_SLOW 14 |
| #define I9XX_P2_LVDS_FAST 7 |
| #define I9XX_P2_LVDS_SLOW_LIMIT 112000 |
| |
| /*The parameter is for SDVO on G4x platform*/ |
| #define G4X_DOT_SDVO_MIN 25000 |
| #define G4X_DOT_SDVO_MAX 270000 |
| #define G4X_VCO_MIN 1750000 |
| #define G4X_VCO_MAX 3500000 |
| #define G4X_N_SDVO_MIN 1 |
| #define G4X_N_SDVO_MAX 4 |
| #define G4X_M_SDVO_MIN 104 |
| #define G4X_M_SDVO_MAX 138 |
| #define G4X_M1_SDVO_MIN 17 |
| #define G4X_M1_SDVO_MAX 23 |
| #define G4X_M2_SDVO_MIN 5 |
| #define G4X_M2_SDVO_MAX 11 |
| #define G4X_P_SDVO_MIN 10 |
| #define G4X_P_SDVO_MAX 30 |
| #define G4X_P1_SDVO_MIN 1 |
| #define G4X_P1_SDVO_MAX 3 |
| #define G4X_P2_SDVO_SLOW 10 |
| #define G4X_P2_SDVO_FAST 10 |
| #define G4X_P2_SDVO_LIMIT 270000 |
| |
| /*The parameter is for HDMI_DAC on G4x platform*/ |
| #define G4X_DOT_HDMI_DAC_MIN 22000 |
| #define G4X_DOT_HDMI_DAC_MAX 400000 |
| #define G4X_N_HDMI_DAC_MIN 1 |
| #define G4X_N_HDMI_DAC_MAX 4 |
| #define G4X_M_HDMI_DAC_MIN 104 |
| #define G4X_M_HDMI_DAC_MAX 138 |
| #define G4X_M1_HDMI_DAC_MIN 16 |
| #define G4X_M1_HDMI_DAC_MAX 23 |
| #define G4X_M2_HDMI_DAC_MIN 5 |
| #define G4X_M2_HDMI_DAC_MAX 11 |
| #define G4X_P_HDMI_DAC_MIN 5 |
| #define G4X_P_HDMI_DAC_MAX 80 |
| #define G4X_P1_HDMI_DAC_MIN 1 |
| #define G4X_P1_HDMI_DAC_MAX 8 |
| #define G4X_P2_HDMI_DAC_SLOW 10 |
| #define G4X_P2_HDMI_DAC_FAST 5 |
| #define G4X_P2_HDMI_DAC_LIMIT 165000 |
| |
| /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/ |
| #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000 |
| #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000 |
| #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1 |
| #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3 |
| #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104 |
| #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138 |
| #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17 |
| #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23 |
| #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5 |
| #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11 |
| #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28 |
| #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112 |
| #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2 |
| #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8 |
| #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14 |
| #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14 |
| #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0 |
| |
| /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/ |
| #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000 |
| #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000 |
| #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1 |
| #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3 |
| #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104 |
| #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138 |
| #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17 |
| #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23 |
| #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5 |
| #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11 |
| #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14 |
| #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42 |
| #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2 |
| #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6 |
| #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7 |
| #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7 |
| #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0 |
| |
| /*The parameter is for DISPLAY PORT on G4x platform*/ |
| #define G4X_DOT_DISPLAY_PORT_MIN 161670 |
| #define G4X_DOT_DISPLAY_PORT_MAX 227000 |
| #define G4X_N_DISPLAY_PORT_MIN 1 |
| #define G4X_N_DISPLAY_PORT_MAX 2 |
| #define G4X_M_DISPLAY_PORT_MIN 97 |
| #define G4X_M_DISPLAY_PORT_MAX 108 |
| #define G4X_M1_DISPLAY_PORT_MIN 0x10 |
| #define G4X_M1_DISPLAY_PORT_MAX 0x12 |
| #define G4X_M2_DISPLAY_PORT_MIN 0x05 |
| #define G4X_M2_DISPLAY_PORT_MAX 0x06 |
| #define G4X_P_DISPLAY_PORT_MIN 10 |
| #define G4X_P_DISPLAY_PORT_MAX 20 |
| #define G4X_P1_DISPLAY_PORT_MIN 1 |
| #define G4X_P1_DISPLAY_PORT_MAX 2 |
| #define G4X_P2_DISPLAY_PORT_SLOW 10 |
| #define G4X_P2_DISPLAY_PORT_FAST 10 |
| #define G4X_P2_DISPLAY_PORT_LIMIT 0 |
| |
| /* Ironlake / Sandybridge */ |
| /* as we calculate clock using (register_value + 2) for |
| N/M1/M2, so here the range value for them is (actual_value-2). |
| */ |
| #define IRONLAKE_DOT_MIN 25000 |
| #define IRONLAKE_DOT_MAX 350000 |
| #define IRONLAKE_VCO_MIN 1760000 |
| #define IRONLAKE_VCO_MAX 3510000 |
| #define IRONLAKE_M1_MIN 12 |
| #define IRONLAKE_M1_MAX 22 |
| #define IRONLAKE_M2_MIN 5 |
| #define IRONLAKE_M2_MAX 9 |
| #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */ |
| |
| /* We have parameter ranges for different type of outputs. */ |
| |
| /* DAC & HDMI Refclk 120Mhz */ |
| #define IRONLAKE_DAC_N_MIN 1 |
| #define IRONLAKE_DAC_N_MAX 5 |
| #define IRONLAKE_DAC_M_MIN 79 |
| #define IRONLAKE_DAC_M_MAX 127 |
| #define IRONLAKE_DAC_P_MIN 5 |
| #define IRONLAKE_DAC_P_MAX 80 |
| #define IRONLAKE_DAC_P1_MIN 1 |
| #define IRONLAKE_DAC_P1_MAX 8 |
| #define IRONLAKE_DAC_P2_SLOW 10 |
| #define IRONLAKE_DAC_P2_FAST 5 |
| |
| /* LVDS single-channel 120Mhz refclk */ |
| #define IRONLAKE_LVDS_S_N_MIN 1 |
| #define IRONLAKE_LVDS_S_N_MAX 3 |
| #define IRONLAKE_LVDS_S_M_MIN 79 |
| #define IRONLAKE_LVDS_S_M_MAX 118 |
| #define IRONLAKE_LVDS_S_P_MIN 28 |
| #define IRONLAKE_LVDS_S_P_MAX 112 |
| #define IRONLAKE_LVDS_S_P1_MIN 2 |
| #define IRONLAKE_LVDS_S_P1_MAX 8 |
| #define IRONLAKE_LVDS_S_P2_SLOW 14 |
| #define IRONLAKE_LVDS_S_P2_FAST 14 |
| |
| /* LVDS dual-channel 120Mhz refclk */ |
| #define IRONLAKE_LVDS_D_N_MIN 1 |
| #define IRONLAKE_LVDS_D_N_MAX 3 |
| #define IRONLAKE_LVDS_D_M_MIN 79 |
| #define IRONLAKE_LVDS_D_M_MAX 127 |
| #define IRONLAKE_LVDS_D_P_MIN 14 |
| #define IRONLAKE_LVDS_D_P_MAX 56 |
| #define IRONLAKE_LVDS_D_P1_MIN 2 |
| #define IRONLAKE_LVDS_D_P1_MAX 8 |
| #define IRONLAKE_LVDS_D_P2_SLOW 7 |
| #define IRONLAKE_LVDS_D_P2_FAST 7 |
| |
| /* LVDS single-channel 100Mhz refclk */ |
| #define IRONLAKE_LVDS_S_SSC_N_MIN 1 |
| #define IRONLAKE_LVDS_S_SSC_N_MAX 2 |
| #define IRONLAKE_LVDS_S_SSC_M_MIN 79 |
| #define IRONLAKE_LVDS_S_SSC_M_MAX 126 |
| #define IRONLAKE_LVDS_S_SSC_P_MIN 28 |
| #define IRONLAKE_LVDS_S_SSC_P_MAX 112 |
| #define IRONLAKE_LVDS_S_SSC_P1_MIN 2 |
| #define IRONLAKE_LVDS_S_SSC_P1_MAX 8 |
| #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14 |
| #define IRONLAKE_LVDS_S_SSC_P2_FAST 14 |
| |
| /* LVDS dual-channel 100Mhz refclk */ |
| #define IRONLAKE_LVDS_D_SSC_N_MIN 1 |
| #define IRONLAKE_LVDS_D_SSC_N_MAX 3 |
| #define IRONLAKE_LVDS_D_SSC_M_MIN 79 |
| #define IRONLAKE_LVDS_D_SSC_M_MAX 126 |
| #define IRONLAKE_LVDS_D_SSC_P_MIN 14 |
| #define IRONLAKE_LVDS_D_SSC_P_MAX 42 |
| #define IRONLAKE_LVDS_D_SSC_P1_MIN 2 |
| #define IRONLAKE_LVDS_D_SSC_P1_MAX 6 |
| #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7 |
| #define IRONLAKE_LVDS_D_SSC_P2_FAST 7 |
| |
| /* DisplayPort */ |
| #define IRONLAKE_DP_N_MIN 1 |
| #define IRONLAKE_DP_N_MAX 2 |
| #define IRONLAKE_DP_M_MIN 81 |
| #define IRONLAKE_DP_M_MAX 90 |
| #define IRONLAKE_DP_P_MIN 10 |
| #define IRONLAKE_DP_P_MAX 20 |
| #define IRONLAKE_DP_P2_FAST 10 |
| #define IRONLAKE_DP_P2_SLOW 10 |
| #define IRONLAKE_DP_P2_LIMIT 0 |
| #define IRONLAKE_DP_P1_MIN 1 |
| #define IRONLAKE_DP_P1_MAX 2 |
| |
| static bool |
| intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc, |
| int target, int refclk, intel_clock_t *best_clock); |
| static bool |
| intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc, |
| int target, int refclk, intel_clock_t *best_clock); |
| |
| static bool |
| intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc, |
| int target, int refclk, intel_clock_t *best_clock); |
| static bool |
| intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc, |
| int target, int refclk, intel_clock_t *best_clock); |
| |
| static const intel_limit_t intel_limits_i8xx_dvo = { |
| .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX }, |
| .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX }, |
| .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX }, |
| .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX }, |
| .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX }, |
| .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX }, |
| .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX }, |
| .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX }, |
| .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT, |
| .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST }, |
| .find_pll = intel_find_best_PLL, |
| }; |
| |
| static const intel_limit_t intel_limits_i8xx_lvds = { |
| .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX }, |
| .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX }, |
| .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX }, |
| .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX }, |
| .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX }, |
| .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX }, |
| .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX }, |
| .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX }, |
| .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT, |
| .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST }, |
| .find_pll = intel_find_best_PLL, |
| }; |
| |
| static const intel_limit_t intel_limits_i9xx_sdvo = { |
| .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX }, |
| .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX }, |
| .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX }, |
| .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX }, |
| .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX }, |
| .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX }, |
| .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX }, |
| .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX }, |
| .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT, |
| .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST }, |
| .find_pll = intel_find_best_PLL, |
| }; |
| |
| static const intel_limit_t intel_limits_i9xx_lvds = { |
| .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX }, |
| .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX }, |
| .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX }, |
| .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX }, |
| .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX }, |
| .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX }, |
| .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX }, |
| .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX }, |
| /* The single-channel range is 25-112Mhz, and dual-channel |
| * is 80-224Mhz. Prefer single channel as much as possible. |
| */ |
| .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT, |
| .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST }, |
| .find_pll = intel_find_best_PLL, |
| }; |
| |
| /* below parameter and function is for G4X Chipset Family*/ |
| static const intel_limit_t intel_limits_g4x_sdvo = { |
| .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX }, |
| .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX}, |
| .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX }, |
| .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX }, |
| .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX }, |
| .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX }, |
| .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX }, |
| .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX}, |
| .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT, |
| .p2_slow = G4X_P2_SDVO_SLOW, |
| .p2_fast = G4X_P2_SDVO_FAST |
| }, |
| .find_pll = intel_g4x_find_best_PLL, |
| }; |
| |
| static const intel_limit_t intel_limits_g4x_hdmi = { |
| .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX }, |
| .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX}, |
| .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX }, |
| .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX }, |
| .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX }, |
| .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX }, |
| .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX }, |
| .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX}, |
| .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT, |
| .p2_slow = G4X_P2_HDMI_DAC_SLOW, |
| .p2_fast = G4X_P2_HDMI_DAC_FAST |
| }, |
| .find_pll = intel_g4x_find_best_PLL, |
| }; |
| |
| static const intel_limit_t intel_limits_g4x_single_channel_lvds = { |
| .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN, |
| .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX }, |
| .vco = { .min = G4X_VCO_MIN, |
| .max = G4X_VCO_MAX }, |
| .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN, |
| .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX }, |
| .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN, |
| .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX }, |
| .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN, |
| .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX }, |
| .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN, |
| .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX }, |
| .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN, |
| .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX }, |
| .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN, |
| .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX }, |
| .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT, |
| .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW, |
| .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST |
| }, |
| .find_pll = intel_g4x_find_best_PLL, |
| }; |
| |
| static const intel_limit_t intel_limits_g4x_dual_channel_lvds = { |
| .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN, |
| .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX }, |
| .vco = { .min = G4X_VCO_MIN, |
| .max = G4X_VCO_MAX }, |
| .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN, |
| .max = G4X_N_DUAL_CHANNEL_LVDS_MAX }, |
| .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN, |
| .max = G4X_M_DUAL_CHANNEL_LVDS_MAX }, |
| .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN, |
| .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX }, |
| .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN, |
| .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX }, |
| .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN, |
| .max = G4X_P_DUAL_CHANNEL_LVDS_MAX }, |
| .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN, |
| .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX }, |
| .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT, |
| .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW, |
| .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST |
| }, |
| .find_pll = intel_g4x_find_best_PLL, |
| }; |
| |
| static const intel_limit_t intel_limits_g4x_display_port = { |
| .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN, |
| .max = G4X_DOT_DISPLAY_PORT_MAX }, |
| .vco = { .min = G4X_VCO_MIN, |
| .max = G4X_VCO_MAX}, |
| .n = { .min = G4X_N_DISPLAY_PORT_MIN, |
| .max = G4X_N_DISPLAY_PORT_MAX }, |
| .m = { .min = G4X_M_DISPLAY_PORT_MIN, |
| .max = G4X_M_DISPLAY_PORT_MAX }, |
| .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN, |
| .max = G4X_M1_DISPLAY_PORT_MAX }, |
| .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN, |
| .max = G4X_M2_DISPLAY_PORT_MAX }, |
| .p = { .min = G4X_P_DISPLAY_PORT_MIN, |
| .max = G4X_P_DISPLAY_PORT_MAX }, |
| .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN, |
| .max = G4X_P1_DISPLAY_PORT_MAX}, |
| .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT, |
| .p2_slow = G4X_P2_DISPLAY_PORT_SLOW, |
| .p2_fast = G4X_P2_DISPLAY_PORT_FAST }, |
| .find_pll = intel_find_pll_g4x_dp, |
| }; |
| |
| static const intel_limit_t intel_limits_pineview_sdvo = { |
| .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX}, |
| .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX }, |
| .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX }, |
| .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX }, |
| .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX }, |
| .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX }, |
| .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX }, |
| .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX }, |
| .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT, |
| .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST }, |
| .find_pll = intel_find_best_PLL, |
| }; |
| |
| static const intel_limit_t intel_limits_pineview_lvds = { |
| .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX }, |
| .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX }, |
| .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX }, |
| .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX }, |
| .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX }, |
| .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX }, |
| .p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX }, |
| .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX }, |
| /* Pineview only supports single-channel mode. */ |
| .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT, |
| .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW }, |
| .find_pll = intel_find_best_PLL, |
| }; |
| |
| static const intel_limit_t intel_limits_ironlake_dac = { |
| .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX }, |
| .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX }, |
| .n = { .min = IRONLAKE_DAC_N_MIN, .max = IRONLAKE_DAC_N_MAX }, |
| .m = { .min = IRONLAKE_DAC_M_MIN, .max = IRONLAKE_DAC_M_MAX }, |
| .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX }, |
| .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX }, |
| .p = { .min = IRONLAKE_DAC_P_MIN, .max = IRONLAKE_DAC_P_MAX }, |
| .p1 = { .min = IRONLAKE_DAC_P1_MIN, .max = IRONLAKE_DAC_P1_MAX }, |
| .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT, |
| .p2_slow = IRONLAKE_DAC_P2_SLOW, |
| .p2_fast = IRONLAKE_DAC_P2_FAST }, |
| .find_pll = intel_g4x_find_best_PLL, |
| }; |
| |
| static const intel_limit_t intel_limits_ironlake_single_lvds = { |
| .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX }, |
| .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX }, |
| .n = { .min = IRONLAKE_LVDS_S_N_MIN, .max = IRONLAKE_LVDS_S_N_MAX }, |
| .m = { .min = IRONLAKE_LVDS_S_M_MIN, .max = IRONLAKE_LVDS_S_M_MAX }, |
| .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX }, |
| .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX }, |
| .p = { .min = IRONLAKE_LVDS_S_P_MIN, .max = IRONLAKE_LVDS_S_P_MAX }, |
| .p1 = { .min = IRONLAKE_LVDS_S_P1_MIN, .max = IRONLAKE_LVDS_S_P1_MAX }, |
| .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT, |
| .p2_slow = IRONLAKE_LVDS_S_P2_SLOW, |
| .p2_fast = IRONLAKE_LVDS_S_P2_FAST }, |
| .find_pll = intel_g4x_find_best_PLL, |
| }; |
| |
| static const intel_limit_t intel_limits_ironlake_dual_lvds = { |
| .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX }, |
| .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX }, |
| .n = { .min = IRONLAKE_LVDS_D_N_MIN, .max = IRONLAKE_LVDS_D_N_MAX }, |
| .m = { .min = IRONLAKE_LVDS_D_M_MIN, .max = IRONLAKE_LVDS_D_M_MAX }, |
| .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX }, |
| .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX }, |
| .p = { .min = IRONLAKE_LVDS_D_P_MIN, .max = IRONLAKE_LVDS_D_P_MAX }, |
| .p1 = { .min = IRONLAKE_LVDS_D_P1_MIN, .max = IRONLAKE_LVDS_D_P1_MAX }, |
| .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT, |
| .p2_slow = IRONLAKE_LVDS_D_P2_SLOW, |
| .p2_fast = IRONLAKE_LVDS_D_P2_FAST }, |
| .find_pll = intel_g4x_find_best_PLL, |
| }; |
| |
| static const intel_limit_t intel_limits_ironlake_single_lvds_100m = { |
| .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX }, |
| .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX }, |
| .n = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX }, |
| .m = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX }, |
| .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX }, |
| .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX }, |
| .p = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX }, |
| .p1 = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX }, |
| .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT, |
| .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW, |
| .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST }, |
| .find_pll = intel_g4x_find_best_PLL, |
| }; |
| |
| static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = { |
| .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX }, |
| .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX }, |
| .n = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX }, |
| .m = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX }, |
| .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX }, |
| .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX }, |
| .p = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX }, |
| .p1 = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX }, |
| .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT, |
| .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW, |
| .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST }, |
| .find_pll = intel_g4x_find_best_PLL, |
| }; |
| |
| static const intel_limit_t intel_limits_ironlake_display_port = { |
| .dot = { .min = IRONLAKE_DOT_MIN, |
| .max = IRONLAKE_DOT_MAX }, |
| .vco = { .min = IRONLAKE_VCO_MIN, |
| .max = IRONLAKE_VCO_MAX}, |
| .n = { .min = IRONLAKE_DP_N_MIN, |
| .max = IRONLAKE_DP_N_MAX }, |
| .m = { .min = IRONLAKE_DP_M_MIN, |
| .max = IRONLAKE_DP_M_MAX }, |
| .m1 = { .min = IRONLAKE_M1_MIN, |
| .max = IRONLAKE_M1_MAX }, |
| .m2 = { .min = IRONLAKE_M2_MIN, |
| .max = IRONLAKE_M2_MAX }, |
| .p = { .min = IRONLAKE_DP_P_MIN, |
| .max = IRONLAKE_DP_P_MAX }, |
| .p1 = { .min = IRONLAKE_DP_P1_MIN, |
| .max = IRONLAKE_DP_P1_MAX}, |
| .p2 = { .dot_limit = IRONLAKE_DP_P2_LIMIT, |
| .p2_slow = IRONLAKE_DP_P2_SLOW, |
| .p2_fast = IRONLAKE_DP_P2_FAST }, |
| .find_pll = intel_find_pll_ironlake_dp, |
| }; |
| |
| static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| const intel_limit_t *limit; |
| int refclk = 120; |
| |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { |
| if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100) |
| refclk = 100; |
| |
| if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == |
| LVDS_CLKB_POWER_UP) { |
| /* LVDS dual channel */ |
| if (refclk == 100) |
| limit = &intel_limits_ironlake_dual_lvds_100m; |
| else |
| limit = &intel_limits_ironlake_dual_lvds; |
| } else { |
| if (refclk == 100) |
| limit = &intel_limits_ironlake_single_lvds_100m; |
| else |
| limit = &intel_limits_ironlake_single_lvds; |
| } |
| } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) || |
| HAS_eDP) |
| limit = &intel_limits_ironlake_display_port; |
| else |
| limit = &intel_limits_ironlake_dac; |
| |
| return limit; |
| } |
| |
| static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| const intel_limit_t *limit; |
| |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { |
| if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) == |
| LVDS_CLKB_POWER_UP) |
| /* LVDS with dual channel */ |
| limit = &intel_limits_g4x_dual_channel_lvds; |
| else |
| /* LVDS with dual channel */ |
| limit = &intel_limits_g4x_single_channel_lvds; |
| } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) || |
| intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) { |
| limit = &intel_limits_g4x_hdmi; |
| } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) { |
| limit = &intel_limits_g4x_sdvo; |
| } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) { |
| limit = &intel_limits_g4x_display_port; |
| } else /* The option is for other outputs */ |
| limit = &intel_limits_i9xx_sdvo; |
| |
| return limit; |
| } |
| |
| static const intel_limit_t *intel_limit(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| const intel_limit_t *limit; |
| |
| if (HAS_PCH_SPLIT(dev)) |
| limit = intel_ironlake_limit(crtc); |
| else if (IS_G4X(dev)) { |
| limit = intel_g4x_limit(crtc); |
| } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) { |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) |
| limit = &intel_limits_i9xx_lvds; |
| else |
| limit = &intel_limits_i9xx_sdvo; |
| } else if (IS_PINEVIEW(dev)) { |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) |
| limit = &intel_limits_pineview_lvds; |
| else |
| limit = &intel_limits_pineview_sdvo; |
| } else { |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) |
| limit = &intel_limits_i8xx_lvds; |
| else |
| limit = &intel_limits_i8xx_dvo; |
| } |
| return limit; |
| } |
| |
| /* m1 is reserved as 0 in Pineview, n is a ring counter */ |
| static void pineview_clock(int refclk, intel_clock_t *clock) |
| { |
| clock->m = clock->m2 + 2; |
| clock->p = clock->p1 * clock->p2; |
| clock->vco = refclk * clock->m / clock->n; |
| clock->dot = clock->vco / clock->p; |
| } |
| |
| static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock) |
| { |
| if (IS_PINEVIEW(dev)) { |
| pineview_clock(refclk, clock); |
| return; |
| } |
| clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2); |
| clock->p = clock->p1 * clock->p2; |
| clock->vco = refclk * clock->m / (clock->n + 2); |
| clock->dot = clock->vco / clock->p; |
| } |
| |
| /** |
| * Returns whether any output on the specified pipe is of the specified type |
| */ |
| bool intel_pipe_has_type (struct drm_crtc *crtc, int type) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_mode_config *mode_config = &dev->mode_config; |
| struct drm_encoder *l_entry; |
| |
| list_for_each_entry(l_entry, &mode_config->encoder_list, head) { |
| if (l_entry && l_entry->crtc == crtc) { |
| struct intel_encoder *intel_encoder = enc_to_intel_encoder(l_entry); |
| if (intel_encoder->type == type) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0) |
| /** |
| * Returns whether the given set of divisors are valid for a given refclk with |
| * the given connectors. |
| */ |
| |
| static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock) |
| { |
| const intel_limit_t *limit = intel_limit (crtc); |
| struct drm_device *dev = crtc->dev; |
| |
| if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) |
| INTELPllInvalid ("p1 out of range\n"); |
| if (clock->p < limit->p.min || limit->p.max < clock->p) |
| INTELPllInvalid ("p out of range\n"); |
| if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) |
| INTELPllInvalid ("m2 out of range\n"); |
| if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) |
| INTELPllInvalid ("m1 out of range\n"); |
| if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev)) |
| INTELPllInvalid ("m1 <= m2\n"); |
| if (clock->m < limit->m.min || limit->m.max < clock->m) |
| INTELPllInvalid ("m out of range\n"); |
| if (clock->n < limit->n.min || limit->n.max < clock->n) |
| INTELPllInvalid ("n out of range\n"); |
| if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) |
| INTELPllInvalid ("vco out of range\n"); |
| /* XXX: We may need to be checking "Dot clock" depending on the multiplier, |
| * connector, etc., rather than just a single range. |
| */ |
| if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) |
| INTELPllInvalid ("dot out of range\n"); |
| |
| return true; |
| } |
| |
| static bool |
| intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc, |
| int target, int refclk, intel_clock_t *best_clock) |
| |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| intel_clock_t clock; |
| int err = target; |
| |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) && |
| (I915_READ(LVDS)) != 0) { |
| /* |
| * For LVDS, if the panel is on, just rely on its current |
| * settings for dual-channel. We haven't figured out how to |
| * reliably set up different single/dual channel state, if we |
| * even can. |
| */ |
| if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) == |
| LVDS_CLKB_POWER_UP) |
| clock.p2 = limit->p2.p2_fast; |
| else |
| clock.p2 = limit->p2.p2_slow; |
| } else { |
| if (target < limit->p2.dot_limit) |
| clock.p2 = limit->p2.p2_slow; |
| else |
| clock.p2 = limit->p2.p2_fast; |
| } |
| |
| memset (best_clock, 0, sizeof (*best_clock)); |
| |
| for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; |
| clock.m1++) { |
| for (clock.m2 = limit->m2.min; |
| clock.m2 <= limit->m2.max; clock.m2++) { |
| /* m1 is always 0 in Pineview */ |
| if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev)) |
| break; |
| for (clock.n = limit->n.min; |
| clock.n <= limit->n.max; clock.n++) { |
| for (clock.p1 = limit->p1.min; |
| clock.p1 <= limit->p1.max; clock.p1++) { |
| int this_err; |
| |
| intel_clock(dev, refclk, &clock); |
| |
| if (!intel_PLL_is_valid(crtc, &clock)) |
| continue; |
| |
| this_err = abs(clock.dot - target); |
| if (this_err < err) { |
| *best_clock = clock; |
| err = this_err; |
| } |
| } |
| } |
| } |
| } |
| |
| return (err != target); |
| } |
| |
| static bool |
| intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc, |
| int target, int refclk, intel_clock_t *best_clock) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| intel_clock_t clock; |
| int max_n; |
| bool found; |
| /* approximately equals target * 0.00488 */ |
| int err_most = (target >> 8) + (target >> 10); |
| found = false; |
| |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { |
| int lvds_reg; |
| |
| if (HAS_PCH_SPLIT(dev)) |
| lvds_reg = PCH_LVDS; |
| else |
| lvds_reg = LVDS; |
| if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) == |
| LVDS_CLKB_POWER_UP) |
| clock.p2 = limit->p2.p2_fast; |
| else |
| clock.p2 = limit->p2.p2_slow; |
| } else { |
| if (target < limit->p2.dot_limit) |
| clock.p2 = limit->p2.p2_slow; |
| else |
| clock.p2 = limit->p2.p2_fast; |
| } |
| |
| memset(best_clock, 0, sizeof(*best_clock)); |
| max_n = limit->n.max; |
| /* based on hardware requirement, prefer smaller n to precision */ |
| for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { |
| /* based on hardware requirement, prefere larger m1,m2 */ |
| for (clock.m1 = limit->m1.max; |
| clock.m1 >= limit->m1.min; clock.m1--) { |
| for (clock.m2 = limit->m2.max; |
| clock.m2 >= limit->m2.min; clock.m2--) { |
| for (clock.p1 = limit->p1.max; |
| clock.p1 >= limit->p1.min; clock.p1--) { |
| int this_err; |
| |
| intel_clock(dev, refclk, &clock); |
| if (!intel_PLL_is_valid(crtc, &clock)) |
| continue; |
| this_err = abs(clock.dot - target) ; |
| if (this_err < err_most) { |
| *best_clock = clock; |
| err_most = this_err; |
| max_n = clock.n; |
| found = true; |
| } |
| } |
| } |
| } |
| } |
| return found; |
| } |
| |
| static bool |
| intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc, |
| int target, int refclk, intel_clock_t *best_clock) |
| { |
| struct drm_device *dev = crtc->dev; |
| intel_clock_t clock; |
| |
| /* return directly when it is eDP */ |
| if (HAS_eDP) |
| return true; |
| |
| if (target < 200000) { |
| clock.n = 1; |
| clock.p1 = 2; |
| clock.p2 = 10; |
| clock.m1 = 12; |
| clock.m2 = 9; |
| } else { |
| clock.n = 2; |
| clock.p1 = 1; |
| clock.p2 = 10; |
| clock.m1 = 14; |
| clock.m2 = 8; |
| } |
| intel_clock(dev, refclk, &clock); |
| memcpy(best_clock, &clock, sizeof(intel_clock_t)); |
| return true; |
| } |
| |
| /* DisplayPort has only two frequencies, 162MHz and 270MHz */ |
| static bool |
| intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc, |
| int target, int refclk, intel_clock_t *best_clock) |
| { |
| intel_clock_t clock; |
| if (target < 200000) { |
| clock.p1 = 2; |
| clock.p2 = 10; |
| clock.n = 2; |
| clock.m1 = 23; |
| clock.m2 = 8; |
| } else { |
| clock.p1 = 1; |
| clock.p2 = 10; |
| clock.n = 1; |
| clock.m1 = 14; |
| clock.m2 = 2; |
| } |
| clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2); |
| clock.p = (clock.p1 * clock.p2); |
| clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p; |
| clock.vco = 0; |
| memcpy(best_clock, &clock, sizeof(intel_clock_t)); |
| return true; |
| } |
| |
| void |
| intel_wait_for_vblank(struct drm_device *dev) |
| { |
| /* Wait for 20ms, i.e. one cycle at 50hz. */ |
| msleep(20); |
| } |
| |
| /* Parameters have changed, update FBC info */ |
| static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_framebuffer *fb = crtc->fb; |
| struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); |
| struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int plane, i; |
| u32 fbc_ctl, fbc_ctl2; |
| |
| dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE; |
| |
| if (fb->pitch < dev_priv->cfb_pitch) |
| dev_priv->cfb_pitch = fb->pitch; |
| |
| /* FBC_CTL wants 64B units */ |
| dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1; |
| dev_priv->cfb_fence = obj_priv->fence_reg; |
| dev_priv->cfb_plane = intel_crtc->plane; |
| plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB; |
| |
| /* Clear old tags */ |
| for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++) |
| I915_WRITE(FBC_TAG + (i * 4), 0); |
| |
| /* Set it up... */ |
| fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane; |
| if (obj_priv->tiling_mode != I915_TILING_NONE) |
| fbc_ctl2 |= FBC_CTL_CPU_FENCE; |
| I915_WRITE(FBC_CONTROL2, fbc_ctl2); |
| I915_WRITE(FBC_FENCE_OFF, crtc->y); |
| |
| /* enable it... */ |
| fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC; |
| if (IS_I945GM(dev)) |
| fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */ |
| fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT; |
| fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT; |
| if (obj_priv->tiling_mode != I915_TILING_NONE) |
| fbc_ctl |= dev_priv->cfb_fence; |
| I915_WRITE(FBC_CONTROL, fbc_ctl); |
| |
| DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ", |
| dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane); |
| } |
| |
| void i8xx_disable_fbc(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| unsigned long timeout = jiffies + msecs_to_jiffies(1); |
| u32 fbc_ctl; |
| |
| if (!I915_HAS_FBC(dev)) |
| return; |
| |
| if (!(I915_READ(FBC_CONTROL) & FBC_CTL_EN)) |
| return; /* Already off, just return */ |
| |
| /* Disable compression */ |
| fbc_ctl = I915_READ(FBC_CONTROL); |
| fbc_ctl &= ~FBC_CTL_EN; |
| I915_WRITE(FBC_CONTROL, fbc_ctl); |
| |
| /* Wait for compressing bit to clear */ |
| while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) { |
| if (time_after(jiffies, timeout)) { |
| DRM_DEBUG_DRIVER("FBC idle timed out\n"); |
| break; |
| } |
| ; /* do nothing */ |
| } |
| |
| intel_wait_for_vblank(dev); |
| |
| DRM_DEBUG_KMS("disabled FBC\n"); |
| } |
| |
| static bool i8xx_fbc_enabled(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| return I915_READ(FBC_CONTROL) & FBC_CTL_EN; |
| } |
| |
| static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_framebuffer *fb = crtc->fb; |
| struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); |
| struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : |
| DPFC_CTL_PLANEB); |
| unsigned long stall_watermark = 200; |
| u32 dpfc_ctl; |
| |
| dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1; |
| dev_priv->cfb_fence = obj_priv->fence_reg; |
| dev_priv->cfb_plane = intel_crtc->plane; |
| |
| dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X; |
| if (obj_priv->tiling_mode != I915_TILING_NONE) { |
| dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence; |
| I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY); |
| } else { |
| I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY); |
| } |
| |
| I915_WRITE(DPFC_CONTROL, dpfc_ctl); |
| I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN | |
| (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) | |
| (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT)); |
| I915_WRITE(DPFC_FENCE_YOFF, crtc->y); |
| |
| /* enable it... */ |
| I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN); |
| |
| DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane); |
| } |
| |
| void g4x_disable_fbc(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 dpfc_ctl; |
| |
| /* Disable compression */ |
| dpfc_ctl = I915_READ(DPFC_CONTROL); |
| dpfc_ctl &= ~DPFC_CTL_EN; |
| I915_WRITE(DPFC_CONTROL, dpfc_ctl); |
| intel_wait_for_vblank(dev); |
| |
| DRM_DEBUG_KMS("disabled FBC\n"); |
| } |
| |
| static bool g4x_fbc_enabled(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN; |
| } |
| |
| bool intel_fbc_enabled(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| if (!dev_priv->display.fbc_enabled) |
| return false; |
| |
| return dev_priv->display.fbc_enabled(dev); |
| } |
| |
| void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval) |
| { |
| struct drm_i915_private *dev_priv = crtc->dev->dev_private; |
| |
| if (!dev_priv->display.enable_fbc) |
| return; |
| |
| dev_priv->display.enable_fbc(crtc, interval); |
| } |
| |
| void intel_disable_fbc(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| if (!dev_priv->display.disable_fbc) |
| return; |
| |
| dev_priv->display.disable_fbc(dev); |
| } |
| |
| /** |
| * intel_update_fbc - enable/disable FBC as needed |
| * @crtc: CRTC to point the compressor at |
| * @mode: mode in use |
| * |
| * Set up the framebuffer compression hardware at mode set time. We |
| * enable it if possible: |
| * - plane A only (on pre-965) |
| * - no pixel mulitply/line duplication |
| * - no alpha buffer discard |
| * - no dual wide |
| * - framebuffer <= 2048 in width, 1536 in height |
| * |
| * We can't assume that any compression will take place (worst case), |
| * so the compressed buffer has to be the same size as the uncompressed |
| * one. It also must reside (along with the line length buffer) in |
| * stolen memory. |
| * |
| * We need to enable/disable FBC on a global basis. |
| */ |
| static void intel_update_fbc(struct drm_crtc *crtc, |
| struct drm_display_mode *mode) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_framebuffer *fb = crtc->fb; |
| struct intel_framebuffer *intel_fb; |
| struct drm_i915_gem_object *obj_priv; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int plane = intel_crtc->plane; |
| |
| if (!i915_powersave) |
| return; |
| |
| if (!I915_HAS_FBC(dev)) |
| return; |
| |
| if (!crtc->fb) |
| return; |
| |
| intel_fb = to_intel_framebuffer(fb); |
| obj_priv = to_intel_bo(intel_fb->obj); |
| |
| /* |
| * If FBC is already on, we just have to verify that we can |
| * keep it that way... |
| * Need to disable if: |
| * - changing FBC params (stride, fence, mode) |
| * - new fb is too large to fit in compressed buffer |
| * - going to an unsupported config (interlace, pixel multiply, etc.) |
| */ |
| if (intel_fb->obj->size > dev_priv->cfb_size) { |
| DRM_DEBUG_KMS("framebuffer too large, disabling " |
| "compression\n"); |
| dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL; |
| goto out_disable; |
| } |
| if ((mode->flags & DRM_MODE_FLAG_INTERLACE) || |
| (mode->flags & DRM_MODE_FLAG_DBLSCAN)) { |
| DRM_DEBUG_KMS("mode incompatible with compression, " |
| "disabling\n"); |
| dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE; |
| goto out_disable; |
| } |
| if ((mode->hdisplay > 2048) || |
| (mode->vdisplay > 1536)) { |
| DRM_DEBUG_KMS("mode too large for compression, disabling\n"); |
| dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE; |
| goto out_disable; |
| } |
| if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) { |
| DRM_DEBUG_KMS("plane not 0, disabling compression\n"); |
| dev_priv->no_fbc_reason = FBC_BAD_PLANE; |
| goto out_disable; |
| } |
| if (obj_priv->tiling_mode != I915_TILING_X) { |
| DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n"); |
| dev_priv->no_fbc_reason = FBC_NOT_TILED; |
| goto out_disable; |
| } |
| |
| if (intel_fbc_enabled(dev)) { |
| /* We can re-enable it in this case, but need to update pitch */ |
| if ((fb->pitch > dev_priv->cfb_pitch) || |
| (obj_priv->fence_reg != dev_priv->cfb_fence) || |
| (plane != dev_priv->cfb_plane)) |
| intel_disable_fbc(dev); |
| } |
| |
| /* Now try to turn it back on if possible */ |
| if (!intel_fbc_enabled(dev)) |
| intel_enable_fbc(crtc, 500); |
| |
| return; |
| |
| out_disable: |
| DRM_DEBUG_KMS("unsupported config, disabling FBC\n"); |
| /* Multiple disables should be harmless */ |
| if (intel_fbc_enabled(dev)) |
| intel_disable_fbc(dev); |
| } |
| |
| static int |
| intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj) |
| { |
| struct drm_i915_gem_object *obj_priv = to_intel_bo(obj); |
| u32 alignment; |
| int ret; |
| |
| switch (obj_priv->tiling_mode) { |
| case I915_TILING_NONE: |
| alignment = 64 * 1024; |
| break; |
| case I915_TILING_X: |
| /* pin() will align the object as required by fence */ |
| alignment = 0; |
| break; |
| case I915_TILING_Y: |
| /* FIXME: Is this true? */ |
| DRM_ERROR("Y tiled not allowed for scan out buffers\n"); |
| return -EINVAL; |
| default: |
| BUG(); |
| } |
| |
| ret = i915_gem_object_pin(obj, alignment); |
| if (ret != 0) |
| return ret; |
| |
| /* Install a fence for tiled scan-out. Pre-i965 always needs a |
| * fence, whereas 965+ only requires a fence if using |
| * framebuffer compression. For simplicity, we always install |
| * a fence as the cost is not that onerous. |
| */ |
| if (obj_priv->fence_reg == I915_FENCE_REG_NONE && |
| obj_priv->tiling_mode != I915_TILING_NONE) { |
| ret = i915_gem_object_get_fence_reg(obj); |
| if (ret != 0) { |
| i915_gem_object_unpin(obj); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int |
| intel_pipe_set_base(struct drm_crtc *crtc, int x, int y, |
| struct drm_framebuffer *old_fb) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_i915_master_private *master_priv; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_framebuffer *intel_fb; |
| struct drm_i915_gem_object *obj_priv; |
| struct drm_gem_object *obj; |
| int pipe = intel_crtc->pipe; |
| int plane = intel_crtc->plane; |
| unsigned long Start, Offset; |
| int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR); |
| int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF); |
| int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE; |
| int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF); |
| int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR; |
| u32 dspcntr; |
| int ret; |
| |
| /* no fb bound */ |
| if (!crtc->fb) { |
| DRM_DEBUG_KMS("No FB bound\n"); |
| return 0; |
| } |
| |
| switch (plane) { |
| case 0: |
| case 1: |
| break; |
| default: |
| DRM_ERROR("Can't update plane %d in SAREA\n", plane); |
| return -EINVAL; |
| } |
| |
| intel_fb = to_intel_framebuffer(crtc->fb); |
| obj = intel_fb->obj; |
| obj_priv = to_intel_bo(obj); |
| |
| mutex_lock(&dev->struct_mutex); |
| ret = intel_pin_and_fence_fb_obj(dev, obj); |
| if (ret != 0) { |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| ret = i915_gem_object_set_to_display_plane(obj); |
| if (ret != 0) { |
| i915_gem_object_unpin(obj); |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| dspcntr = I915_READ(dspcntr_reg); |
| /* Mask out pixel format bits in case we change it */ |
| dspcntr &= ~DISPPLANE_PIXFORMAT_MASK; |
| switch (crtc->fb->bits_per_pixel) { |
| case 8: |
| dspcntr |= DISPPLANE_8BPP; |
| break; |
| case 16: |
| if (crtc->fb->depth == 15) |
| dspcntr |= DISPPLANE_15_16BPP; |
| else |
| dspcntr |= DISPPLANE_16BPP; |
| break; |
| case 24: |
| case 32: |
| if (crtc->fb->depth == 30) |
| dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA; |
| else |
| dspcntr |= DISPPLANE_32BPP_NO_ALPHA; |
| break; |
| default: |
| DRM_ERROR("Unknown color depth\n"); |
| i915_gem_object_unpin(obj); |
| mutex_unlock(&dev->struct_mutex); |
| return -EINVAL; |
| } |
| if (IS_I965G(dev)) { |
| if (obj_priv->tiling_mode != I915_TILING_NONE) |
| dspcntr |= DISPPLANE_TILED; |
| else |
| dspcntr &= ~DISPPLANE_TILED; |
| } |
| |
| if (HAS_PCH_SPLIT(dev)) |
| /* must disable */ |
| dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE; |
| |
| I915_WRITE(dspcntr_reg, dspcntr); |
| |
| Start = obj_priv->gtt_offset; |
| Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8); |
| |
| DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y); |
| I915_WRITE(dspstride, crtc->fb->pitch); |
| if (IS_I965G(dev)) { |
| I915_WRITE(dspbase, Offset); |
| I915_READ(dspbase); |
| I915_WRITE(dspsurf, Start); |
| I915_READ(dspsurf); |
| I915_WRITE(dsptileoff, (y << 16) | x); |
| } else { |
| I915_WRITE(dspbase, Start + Offset); |
| I915_READ(dspbase); |
| } |
| |
| if ((IS_I965G(dev) || plane == 0)) |
| intel_update_fbc(crtc, &crtc->mode); |
| |
| intel_wait_for_vblank(dev); |
| |
| if (old_fb) { |
| intel_fb = to_intel_framebuffer(old_fb); |
| obj_priv = to_intel_bo(intel_fb->obj); |
| i915_gem_object_unpin(intel_fb->obj); |
| } |
| intel_increase_pllclock(crtc, true); |
| |
| mutex_unlock(&dev->struct_mutex); |
| |
| if (!dev->primary->master) |
| return 0; |
| |
| master_priv = dev->primary->master->driver_priv; |
| if (!master_priv->sarea_priv) |
| return 0; |
| |
| if (pipe) { |
| master_priv->sarea_priv->pipeB_x = x; |
| master_priv->sarea_priv->pipeB_y = y; |
| } else { |
| master_priv->sarea_priv->pipeA_x = x; |
| master_priv->sarea_priv->pipeA_y = y; |
| } |
| |
| return 0; |
| } |
| |
| /* Disable the VGA plane that we never use */ |
| static void i915_disable_vga (struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u8 sr1; |
| u32 vga_reg; |
| |
| if (HAS_PCH_SPLIT(dev)) |
| vga_reg = CPU_VGACNTRL; |
| else |
| vga_reg = VGACNTRL; |
| |
| if (I915_READ(vga_reg) & VGA_DISP_DISABLE) |
| return; |
| |
| I915_WRITE8(VGA_SR_INDEX, 1); |
| sr1 = I915_READ8(VGA_SR_DATA); |
| I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5)); |
| udelay(100); |
| |
| I915_WRITE(vga_reg, VGA_DISP_DISABLE); |
| } |
| |
| static void ironlake_disable_pll_edp (struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 dpa_ctl; |
| |
| DRM_DEBUG_KMS("\n"); |
| dpa_ctl = I915_READ(DP_A); |
| dpa_ctl &= ~DP_PLL_ENABLE; |
| I915_WRITE(DP_A, dpa_ctl); |
| } |
| |
| static void ironlake_enable_pll_edp (struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 dpa_ctl; |
| |
| dpa_ctl = I915_READ(DP_A); |
| dpa_ctl |= DP_PLL_ENABLE; |
| I915_WRITE(DP_A, dpa_ctl); |
| udelay(200); |
| } |
| |
| |
| static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 dpa_ctl; |
| |
| DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock); |
| dpa_ctl = I915_READ(DP_A); |
| dpa_ctl &= ~DP_PLL_FREQ_MASK; |
| |
| if (clock < 200000) { |
| u32 temp; |
| dpa_ctl |= DP_PLL_FREQ_160MHZ; |
| /* workaround for 160Mhz: |
| 1) program 0x4600c bits 15:0 = 0x8124 |
| 2) program 0x46010 bit 0 = 1 |
| 3) program 0x46034 bit 24 = 1 |
| 4) program 0x64000 bit 14 = 1 |
| */ |
| temp = I915_READ(0x4600c); |
| temp &= 0xffff0000; |
| I915_WRITE(0x4600c, temp | 0x8124); |
| |
| temp = I915_READ(0x46010); |
| I915_WRITE(0x46010, temp | 1); |
| |
| temp = I915_READ(0x46034); |
| I915_WRITE(0x46034, temp | (1 << 24)); |
| } else { |
| dpa_ctl |= DP_PLL_FREQ_270MHZ; |
| } |
| I915_WRITE(DP_A, dpa_ctl); |
| |
| udelay(500); |
| } |
| |
| /* The FDI link training functions for ILK/Ibexpeak. */ |
| static void ironlake_fdi_link_train(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL; |
| int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL; |
| int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR; |
| int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR; |
| u32 temp, tries = 0; |
| |
| /* enable CPU FDI TX and PCH FDI RX */ |
| temp = I915_READ(fdi_tx_reg); |
| temp |= FDI_TX_ENABLE; |
| temp &= ~(7 << 19); |
| temp |= (intel_crtc->fdi_lanes - 1) << 19; |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_1; |
| I915_WRITE(fdi_tx_reg, temp); |
| I915_READ(fdi_tx_reg); |
| |
| temp = I915_READ(fdi_rx_reg); |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_1; |
| I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE); |
| I915_READ(fdi_rx_reg); |
| udelay(150); |
| |
| /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit |
| for train result */ |
| temp = I915_READ(fdi_rx_imr_reg); |
| temp &= ~FDI_RX_SYMBOL_LOCK; |
| temp &= ~FDI_RX_BIT_LOCK; |
| I915_WRITE(fdi_rx_imr_reg, temp); |
| I915_READ(fdi_rx_imr_reg); |
| udelay(150); |
| |
| for (;;) { |
| temp = I915_READ(fdi_rx_iir_reg); |
| DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); |
| |
| if ((temp & FDI_RX_BIT_LOCK)) { |
| DRM_DEBUG_KMS("FDI train 1 done.\n"); |
| I915_WRITE(fdi_rx_iir_reg, |
| temp | FDI_RX_BIT_LOCK); |
| break; |
| } |
| |
| tries++; |
| |
| if (tries > 5) { |
| DRM_DEBUG_KMS("FDI train 1 fail!\n"); |
| break; |
| } |
| } |
| |
| /* Train 2 */ |
| temp = I915_READ(fdi_tx_reg); |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_2; |
| I915_WRITE(fdi_tx_reg, temp); |
| |
| temp = I915_READ(fdi_rx_reg); |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_2; |
| I915_WRITE(fdi_rx_reg, temp); |
| udelay(150); |
| |
| tries = 0; |
| |
| for (;;) { |
| temp = I915_READ(fdi_rx_iir_reg); |
| DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); |
| |
| if (temp & FDI_RX_SYMBOL_LOCK) { |
| I915_WRITE(fdi_rx_iir_reg, |
| temp | FDI_RX_SYMBOL_LOCK); |
| DRM_DEBUG_KMS("FDI train 2 done.\n"); |
| break; |
| } |
| |
| tries++; |
| |
| if (tries > 5) { |
| DRM_DEBUG_KMS("FDI train 2 fail!\n"); |
| break; |
| } |
| } |
| |
| DRM_DEBUG_KMS("FDI train done\n"); |
| } |
| |
| static int snb_b_fdi_train_param [] = { |
| FDI_LINK_TRAIN_400MV_0DB_SNB_B, |
| FDI_LINK_TRAIN_400MV_6DB_SNB_B, |
| FDI_LINK_TRAIN_600MV_3_5DB_SNB_B, |
| FDI_LINK_TRAIN_800MV_0DB_SNB_B, |
| }; |
| |
| /* The FDI link training functions for SNB/Cougarpoint. */ |
| static void gen6_fdi_link_train(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL; |
| int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL; |
| int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR; |
| int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR; |
| u32 temp, i; |
| |
| /* enable CPU FDI TX and PCH FDI RX */ |
| temp = I915_READ(fdi_tx_reg); |
| temp |= FDI_TX_ENABLE; |
| temp &= ~(7 << 19); |
| temp |= (intel_crtc->fdi_lanes - 1) << 19; |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_1; |
| temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; |
| /* SNB-B */ |
| temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; |
| I915_WRITE(fdi_tx_reg, temp); |
| I915_READ(fdi_tx_reg); |
| |
| temp = I915_READ(fdi_rx_reg); |
| if (HAS_PCH_CPT(dev)) { |
| temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; |
| temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; |
| } else { |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_1; |
| } |
| I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE); |
| I915_READ(fdi_rx_reg); |
| udelay(150); |
| |
| /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit |
| for train result */ |
| temp = I915_READ(fdi_rx_imr_reg); |
| temp &= ~FDI_RX_SYMBOL_LOCK; |
| temp &= ~FDI_RX_BIT_LOCK; |
| I915_WRITE(fdi_rx_imr_reg, temp); |
| I915_READ(fdi_rx_imr_reg); |
| udelay(150); |
| |
| for (i = 0; i < 4; i++ ) { |
| temp = I915_READ(fdi_tx_reg); |
| temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; |
| temp |= snb_b_fdi_train_param[i]; |
| I915_WRITE(fdi_tx_reg, temp); |
| udelay(500); |
| |
| temp = I915_READ(fdi_rx_iir_reg); |
| DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); |
| |
| if (temp & FDI_RX_BIT_LOCK) { |
| I915_WRITE(fdi_rx_iir_reg, |
| temp | FDI_RX_BIT_LOCK); |
| DRM_DEBUG_KMS("FDI train 1 done.\n"); |
| break; |
| } |
| } |
| if (i == 4) |
| DRM_DEBUG_KMS("FDI train 1 fail!\n"); |
| |
| /* Train 2 */ |
| temp = I915_READ(fdi_tx_reg); |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_2; |
| if (IS_GEN6(dev)) { |
| temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; |
| /* SNB-B */ |
| temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; |
| } |
| I915_WRITE(fdi_tx_reg, temp); |
| |
| temp = I915_READ(fdi_rx_reg); |
| if (HAS_PCH_CPT(dev)) { |
| temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; |
| temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; |
| } else { |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_2; |
| } |
| I915_WRITE(fdi_rx_reg, temp); |
| udelay(150); |
| |
| for (i = 0; i < 4; i++ ) { |
| temp = I915_READ(fdi_tx_reg); |
| temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; |
| temp |= snb_b_fdi_train_param[i]; |
| I915_WRITE(fdi_tx_reg, temp); |
| udelay(500); |
| |
| temp = I915_READ(fdi_rx_iir_reg); |
| DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); |
| |
| if (temp & FDI_RX_SYMBOL_LOCK) { |
| I915_WRITE(fdi_rx_iir_reg, |
| temp | FDI_RX_SYMBOL_LOCK); |
| DRM_DEBUG_KMS("FDI train 2 done.\n"); |
| break; |
| } |
| } |
| if (i == 4) |
| DRM_DEBUG_KMS("FDI train 2 fail!\n"); |
| |
| DRM_DEBUG_KMS("FDI train done.\n"); |
| } |
| |
| static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| int plane = intel_crtc->plane; |
| int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B; |
| int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF; |
| int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR; |
| int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR; |
| int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL; |
| int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL; |
| int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF; |
| int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1; |
| int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ; |
| int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS; |
| int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B; |
| int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B; |
| int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B; |
| int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B; |
| int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B; |
| int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B; |
| int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B; |
| int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B; |
| int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B; |
| int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B; |
| int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B; |
| int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B; |
| int trans_dpll_sel = (pipe == 0) ? 0 : 1; |
| u32 temp; |
| int n; |
| u32 pipe_bpc; |
| |
| temp = I915_READ(pipeconf_reg); |
| pipe_bpc = temp & PIPE_BPC_MASK; |
| |
| /* XXX: When our outputs are all unaware of DPMS modes other than off |
| * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC. |
| */ |
| switch (mode) { |
| case DRM_MODE_DPMS_ON: |
| case DRM_MODE_DPMS_STANDBY: |
| case DRM_MODE_DPMS_SUSPEND: |
| DRM_DEBUG_KMS("crtc %d dpms on\n", pipe); |
| |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { |
| temp = I915_READ(PCH_LVDS); |
| if ((temp & LVDS_PORT_EN) == 0) { |
| I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN); |
| POSTING_READ(PCH_LVDS); |
| } |
| } |
| |
| if (HAS_eDP) { |
| /* enable eDP PLL */ |
| ironlake_enable_pll_edp(crtc); |
| } else { |
| |
| /* enable PCH FDI RX PLL, wait warmup plus DMI latency */ |
| temp = I915_READ(fdi_rx_reg); |
| /* |
| * make the BPC in FDI Rx be consistent with that in |
| * pipeconf reg. |
| */ |
| temp &= ~(0x7 << 16); |
| temp |= (pipe_bpc << 11); |
| temp &= ~(7 << 19); |
| temp |= (intel_crtc->fdi_lanes - 1) << 19; |
| I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE); |
| I915_READ(fdi_rx_reg); |
| udelay(200); |
| |
| /* Switch from Rawclk to PCDclk */ |
| temp = I915_READ(fdi_rx_reg); |
| I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK); |
| I915_READ(fdi_rx_reg); |
| udelay(200); |
| |
| /* Enable CPU FDI TX PLL, always on for Ironlake */ |
| temp = I915_READ(fdi_tx_reg); |
| if ((temp & FDI_TX_PLL_ENABLE) == 0) { |
| I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE); |
| I915_READ(fdi_tx_reg); |
| udelay(100); |
| } |
| } |
| |
| /* Enable panel fitting for LVDS */ |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { |
| temp = I915_READ(pf_ctl_reg); |
| I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3); |
| |
| /* currently full aspect */ |
| I915_WRITE(pf_win_pos, 0); |
| |
| I915_WRITE(pf_win_size, |
| (dev_priv->panel_fixed_mode->hdisplay << 16) | |
| (dev_priv->panel_fixed_mode->vdisplay)); |
| } |
| |
| /* Enable CPU pipe */ |
| temp = I915_READ(pipeconf_reg); |
| if ((temp & PIPEACONF_ENABLE) == 0) { |
| I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE); |
| I915_READ(pipeconf_reg); |
| udelay(100); |
| } |
| |
| /* configure and enable CPU plane */ |
| temp = I915_READ(dspcntr_reg); |
| if ((temp & DISPLAY_PLANE_ENABLE) == 0) { |
| I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE); |
| /* Flush the plane changes */ |
| I915_WRITE(dspbase_reg, I915_READ(dspbase_reg)); |
| } |
| |
| if (!HAS_eDP) { |
| /* For PCH output, training FDI link */ |
| if (IS_GEN6(dev)) |
| gen6_fdi_link_train(crtc); |
| else |
| ironlake_fdi_link_train(crtc); |
| |
| /* enable PCH DPLL */ |
| temp = I915_READ(pch_dpll_reg); |
| if ((temp & DPLL_VCO_ENABLE) == 0) { |
| I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE); |
| I915_READ(pch_dpll_reg); |
| } |
| udelay(200); |
| |
| if (HAS_PCH_CPT(dev)) { |
| /* Be sure PCH DPLL SEL is set */ |
| temp = I915_READ(PCH_DPLL_SEL); |
| if (trans_dpll_sel == 0 && |
| (temp & TRANSA_DPLL_ENABLE) == 0) |
| temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL); |
| else if (trans_dpll_sel == 1 && |
| (temp & TRANSB_DPLL_ENABLE) == 0) |
| temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL); |
| I915_WRITE(PCH_DPLL_SEL, temp); |
| I915_READ(PCH_DPLL_SEL); |
| } |
| |
| /* set transcoder timing */ |
| I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg)); |
| I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg)); |
| I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg)); |
| |
| I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg)); |
| I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg)); |
| I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg)); |
| |
| /* enable normal train */ |
| temp = I915_READ(fdi_tx_reg); |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE | |
| FDI_TX_ENHANCE_FRAME_ENABLE); |
| I915_READ(fdi_tx_reg); |
| |
| temp = I915_READ(fdi_rx_reg); |
| if (HAS_PCH_CPT(dev)) { |
| temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; |
| temp |= FDI_LINK_TRAIN_NORMAL_CPT; |
| } else { |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_NONE; |
| } |
| I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE); |
| I915_READ(fdi_rx_reg); |
| |
| /* wait one idle pattern time */ |
| udelay(100); |
| |
| /* For PCH DP, enable TRANS_DP_CTL */ |
| if (HAS_PCH_CPT(dev) && |
| intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) { |
| int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B; |
| int reg; |
| |
| reg = I915_READ(trans_dp_ctl); |
| reg &= ~TRANS_DP_PORT_SEL_MASK; |
| reg = TRANS_DP_OUTPUT_ENABLE | |
| TRANS_DP_ENH_FRAMING | |
| TRANS_DP_VSYNC_ACTIVE_HIGH | |
| TRANS_DP_HSYNC_ACTIVE_HIGH; |
| |
| switch (intel_trans_dp_port_sel(crtc)) { |
| case PCH_DP_B: |
| reg |= TRANS_DP_PORT_SEL_B; |
| break; |
| case PCH_DP_C: |
| reg |= TRANS_DP_PORT_SEL_C; |
| break; |
| case PCH_DP_D: |
| reg |= TRANS_DP_PORT_SEL_D; |
| break; |
| default: |
| DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n"); |
| reg |= TRANS_DP_PORT_SEL_B; |
| break; |
| } |
| |
| I915_WRITE(trans_dp_ctl, reg); |
| POSTING_READ(trans_dp_ctl); |
| } |
| |
| /* enable PCH transcoder */ |
| temp = I915_READ(transconf_reg); |
| /* |
| * make the BPC in transcoder be consistent with |
| * that in pipeconf reg. |
| */ |
| temp &= ~PIPE_BPC_MASK; |
| temp |= pipe_bpc; |
| I915_WRITE(transconf_reg, temp | TRANS_ENABLE); |
| I915_READ(transconf_reg); |
| |
| while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0) |
| ; |
| |
| } |
| |
| intel_crtc_load_lut(crtc); |
| |
| break; |
| case DRM_MODE_DPMS_OFF: |
| DRM_DEBUG_KMS("crtc %d dpms off\n", pipe); |
| |
| drm_vblank_off(dev, pipe); |
| /* Disable display plane */ |
| temp = I915_READ(dspcntr_reg); |
| if ((temp & DISPLAY_PLANE_ENABLE) != 0) { |
| I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE); |
| /* Flush the plane changes */ |
| I915_WRITE(dspbase_reg, I915_READ(dspbase_reg)); |
| I915_READ(dspbase_reg); |
| } |
| |
| i915_disable_vga(dev); |
| |
| /* disable cpu pipe, disable after all planes disabled */ |
| temp = I915_READ(pipeconf_reg); |
| if ((temp & PIPEACONF_ENABLE) != 0) { |
| I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE); |
| I915_READ(pipeconf_reg); |
| n = 0; |
| /* wait for cpu pipe off, pipe state */ |
| while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) { |
| n++; |
| if (n < 60) { |
| udelay(500); |
| continue; |
| } else { |
| DRM_DEBUG_KMS("pipe %d off delay\n", |
| pipe); |
| break; |
| } |
| } |
| } else |
| DRM_DEBUG_KMS("crtc %d is disabled\n", pipe); |
| |
| udelay(100); |
| |
| /* Disable PF */ |
| temp = I915_READ(pf_ctl_reg); |
| if ((temp & PF_ENABLE) != 0) { |
| I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE); |
| I915_READ(pf_ctl_reg); |
| } |
| I915_WRITE(pf_win_size, 0); |
| POSTING_READ(pf_win_size); |
| |
| |
| /* disable CPU FDI tx and PCH FDI rx */ |
| temp = I915_READ(fdi_tx_reg); |
| I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE); |
| I915_READ(fdi_tx_reg); |
| |
| temp = I915_READ(fdi_rx_reg); |
| /* BPC in FDI rx is consistent with that in pipeconf */ |
| temp &= ~(0x07 << 16); |
| temp |= (pipe_bpc << 11); |
| I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE); |
| I915_READ(fdi_rx_reg); |
| |
| udelay(100); |
| |
| /* still set train pattern 1 */ |
| temp = I915_READ(fdi_tx_reg); |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_1; |
| I915_WRITE(fdi_tx_reg, temp); |
| POSTING_READ(fdi_tx_reg); |
| |
| temp = I915_READ(fdi_rx_reg); |
| if (HAS_PCH_CPT(dev)) { |
| temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; |
| temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; |
| } else { |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_1; |
| } |
| I915_WRITE(fdi_rx_reg, temp); |
| POSTING_READ(fdi_rx_reg); |
| |
| udelay(100); |
| |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { |
| temp = I915_READ(PCH_LVDS); |
| I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN); |
| I915_READ(PCH_LVDS); |
| udelay(100); |
| } |
| |
| /* disable PCH transcoder */ |
| temp = I915_READ(transconf_reg); |
| if ((temp & TRANS_ENABLE) != 0) { |
| I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE); |
| I915_READ(transconf_reg); |
| n = 0; |
| /* wait for PCH transcoder off, transcoder state */ |
| while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) { |
| n++; |
| if (n < 60) { |
| udelay(500); |
| continue; |
| } else { |
| DRM_DEBUG_KMS("transcoder %d off " |
| "delay\n", pipe); |
| break; |
| } |
| } |
| } |
| |
| temp = I915_READ(transconf_reg); |
| /* BPC in transcoder is consistent with that in pipeconf */ |
| temp &= ~PIPE_BPC_MASK; |
| temp |= pipe_bpc; |
| I915_WRITE(transconf_reg, temp); |
| I915_READ(transconf_reg); |
| udelay(100); |
| |
| if (HAS_PCH_CPT(dev)) { |
| /* disable TRANS_DP_CTL */ |
| int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B; |
| int reg; |
| |
| reg = I915_READ(trans_dp_ctl); |
| reg &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK); |
| I915_WRITE(trans_dp_ctl, reg); |
| POSTING_READ(trans_dp_ctl); |
| |
| /* disable DPLL_SEL */ |
| temp = I915_READ(PCH_DPLL_SEL); |
| if (trans_dpll_sel == 0) |
| temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL); |
| else |
| temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL); |
| I915_WRITE(PCH_DPLL_SEL, temp); |
| I915_READ(PCH_DPLL_SEL); |
| |
| } |
| |
| /* disable PCH DPLL */ |
| temp = I915_READ(pch_dpll_reg); |
| I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE); |
| I915_READ(pch_dpll_reg); |
| |
| if (HAS_eDP) { |
| ironlake_disable_pll_edp(crtc); |
| } |
| |
| /* Switch from PCDclk to Rawclk */ |
| temp = I915_READ(fdi_rx_reg); |
| temp &= ~FDI_SEL_PCDCLK; |
| I915_WRITE(fdi_rx_reg, temp); |
| I915_READ(fdi_rx_reg); |
| |
| /* Disable CPU FDI TX PLL */ |
| temp = I915_READ(fdi_tx_reg); |
| I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE); |
| I915_READ(fdi_tx_reg); |
| udelay(100); |
| |
| temp = I915_READ(fdi_rx_reg); |
| temp &= ~FDI_RX_PLL_ENABLE; |
| I915_WRITE(fdi_rx_reg, temp); |
| I915_READ(fdi_rx_reg); |
| |
| /* Wait for the clocks to turn off. */ |
| udelay(100); |
| break; |
| } |
| } |
| |
| static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable) |
| { |
| struct intel_overlay *overlay; |
| int ret; |
| |
| if (!enable && intel_crtc->overlay) { |
| overlay = intel_crtc->overlay; |
| mutex_lock(&overlay->dev->struct_mutex); |
| for (;;) { |
| ret = intel_overlay_switch_off(overlay); |
| if (ret == 0) |
| break; |
| |
| ret = intel_overlay_recover_from_interrupt(overlay, 0); |
| if (ret != 0) { |
| /* overlay doesn't react anymore. Usually |
| * results in a black screen and an unkillable |
| * X server. */ |
| BUG(); |
| overlay->hw_wedged = HW_WEDGED; |
| break; |
| } |
| } |
| mutex_unlock(&overlay->dev->struct_mutex); |
| } |
| /* Let userspace switch the overlay on again. In most cases userspace |
| * has to recompute where to put it anyway. */ |
| |
| return; |
| } |
| |
| static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| int plane = intel_crtc->plane; |
| int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B; |
| int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR; |
| int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR; |
| int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF; |
| u32 temp; |
| |
| /* XXX: When our outputs are all unaware of DPMS modes other than off |
| * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC. |
| */ |
| switch (mode) { |
| case DRM_MODE_DPMS_ON: |
| case DRM_MODE_DPMS_STANDBY: |
| case DRM_MODE_DPMS_SUSPEND: |
| intel_update_watermarks(dev); |
| |
| /* Enable the DPLL */ |
| temp = I915_READ(dpll_reg); |
| if ((temp & DPLL_VCO_ENABLE) == 0) { |
| I915_WRITE(dpll_reg, temp); |
| I915_READ(dpll_reg); |
| /* Wait for the clocks to stabilize. */ |
| udelay(150); |
| I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE); |
| I915_READ(dpll_reg); |
| /* Wait for the clocks to stabilize. */ |
| udelay(150); |
| I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE); |
| I915_READ(dpll_reg); |
| /* Wait for the clocks to stabilize. */ |
| udelay(150); |
| } |
| |
| /* Enable the pipe */ |
| temp = I915_READ(pipeconf_reg); |
| if ((temp & PIPEACONF_ENABLE) == 0) |
| I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE); |
| |
| /* Enable the plane */ |
| temp = I915_READ(dspcntr_reg); |
| if ((temp & DISPLAY_PLANE_ENABLE) == 0) { |
| I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE); |
| /* Flush the plane changes */ |
| I915_WRITE(dspbase_reg, I915_READ(dspbase_reg)); |
| } |
| |
| intel_crtc_load_lut(crtc); |
| |
| if ((IS_I965G(dev) || plane == 0)) |
| intel_update_fbc(crtc, &crtc->mode); |
| |
| /* Give the overlay scaler a chance to enable if it's on this pipe */ |
| intel_crtc_dpms_overlay(intel_crtc, true); |
| break; |
| case DRM_MODE_DPMS_OFF: |
| intel_update_watermarks(dev); |
| |
| /* Give the overlay scaler a chance to disable if it's on this pipe */ |
| intel_crtc_dpms_overlay(intel_crtc, false); |
| drm_vblank_off(dev, pipe); |
| |
| if (dev_priv->cfb_plane == plane && |
| dev_priv->display.disable_fbc) |
| dev_priv->display.disable_fbc(dev); |
| |
| /* Disable the VGA plane that we never use */ |
| i915_disable_vga(dev); |
| |
| /* Disable display plane */ |
| temp = I915_READ(dspcntr_reg); |
| if ((temp & DISPLAY_PLANE_ENABLE) != 0) { |
| I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE); |
| /* Flush the plane changes */ |
| I915_WRITE(dspbase_reg, I915_READ(dspbase_reg)); |
| I915_READ(dspbase_reg); |
| } |
| |
| if (!IS_I9XX(dev)) { |
| /* Wait for vblank for the disable to take effect */ |
| intel_wait_for_vblank(dev); |
| } |
| |
| /* Next, disable display pipes */ |
| temp = I915_READ(pipeconf_reg); |
| if ((temp & PIPEACONF_ENABLE) != 0) { |
| I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE); |
| I915_READ(pipeconf_reg); |
| } |
| |
| /* Wait for vblank for the disable to take effect. */ |
| intel_wait_for_vblank(dev); |
| |
| temp = I915_READ(dpll_reg); |
| if ((temp & DPLL_VCO_ENABLE) != 0) { |
| I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE); |
| I915_READ(dpll_reg); |
| } |
| |
| /* Wait for the clocks to turn off. */ |
| udelay(150); |
| break; |
| } |
| } |
| |
| /** |
| * Sets the power management mode of the pipe and plane. |
| * |
| * This code should probably grow support for turning the cursor off and back |
| * on appropriately at the same time as we're turning the pipe off/on. |
| */ |
| static void intel_crtc_dpms(struct drm_crtc *crtc, int mode) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_i915_master_private *master_priv; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| bool enabled; |
| |
| dev_priv->display.dpms(crtc, mode); |
| |
| intel_crtc->dpms_mode = mode; |
| |
| if (!dev->primary->master) |
| return; |
| |
| master_priv = dev->primary->master->driver_priv; |
| if (!master_priv->sarea_priv) |
| return; |
| |
| enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF; |
| |
| switch (pipe) { |
| case 0: |
| master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0; |
| master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0; |
| break; |
| case 1: |
| master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0; |
| master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0; |
| break; |
| default: |
| DRM_ERROR("Can't update pipe %d in SAREA\n", pipe); |
| break; |
| } |
| } |
| |
| static void intel_crtc_prepare (struct drm_crtc *crtc) |
| { |
| struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; |
| crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF); |
| } |
| |
| static void intel_crtc_commit (struct drm_crtc *crtc) |
| { |
| struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; |
| crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON); |
| } |
| |
| void intel_encoder_prepare (struct drm_encoder *encoder) |
| { |
| struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private; |
| /* lvds has its own version of prepare see intel_lvds_prepare */ |
| encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF); |
| } |
| |
| void intel_encoder_commit (struct drm_encoder *encoder) |
| { |
| struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private; |
| /* lvds has its own version of commit see intel_lvds_commit */ |
| encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON); |
| } |
| |
| static bool intel_crtc_mode_fixup(struct drm_crtc *crtc, |
| struct drm_display_mode *mode, |
| struct drm_display_mode *adjusted_mode) |
| { |
| struct drm_device *dev = crtc->dev; |
| if (HAS_PCH_SPLIT(dev)) { |
| /* FDI link clock is fixed at 2.7G */ |
| if (mode->clock * 3 > 27000 * 4) |
| return MODE_CLOCK_HIGH; |
| } |
| return true; |
| } |
| |
| static int i945_get_display_clock_speed(struct drm_device *dev) |
| { |
| return 400000; |
| } |
| |
| static int i915_get_display_clock_speed(struct drm_device *dev) |
| { |
| return 333000; |
| } |
| |
| static int i9xx_misc_get_display_clock_speed(struct drm_device *dev) |
| { |
| return 200000; |
| } |
| |
| static int i915gm_get_display_clock_speed(struct drm_device *dev) |
| { |
| u16 gcfgc = 0; |
| |
| pci_read_config_word(dev->pdev, GCFGC, &gcfgc); |
| |
| if (gcfgc & GC_LOW_FREQUENCY_ENABLE) |
| return 133000; |
| else { |
| switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { |
| case GC_DISPLAY_CLOCK_333_MHZ: |
| return 333000; |
| default: |
| case GC_DISPLAY_CLOCK_190_200_MHZ: |
| return 190000; |
| } |
| } |
| } |
| |
| static int i865_get_display_clock_speed(struct drm_device *dev) |
| { |
| return 266000; |
| } |
| |
| static int i855_get_display_clock_speed(struct drm_device *dev) |
| { |
| u16 hpllcc = 0; |
| /* Assume that the hardware is in the high speed state. This |
| * should be the default. |
| */ |
| switch (hpllcc & GC_CLOCK_CONTROL_MASK) { |
| case GC_CLOCK_133_200: |
| case GC_CLOCK_100_200: |
| return 200000; |
| case GC_CLOCK_166_250: |
| return 250000; |
| case GC_CLOCK_100_133: |
| return 133000; |
| } |
| |
| /* Shouldn't happen */ |
| return 0; |
| } |
| |
| static int i830_get_display_clock_speed(struct drm_device *dev) |
| { |
| return 133000; |
| } |
| |
| /** |
| * Return the pipe currently connected to the panel fitter, |
| * or -1 if the panel fitter is not present or not in use |
| */ |
| int intel_panel_fitter_pipe (struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 pfit_control; |
| |
| /* i830 doesn't have a panel fitter */ |
| if (IS_I830(dev)) |
| return -1; |
| |
| pfit_control = I915_READ(PFIT_CONTROL); |
| |
| /* See if the panel fitter is in use */ |
| if ((pfit_control & PFIT_ENABLE) == 0) |
| return -1; |
| |
| /* 965 can place panel fitter on either pipe */ |
| if (IS_I965G(dev)) |
| return (pfit_control >> 29) & 0x3; |
| |
| /* older chips can only use pipe 1 */ |
| return 1; |
| } |
| |
| struct fdi_m_n { |
| u32 tu; |
| u32 gmch_m; |
| u32 gmch_n; |
| u32 link_m; |
| u32 link_n; |
| }; |
| |
| static void |
| fdi_reduce_ratio(u32 *num, u32 *den) |
| { |
| while (*num > 0xffffff || *den > 0xffffff) { |
| *num >>= 1; |
| *den >>= 1; |
| } |
| } |
| |
| #define DATA_N 0x800000 |
| #define LINK_N 0x80000 |
| |
| static void |
| ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock, |
| int link_clock, struct fdi_m_n *m_n) |
| { |
| u64 temp; |
| |
| m_n->tu = 64; /* default size */ |
| |
| temp = (u64) DATA_N * pixel_clock; |
| temp = div_u64(temp, link_clock); |
| m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes); |
| m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */ |
| m_n->gmch_n = DATA_N; |
| fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n); |
| |
| temp = (u64) LINK_N * pixel_clock; |
| m_n->link_m = div_u64(temp, link_clock); |
| m_n->link_n = LINK_N; |
| fdi_reduce_ratio(&m_n->link_m, &m_n->link_n); |
| } |
| |
| |
| struct intel_watermark_params { |
| unsigned long fifo_size; |
| unsigned long max_wm; |
| unsigned long default_wm; |
| unsigned long guard_size; |
| unsigned long cacheline_size; |
| }; |
| |
| /* Pineview has different values for various configs */ |
| static struct intel_watermark_params pineview_display_wm = { |
| PINEVIEW_DISPLAY_FIFO, |
| PINEVIEW_MAX_WM, |
| PINEVIEW_DFT_WM, |
| PINEVIEW_GUARD_WM, |
| PINEVIEW_FIFO_LINE_SIZE |
| }; |
| static struct intel_watermark_params pineview_display_hplloff_wm = { |
| PINEVIEW_DISPLAY_FIFO, |
| PINEVIEW_MAX_WM, |
| PINEVIEW_DFT_HPLLOFF_WM, |
| PINEVIEW_GUARD_WM, |
| PINEVIEW_FIFO_LINE_SIZE |
| }; |
| static struct intel_watermark_params pineview_cursor_wm = { |
| PINEVIEW_CURSOR_FIFO, |
| PINEVIEW_CURSOR_MAX_WM, |
| PINEVIEW_CURSOR_DFT_WM, |
| PINEVIEW_CURSOR_GUARD_WM, |
| PINEVIEW_FIFO_LINE_SIZE, |
| }; |
| static struct intel_watermark_params pineview_cursor_hplloff_wm = { |
| PINEVIEW_CURSOR_FIFO, |
| PINEVIEW_CURSOR_MAX_WM, |
| PINEVIEW_CURSOR_DFT_WM, |
| PINEVIEW_CURSOR_GUARD_WM, |
| PINEVIEW_FIFO_LINE_SIZE |
| }; |
| static struct intel_watermark_params g4x_wm_info = { |
| G4X_FIFO_SIZE, |
| G4X_MAX_WM, |
| G4X_MAX_WM, |
| 2, |
| G4X_FIFO_LINE_SIZE, |
| }; |
| static struct intel_watermark_params i945_wm_info = { |
| I945_FIFO_SIZE, |
| I915_MAX_WM, |
| 1, |
| 2, |
| I915_FIFO_LINE_SIZE |
| }; |
| static struct intel_watermark_params i915_wm_info = { |
| I915_FIFO_SIZE, |
| I915_MAX_WM, |
| 1, |
| 2, |
| I915_FIFO_LINE_SIZE |
| }; |
| static struct intel_watermark_params i855_wm_info = { |
| I855GM_FIFO_SIZE, |
| I915_MAX_WM, |
| 1, |
| 2, |
| I830_FIFO_LINE_SIZE |
| }; |
| static struct intel_watermark_params i830_wm_info = { |
| I830_FIFO_SIZE, |
| I915_MAX_WM, |
| 1, |
| 2, |
| I830_FIFO_LINE_SIZE |
| }; |
| |
| static struct intel_watermark_params ironlake_display_wm_info = { |
| ILK_DISPLAY_FIFO, |
| ILK_DISPLAY_MAXWM, |
| ILK_DISPLAY_DFTWM, |
| 2, |
| ILK_FIFO_LINE_SIZE |
| }; |
| |
| static struct intel_watermark_params ironlake_display_srwm_info = { |
| ILK_DISPLAY_SR_FIFO, |
| ILK_DISPLAY_MAX_SRWM, |
| ILK_DISPLAY_DFT_SRWM, |
| 2, |
| ILK_FIFO_LINE_SIZE |
| }; |
| |
| static struct intel_watermark_params ironlake_cursor_srwm_info = { |
| ILK_CURSOR_SR_FIFO, |
| ILK_CURSOR_MAX_SRWM, |
| ILK_CURSOR_DFT_SRWM, |
| 2, |
| ILK_FIFO_LINE_SIZE |
| }; |
| |
| /** |
| * intel_calculate_wm - calculate watermark level |
| * @clock_in_khz: pixel clock |
| * @wm: chip FIFO params |
| * @pixel_size: display pixel size |
| * @latency_ns: memory latency for the platform |
| * |
| * Calculate the watermark level (the level at which the display plane will |
| * start fetching from memory again). Each chip has a different display |
| * FIFO size and allocation, so the caller needs to figure that out and pass |
| * in the correct intel_watermark_params structure. |
| * |
| * As the pixel clock runs, the FIFO will be drained at a rate that depends |
| * on the pixel size. When it reaches the watermark level, it'll start |
| * fetching FIFO line sized based chunks from memory until the FIFO fills |
| * past the watermark point. If the FIFO drains completely, a FIFO underrun |
| * will occur, and a display engine hang could result. |
| */ |
| static unsigned long intel_calculate_wm(unsigned long clock_in_khz, |
| struct intel_watermark_params *wm, |
| int pixel_size, |
| unsigned long latency_ns) |
| { |
| long entries_required, wm_size; |
| |
| /* |
| * Note: we need to make sure we don't overflow for various clock & |
| * latency values. |
| * clocks go from a few thousand to several hundred thousand. |
| * latency is usually a few thousand |
| */ |
| entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) / |
| 1000; |
| entries_required /= wm->cacheline_size; |
| |
| DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required); |
| |
| wm_size = wm->fifo_size - (entries_required + wm->guard_size); |
| |
| DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size); |
| |
| /* Don't promote wm_size to unsigned... */ |
| if (wm_size > (long)wm->max_wm) |
| wm_size = wm->max_wm; |
| if (wm_size <= 0) |
| wm_size = wm->default_wm; |
| return wm_size; |
| } |
| |
| struct cxsr_latency { |
| int is_desktop; |
| unsigned long fsb_freq; |
| unsigned long mem_freq; |
| unsigned long display_sr; |
| unsigned long display_hpll_disable; |
| unsigned long cursor_sr; |
| unsigned long cursor_hpll_disable; |
| }; |
| |
| static struct cxsr_latency cxsr_latency_table[] = { |
| {1, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */ |
| {1, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */ |
| {1, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */ |
| |
| {1, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */ |
| {1, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */ |
| {1, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */ |
| |
| {1, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */ |
| {1, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */ |
| {1, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */ |
| |
| {0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */ |
| {0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */ |
| {0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */ |
| |
| {0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */ |
| {0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */ |
| {0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */ |
| |
| {0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */ |
| {0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */ |
| {0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */ |
| }; |
| |
| static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb, |
| int mem) |
| { |
| int i; |
| struct cxsr_latency *latency; |
| |
| if (fsb == 0 || mem == 0) |
| return NULL; |
| |
| for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) { |
| latency = &cxsr_latency_table[i]; |
| if (is_desktop == latency->is_desktop && |
| fsb == latency->fsb_freq && mem == latency->mem_freq) |
| return latency; |
| } |
| |
| DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n"); |
| |
| return NULL; |
| } |
| |
| static void pineview_disable_cxsr(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 reg; |
| |
| /* deactivate cxsr */ |
| reg = I915_READ(DSPFW3); |
| reg &= ~(PINEVIEW_SELF_REFRESH_EN); |
| I915_WRITE(DSPFW3, reg); |
| DRM_INFO("Big FIFO is disabled\n"); |
| } |
| |
| /* |
| * Latency for FIFO fetches is dependent on several factors: |
| * - memory configuration (speed, channels) |
| * - chipset |
| * - current MCH state |
| * It can be fairly high in some situations, so here we assume a fairly |
| * pessimal value. It's a tradeoff between extra memory fetches (if we |
| * set this value too high, the FIFO will fetch frequently to stay full) |
| * and power consumption (set it too low to save power and we might see |
| * FIFO underruns and display "flicker"). |
| * |
| * A value of 5us seems to be a good balance; safe for very low end |
| * platforms but not overly aggressive on lower latency configs. |
| */ |
| static const int latency_ns = 5000; |
| |
| static int i9xx_get_fifo_size(struct drm_device *dev, int plane) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t dsparb = I915_READ(DSPARB); |
| int size; |
| |
| if (plane == 0) |
| size = dsparb & 0x7f; |
| else |
| size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - |
| (dsparb & 0x7f); |
| |
| DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, |
| plane ? "B" : "A", size); |
| |
| return size; |
| } |
| |
| static int i85x_get_fifo_size(struct drm_device *dev, int plane) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t dsparb = I915_READ(DSPARB); |
| int size; |
| |
| if (plane == 0) |
| size = dsparb & 0x1ff; |
| else |
| size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - |
| (dsparb & 0x1ff); |
| size >>= 1; /* Convert to cachelines */ |
| |
| DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, |
| plane ? "B" : "A", size); |
| |
| return size; |
| } |
| |
| static int i845_get_fifo_size(struct drm_device *dev, int plane) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t dsparb = I915_READ(DSPARB); |
| int size; |
| |
| size = dsparb & 0x7f; |
| size >>= 2; /* Convert to cachelines */ |
| |
| DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, |
| plane ? "B" : "A", |
| size); |
| |
| return size; |
| } |
| |
| static int i830_get_fifo_size(struct drm_device *dev, int plane) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t dsparb = I915_READ(DSPARB); |
| int size; |
| |
| size = dsparb & 0x7f; |
| size >>= 1; /* Convert to cachelines */ |
| |
| DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, |
| plane ? "B" : "A", size); |
| |
| return size; |
| } |
| |
| static void pineview_update_wm(struct drm_device *dev, int planea_clock, |
| int planeb_clock, int sr_hdisplay, int pixel_size) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 reg; |
| unsigned long wm; |
| struct cxsr_latency *latency; |
| int sr_clock; |
| |
| latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->fsb_freq, |
| dev_priv->mem_freq); |
| if (!latency) { |
| DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n"); |
| pineview_disable_cxsr(dev); |
| return; |
| } |
| |
| if (!planea_clock || !planeb_clock) { |
| sr_clock = planea_clock ? planea_clock : planeb_clock; |
| |
| /* Display SR */ |
| wm = intel_calculate_wm(sr_clock, &pineview_display_wm, |
| pixel_size, latency->display_sr); |
| reg = I915_READ(DSPFW1); |
| reg &= ~DSPFW_SR_MASK; |
| reg |= wm << DSPFW_SR_SHIFT; |
| I915_WRITE(DSPFW1, reg); |
| DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg); |
| |
| /* cursor SR */ |
| wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm, |
| pixel_size, latency->cursor_sr); |
| reg = I915_READ(DSPFW3); |
| reg &= ~DSPFW_CURSOR_SR_MASK; |
| reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT; |
| I915_WRITE(DSPFW3, reg); |
| |
| /* Display HPLL off SR */ |
| wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm, |
| pixel_size, latency->display_hpll_disable); |
| reg = I915_READ(DSPFW3); |
| reg &= ~DSPFW_HPLL_SR_MASK; |
| reg |= wm & DSPFW_HPLL_SR_MASK; |
| I915_WRITE(DSPFW3, reg); |
| |
| /* cursor HPLL off SR */ |
| wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm, |
| pixel_size, latency->cursor_hpll_disable); |
| reg = I915_READ(DSPFW3); |
| reg &= ~DSPFW_HPLL_CURSOR_MASK; |
| reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT; |
| I915_WRITE(DSPFW3, reg); |
| DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg); |
| |
| /* activate cxsr */ |
| reg = I915_READ(DSPFW3); |
| reg |= PINEVIEW_SELF_REFRESH_EN; |
| I915_WRITE(DSPFW3, reg); |
| DRM_DEBUG_KMS("Self-refresh is enabled\n"); |
| } else { |
| pineview_disable_cxsr(dev); |
| DRM_DEBUG_KMS("Self-refresh is disabled\n"); |
| } |
| } |
| |
| static void g4x_update_wm(struct drm_device *dev, int planea_clock, |
| int planeb_clock, int sr_hdisplay, int pixel_size) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int total_size, cacheline_size; |
| int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr; |
| struct intel_watermark_params planea_params, planeb_params; |
| unsigned long line_time_us; |
| int sr_clock, sr_entries = 0, entries_required; |
| |
| /* Create copies of the base settings for each pipe */ |
| planea_params = planeb_params = g4x_wm_info; |
| |
| /* Grab a couple of global values before we overwrite them */ |
| total_size = planea_params.fifo_size; |
| cacheline_size = planea_params.cacheline_size; |
| |
| /* |
| * Note: we need to make sure we don't overflow for various clock & |
| * latency values. |
| * clocks go from a few thousand to several hundred thousand. |
| * latency is usually a few thousand |
| */ |
| entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) / |
| 1000; |
| entries_required /= G4X_FIFO_LINE_SIZE; |
| planea_wm = entries_required + planea_params.guard_size; |
| |
| entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) / |
| 1000; |
| entries_required /= G4X_FIFO_LINE_SIZE; |
| planeb_wm = entries_required + planeb_params.guard_size; |
| |
| cursora_wm = cursorb_wm = 16; |
| cursor_sr = 32; |
| |
| DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm); |
| |
| /* Calc sr entries for one plane configs */ |
| if (sr_hdisplay && (!planea_clock || !planeb_clock)) { |
| /* self-refresh has much higher latency */ |
| static const int sr_latency_ns = 12000; |
| |
| sr_clock = planea_clock ? planea_clock : planeb_clock; |
| line_time_us = ((sr_hdisplay * 1000) / sr_clock); |
| |
| /* Use ns/us then divide to preserve precision */ |
| sr_entries = (((sr_latency_ns / line_time_us) + 1) * |
| pixel_size * sr_hdisplay) / 1000; |
| sr_entries = roundup(sr_entries / cacheline_size, 1); |
| DRM_DEBUG("self-refresh entries: %d\n", sr_entries); |
| I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN); |
| } else { |
| /* Turn off self refresh if both pipes are enabled */ |
| I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF) |
| & ~FW_BLC_SELF_EN); |
| } |
| |
| DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n", |
| planea_wm, planeb_wm, sr_entries); |
| |
| planea_wm &= 0x3f; |
| planeb_wm &= 0x3f; |
| |
| I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) | |
| (cursorb_wm << DSPFW_CURSORB_SHIFT) | |
| (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm); |
| I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) | |
| (cursora_wm << DSPFW_CURSORA_SHIFT)); |
| /* HPLL off in SR has some issues on G4x... disable it */ |
| I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) | |
| (cursor_sr << DSPFW_CURSOR_SR_SHIFT)); |
| } |
| |
| static void i965_update_wm(struct drm_device *dev, int planea_clock, |
| int planeb_clock, int sr_hdisplay, int pixel_size) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| unsigned long line_time_us; |
| int sr_clock, sr_entries, srwm = 1; |
| |
| /* Calc sr entries for one plane configs */ |
| if (sr_hdisplay && (!planea_clock || !planeb_clock)) { |
| /* self-refresh has much higher latency */ |
| static const int sr_latency_ns = 12000; |
| |
| sr_clock = planea_clock ? planea_clock : planeb_clock; |
| line_time_us = ((sr_hdisplay * 1000) / sr_clock); |
| |
| /* Use ns/us then divide to preserve precision */ |
| sr_entries = (((sr_latency_ns / line_time_us) + 1) * |
| pixel_size * sr_hdisplay) / 1000; |
| sr_entries = roundup(sr_entries / I915_FIFO_LINE_SIZE, 1); |
| DRM_DEBUG("self-refresh entries: %d\n", sr_entries); |
| srwm = I945_FIFO_SIZE - sr_entries; |
| if (srwm < 0) |
| srwm = 1; |
| srwm &= 0x3f; |
| I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN); |
| } else { |
| /* Turn off self refresh if both pipes are enabled */ |
| I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF) |
| & ~FW_BLC_SELF_EN); |
| } |
| |
| DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n", |
| srwm); |
| |
| /* 965 has limitations... */ |
| I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) | |
| (8 << 0)); |
| I915_WRITE(DSPFW2, (8 << 8) | (8 << 0)); |
| } |
| |
| static void i9xx_update_wm(struct drm_device *dev, int planea_clock, |
| int planeb_clock, int sr_hdisplay, int pixel_size) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t fwater_lo; |
| uint32_t fwater_hi; |
| int total_size, cacheline_size, cwm, srwm = 1; |
| int planea_wm, planeb_wm; |
| struct intel_watermark_params planea_params, planeb_params; |
| unsigned long line_time_us; |
| int sr_clock, sr_entries = 0; |
| |
| /* Create copies of the base settings for each pipe */ |
| if (IS_I965GM(dev) || IS_I945GM(dev)) |
| planea_params = planeb_params = i945_wm_info; |
| else if (IS_I9XX(dev)) |
| planea_params = planeb_params = i915_wm_info; |
| else |
| planea_params = planeb_params = i855_wm_info; |
| |
| /* Grab a couple of global values before we overwrite them */ |
| total_size = planea_params.fifo_size; |
| cacheline_size = planea_params.cacheline_size; |
| |
| /* Update per-plane FIFO sizes */ |
| planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0); |
| planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1); |
| |
| planea_wm = intel_calculate_wm(planea_clock, &planea_params, |
| pixel_size, latency_ns); |
| planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params, |
| pixel_size, latency_ns); |
| DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm); |
| |
| /* |
| * Overlay gets an aggressive default since video jitter is bad. |
| */ |
| cwm = 2; |
| |
| /* Calc sr entries for one plane configs */ |
| if (HAS_FW_BLC(dev) && sr_hdisplay && |
| (!planea_clock || !planeb_clock)) { |
| /* self-refresh has much higher latency */ |
| static const int sr_latency_ns = 6000; |
| |
| sr_clock = planea_clock ? planea_clock : planeb_clock; |
| line_time_us = ((sr_hdisplay * 1000) / sr_clock); |
| |
| /* Use ns/us then divide to preserve precision */ |
| sr_entries = (((sr_latency_ns / line_time_us) + 1) * |
| pixel_size * sr_hdisplay) / 1000; |
| sr_entries = roundup(sr_entries / cacheline_size, 1); |
| DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries); |
| srwm = total_size - sr_entries; |
| if (srwm < 0) |
| srwm = 1; |
| |
| if (IS_I945G(dev) || IS_I945GM(dev)) |
| I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff)); |
| else if (IS_I915GM(dev)) { |
| /* 915M has a smaller SRWM field */ |
| I915_WRITE(FW_BLC_SELF, srwm & 0x3f); |
| I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN); |
| } |
| } else { |
| /* Turn off self refresh if both pipes are enabled */ |
| if (IS_I945G(dev) || IS_I945GM(dev)) { |
| I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF) |
| & ~FW_BLC_SELF_EN); |
| } else if (IS_I915GM(dev)) { |
| I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN); |
| } |
| } |
| |
| DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n", |
| planea_wm, planeb_wm, cwm, srwm); |
| |
| fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f); |
| fwater_hi = (cwm & 0x1f); |
| |
| /* Set request length to 8 cachelines per fetch */ |
| fwater_lo = fwater_lo | (1 << 24) | (1 << 8); |
| fwater_hi = fwater_hi | (1 << 8); |
| |
| I915_WRITE(FW_BLC, fwater_lo); |
| I915_WRITE(FW_BLC2, fwater_hi); |
| } |
| |
| static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused, |
| int unused2, int pixel_size) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff; |
| int planea_wm; |
| |
| i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0); |
| |
| planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info, |
| pixel_size, latency_ns); |
| fwater_lo |= (3<<8) | planea_wm; |
| |
| DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm); |
| |
| I915_WRITE(FW_BLC, fwater_lo); |
| } |
| |
| #define ILK_LP0_PLANE_LATENCY 700 |
| |
| static void ironlake_update_wm(struct drm_device *dev, int planea_clock, |
| int planeb_clock, int sr_hdisplay, int pixel_size) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int planea_wm, planeb_wm, cursora_wm, cursorb_wm; |
| int sr_wm, cursor_wm; |
| unsigned long line_time_us; |
| int sr_clock, entries_required; |
| u32 reg_value; |
| |
| /* Calculate and update the watermark for plane A */ |
| if (planea_clock) { |
| entries_required = ((planea_clock / 1000) * pixel_size * |
| ILK_LP0_PLANE_LATENCY) / 1000; |
| entries_required = DIV_ROUND_UP(entries_required, |
| ironlake_display_wm_info.cacheline_size); |
| planea_wm = entries_required + |
| ironlake_display_wm_info.guard_size; |
| |
| if (planea_wm > (int)ironlake_display_wm_info.max_wm) |
| planea_wm = ironlake_display_wm_info.max_wm; |
| |
| cursora_wm = 16; |
| reg_value = I915_READ(WM0_PIPEA_ILK); |
| reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK); |
| reg_value |= (planea_wm << WM0_PIPE_PLANE_SHIFT) | |
| (cursora_wm & WM0_PIPE_CURSOR_MASK); |
| I915_WRITE(WM0_PIPEA_ILK, reg_value); |
| DRM_DEBUG_KMS("FIFO watermarks For pipe A - plane %d, " |
| "cursor: %d\n", planea_wm, cursora_wm); |
| } |
| /* Calculate and update the watermark for plane B */ |
| if (planeb_clock) { |
| entries_required = ((planeb_clock / 1000) * pixel_size * |
| ILK_LP0_PLANE_LATENCY) / 1000; |
| entries_required = DIV_ROUND_UP(entries_required, |
| ironlake_display_wm_info.cacheline_size); |
| planeb_wm = entries_required + |
| ironlake_display_wm_info.guard_size; |
| |
| if (planeb_wm > (int)ironlake_display_wm_info.max_wm) |
| planeb_wm = ironlake_display_wm_info.max_wm; |
| |
| cursorb_wm = 16; |
| reg_value = I915_READ(WM0_PIPEB_ILK); |
| reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK); |
| reg_value |= (planeb_wm << WM0_PIPE_PLANE_SHIFT) | |
| (cursorb_wm & WM0_PIPE_CURSOR_MASK); |
| I915_WRITE(WM0_PIPEB_ILK, reg_value); |
| DRM_DEBUG_KMS("FIFO watermarks For pipe B - plane %d, " |
| "cursor: %d\n", planeb_wm, cursorb_wm); |
| } |
| |
| /* |
| * Calculate and update the self-refresh watermark only when one |
| * display plane is used. |
| */ |
| if (!planea_clock || !planeb_clock) { |
| int line_count; |
| /* Read the self-refresh latency. The unit is 0.5us */ |
| int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK; |
| |
| sr_clock = planea_clock ? planea_clock : planeb_clock; |
| line_time_us = ((sr_hdisplay * 1000) / sr_clock); |
| |
| /* Use ns/us then divide to preserve precision */ |
| line_count = ((ilk_sr_latency * 500) / line_time_us + 1000) |
| / 1000; |
| |
| /* calculate the self-refresh watermark for display plane */ |
| entries_required = line_count * sr_hdisplay * pixel_size; |
| entries_required = DIV_ROUND_UP(entries_required, |
| ironlake_display_srwm_info.cacheline_size); |
| sr_wm = entries_required + |
| ironlake_display_srwm_info.guard_size; |
| |
| /* calculate the self-refresh watermark for display cursor */ |
| entries_required = line_count * pixel_size * 64; |
| entries_required = DIV_ROUND_UP(entries_required, |
| ironlake_cursor_srwm_info.cacheline_size); |
| cursor_wm = entries_required + |
| ironlake_cursor_srwm_info.guard_size; |
| |
| /* configure watermark and enable self-refresh */ |
| reg_value = I915_READ(WM1_LP_ILK); |
| reg_value &= ~(WM1_LP_LATENCY_MASK | WM1_LP_SR_MASK | |
| WM1_LP_CURSOR_MASK); |
| reg_value |= WM1_LP_SR_EN | |
| (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) | |
| (sr_wm << WM1_LP_SR_SHIFT) | cursor_wm; |
| |
| I915_WRITE(WM1_LP_ILK, reg_value); |
| DRM_DEBUG_KMS("self-refresh watermark: display plane %d " |
| "cursor %d\n", sr_wm, cursor_wm); |
| |
| } else { |
| /* Turn off self refresh if both pipes are enabled */ |
| I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN); |
| } |
| } |
| /** |
| * intel_update_watermarks - update FIFO watermark values based on current modes |
| * |
| * Calculate watermark values for the various WM regs based on current mode |
| * and plane configuration. |
| * |
| * There are several cases to deal with here: |
| * - normal (i.e. non-self-refresh) |
| * - self-refresh (SR) mode |
| * - lines are large relative to FIFO size (buffer can hold up to 2) |
| * - lines are small relative to FIFO size (buffer can hold more than 2 |
| * lines), so need to account for TLB latency |
| * |
| * The normal calculation is: |
| * watermark = dotclock * bytes per pixel * latency |
| * where latency is platform & configuration dependent (we assume pessimal |
| * values here). |
| * |
| * The SR calculation is: |
| * watermark = (trunc(latency/line time)+1) * surface width * |
| * bytes per pixel |
| * where |
| * line time = htotal / dotclock |
| * and latency is assumed to be high, as above. |
| * |
| * The final value programmed to the register should always be rounded up, |
| * and include an extra 2 entries to account for clock crossings. |
| * |
| * We don't use the sprite, so we can ignore that. And on Crestline we have |
| * to set the non-SR watermarks to 8. |
| */ |
| static void intel_update_watermarks(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_crtc *crtc; |
| struct intel_crtc *intel_crtc; |
| int sr_hdisplay = 0; |
| unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0; |
| int enabled = 0, pixel_size = 0; |
| |
| if (!dev_priv->display.update_wm) |
| return; |
| |
| /* Get the clock config from both planes */ |
| list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { |
| intel_crtc = to_intel_crtc(crtc); |
| if (crtc->enabled) { |
| enabled++; |
| if (intel_crtc->plane == 0) { |
| DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n", |
| intel_crtc->pipe, crtc->mode.clock); |
| planea_clock = crtc->mode.clock; |
| } else { |
| DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n", |
| intel_crtc->pipe, crtc->mode.clock); |
| planeb_clock = crtc->mode.clock; |
| } |
| sr_hdisplay = crtc->mode.hdisplay; |
| sr_clock = crtc->mode.clock; |
| if (crtc->fb) |
| pixel_size = crtc->fb->bits_per_pixel / 8; |
| else |
| pixel_size = 4; /* by default */ |
| } |
| } |
| |
| if (enabled <= 0) |
| return; |
| |
| dev_priv->display.update_wm(dev, planea_clock, planeb_clock, |
| sr_hdisplay, pixel_size); |
| } |
| |
| static int intel_crtc_mode_set(struct drm_crtc *crtc, |
| struct drm_display_mode *mode, |
| struct drm_display_mode *adjusted_mode, |
| int x, int y, |
| struct drm_framebuffer *old_fb) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| int plane = intel_crtc->plane; |
| int fp_reg = (pipe == 0) ? FPA0 : FPB0; |
| int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B; |
| int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD; |
| int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR; |
| int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF; |
| int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B; |
| int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B; |
| int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B; |
| int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B; |
| int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B; |
| int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B; |
| int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE; |
| int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS; |
| int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC; |
| int refclk, num_connectors = 0; |
| intel_clock_t clock, reduced_clock; |
| u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf; |
| bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false; |
| bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false; |
| bool is_edp = false; |
| struct drm_mode_config *mode_config = &dev->mode_config; |
| struct drm_encoder *encoder; |
| struct intel_encoder *intel_encoder = NULL; |
| const intel_limit_t *limit; |
| int ret; |
| struct fdi_m_n m_n = {0}; |
| int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1; |
| int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1; |
| int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1; |
| int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1; |
| int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0; |
| int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B; |
| int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL; |
| int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL; |
| int trans_dpll_sel = (pipe == 0) ? 0 : 1; |
| int lvds_reg = LVDS; |
| u32 temp; |
| int sdvo_pixel_multiply; |
| int target_clock; |
| |
| drm_vblank_pre_modeset(dev, pipe); |
| |
| list_for_each_entry(encoder, &mode_config->encoder_list, head) { |
| |
| if (!encoder || encoder->crtc != crtc) |
| continue; |
| |
| intel_encoder = enc_to_intel_encoder(encoder); |
| |
| switch (intel_encoder->type) { |
| case INTEL_OUTPUT_LVDS: |
| is_lvds = true; |
| break; |
| case INTEL_OUTPUT_SDVO: |
| case INTEL_OUTPUT_HDMI: |
| is_sdvo = true; |
| if (intel_encoder->needs_tv_clock) |
| is_tv = true; |
| break; |
| case INTEL_OUTPUT_DVO: |
| is_dvo = true; |
| break; |
| case INTEL_OUTPUT_TVOUT: |
| is_tv = true; |
| break; |
| case INTEL_OUTPUT_ANALOG: |
| is_crt = true; |
| break; |
| case INTEL_OUTPUT_DISPLAYPORT: |
| is_dp = true; |
| break; |
| case INTEL_OUTPUT_EDP: |
| is_edp = true; |
| break; |
| } |
| |
| num_connectors++; |
| } |
| |
| if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) { |
| refclk = dev_priv->lvds_ssc_freq * 1000; |
| DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n", |
| refclk / 1000); |
| } else if (IS_I9XX(dev)) { |
| refclk = 96000; |
| if (HAS_PCH_SPLIT(dev)) |
| refclk = 120000; /* 120Mhz refclk */ |
| } else { |
| refclk = 48000; |
| } |
| |
| |
| /* |
| * Returns a set of divisors for the desired target clock with the given |
| * refclk, or FALSE. The returned values represent the clock equation: |
| * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. |
| */ |
| limit = intel_limit(crtc); |
| ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock); |
| if (!ok) { |
| DRM_ERROR("Couldn't find PLL settings for mode!\n"); |
| drm_vblank_post_modeset(dev, pipe); |
| return -EINVAL; |
| } |
| |
| if (is_lvds && dev_priv->lvds_downclock_avail) { |
| has_reduced_clock = limit->find_pll(limit, crtc, |
| dev_priv->lvds_downclock, |
| refclk, |
| &reduced_clock); |
| if (has_reduced_clock && (clock.p != reduced_clock.p)) { |
| /* |
| * If the different P is found, it means that we can't |
| * switch the display clock by using the FP0/FP1. |
| * In such case we will disable the LVDS downclock |
| * feature. |
| */ |
| DRM_DEBUG_KMS("Different P is found for " |
| "LVDS clock/downclock\n"); |
| has_reduced_clock = 0; |
| } |
| } |
| /* SDVO TV has fixed PLL values depend on its clock range, |
| this mirrors vbios setting. */ |
| if (is_sdvo && is_tv) { |
| if (adjusted_mode->clock >= 100000 |
| && adjusted_mode->clock < 140500) { |
| clock.p1 = 2; |
| clock.p2 = 10; |
| clock.n = 3; |
| clock.m1 = 16; |
| clock.m2 = 8; |
| } else if (adjusted_mode->clock >= 140500 |
| && adjusted_mode->clock <= 200000) { |
| clock.p1 = 1; |
| clock.p2 = 10; |
| clock.n = 6; |
| clock.m1 = 12; |
| clock.m2 = 8; |
| } |
| } |
| |
| /* FDI link */ |
| if (HAS_PCH_SPLIT(dev)) { |
| int lane = 0, link_bw, bpp; |
| /* eDP doesn't require FDI link, so just set DP M/N |
| according to current link config */ |
| if (is_edp) { |
| target_clock = mode->clock; |
| intel_edp_link_config(intel_encoder, |
| &lane, &link_bw); |
| } else { |
| /* DP over FDI requires target mode clock |
| instead of link clock */ |
| if (is_dp) |
| target_clock = mode->clock; |
| else |
| target_clock = adjusted_mode->clock; |
| link_bw = 270000; |
| } |
| |
| /* determine panel color depth */ |
| temp = I915_READ(pipeconf_reg); |
| temp &= ~PIPE_BPC_MASK; |
| if (is_lvds) { |
| int lvds_reg = I915_READ(PCH_LVDS); |
| /* the BPC will be 6 if it is 18-bit LVDS panel */ |
| if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP) |
| temp |= PIPE_8BPC; |
| else |
| temp |= PIPE_6BPC; |
| } else if (is_edp) { |
| switch (dev_priv->edp_bpp/3) { |
| case 8: |
| temp |= PIPE_8BPC; |
| break; |
| case 10: |
| temp |= PIPE_10BPC; |
| break; |
| case 6: |
| temp |= PIPE_6BPC; |
| break; |
| case 12: |
| temp |= PIPE_12BPC; |
| break; |
| } |
| } else |
| temp |= PIPE_8BPC; |
| I915_WRITE(pipeconf_reg, temp); |
| I915_READ(pipeconf_reg); |
| |
| switch (temp & PIPE_BPC_MASK) { |
| case PIPE_8BPC: |
| bpp = 24; |
| break; |
| case PIPE_10BPC: |
| bpp = 30; |
| break; |
| case PIPE_6BPC: |
| bpp = 18; |
| break; |
| case PIPE_12BPC: |
| bpp = 36; |
| break; |
| default: |
| DRM_ERROR("unknown pipe bpc value\n"); |
| bpp = 24; |
| } |
| |
| if (!lane) { |
| /* |
| * Account for spread spectrum to avoid |
| * oversubscribing the link. Max center spread |
| * is 2.5%; use 5% for safety's sake. |
| */ |
| u32 bps = target_clock * bpp * 21 / 20; |
| lane = bps / (link_bw * 8) + 1; |
| } |
| |
| intel_crtc->fdi_lanes = lane; |
| |
| ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n); |
| } |
| |
| /* Ironlake: try to setup display ref clock before DPLL |
| * enabling. This is only under driver's control after |
| * PCH B stepping, previous chipset stepping should be |
| * ignoring this setting. |
| */ |
| if (HAS_PCH_SPLIT(dev)) { |
| temp = I915_READ(PCH_DREF_CONTROL); |
| /* Always enable nonspread source */ |
| temp &= ~DREF_NONSPREAD_SOURCE_MASK; |
| temp |= DREF_NONSPREAD_SOURCE_ENABLE; |
| I915_WRITE(PCH_DREF_CONTROL, temp); |
| POSTING_READ(PCH_DREF_CONTROL); |
| |
| temp &= ~DREF_SSC_SOURCE_MASK; |
| temp |= DREF_SSC_SOURCE_ENABLE; |
| I915_WRITE(PCH_DREF_CONTROL, temp); |
| POSTING_READ(PCH_DREF_CONTROL); |
| |
| udelay(200); |
| |
| if (is_edp) { |
| if (dev_priv->lvds_use_ssc) { |
| temp |= DREF_SSC1_ENABLE; |
| I915_WRITE(PCH_DREF_CONTROL, temp); |
| POSTING_READ(PCH_DREF_CONTROL); |
| |
| udelay(200); |
| |
| temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK; |
| temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; |
| I915_WRITE(PCH_DREF_CONTROL, temp); |
| POSTING_READ(PCH_DREF_CONTROL); |
| } else { |
| temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; |
| I915_WRITE(PCH_DREF_CONTROL, temp); |
| POSTING_READ(PCH_DREF_CONTROL); |
| } |
| } |
| } |
| |
| if (IS_PINEVIEW(dev)) { |
| fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2; |
| if (has_reduced_clock) |
| fp2 = (1 << reduced_clock.n) << 16 | |
| reduced_clock.m1 << 8 | reduced_clock.m2; |
| } else { |
| fp = clock.n << 16 | clock.m1 << 8 | clock.m2; |
| if (has_reduced_clock) |
| fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 | |
| reduced_clock.m2; |
| } |
| |
| if (!HAS_PCH_SPLIT(dev)) |
| dpll = DPLL_VGA_MODE_DIS; |
| |
| if (IS_I9XX(dev)) { |
| if (is_lvds) |
| dpll |= DPLLB_MODE_LVDS; |
| else |
| dpll |= DPLLB_MODE_DAC_SERIAL; |
| if (is_sdvo) { |
| dpll |= DPLL_DVO_HIGH_SPEED; |
| sdvo_pixel_multiply = adjusted_mode->clock / mode->clock; |
| if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) |
| dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES; |
| else if (HAS_PCH_SPLIT(dev)) |
| dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; |
| } |
| if (is_dp) |
| dpll |= DPLL_DVO_HIGH_SPEED; |
| |
| /* compute bitmask from p1 value */ |
| if (IS_PINEVIEW(dev)) |
| dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; |
| else { |
| dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; |
| /* also FPA1 */ |
| if (HAS_PCH_SPLIT(dev)) |
| dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; |
| if (IS_G4X(dev) && has_reduced_clock) |
| dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; |
| } |
| switch (clock.p2) { |
| case 5: |
| dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; |
| break; |
| case 7: |
| dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; |
| break; |
| case 10: |
| dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; |
| break; |
| case 14: |
| dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; |
| break; |
| } |
| if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) |
| dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); |
| } else { |
| if (is_lvds) { |
| dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; |
| } else { |
| if (clock.p1 == 2) |
| dpll |= PLL_P1_DIVIDE_BY_TWO; |
| else |
| dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; |
| if (clock.p2 == 4) |
| dpll |= PLL_P2_DIVIDE_BY_4; |
| } |
| } |
| |
| if (is_sdvo && is_tv) |
| dpll |= PLL_REF_INPUT_TVCLKINBC; |
| else if (is_tv) |
| /* XXX: just matching BIOS for now */ |
| /* dpll |= PLL_REF_INPUT_TVCLKINBC; */ |
| dpll |= 3; |
| else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) |
| dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; |
| else |
| dpll |= PLL_REF_INPUT_DREFCLK; |
| |
| /* setup pipeconf */ |
| pipeconf = I915_READ(pipeconf_reg); |
| |
| /* Set up the display plane register */ |
| dspcntr = DISPPLANE_GAMMA_ENABLE; |
| |
| /* Ironlake's plane is forced to pipe, bit 24 is to |
| enable color space conversion */ |
| if (!HAS_PCH_SPLIT(dev)) { |
| if (pipe == 0) |
| dspcntr &= ~DISPPLANE_SEL_PIPE_MASK; |
| else |
| dspcntr |= DISPPLANE_SEL_PIPE_B; |
| } |
| |
| if (pipe == 0 && !IS_I965G(dev)) { |
| /* Enable pixel doubling when the dot clock is > 90% of the (display) |
| * core speed. |
| * |
| * XXX: No double-wide on 915GM pipe B. Is that the only reason for the |
| * pipe == 0 check? |
| */ |
| if (mode->clock > |
| dev_priv->display.get_display_clock_speed(dev) * 9 / 10) |
| pipeconf |= PIPEACONF_DOUBLE_WIDE; |
| else |
| pipeconf &= ~PIPEACONF_DOUBLE_WIDE; |
| } |
| |
| /* Disable the panel fitter if it was on our pipe */ |
| if (!HAS_PCH_SPLIT(dev) && intel_panel_fitter_pipe(dev) == pipe) |
| I915_WRITE(PFIT_CONTROL, 0); |
| |
| DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B'); |
| drm_mode_debug_printmodeline(mode); |
| |
| /* assign to Ironlake registers */ |
| if (HAS_PCH_SPLIT(dev)) { |
| fp_reg = pch_fp_reg; |
| dpll_reg = pch_dpll_reg; |
| } |
| |
| if (is_edp) { |
| ironlake_disable_pll_edp(crtc); |
| } else if ((dpll & DPLL_VCO_ENABLE)) { |
| I915_WRITE(fp_reg, fp); |
| I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE); |
| I915_READ(dpll_reg); |
| udelay(150); |
| } |
| |
| /* enable transcoder DPLL */ |
| if (HAS_PCH_CPT(dev)) { |
| temp = I915_READ(PCH_DPLL_SEL); |
| if (trans_dpll_sel == 0) |
| temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL); |
| else |
| temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL); |
| I915_WRITE(PCH_DPLL_SEL, temp); |
| I915_READ(PCH_DPLL_SEL); |
| udelay(150); |
| } |
| |
| /* The LVDS pin pair needs to be on before the DPLLs are enabled. |
| * This is an exception to the general rule that mode_set doesn't turn |
| * things on. |
| */ |
| if (is_lvds) { |
| u32 lvds; |
| |
| if (HAS_PCH_SPLIT(dev)) |
| lvds_reg = PCH_LVDS; |
| |
| lvds = I915_READ(lvds_reg); |
| lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP; |
| if (pipe == 1) { |
| if (HAS_PCH_CPT(dev)) |
| lvds |= PORT_TRANS_B_SEL_CPT; |
| else |
| lvds |= LVDS_PIPEB_SELECT; |
| } else { |
| if (HAS_PCH_CPT(dev)) |
| lvds &= ~PORT_TRANS_SEL_MASK; |
| else |
| lvds &= ~LVDS_PIPEB_SELECT; |
| } |
| /* set the corresponsding LVDS_BORDER bit */ |
| lvds |= dev_priv->lvds_border_bits; |
| /* Set the B0-B3 data pairs corresponding to whether we're going to |
| * set the DPLLs for dual-channel mode or not. |
| */ |
| if (clock.p2 == 7) |
| lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP; |
| else |
| lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP); |
| |
| /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP) |
| * appropriately here, but we need to look more thoroughly into how |
| * panels behave in the two modes. |
| */ |
| /* set the dithering flag */ |
| if (IS_I965G(dev)) { |
| if (dev_priv->lvds_dither) { |
| if (HAS_PCH_SPLIT(dev)) { |
| pipeconf |= PIPE_ENABLE_DITHER; |
| pipeconf |= PIPE_DITHER_TYPE_ST01; |
| } else |
| lvds |= LVDS_ENABLE_DITHER; |
| } else { |
| if (HAS_PCH_SPLIT(dev)) { |
| pipeconf &= ~PIPE_ENABLE_DITHER; |
| pipeconf &= ~PIPE_DITHER_TYPE_MASK; |
| } else |
| lvds &= ~LVDS_ENABLE_DITHER; |
| } |
| } |
| I915_WRITE(lvds_reg, lvds); |
| I915_READ(lvds_reg); |
| } |
| if (is_dp) |
| intel_dp_set_m_n(crtc, mode, adjusted_mode); |
| else if (HAS_PCH_SPLIT(dev)) { |
| /* For non-DP output, clear any trans DP clock recovery setting.*/ |
| if (pipe == 0) { |
| I915_WRITE(TRANSA_DATA_M1, 0); |
| I915_WRITE(TRANSA_DATA_N1, 0); |
| I915_WRITE(TRANSA_DP_LINK_M1, 0); |
| I915_WRITE(TRANSA_DP_LINK_N1, 0); |
| } else { |
| I915_WRITE(TRANSB_DATA_M1, 0); |
| I915_WRITE(TRANSB_DATA_N1, 0); |
| I915_WRITE(TRANSB_DP_LINK_M1, 0); |
| I915_WRITE(TRANSB_DP_LINK_N1, 0); |
| } |
| } |
| |
| if (!is_edp) { |
| I915_WRITE(fp_reg, fp); |
| I915_WRITE(dpll_reg, dpll); |
| I915_READ(dpll_reg); |
| /* Wait for the clocks to stabilize. */ |
| udelay(150); |
| |
| if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) { |
| if (is_sdvo) { |
| sdvo_pixel_multiply = adjusted_mode->clock / mode->clock; |
| I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) | |
| ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT)); |
| } else |
| I915_WRITE(dpll_md_reg, 0); |
| } else { |
| /* write it again -- the BIOS does, after all */ |
| I915_WRITE(dpll_reg, dpll); |
| } |
| I915_READ(dpll_reg); |
| /* Wait for the clocks to stabilize. */ |
| udelay(150); |
| } |
| |
| if (is_lvds && has_reduced_clock && i915_powersave) { |
| I915_WRITE(fp_reg + 4, fp2); |
| intel_crtc->lowfreq_avail = true; |
| if (HAS_PIPE_CXSR(dev)) { |
| DRM_DEBUG_KMS("enabling CxSR downclocking\n"); |
| pipeconf |= PIPECONF_CXSR_DOWNCLOCK; |
| } |
| } else { |
| I915_WRITE(fp_reg + 4, fp); |
| intel_crtc->lowfreq_avail = false; |
| if (HAS_PIPE_CXSR(dev)) { |
| DRM_DEBUG_KMS("disabling CxSR downclocking\n"); |
| pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK; |
| } |
| } |
| |
| I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) | |
| ((adjusted_mode->crtc_htotal - 1) << 16)); |
| I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) | |
| ((adjusted_mode->crtc_hblank_end - 1) << 16)); |
| I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) | |
| ((adjusted_mode->crtc_hsync_end - 1) << 16)); |
| I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) | |
| ((adjusted_mode->crtc_vtotal - 1) << 16)); |
| I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) | |
| ((adjusted_mode->crtc_vblank_end - 1) << 16)); |
| I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) | |
| ((adjusted_mode->crtc_vsync_end - 1) << 16)); |
| /* pipesrc and dspsize control the size that is scaled from, which should |
| * always be the user's requested size. |
| */ |
| if (!HAS_PCH_SPLIT(dev)) { |
| I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) | |
| (mode->hdisplay - 1)); |
| I915_WRITE(dsppos_reg, 0); |
| } |
| I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1)); |
| |
| if (HAS_PCH_SPLIT(dev)) { |
| I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m); |
| I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n); |
| I915_WRITE(link_m1_reg, m_n.link_m); |
| I915_WRITE(link_n1_reg, m_n.link_n); |
| |
| if (is_edp) { |
| ironlake_set_pll_edp(crtc, adjusted_mode->clock); |
| } else { |
| /* enable FDI RX PLL too */ |
| temp = I915_READ(fdi_rx_reg); |
| I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE); |
| I915_READ(fdi_rx_reg); |
| udelay(200); |
| |
| /* enable FDI TX PLL too */ |
| temp = I915_READ(fdi_tx_reg); |
| I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE); |
| I915_READ(fdi_tx_reg); |
| |
| /* enable FDI RX PCDCLK */ |
| temp = I915_READ(fdi_rx_reg); |
| I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK); |
| I915_READ(fdi_rx_reg); |
| udelay(200); |
| } |
| } |
| |
| I915_WRITE(pipeconf_reg, pipeconf); |
| I915_READ(pipeconf_reg); |
| |
| intel_wait_for_vblank(dev); |
| |
| if (IS_IRONLAKE(dev)) { |
| /* enable address swizzle for tiling buffer */ |
| temp = I915_READ(DISP_ARB_CTL); |
| I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING); |
| } |
| |
| I915_WRITE(dspcntr_reg, dspcntr); |
| |
| /* Flush the plane changes */ |
| ret = intel_pipe_set_base(crtc, x, y, old_fb); |
| |
| if ((IS_I965G(dev) || plane == 0)) |
| intel_update_fbc(crtc, &crtc->mode); |
| |
| intel_update_watermarks(dev); |
| |
| drm_vblank_post_modeset(dev, pipe); |
| |
| return ret; |
| } |
| |
| /** Loads the palette/gamma unit for the CRTC with the prepared values */ |
| void intel_crtc_load_lut(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B; |
| int i; |
| |
| /* The clocks have to be on to load the palette. */ |
| if (!crtc->enabled) |
| return; |
| |
| /* use legacy palette for Ironlake */ |
| if (HAS_PCH_SPLIT(dev)) |
| palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A : |
| LGC_PALETTE_B; |
| |
| for (i = 0; i < 256; i++) { |
| I915_WRITE(palreg + 4 * i, |
| (intel_crtc->lut_r[i] << 16) | |
| (intel_crtc->lut_g[i] << 8) | |
| intel_crtc->lut_b[i]); |
| } |
| } |
| |
| static int intel_crtc_cursor_set(struct drm_crtc *crtc, |
| struct drm_file *file_priv, |
| uint32_t handle, |
| uint32_t width, uint32_t height) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct drm_gem_object *bo; |
| struct drm_i915_gem_object *obj_priv; |
| int pipe = intel_crtc->pipe; |
| uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR; |
| uint32_t base = (pipe == 0) ? CURABASE : CURBBASE; |
| uint32_t temp = I915_READ(control); |
| size_t addr; |
| int ret; |
| |
| DRM_DEBUG_KMS("\n"); |
| |
| /* if we want to turn off the cursor ignore width and height */ |
| if (!handle) { |
| DRM_DEBUG_KMS("cursor off\n"); |
| if (IS_MOBILE(dev) || IS_I9XX(dev)) { |
| temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE); |
| temp |= CURSOR_MODE_DISABLE; |
| } else { |
| temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE); |
| } |
| addr = 0; |
| bo = NULL; |
| mutex_lock(&dev->struct_mutex); |
| goto finish; |
| } |
| |
| /* Currently we only support 64x64 cursors */ |
| if (width != 64 || height != 64) { |
| DRM_ERROR("we currently only support 64x64 cursors\n"); |
| return -EINVAL; |
| } |
| |
| bo = drm_gem_object_lookup(dev, file_priv, handle); |
| if (!bo) |
| return -ENOENT; |
| |
| obj_priv = to_intel_bo(bo); |
| |
| if (bo->size < width * height * 4) { |
| DRM_ERROR("buffer is to small\n"); |
| ret = -ENOMEM; |
| goto fail; |
| } |
| |
| /* we only need to pin inside GTT if cursor is non-phy */ |
| mutex_lock(&dev->struct_mutex); |
| if (!dev_priv->info->cursor_needs_physical) { |
| ret = i915_gem_object_pin(bo, PAGE_SIZE); |
| if (ret) { |
| DRM_ERROR("failed to pin cursor bo\n"); |
| goto fail_locked; |
| } |
| addr = obj_priv->gtt_offset; |
| } else { |
| ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1); |
| if (ret) { |
| DRM_ERROR("failed to attach phys object\n"); |
| goto fail_locked; |
| } |
| addr = obj_priv->phys_obj->handle->busaddr; |
| } |
| |
| if (!IS_I9XX(dev)) |
| I915_WRITE(CURSIZE, (height << 12) | width); |
| |
| /* Hooray for CUR*CNTR differences */ |
| if (IS_MOBILE(dev) || IS_I9XX(dev)) { |
| temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT); |
| temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE; |
| temp |= (pipe << 28); /* Connect to correct pipe */ |
| } else { |
| temp &= ~(CURSOR_FORMAT_MASK); |
| temp |= CURSOR_ENABLE; |
| temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE; |
| } |
| |
| finish: |
| I915_WRITE(control, temp); |
| I915_WRITE(base, addr); |
| |
| if (intel_crtc->cursor_bo) { |
| if (dev_priv->info->cursor_needs_physical) { |
| if (intel_crtc->cursor_bo != bo) |
| i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo); |
| } else |
| i915_gem_object_unpin(intel_crtc->cursor_bo); |
| drm_gem_object_unreference(intel_crtc->cursor_bo); |
| } |
| |
| mutex_unlock(&dev->struct_mutex); |
| |
| intel_crtc->cursor_addr = addr; |
| intel_crtc->cursor_bo = bo; |
| |
| return 0; |
| fail_locked: |
| mutex_unlock(&dev->struct_mutex); |
| fail: |
| drm_gem_object_unreference_unlocked(bo); |
| return ret; |
| } |
| |
| static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_framebuffer *intel_fb; |
| int pipe = intel_crtc->pipe; |
| uint32_t temp = 0; |
| uint32_t adder; |
| |
| if (crtc->fb) { |
| intel_fb = to_intel_framebuffer(crtc->fb); |
| intel_mark_busy(dev, intel_fb->obj); |
| } |
| |
| if (x < 0) { |
| temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT; |
| x = -x; |
| } |
| if (y < 0) { |
| temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT; |
| y = -y; |
| } |
| |
| temp |= x << CURSOR_X_SHIFT; |
| temp |= y << CURSOR_Y_SHIFT; |
| |
| adder = intel_crtc->cursor_addr; |
| I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp); |
| I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder); |
| |
| return 0; |
| } |
| |
| /** Sets the color ramps on behalf of RandR */ |
| void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green, |
| u16 blue, int regno) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| intel_crtc->lut_r[regno] = red >> 8; |
| intel_crtc->lut_g[regno] = green >> 8; |
| intel_crtc->lut_b[regno] = blue >> 8; |
| } |
| |
| void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green, |
| u16 *blue, int regno) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| *red = intel_crtc->lut_r[regno] << 8; |
| *green = intel_crtc->lut_g[regno] << 8; |
| *blue = intel_crtc->lut_b[regno] << 8; |
| } |
| |
| static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green, |
| u16 *blue, uint32_t size) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int i; |
| |
| if (size != 256) |
| return; |
| |
| for (i = 0; i < 256; i++) { |
| intel_crtc->lut_r[i] = red[i] >> 8; |
| intel_crtc->lut_g[i] = green[i] >> 8; |
| intel_crtc->lut_b[i] = blue[i] >> 8; |
| } |
| |
| intel_crtc_load_lut(crtc); |
| } |
| |
| /** |
| * Get a pipe with a simple mode set on it for doing load-based monitor |
| * detection. |
| * |
| * It will be up to the load-detect code to adjust the pipe as appropriate for |
| * its requirements. The pipe will be connected to no other encoders. |
| * |
| * Currently this code will only succeed if there is a pipe with no encoders |
| * configured for it. In the future, it could choose to temporarily disable |
| * some outputs to free up a pipe for its use. |
| * |
| * \return crtc, or NULL if no pipes are available. |
| */ |
| |
| /* VESA 640x480x72Hz mode to set on the pipe */ |
| static struct drm_display_mode load_detect_mode = { |
| DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, |
| 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), |
| }; |
| |
| struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder, |
| struct drm_connector *connector, |
| struct drm_display_mode *mode, |
| int *dpms_mode) |
| { |
| struct intel_crtc *intel_crtc; |
| struct drm_crtc *possible_crtc; |
| struct drm_crtc *supported_crtc =NULL; |
| struct drm_encoder *encoder = &intel_encoder->enc; |
| struct drm_crtc *crtc = NULL; |
| struct drm_device *dev = encoder->dev; |
| struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private; |
| struct drm_crtc_helper_funcs *crtc_funcs; |
| int i = -1; |
| |
| /* |
| * Algorithm gets a little messy: |
| * - if the connector already has an assigned crtc, use it (but make |
| * sure it's on first) |
| * - try to find the first unused crtc that can drive this connector, |
| * and use that if we find one |
| * - if there are no unused crtcs available, try to use the first |
| * one we found that supports the connector |
| */ |
| |
| /* See if we already have a CRTC for this connector */ |
| if (encoder->crtc) { |
| crtc = encoder->crtc; |
| /* Make sure the crtc and connector are running */ |
| intel_crtc = to_intel_crtc(crtc); |
| *dpms_mode = intel_crtc->dpms_mode; |
| if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) { |
| crtc_funcs = crtc->helper_private; |
| crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON); |
| encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON); |
| } |
| return crtc; |
| } |
| |
| /* Find an unused one (if possible) */ |
| list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) { |
| i++; |
| if (!(encoder->possible_crtcs & (1 << i))) |
| continue; |
| if (!possible_crtc->enabled) { |
| crtc = possible_crtc; |
| break; |
| } |
| if (!supported_crtc) |
| supported_crtc = possible_crtc; |
| } |
| |
| /* |
| * If we didn't find an unused CRTC, don't use any. |
| */ |
| if (!crtc) { |
| return NULL; |
| } |
| |
| encoder->crtc = crtc; |
| connector->encoder = encoder; |
| intel_encoder->load_detect_temp = true; |
| |
| intel_crtc = to_intel_crtc(crtc); |
| *dpms_mode = intel_crtc->dpms_mode; |
| |
| if (!crtc->enabled) { |
| if (!mode) |
| mode = &load_detect_mode; |
| drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb); |
| } else { |
| if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) { |
| crtc_funcs = crtc->helper_private; |
| crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON); |
| } |
| |
| /* Add this connector to the crtc */ |
| encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode); |
| encoder_funcs->commit(encoder); |
| } |
| /* let the connector get through one full cycle before testing */ |
| intel_wait_for_vblank(dev); |
| |
| return crtc; |
| } |
| |
| void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder, |
| struct drm_connector *connector, int dpms_mode) |
| { |
| struct drm_encoder *encoder = &intel_encoder->enc; |
| struct drm_device *dev = encoder->dev; |
| struct drm_crtc *crtc = encoder->crtc; |
| struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private; |
| struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; |
| |
| if (intel_encoder->load_detect_temp) { |
| encoder->crtc = NULL; |
| connector->encoder = NULL; |
| intel_encoder->load_detect_temp = false; |
| crtc->enabled = drm_helper_crtc_in_use(crtc); |
| drm_helper_disable_unused_functions(dev); |
| } |
| |
| /* Switch crtc and encoder back off if necessary */ |
| if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) { |
| if (encoder->crtc == crtc) |
| encoder_funcs->dpms(encoder, dpms_mode); |
| crtc_funcs->dpms(crtc, dpms_mode); |
| } |
| } |
| |
| /* Returns the clock of the currently programmed mode of the given pipe. */ |
| static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B); |
| u32 fp; |
| intel_clock_t clock; |
| |
| if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) |
| fp = I915_READ((pipe == 0) ? FPA0 : FPB0); |
| else |
| fp = I915_READ((pipe == 0) ? FPA1 : FPB1); |
| |
| clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; |
| if (IS_PINEVIEW(dev)) { |
| clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; |
| clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; |
| } else { |
| clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; |
| clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; |
| } |
| |
| if (IS_I9XX(dev)) { |
| if (IS_PINEVIEW(dev)) |
| clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> |
| DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); |
| else |
| clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> |
| DPLL_FPA01_P1_POST_DIV_SHIFT); |
| |
| switch (dpll & DPLL_MODE_MASK) { |
| case DPLLB_MODE_DAC_SERIAL: |
| clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? |
| 5 : 10; |
| break; |
| case DPLLB_MODE_LVDS: |
| clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? |
| 7 : 14; |
| break; |
| default: |
| DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed " |
| "mode\n", (int)(dpll & DPLL_MODE_MASK)); |
| return 0; |
| } |
| |
| /* XXX: Handle the 100Mhz refclk */ |
| intel_clock(dev, 96000, &clock); |
| } else { |
| bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN); |
| |
| if (is_lvds) { |
| clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> |
| DPLL_FPA01_P1_POST_DIV_SHIFT); |
| clock.p2 = 14; |
| |
| if ((dpll & PLL_REF_INPUT_MASK) == |
| PLLB_REF_INPUT_SPREADSPECTRUMIN) { |
| /* XXX: might not be 66MHz */ |
| intel_clock(dev, 66000, &clock); |
| } else |
| intel_clock(dev, 48000, &clock); |
| } else { |
| if (dpll & PLL_P1_DIVIDE_BY_TWO) |
| clock.p1 = 2; |
| else { |
| clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> |
| DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; |
| } |
| if (dpll & PLL_P2_DIVIDE_BY_4) |
| clock.p2 = 4; |
| else |
| clock.p2 = 2; |
| |
| intel_clock(dev, 48000, &clock); |
| } |
| } |
| |
| /* XXX: It would be nice to validate the clocks, but we can't reuse |
| * i830PllIsValid() because it relies on the xf86_config connector |
| * configuration being accurate, which it isn't necessarily. |
| */ |
| |
| return clock.dot; |
| } |
| |
| /** Returns the currently programmed mode of the given pipe. */ |
| struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev, |
| struct drm_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| struct drm_display_mode *mode; |
| int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B); |
| int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B); |
| int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B); |
| int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B); |
| |
| mode = kzalloc(sizeof(*mode), GFP_KERNEL); |
| if (!mode) |
| return NULL; |
| |
| mode->clock = intel_crtc_clock_get(dev, crtc); |
| mode->hdisplay = (htot & 0xffff) + 1; |
| mode->htotal = ((htot & 0xffff0000) >> 16) + 1; |
| mode->hsync_start = (hsync & 0xffff) + 1; |
| mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1; |
| mode->vdisplay = (vtot & 0xffff) + 1; |
| mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1; |
| mode->vsync_start = (vsync & 0xffff) + 1; |
| mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1; |
| |
| drm_mode_set_name(mode); |
| drm_mode_set_crtcinfo(mode, 0); |
| |
| return mode; |
| } |
| |
| #define GPU_IDLE_TIMEOUT 500 /* ms */ |
| |
| /* When this timer fires, we've been idle for awhile */ |
| static void intel_gpu_idle_timer(unsigned long arg) |
| { |
| struct drm_device *dev = (struct drm_device *)arg; |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| |
| DRM_DEBUG_DRIVER("idle timer fired, downclocking\n"); |
| |
| dev_priv->busy = false; |
| |
| queue_work(dev_priv->wq, &dev_priv->idle_work); |
| } |
| |
| #define CRTC_IDLE_TIMEOUT 1000 /* ms */ |
| |
| static void intel_crtc_idle_timer(unsigned long arg) |
| { |
| struct intel_crtc *intel_crtc = (struct intel_crtc *)arg; |
| struct drm_crtc *crtc = &intel_crtc->base; |
| drm_i915_private_t *dev_priv = crtc->dev->dev_private; |
| |
| DRM_DEBUG_DRIVER("idle timer fired, downclocking\n"); |
| |
| intel_crtc->busy = false; |
| |
| queue_work(dev_priv->wq, &dev_priv->idle_work); |
| } |
| |
| static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule) |
| { |
| struct drm_device *dev = crtc->dev; |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B; |
| int dpll = I915_READ(dpll_reg); |
| |
| if (HAS_PCH_SPLIT(dev)) |
| return; |
| |
| if (!dev_priv->lvds_downclock_avail) |
| return; |
| |
| if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) { |
| DRM_DEBUG_DRIVER("upclocking LVDS\n"); |
| |
| /* Unlock panel regs */ |
| I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16)); |
| |
| dpll &= ~DISPLAY_RATE_SELECT_FPA1; |
| I915_WRITE(dpll_reg, dpll); |
| dpll = I915_READ(dpll_reg); |
| intel_wait_for_vblank(dev); |
| dpll = I915_READ(dpll_reg); |
| if (dpll & DISPLAY_RATE_SELECT_FPA1) |
| DRM_DEBUG_DRIVER("failed to upclock LVDS!\n"); |
| |
| /* ...and lock them again */ |
| I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3); |
| } |
| |
| /* Schedule downclock */ |
| if (schedule) |
| mod_timer(&intel_crtc->idle_timer, jiffies + |
| msecs_to_jiffies(CRTC_IDLE_TIMEOUT)); |
| } |
| |
| static void intel_decrease_pllclock(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B; |
| int dpll = I915_READ(dpll_reg); |
| |
| if (HAS_PCH_SPLIT(dev)) |
| return; |
| |
| if (!dev_priv->lvds_downclock_avail) |
| return; |
| |
| /* |
| * Since this is called by a timer, we should never get here in |
| * the manual case. |
| */ |
| if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) { |
| DRM_DEBUG_DRIVER("downclocking LVDS\n"); |
| |
| /* Unlock panel regs */ |
| I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16)); |
| |
| dpll |= DISPLAY_RATE_SELECT_FPA1; |
| I915_WRITE(dpll_reg, dpll); |
| dpll = I915_READ(dpll_reg); |
| intel_wait_for_vblank(dev); |
| dpll = I915_READ(dpll_reg); |
| if (!(dpll & DISPLAY_RATE_SELECT_FPA1)) |
| DRM_DEBUG_DRIVER("failed to downclock LVDS!\n"); |
| |
| /* ...and lock them again */ |
| I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3); |
| } |
| |
| } |
| |
| /** |
| * intel_idle_update - adjust clocks for idleness |
| * @work: work struct |
| * |
| * Either the GPU or display (or both) went idle. Check the busy status |
| * here and adjust the CRTC and GPU clocks as necessary. |
| */ |
| static void intel_idle_update(struct work_struct *work) |
| { |
| drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t, |
| idle_work); |
| struct drm_device *dev = dev_priv->dev; |
| struct drm_crtc *crtc; |
| struct intel_crtc *intel_crtc; |
| |
| if (!i915_powersave) |
| return; |
| |
| mutex_lock(&dev->struct_mutex); |
| |
| if (IS_I945G(dev) || IS_I945GM(dev)) { |
| DRM_DEBUG_DRIVER("enable memory self refresh on 945\n"); |
| I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN); |
| } |
| |
| list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { |
| /* Skip inactive CRTCs */ |
| if (!crtc->fb) |
| continue; |
| |
| intel_crtc = to_intel_crtc(crtc); |
| if (!intel_crtc->busy) |
| intel_decrease_pllclock(crtc); |
| } |
| |
| mutex_unlock(&dev->struct_mutex); |
| } |
| |
| /** |
| * intel_mark_busy - mark the GPU and possibly the display busy |
| * @dev: drm device |
| * @obj: object we're operating on |
| * |
| * Callers can use this function to indicate that the GPU is busy processing |
| * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout |
| * buffer), we'll also mark the display as busy, so we know to increase its |
| * clock frequency. |
| */ |
| void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| struct drm_crtc *crtc = NULL; |
| struct intel_framebuffer *intel_fb; |
| struct intel_crtc *intel_crtc; |
| |
| if (!drm_core_check_feature(dev, DRIVER_MODESET)) |
| return; |
| |
| if (!dev_priv->busy) { |
| if (IS_I945G(dev) || IS_I945GM(dev)) { |
| u32 fw_blc_self; |
| |
| DRM_DEBUG_DRIVER("disable memory self refresh on 945\n"); |
| fw_blc_self = I915_READ(FW_BLC_SELF); |
| fw_blc_self &= ~FW_BLC_SELF_EN; |
| I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK); |
| } |
| dev_priv->busy = true; |
| } else |
| mod_timer(&dev_priv->idle_timer, jiffies + |
| msecs_to_jiffies(GPU_IDLE_TIMEOUT)); |
| |
| list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { |
| if (!crtc->fb) |
| continue; |
| |
| intel_crtc = to_intel_crtc(crtc); |
| intel_fb = to_intel_framebuffer(crtc->fb); |
| if (intel_fb->obj == obj) { |
| if (!intel_crtc->busy) { |
| if (IS_I945G(dev) || IS_I945GM(dev)) { |
| u32 fw_blc_self; |
| |
| DRM_DEBUG_DRIVER("disable memory self refresh on 945\n"); |
| fw_blc_self = I915_READ(FW_BLC_SELF); |
| fw_blc_self &= ~FW_BLC_SELF_EN; |
| I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK); |
| } |
| /* Non-busy -> busy, upclock */ |
| intel_increase_pllclock(crtc, true); |
| intel_crtc->busy = true; |
| } else { |
| /* Busy -> busy, put off timer */ |
| mod_timer(&intel_crtc->idle_timer, jiffies + |
| msecs_to_jiffies(CRTC_IDLE_TIMEOUT)); |
| } |
| } |
| } |
| } |
| |
| static void intel_crtc_destroy(struct drm_crtc *crtc) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| drm_crtc_cleanup(crtc); |
| kfree(intel_crtc); |
| } |
| |
| struct intel_unpin_work { |
| struct work_struct work; |
| struct drm_device *dev; |
| struct drm_gem_object *old_fb_obj; |
| struct drm_gem_object *pending_flip_obj; |
| struct drm_pending_vblank_event *event; |
| int pending; |
| }; |
| |
| static void intel_unpin_work_fn(struct work_struct *__work) |
| { |
| struct intel_unpin_work *work = |
| container_of(__work, struct intel_unpin_work, work); |
| |
| mutex_lock(&work->dev->struct_mutex); |
| i915_gem_object_unpin(work->old_fb_obj); |
| drm_gem_object_unreference(work->pending_flip_obj); |
| drm_gem_object_unreference(work->old_fb_obj); |
| mutex_unlock(&work->dev->struct_mutex); |
| kfree(work); |
| } |
| |
| void intel_finish_page_flip(struct drm_device *dev, int pipe) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_unpin_work *work; |
| struct drm_i915_gem_object *obj_priv; |
| struct drm_pending_vblank_event *e; |
| struct timeval now; |
| unsigned long flags; |
| |
| /* Ignore early vblank irqs */ |
| if (intel_crtc == NULL) |
| return; |
| |
| spin_lock_irqsave(&dev->event_lock, flags); |
| work = intel_crtc->unpin_work; |
| if (work == NULL || !work->pending) { |
| if (work && !work->pending) { |
| obj_priv = to_intel_bo(work->pending_flip_obj); |
| DRM_DEBUG_DRIVER("flip finish: %p (%d) not pending?\n", |
| obj_priv, |
| atomic_read(&obj_priv->pending_flip)); |
| } |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| return; |
| } |
| |
| intel_crtc->unpin_work = NULL; |
| drm_vblank_put(dev, intel_crtc->pipe); |
| |
| if (work->event) { |
| e = work->event; |
| do_gettimeofday(&now); |
| e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe); |
| e->event.tv_sec = now.tv_sec; |
| e->event.tv_usec = now.tv_usec; |
| list_add_tail(&e->base.link, |
| &e->base.file_priv->event_list); |
| wake_up_interruptible(&e->base.file_priv->event_wait); |
| } |
| |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| |
| obj_priv = to_intel_bo(work->pending_flip_obj); |
| |
| /* Initial scanout buffer will have a 0 pending flip count */ |
| if ((atomic_read(&obj_priv->pending_flip) == 0) || |
| atomic_dec_and_test(&obj_priv->pending_flip)) |
| DRM_WAKEUP(&dev_priv->pending_flip_queue); |
| schedule_work(&work->work); |
| } |
| |
| void intel_prepare_page_flip(struct drm_device *dev, int plane) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = |
| to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dev->event_lock, flags); |
| if (intel_crtc->unpin_work) { |
| intel_crtc->unpin_work->pending = 1; |
| } else { |
| DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n"); |
| } |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| } |
| |
| static int intel_crtc_page_flip(struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| struct drm_pending_vblank_event *event) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_framebuffer *intel_fb; |
| struct drm_i915_gem_object *obj_priv; |
| struct drm_gem_object *obj; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_unpin_work *work; |
| unsigned long flags; |
| int pipesrc_reg = (intel_crtc->pipe == 0) ? PIPEASRC : PIPEBSRC; |
| int ret, pipesrc; |
| |
| work = kzalloc(sizeof *work, GFP_KERNEL); |
| if (work == NULL) |
| return -ENOMEM; |
| |
| mutex_lock(&dev->struct_mutex); |
| |
| work->event = event; |
| work->dev = crtc->dev; |
| intel_fb = to_intel_framebuffer(crtc->fb); |
| work->old_fb_obj = intel_fb->obj; |
| INIT_WORK(&work->work, intel_unpin_work_fn); |
| |
| /* We borrow the event spin lock for protecting unpin_work */ |
| spin_lock_irqsave(&dev->event_lock, flags); |
| if (intel_crtc->unpin_work) { |
| DRM_DEBUG_DRIVER("flip queue: crtc already busy\n"); |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| kfree(work); |
| mutex_unlock(&dev->struct_mutex); |
| return -EBUSY; |
| } |
| intel_crtc->unpin_work = work; |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| |
| intel_fb = to_intel_framebuffer(fb); |
| obj = intel_fb->obj; |
| |
| ret = intel_pin_and_fence_fb_obj(dev, obj); |
| if (ret != 0) { |
| DRM_DEBUG_DRIVER("flip queue: %p pin & fence failed\n", |
| to_intel_bo(obj)); |
| kfree(work); |
| intel_crtc->unpin_work = NULL; |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| /* Reference the objects for the scheduled work. */ |
| drm_gem_object_reference(work->old_fb_obj); |
| drm_gem_object_reference(obj); |
| |
| crtc->fb = fb; |
| i915_gem_object_flush_write_domain(obj); |
| drm_vblank_get(dev, intel_crtc->pipe); |
| obj_priv = to_intel_bo(obj); |
| atomic_inc(&obj_priv->pending_flip); |
| work->pending_flip_obj = obj; |
| |
| BEGIN_LP_RING(4); |
| OUT_RING(MI_DISPLAY_FLIP | |
| MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); |
| OUT_RING(fb->pitch); |
| if (IS_I965G(dev)) { |
| OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode); |
| pipesrc = I915_READ(pipesrc_reg); |
| OUT_RING(pipesrc & 0x0fff0fff); |
| } else { |
| OUT_RING(obj_priv->gtt_offset); |
| OUT_RING(MI_NOOP); |
| } |
| ADVANCE_LP_RING(); |
| |
| mutex_unlock(&dev->struct_mutex); |
| |
| return 0; |
| } |
| |
| static const struct drm_crtc_helper_funcs intel_helper_funcs = { |
| .dpms = intel_crtc_dpms, |
| .mode_fixup = intel_crtc_mode_fixup, |
| .mode_set = intel_crtc_mode_set, |
| .mode_set_base = intel_pipe_set_base, |
| .prepare = intel_crtc_prepare, |
| .commit = intel_crtc_commit, |
| .load_lut = intel_crtc_load_lut, |
| }; |
| |
| static const struct drm_crtc_funcs intel_crtc_funcs = { |
| .cursor_set = intel_crtc_cursor_set, |
| .cursor_move = intel_crtc_cursor_move, |
| .gamma_set = intel_crtc_gamma_set, |
| .set_config = drm_crtc_helper_set_config, |
| .destroy = intel_crtc_destroy, |
| .page_flip = intel_crtc_page_flip, |
| }; |
| |
| |
| static void intel_crtc_init(struct drm_device *dev, int pipe) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc; |
| int i; |
| |
| intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL); |
| if (intel_crtc == NULL) |
| return; |
| |
| drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs); |
| |
| drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256); |
| intel_crtc->pipe = pipe; |
| intel_crtc->plane = pipe; |
| for (i = 0; i < 256; i++) { |
| intel_crtc->lut_r[i] = i; |
| intel_crtc->lut_g[i] = i; |
| intel_crtc->lut_b[i] = i; |
| } |
| |
| /* Swap pipes & planes for FBC on pre-965 */ |
| intel_crtc->pipe = pipe; |
| intel_crtc->plane = pipe; |
| if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) { |
| DRM_DEBUG_KMS("swapping pipes & planes for FBC\n"); |
| intel_crtc->plane = ((pipe == 0) ? 1 : 0); |
| } |
| |
| BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) || |
| dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL); |
| dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base; |
| dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base; |
| |
| intel_crtc->cursor_addr = 0; |
| intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF; |
| drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs); |
| |
| intel_crtc->busy = false; |
| |
| setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer, |
| (unsigned long)intel_crtc); |
| } |
| |
| int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data, |
| struct drm_file *file_priv) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; |
| struct drm_mode_object *drmmode_obj; |
| struct intel_crtc *crtc; |
| |
| if (!dev_priv) { |
| DRM_ERROR("called with no initialization\n"); |
| return -EINVAL; |
| } |
| |
| drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id, |
| DRM_MODE_OBJECT_CRTC); |
| |
| if (!drmmode_obj) { |
| DRM_ERROR("no such CRTC id\n"); |
| return -EINVAL; |
| } |
| |
| crtc = to_intel_crtc(obj_to_crtc(drmmode_obj)); |
| pipe_from_crtc_id->pipe = crtc->pipe; |
| |
| return 0; |
| } |
| |
| struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe) |
| { |
| struct drm_crtc *crtc = NULL; |
| |
| list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| if (intel_crtc->pipe == pipe) |
| break; |
| } |
| return crtc; |
| } |
| |
| static int intel_encoder_clones(struct drm_device *dev, int type_mask) |
| { |
| int index_mask = 0; |
| struct drm_encoder *encoder; |
| int entry = 0; |
| |
| list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { |
| struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder); |
| if (type_mask & intel_encoder->clone_mask) |
| index_mask |= (1 << entry); |
| entry++; |
| } |
| return index_mask; |
| } |
| |
| |
| static void intel_setup_outputs(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_encoder *encoder; |
| |
| intel_crt_init(dev); |
| |
| /* Set up integrated LVDS */ |
| if (IS_MOBILE(dev) && !IS_I830(dev)) |
| intel_lvds_init(dev); |
| |
| if (HAS_PCH_SPLIT(dev)) { |
| int found; |
| |
| if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED)) |
| intel_dp_init(dev, DP_A); |
| |
| if (I915_READ(HDMIB) & PORT_DETECTED) { |
| /* PCH SDVOB multiplex with HDMIB */ |
| found = intel_sdvo_init(dev, PCH_SDVOB); |
| if (!found) |
| intel_hdmi_init(dev, HDMIB); |
| if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED)) |
| intel_dp_init(dev, PCH_DP_B); |
| } |
| |
| if (I915_READ(HDMIC) & PORT_DETECTED) |
| intel_hdmi_init(dev, HDMIC); |
| |
| if (I915_READ(HDMID) & PORT_DETECTED) |
| intel_hdmi_init(dev, HDMID); |
| |
| if (I915_READ(PCH_DP_C) & DP_DETECTED) |
| intel_dp_init(dev, PCH_DP_C); |
| |
| if (I915_READ(PCH_DP_D) & DP_DETECTED) |
| intel_dp_init(dev, PCH_DP_D); |
| |
| } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) { |
| bool found = false; |
| |
| if (I915_READ(SDVOB) & SDVO_DETECTED) { |
| DRM_DEBUG_KMS("probing SDVOB\n"); |
| found = intel_sdvo_init(dev, SDVOB); |
| if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) { |
| DRM_DEBUG_KMS("probing HDMI on SDVOB\n"); |
| intel_hdmi_init(dev, SDVOB); |
| } |
| |
| if (!found && SUPPORTS_INTEGRATED_DP(dev)) { |
| DRM_DEBUG_KMS("probing DP_B\n"); |
| intel_dp_init(dev, DP_B); |
| } |
| } |
| |
| /* Before G4X SDVOC doesn't have its own detect register */ |
| |
| if (I915_READ(SDVOB) & SDVO_DETECTED) { |
| DRM_DEBUG_KMS("probing SDVOC\n"); |
| found = intel_sdvo_init(dev, SDVOC); |
| } |
| |
| if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) { |
| |
| if (SUPPORTS_INTEGRATED_HDMI(dev)) { |
| DRM_DEBUG_KMS("probing HDMI on SDVOC\n"); |
| intel_hdmi_init(dev, SDVOC); |
| } |
| if (SUPPORTS_INTEGRATED_DP(dev)) { |
| DRM_DEBUG_KMS("probing DP_C\n"); |
| intel_dp_init(dev, DP_C); |
| } |
| } |
| |
| if (SUPPORTS_INTEGRATED_DP(dev) && |
| (I915_READ(DP_D) & DP_DETECTED)) { |
| DRM_DEBUG_KMS("probing DP_D\n"); |
| intel_dp_init(dev, DP_D); |
| } |
| } else if (IS_GEN2(dev)) |
| intel_dvo_init(dev); |
| |
| if (SUPPORTS_TV(dev)) |
| intel_tv_init(dev); |
| |
| list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { |
| struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder); |
| |
| encoder->possible_crtcs = intel_encoder->crtc_mask; |
| encoder->possible_clones = intel_encoder_clones(dev, |
| intel_encoder->clone_mask); |
| } |
| } |
| |
| static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) |
| { |
| struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); |
| |
| drm_framebuffer_cleanup(fb); |
| drm_gem_object_unreference_unlocked(intel_fb->obj); |
| |
| kfree(intel_fb); |
| } |
| |
| static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, |
| struct drm_file *file_priv, |
| unsigned int *handle) |
| { |
| struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); |
| struct drm_gem_object *object = intel_fb->obj; |
| |
| return drm_gem_handle_create(file_priv, object, handle); |
| } |
| |
| static const struct drm_framebuffer_funcs intel_fb_funcs = { |
| .destroy = intel_user_framebuffer_destroy, |
| .create_handle = intel_user_framebuffer_create_handle, |
| }; |
| |
| int intel_framebuffer_init(struct drm_device *dev, |
| struct intel_framebuffer *intel_fb, |
| struct drm_mode_fb_cmd *mode_cmd, |
| struct drm_gem_object *obj) |
| { |
| int ret; |
| |
| ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs); |
| if (ret) { |
| DRM_ERROR("framebuffer init failed %d\n", ret); |
| return ret; |
| } |
| |
| drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd); |
| intel_fb->obj = obj; |
| return 0; |
| } |
| |
| static struct drm_framebuffer * |
| intel_user_framebuffer_create(struct drm_device *dev, |
| struct drm_file *filp, |
| struct drm_mode_fb_cmd *mode_cmd) |
| { |
| struct drm_gem_object *obj; |
| struct intel_framebuffer *intel_fb; |
| int ret; |
| |
| obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle); |
| if (!obj) |
| return NULL; |
| |
| intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); |
| if (!intel_fb) |
| return NULL; |
| |
| ret = intel_framebuffer_init(dev, intel_fb, |
| mode_cmd, obj); |
| if (ret) { |
| drm_gem_object_unreference_unlocked(obj); |
| kfree(intel_fb); |
| return NULL; |
| } |
| |
| return &intel_fb->base; |
| } |
| |
| static const struct drm_mode_config_funcs intel_mode_funcs = { |
| .fb_create = intel_user_framebuffer_create, |
| .output_poll_changed = intel_fb_output_poll_changed, |
| }; |
| |
| static struct drm_gem_object * |
| intel_alloc_power_context(struct drm_device *dev) |
| { |
| struct drm_gem_object *pwrctx; |
| int ret; |
| |
| pwrctx = i915_gem_alloc_object(dev, 4096); |
| if (!pwrctx) { |
| DRM_DEBUG("failed to alloc power context, RC6 disabled\n"); |
| return NULL; |
| } |
| |
| mutex_lock(&dev->struct_mutex); |
| ret = i915_gem_object_pin(pwrctx, 4096); |
| if (ret) { |
| DRM_ERROR("failed to pin power context: %d\n", ret); |
| goto err_unref; |
| } |
| |
| ret = i915_gem_object_set_to_gtt_domain(pwrctx, 1); |
| if (ret) { |
| DRM_ERROR("failed to set-domain on power context: %d\n", ret); |
| goto err_unpin; |
| } |
| mutex_unlock(&dev->struct_mutex); |
| |
| return pwrctx; |
| |
| err_unpin: |
| i915_gem_object_unpin(pwrctx); |
| err_unref: |
| drm_gem_object_unreference(pwrctx); |
| mutex_unlock(&dev->struct_mutex); |
| return NULL; |
| } |
| |
| void ironlake_enable_drps(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 rgvmodectl = I915_READ(MEMMODECTL), rgvswctl; |
| u8 fmax, fmin, fstart, vstart; |
| int i = 0; |
| |
| /* 100ms RC evaluation intervals */ |
| I915_WRITE(RCUPEI, 100000); |
| I915_WRITE(RCDNEI, 100000); |
| |
| /* Set max/min thresholds to 90ms and 80ms respectively */ |
| I915_WRITE(RCBMAXAVG, 90000); |
| I915_WRITE(RCBMINAVG, 80000); |
| |
| I915_WRITE(MEMIHYST, 1); |
| |
| /* Set up min, max, and cur for interrupt handling */ |
| fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT; |
| fmin = (rgvmodectl & MEMMODE_FMIN_MASK); |
| fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >> |
| MEMMODE_FSTART_SHIFT; |
| vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >> |
| PXVFREQ_PX_SHIFT; |
| |
| dev_priv->max_delay = fstart; /* can't go to fmax w/o IPS */ |
| dev_priv->min_delay = fmin; |
| dev_priv->cur_delay = fstart; |
| |
| I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN); |
| |
| /* |
| * Interrupts will be enabled in ironlake_irq_postinstall |
| */ |
| |
| I915_WRITE(VIDSTART, vstart); |
| POSTING_READ(VIDSTART); |
| |
| rgvmodectl |= MEMMODE_SWMODE_EN; |
| I915_WRITE(MEMMODECTL, rgvmodectl); |
| |
| while (I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) { |
| if (i++ > 100) { |
| DRM_ERROR("stuck trying to change perf mode\n"); |
| break; |
| } |
| msleep(1); |
| } |
| msleep(1); |
| |
| rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) | |
| (fstart << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM; |
| I915_WRITE(MEMSWCTL, rgvswctl); |
| POSTING_READ(MEMSWCTL); |
| |
| rgvswctl |= MEMCTL_CMD_STS; |
| I915_WRITE(MEMSWCTL, rgvswctl); |
| } |
| |
| void ironlake_disable_drps(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 rgvswctl; |
| u8 fstart; |
| |
| /* Ack interrupts, disable EFC interrupt */ |
| I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN); |
| I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG); |
| I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT); |
| I915_WRITE(DEIIR, DE_PCU_EVENT); |
| I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT); |
| |
| /* Go back to the starting frequency */ |
| fstart = (I915_READ(MEMMODECTL) & MEMMODE_FSTART_MASK) >> |
| MEMMODE_FSTART_SHIFT; |
| rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) | |
| (fstart << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM; |
| I915_WRITE(MEMSWCTL, rgvswctl); |
| msleep(1); |
| rgvswctl |= MEMCTL_CMD_STS; |
| I915_WRITE(MEMSWCTL, rgvswctl); |
| msleep(1); |
| |
| } |
| |
| void intel_init_clock_gating(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| /* |
| * Disable clock gating reported to work incorrectly according to the |
| * specs, but enable as much else as we can. |
| */ |
| if (HAS_PCH_SPLIT(dev)) { |
| uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE; |
| |
| if (IS_IRONLAKE(dev)) { |
| /* Required for FBC */ |
| dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE; |
| /* Required for CxSR */ |
| dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE; |
| |
| I915_WRITE(PCH_3DCGDIS0, |
| MARIUNIT_CLOCK_GATE_DISABLE | |
| SVSMUNIT_CLOCK_GATE_DISABLE); |
| } |
| |
| I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate); |
| |
| /* |
| * According to the spec the following bits should be set in |
| * order to enable memory self-refresh |
| * The bit 22/21 of 0x42004 |
| * The bit 5 of 0x42020 |
| * The bit 15 of 0x45000 |
| */ |
| if (IS_IRONLAKE(dev)) { |
| I915_WRITE(ILK_DISPLAY_CHICKEN2, |
| (I915_READ(ILK_DISPLAY_CHICKEN2) | |
| ILK_DPARB_GATE | ILK_VSDPFD_FULL)); |
| I915_WRITE(ILK_DSPCLK_GATE, |
| (I915_READ(ILK_DSPCLK_GATE) | |
| ILK_DPARB_CLK_GATE)); |
| I915_WRITE(DISP_ARB_CTL, |
| (I915_READ(DISP_ARB_CTL) | |
| DISP_FBC_WM_DIS)); |
| } |
| return; |
| } else if (IS_G4X(dev)) { |
| uint32_t dspclk_gate; |
| I915_WRITE(RENCLK_GATE_D1, 0); |
| I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE | |
| GS_UNIT_CLOCK_GATE_DISABLE | |
| CL_UNIT_CLOCK_GATE_DISABLE); |
| I915_WRITE(RAMCLK_GATE_D, 0); |
| dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE | |
| OVRUNIT_CLOCK_GATE_DISABLE | |
| OVCUNIT_CLOCK_GATE_DISABLE; |
| if (IS_GM45(dev)) |
| dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE; |
| I915_WRITE(DSPCLK_GATE_D, dspclk_gate); |
| } else if (IS_I965GM(dev)) { |
| I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE); |
| I915_WRITE(RENCLK_GATE_D2, 0); |
| I915_WRITE(DSPCLK_GATE_D, 0); |
| I915_WRITE(RAMCLK_GATE_D, 0); |
| I915_WRITE16(DEUC, 0); |
| } else if (IS_I965G(dev)) { |
| I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE | |
| I965_RCC_CLOCK_GATE_DISABLE | |
| I965_RCPB_CLOCK_GATE_DISABLE | |
| I965_ISC_CLOCK_GATE_DISABLE | |
| I965_FBC_CLOCK_GATE_DISABLE); |
| I915_WRITE(RENCLK_GATE_D2, 0); |
| } else if (IS_I9XX(dev)) { |
| u32 dstate = I915_READ(D_STATE); |
| |
| dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING | |
| DSTATE_DOT_CLOCK_GATING; |
| I915_WRITE(D_STATE, dstate); |
| } else if (IS_I85X(dev) || IS_I865G(dev)) { |
| I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE); |
| } else if (IS_I830(dev)) { |
| I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE); |
| } |
| |
| /* |
| * GPU can automatically power down the render unit if given a page |
| * to save state. |
| */ |
| if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) { |
| struct drm_i915_gem_object *obj_priv = NULL; |
| |
| if (dev_priv->pwrctx) { |
| obj_priv = to_intel_bo(dev_priv->pwrctx); |
| } else { |
| struct drm_gem_object *pwrctx; |
| |
| pwrctx = intel_alloc_power_context(dev); |
| if (pwrctx) { |
| dev_priv->pwrctx = pwrctx; |
| obj_priv = to_intel_bo(pwrctx); |
| } |
| } |
| |
| if (obj_priv) { |
| I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN); |
| I915_WRITE(MCHBAR_RENDER_STANDBY, |
| I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT); |
| } |
| } |
| } |
| |
| /* Set up chip specific display functions */ |
| static void intel_init_display(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| /* We always want a DPMS function */ |
| if (HAS_PCH_SPLIT(dev)) |
| dev_priv->display.dpms = ironlake_crtc_dpms; |
| else |
| dev_priv->display.dpms = i9xx_crtc_dpms; |
| |
| if (I915_HAS_FBC(dev)) { |
| if (IS_GM45(dev)) { |
| dev_priv->display.fbc_enabled = g4x_fbc_enabled; |
| dev_priv->display.enable_fbc = g4x_enable_fbc; |
| dev_priv->display.disable_fbc = g4x_disable_fbc; |
| } else if (IS_I965GM(dev)) { |
| dev_priv->display.fbc_enabled = i8xx_fbc_enabled; |
| dev_priv->display.enable_fbc = i8xx_enable_fbc; |
| dev_priv->display.disable_fbc = i8xx_disable_fbc; |
| } |
| /* 855GM needs testing */ |
| } |
| |
| /* Returns the core display clock speed */ |
| if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev))) |
| dev_priv->display.get_display_clock_speed = |
| i945_get_display_clock_speed; |
| else if (IS_I915G(dev)) |
| dev_priv->display.get_display_clock_speed = |
| i915_get_display_clock_speed; |
| else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev)) |
| dev_priv->display.get_display_clock_speed = |
| i9xx_misc_get_display_clock_speed; |
| else if (IS_I915GM(dev)) |
| dev_priv->display.get_display_clock_speed = |
| i915gm_get_display_clock_speed; |
| else if (IS_I865G(dev)) |
| dev_priv->display.get_display_clock_speed = |
| i865_get_display_clock_speed; |
| else if (IS_I85X(dev)) |
| dev_priv->display.get_display_clock_speed = |
| i855_get_display_clock_speed; |
| else /* 852, 830 */ |
| dev_priv->display.get_display_clock_speed = |
| i830_get_display_clock_speed; |
| |
| /* For FIFO watermark updates */ |
| if (HAS_PCH_SPLIT(dev)) { |
| if (IS_IRONLAKE(dev)) { |
| if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK) |
| dev_priv->display.update_wm = ironlake_update_wm; |
| else { |
| DRM_DEBUG_KMS("Failed to get proper latency. " |
| "Disable CxSR\n"); |
| dev_priv->display.update_wm = NULL; |
| } |
| } else |
| dev_priv->display.update_wm = NULL; |
| } else if (IS_PINEVIEW(dev)) { |
| if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev), |
| dev_priv->fsb_freq, |
| dev_priv->mem_freq)) { |
| DRM_INFO("failed to find known CxSR latency " |
| "(found fsb freq %d, mem freq %d), " |
| "disabling CxSR\n", |
| dev_priv->fsb_freq, dev_priv->mem_freq); |
| /* Disable CxSR and never update its watermark again */ |
| pineview_disable_cxsr(dev); |
| dev_priv->display.update_wm = NULL; |
| } else |
| dev_priv->display.update_wm = pineview_update_wm; |
| } else if (IS_G4X(dev)) |
| dev_priv->display.update_wm = g4x_update_wm; |
| else if (IS_I965G(dev)) |
| dev_priv->display.update_wm = i965_update_wm; |
| else if (IS_I9XX(dev)) { |
| dev_priv->display.update_wm = i9xx_update_wm; |
| dev_priv->display.get_fifo_size = i9xx_get_fifo_size; |
| } else if (IS_I85X(dev)) { |
| dev_priv->display.update_wm = i9xx_update_wm; |
| dev_priv->display.get_fifo_size = i85x_get_fifo_size; |
| } else { |
| dev_priv->display.update_wm = i830_update_wm; |
| if (IS_845G(dev)) |
| dev_priv->display.get_fifo_size = i845_get_fifo_size; |
| else |
| dev_priv->display.get_fifo_size = i830_get_fifo_size; |
| } |
| } |
| |
| void intel_modeset_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int num_pipe; |
| int i; |
| |
| drm_mode_config_init(dev); |
| |
| dev->mode_config.min_width = 0; |
| dev->mode_config.min_height = 0; |
| |
| dev->mode_config.funcs = (void *)&intel_mode_funcs; |
| |
| intel_init_display(dev); |
| |
| if (IS_I965G(dev)) { |
| dev->mode_config.max_width = 8192; |
| dev->mode_config.max_height = 8192; |
| } else if (IS_I9XX(dev)) { |
| dev->mode_config.max_width = 4096; |
| dev->mode_config.max_height = 4096; |
| } else { |
| dev->mode_config.max_width = 2048; |
| dev->mode_config.max_height = 2048; |
| } |
| |
| /* set memory base */ |
| if (IS_I9XX(dev)) |
| dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2); |
| else |
| dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0); |
| |
| if (IS_MOBILE(dev) || IS_I9XX(dev)) |
| num_pipe = 2; |
| else |
| num_pipe = 1; |
| DRM_DEBUG_KMS("%d display pipe%s available.\n", |
| num_pipe, num_pipe > 1 ? "s" : ""); |
| |
| for (i = 0; i < num_pipe; i++) { |
| intel_crtc_init(dev, i); |
| } |
| |
| intel_setup_outputs(dev); |
| |
| intel_init_clock_gating(dev); |
| |
| if (IS_IRONLAKE_M(dev)) |
| ironlake_enable_drps(dev); |
| |
| INIT_WORK(&dev_priv->idle_work, intel_idle_update); |
| setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer, |
| (unsigned long)dev); |
| |
| intel_setup_overlay(dev); |
| } |
| |
| void intel_modeset_cleanup(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_crtc *crtc; |
| struct intel_crtc *intel_crtc; |
| |
| mutex_lock(&dev->struct_mutex); |
| |
| drm_kms_helper_poll_fini(dev); |
| intel_fbdev_fini(dev); |
| |
| list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { |
| /* Skip inactive CRTCs */ |
| if (!crtc->fb) |
| continue; |
| |
| intel_crtc = to_intel_crtc(crtc); |
| intel_increase_pllclock(crtc, false); |
| del_timer_sync(&intel_crtc->idle_timer); |
| } |
| |
| del_timer_sync(&dev_priv->idle_timer); |
| |
| if (dev_priv->display.disable_fbc) |
| dev_priv->display.disable_fbc(dev); |
| |
| if (dev_priv->pwrctx) { |
| struct drm_i915_gem_object *obj_priv; |
| |
| obj_priv = to_intel_bo(dev_priv->pwrctx); |
| I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN); |
| I915_READ(PWRCTXA); |
| i915_gem_object_unpin(dev_priv->pwrctx); |
| drm_gem_object_unreference(dev_priv->pwrctx); |
| } |
| |
| if (IS_IRONLAKE_M(dev)) |
| ironlake_disable_drps(dev); |
| |
| mutex_unlock(&dev->struct_mutex); |
| |
| drm_mode_config_cleanup(dev); |
| } |
| |
| |
| /* |
| * Return which encoder is currently attached for connector. |
| */ |
| struct drm_encoder *intel_attached_encoder (struct drm_connector *connector) |
| { |
| struct drm_mode_object *obj; |
| struct drm_encoder *encoder; |
| int i; |
| |
| for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++) { |
| if (connector->encoder_ids[i] == 0) |
| break; |
| |
| obj = drm_mode_object_find(connector->dev, |
| connector->encoder_ids[i], |
| DRM_MODE_OBJECT_ENCODER); |
| if (!obj) |
| continue; |
| |
| encoder = obj_to_encoder(obj); |
| return encoder; |
| } |
| return NULL; |
| } |
| |
| /* |
| * set vga decode state - true == enable VGA decode |
| */ |
| int intel_modeset_vga_set_state(struct drm_device *dev, bool state) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u16 gmch_ctrl; |
| |
| pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl); |
| if (state) |
| gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE; |
| else |
| gmch_ctrl |= INTEL_GMCH_VGA_DISABLE; |
| pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl); |
| return 0; |
| } |