blob: f89ed5dc08d2a76eb28342b6c0adfd903a9f9a16 [file] [log] [blame]
Chris Metcalf867e3592010-05-28 23:09:12 -04001/*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation, version 2.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for
13 * more details.
14 */
15
16#include <linux/module.h>
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/errno.h>
21#include <linux/string.h>
22#include <linux/types.h>
23#include <linux/ptrace.h>
24#include <linux/mman.h>
25#include <linux/mm.h>
26#include <linux/hugetlb.h>
27#include <linux/swap.h>
28#include <linux/smp.h>
29#include <linux/init.h>
30#include <linux/highmem.h>
31#include <linux/pagemap.h>
32#include <linux/poison.h>
33#include <linux/bootmem.h>
34#include <linux/slab.h>
35#include <linux/proc_fs.h>
36#include <linux/efi.h>
37#include <linux/memory_hotplug.h>
38#include <linux/uaccess.h>
39#include <asm/mmu_context.h>
40#include <asm/processor.h>
41#include <asm/system.h>
42#include <asm/pgtable.h>
43#include <asm/pgalloc.h>
44#include <asm/dma.h>
45#include <asm/fixmap.h>
46#include <asm/tlb.h>
47#include <asm/tlbflush.h>
48#include <asm/sections.h>
49#include <asm/setup.h>
50#include <asm/homecache.h>
51#include <hv/hypervisor.h>
52#include <arch/chip.h>
53
54#include "migrate.h"
55
56/*
57 * We could set FORCE_MAX_ZONEORDER to "(HPAGE_SHIFT - PAGE_SHIFT + 1)"
58 * in the Tile Kconfig, but this generates configure warnings.
59 * Do it here and force people to get it right to compile this file.
60 * The problem is that with 4KB small pages and 16MB huge pages,
61 * the default value doesn't allow us to group enough small pages
62 * together to make up a huge page.
63 */
64#if CONFIG_FORCE_MAX_ZONEORDER < HPAGE_SHIFT - PAGE_SHIFT + 1
65# error "Change FORCE_MAX_ZONEORDER in arch/tile/Kconfig to match page size"
66#endif
67
68#define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0))
69
Chris Metcalf0707ad32010-06-25 17:04:17 -040070#ifndef __tilegx__
Chris Metcalf867e3592010-05-28 23:09:12 -040071unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE;
Chris Metcalf00dce03132011-02-28 15:51:25 -050072EXPORT_SYMBOL(VMALLOC_RESERVE);
Chris Metcalf0707ad32010-06-25 17:04:17 -040073#endif
Chris Metcalf867e3592010-05-28 23:09:12 -040074
75DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
76
77/* Create an L2 page table */
78static pte_t * __init alloc_pte(void)
79{
80 return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
81}
82
83/*
84 * L2 page tables per controller. We allocate these all at once from
85 * the bootmem allocator and store them here. This saves on kernel L2
86 * page table memory, compared to allocating a full 64K page per L2
87 * page table, and also means that in cases where we use huge pages,
88 * we are guaranteed to later be able to shatter those huge pages and
89 * switch to using these page tables instead, without requiring
90 * further allocation. Each l2_ptes[] entry points to the first page
91 * table for the first hugepage-size piece of memory on the
92 * controller; other page tables are just indexed directly, i.e. the
93 * L2 page tables are contiguous in memory for each controller.
94 */
95static pte_t *l2_ptes[MAX_NUMNODES];
96static int num_l2_ptes[MAX_NUMNODES];
97
98static void init_prealloc_ptes(int node, int pages)
99{
100 BUG_ON(pages & (HV_L2_ENTRIES-1));
101 if (pages) {
102 num_l2_ptes[node] = pages;
103 l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t),
104 HV_PAGE_TABLE_ALIGN, 0);
105 }
106}
107
108pte_t *get_prealloc_pte(unsigned long pfn)
109{
110 int node = pfn_to_nid(pfn);
111 pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT));
112 BUG_ON(node >= MAX_NUMNODES);
113 BUG_ON(pfn >= num_l2_ptes[node]);
114 return &l2_ptes[node][pfn];
115}
116
117/*
118 * What caching do we expect pages from the heap to have when
119 * they are allocated during bootup? (Once we've installed the
120 * "real" swapper_pg_dir.)
121 */
122static int initial_heap_home(void)
123{
124#if CHIP_HAS_CBOX_HOME_MAP()
125 if (hash_default)
126 return PAGE_HOME_HASH;
127#endif
128 return smp_processor_id();
129}
130
131/*
132 * Place a pointer to an L2 page table in a middle page
133 * directory entry.
134 */
135static void __init assign_pte(pmd_t *pmd, pte_t *page_table)
136{
137 phys_addr_t pa = __pa(page_table);
138 unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN;
139 pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn);
140 BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0);
141 pteval = pte_set_home(pteval, initial_heap_home());
142 *(pte_t *)pmd = pteval;
143 if (page_table != (pte_t *)pmd_page_vaddr(*pmd))
144 BUG();
145}
146
147#ifdef __tilegx__
148
149#if HV_L1_SIZE != HV_L2_SIZE
150# error Rework assumption that L1 and L2 page tables are same size.
151#endif
152
153/* Since pmd_t arrays and pte_t arrays are the same size, just use casts. */
154static inline pmd_t *alloc_pmd(void)
155{
156 return (pmd_t *)alloc_pte();
157}
158
159static inline void assign_pmd(pud_t *pud, pmd_t *pmd)
160{
161 assign_pte((pmd_t *)pud, (pte_t *)pmd);
162}
163
164#endif /* __tilegx__ */
165
166/* Replace the given pmd with a full PTE table. */
167void __init shatter_pmd(pmd_t *pmd)
168{
169 pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd));
170 assign_pte(pmd, pte);
171}
172
173#ifdef CONFIG_HIGHMEM
174/*
175 * This function initializes a certain range of kernel virtual memory
176 * with new bootmem page tables, everywhere page tables are missing in
177 * the given range.
178 */
179
180/*
181 * NOTE: The pagetables are allocated contiguous on the physical space
182 * so we can cache the place of the first one and move around without
183 * checking the pgd every time.
184 */
185static void __init page_table_range_init(unsigned long start,
186 unsigned long end, pgd_t *pgd_base)
187{
188 pgd_t *pgd;
189 int pgd_idx;
190 unsigned long vaddr;
191
192 vaddr = start;
193 pgd_idx = pgd_index(vaddr);
194 pgd = pgd_base + pgd_idx;
195
196 for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd++, pgd_idx++) {
197 pmd_t *pmd = pmd_offset(pud_offset(pgd, vaddr), vaddr);
198 if (pmd_none(*pmd))
199 assign_pte(pmd, alloc_pte());
200 vaddr += PMD_SIZE;
201 }
202}
203#endif /* CONFIG_HIGHMEM */
204
205
206#if CHIP_HAS_CBOX_HOME_MAP()
207
208static int __initdata ktext_hash = 1; /* .text pages */
209static int __initdata kdata_hash = 1; /* .data and .bss pages */
210int __write_once hash_default = 1; /* kernel allocator pages */
211EXPORT_SYMBOL(hash_default);
212int __write_once kstack_hash = 1; /* if no homecaching, use h4h */
213#endif /* CHIP_HAS_CBOX_HOME_MAP */
214
215/*
216 * CPUs to use to for striping the pages of kernel data. If hash-for-home
217 * is available, this is only relevant if kcache_hash sets up the
218 * .data and .bss to be page-homed, and we don't want the default mode
219 * of using the full set of kernel cpus for the striping.
220 */
221static __initdata struct cpumask kdata_mask;
222static __initdata int kdata_arg_seen;
223
224int __write_once kdata_huge; /* if no homecaching, small pages */
225
226
227/* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */
228static pgprot_t __init construct_pgprot(pgprot_t prot, int home)
229{
230 prot = pte_set_home(prot, home);
231#if CHIP_HAS_CBOX_HOME_MAP()
232 if (home == PAGE_HOME_IMMUTABLE) {
233 if (ktext_hash)
234 prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3);
235 else
236 prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3);
237 }
238#endif
239 return prot;
240}
241
242/*
243 * For a given kernel data VA, how should it be cached?
244 * We return the complete pgprot_t with caching bits set.
245 */
246static pgprot_t __init init_pgprot(ulong address)
247{
248 int cpu;
249 unsigned long page;
250 enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
251
252#if CHIP_HAS_CBOX_HOME_MAP()
253 /* For kdata=huge, everything is just hash-for-home. */
254 if (kdata_huge)
255 return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
256#endif
257
258 /* We map the aliased pages of permanent text inaccessible. */
259 if (address < (ulong) _sinittext - CODE_DELTA)
260 return PAGE_NONE;
261
262 /*
263 * We map read-only data non-coherent for performance. We could
264 * use neighborhood caching on TILE64, but it's not clear it's a win.
265 */
266 if ((address >= (ulong) __start_rodata &&
267 address < (ulong) __end_rodata) ||
268 address == (ulong) empty_zero_page) {
269 return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE);
270 }
271
272 /* As a performance optimization, keep the boot init stack here. */
273 if (address >= (ulong)&init_thread_union &&
274 address < (ulong)&init_thread_union + THREAD_SIZE)
275 return construct_pgprot(PAGE_KERNEL, smp_processor_id());
276
277#ifndef __tilegx__
278#if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
279 /* Force the atomic_locks[] array page to be hash-for-home. */
280 if (address == (ulong) atomic_locks)
281 return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
282#endif
283#endif
284
285 /*
286 * Everything else that isn't data or bss is heap, so mark it
287 * with the initial heap home (hash-for-home, or this cpu). This
Chris Metcalf0707ad32010-06-25 17:04:17 -0400288 * includes any addresses after the loaded image and any address before
289 * _einitdata, since we already captured the case of text before
290 * _sinittext, and __pa(einittext) is approximately __pa(sinitdata).
Chris Metcalf867e3592010-05-28 23:09:12 -0400291 *
292 * All the LOWMEM pages that we mark this way will get their
293 * struct page homecache properly marked later, in set_page_homes().
294 * The HIGHMEM pages we leave with a default zero for their
295 * homes, but with a zero free_time we don't have to actually
296 * do a flush action the first time we use them, either.
297 */
Chris Metcalf0707ad32010-06-25 17:04:17 -0400298 if (address >= (ulong) _end || address < (ulong) _einitdata)
Chris Metcalf867e3592010-05-28 23:09:12 -0400299 return construct_pgprot(PAGE_KERNEL, initial_heap_home());
300
301#if CHIP_HAS_CBOX_HOME_MAP()
302 /* Use hash-for-home if requested for data/bss. */
303 if (kdata_hash)
304 return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
305#endif
306
307 /*
Chris Metcalf0707ad32010-06-25 17:04:17 -0400308 * Make the w1data homed like heap to start with, to avoid
309 * making it part of the page-striped data area when we're just
310 * going to convert it to read-only soon anyway.
311 */
312 if (address >= (ulong)__w1data_begin && address < (ulong)__w1data_end)
313 return construct_pgprot(PAGE_KERNEL, initial_heap_home());
314
315 /*
Chris Metcalf867e3592010-05-28 23:09:12 -0400316 * Otherwise we just hand out consecutive cpus. To avoid
317 * requiring this function to hold state, we just walk forward from
318 * _sdata by PAGE_SIZE, skipping the readonly and init data, to reach
319 * the requested address, while walking cpu home around kdata_mask.
320 * This is typically no more than a dozen or so iterations.
321 */
Chris Metcalf0707ad32010-06-25 17:04:17 -0400322 page = (((ulong)__w1data_end) + PAGE_SIZE - 1) & PAGE_MASK;
323 BUG_ON(address < page || address >= (ulong)_end);
324 cpu = cpumask_first(&kdata_mask);
325 for (; page < address; page += PAGE_SIZE) {
326 if (page >= (ulong)&init_thread_union &&
327 page < (ulong)&init_thread_union + THREAD_SIZE)
328 continue;
Chris Metcalf867e3592010-05-28 23:09:12 -0400329 if (page == (ulong)empty_zero_page)
Chris Metcalf0707ad32010-06-25 17:04:17 -0400330 continue;
Chris Metcalf867e3592010-05-28 23:09:12 -0400331#ifndef __tilegx__
332#if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
333 if (page == (ulong)atomic_locks)
Chris Metcalf0707ad32010-06-25 17:04:17 -0400334 continue;
Chris Metcalf867e3592010-05-28 23:09:12 -0400335#endif
336#endif
Chris Metcalf0707ad32010-06-25 17:04:17 -0400337 cpu = cpumask_next(cpu, &kdata_mask);
338 if (cpu == NR_CPUS)
339 cpu = cpumask_first(&kdata_mask);
Chris Metcalf867e3592010-05-28 23:09:12 -0400340 }
341 return construct_pgprot(PAGE_KERNEL, cpu);
342}
343
344/*
345 * This function sets up how we cache the kernel text. If we have
346 * hash-for-home support, normally that is used instead (see the
347 * kcache_hash boot flag for more information). But if we end up
348 * using a page-based caching technique, this option sets up the
349 * details of that. In addition, the "ktext=nocache" option may
350 * always be used to disable local caching of text pages, if desired.
351 */
352
353static int __initdata ktext_arg_seen;
354static int __initdata ktext_small;
355static int __initdata ktext_local;
356static int __initdata ktext_all;
357static int __initdata ktext_nondataplane;
358static int __initdata ktext_nocache;
359static struct cpumask __initdata ktext_mask;
360
361static int __init setup_ktext(char *str)
362{
363 if (str == NULL)
364 return -EINVAL;
365
366 /* If you have a leading "nocache", turn off ktext caching */
367 if (strncmp(str, "nocache", 7) == 0) {
368 ktext_nocache = 1;
Chris Metcalf0707ad32010-06-25 17:04:17 -0400369 pr_info("ktext: disabling local caching of kernel text\n");
Chris Metcalf867e3592010-05-28 23:09:12 -0400370 str += 7;
371 if (*str == ',')
372 ++str;
373 if (*str == '\0')
374 return 0;
375 }
376
377 ktext_arg_seen = 1;
378
379 /* Default setting on Tile64: use a huge page */
380 if (strcmp(str, "huge") == 0)
Chris Metcalf0707ad32010-06-25 17:04:17 -0400381 pr_info("ktext: using one huge locally cached page\n");
Chris Metcalf867e3592010-05-28 23:09:12 -0400382
383 /* Pay TLB cost but get no cache benefit: cache small pages locally */
384 else if (strcmp(str, "local") == 0) {
385 ktext_small = 1;
386 ktext_local = 1;
Chris Metcalf0707ad32010-06-25 17:04:17 -0400387 pr_info("ktext: using small pages with local caching\n");
Chris Metcalf867e3592010-05-28 23:09:12 -0400388 }
389
390 /* Neighborhood cache ktext pages on all cpus. */
391 else if (strcmp(str, "all") == 0) {
392 ktext_small = 1;
393 ktext_all = 1;
Chris Metcalf0707ad32010-06-25 17:04:17 -0400394 pr_info("ktext: using maximal caching neighborhood\n");
Chris Metcalf867e3592010-05-28 23:09:12 -0400395 }
396
397
398 /* Neighborhood ktext pages on specified mask */
399 else if (cpulist_parse(str, &ktext_mask) == 0) {
400 char buf[NR_CPUS * 5];
401 cpulist_scnprintf(buf, sizeof(buf), &ktext_mask);
402 if (cpumask_weight(&ktext_mask) > 1) {
403 ktext_small = 1;
Chris Metcalf0707ad32010-06-25 17:04:17 -0400404 pr_info("ktext: using caching neighborhood %s "
Chris Metcalf867e3592010-05-28 23:09:12 -0400405 "with small pages\n", buf);
406 } else {
Chris Metcalf0707ad32010-06-25 17:04:17 -0400407 pr_info("ktext: caching on cpu %s with one huge page\n",
Chris Metcalf867e3592010-05-28 23:09:12 -0400408 buf);
409 }
410 }
411
412 else if (*str)
413 return -EINVAL;
414
415 return 0;
416}
417
418early_param("ktext", setup_ktext);
419
420
421static inline pgprot_t ktext_set_nocache(pgprot_t prot)
422{
423 if (!ktext_nocache)
424 prot = hv_pte_set_nc(prot);
425#if CHIP_HAS_NC_AND_NOALLOC_BITS()
426 else
427 prot = hv_pte_set_no_alloc_l2(prot);
428#endif
429 return prot;
430}
431
432#ifndef __tilegx__
433static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
434{
435 return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va);
436}
437#else
438static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
439{
440 pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va);
441 if (pud_none(*pud))
442 assign_pmd(pud, alloc_pmd());
443 return pmd_offset(pud, va);
444}
445#endif
446
447/* Temporary page table we use for staging. */
448static pgd_t pgtables[PTRS_PER_PGD]
Chris Metcalf2cb82402011-02-27 18:52:24 -0500449 __attribute__((aligned(HV_PAGE_TABLE_ALIGN)));
Chris Metcalf867e3592010-05-28 23:09:12 -0400450
451/*
452 * This maps the physical memory to kernel virtual address space, a total
453 * of max_low_pfn pages, by creating page tables starting from address
454 * PAGE_OFFSET.
455 *
456 * This routine transitions us from using a set of compiled-in large
457 * pages to using some more precise caching, including removing access
458 * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START)
459 * marking read-only data as locally cacheable, striping the remaining
460 * .data and .bss across all the available tiles, and removing access
461 * to pages above the top of RAM (thus ensuring a page fault from a bad
462 * virtual address rather than a hypervisor shoot down for accessing
463 * memory outside the assigned limits).
464 */
465static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
466{
467 unsigned long address, pfn;
468 pmd_t *pmd;
469 pte_t *pte;
470 int pte_ofs;
471 const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id());
472 struct cpumask kstripe_mask;
473 int rc, i;
474
475#if CHIP_HAS_CBOX_HOME_MAP()
476 if (ktext_arg_seen && ktext_hash) {
Chris Metcalf0707ad32010-06-25 17:04:17 -0400477 pr_warning("warning: \"ktext\" boot argument ignored"
478 " if \"kcache_hash\" sets up text hash-for-home\n");
Chris Metcalf867e3592010-05-28 23:09:12 -0400479 ktext_small = 0;
480 }
481
482 if (kdata_arg_seen && kdata_hash) {
Chris Metcalf0707ad32010-06-25 17:04:17 -0400483 pr_warning("warning: \"kdata\" boot argument ignored"
484 " if \"kcache_hash\" sets up data hash-for-home\n");
Chris Metcalf867e3592010-05-28 23:09:12 -0400485 }
486
487 if (kdata_huge && !hash_default) {
Chris Metcalf0707ad32010-06-25 17:04:17 -0400488 pr_warning("warning: disabling \"kdata=huge\"; requires"
489 " kcache_hash=all or =allbutstack\n");
Chris Metcalf867e3592010-05-28 23:09:12 -0400490 kdata_huge = 0;
491 }
492#endif
493
494 /*
495 * Set up a mask for cpus to use for kernel striping.
496 * This is normally all cpus, but minus dataplane cpus if any.
497 * If the dataplane covers the whole chip, we stripe over
498 * the whole chip too.
499 */
500 cpumask_copy(&kstripe_mask, cpu_possible_mask);
501 if (!kdata_arg_seen)
502 kdata_mask = kstripe_mask;
503
504 /* Allocate and fill in L2 page tables */
505 for (i = 0; i < MAX_NUMNODES; ++i) {
506#ifdef CONFIG_HIGHMEM
507 unsigned long end_pfn = node_lowmem_end_pfn[i];
508#else
509 unsigned long end_pfn = node_end_pfn[i];
510#endif
511 unsigned long end_huge_pfn = 0;
512
513 /* Pre-shatter the last huge page to allow per-cpu pages. */
514 if (kdata_huge)
515 end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT);
516
517 pfn = node_start_pfn[i];
518
519 /* Allocate enough memory to hold L2 page tables for node. */
520 init_prealloc_ptes(i, end_pfn - pfn);
521
522 address = (unsigned long) pfn_to_kaddr(pfn);
523 while (pfn < end_pfn) {
524 BUG_ON(address & (HPAGE_SIZE-1));
525 pmd = get_pmd(pgtables, address);
526 pte = get_prealloc_pte(pfn);
527 if (pfn < end_huge_pfn) {
528 pgprot_t prot = init_pgprot(address);
529 *(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot));
530 for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
531 pfn++, pte_ofs++, address += PAGE_SIZE)
532 pte[pte_ofs] = pfn_pte(pfn, prot);
533 } else {
534 if (kdata_huge)
535 printk(KERN_DEBUG "pre-shattered huge"
536 " page at %#lx\n", address);
537 for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
538 pfn++, pte_ofs++, address += PAGE_SIZE) {
539 pgprot_t prot = init_pgprot(address);
540 pte[pte_ofs] = pfn_pte(pfn, prot);
541 }
542 assign_pte(pmd, pte);
543 }
544 }
545 }
546
547 /*
548 * Set or check ktext_map now that we have cpu_possible_mask
549 * and kstripe_mask to work with.
550 */
551 if (ktext_all)
552 cpumask_copy(&ktext_mask, cpu_possible_mask);
553 else if (ktext_nondataplane)
554 ktext_mask = kstripe_mask;
555 else if (!cpumask_empty(&ktext_mask)) {
556 /* Sanity-check any mask that was requested */
557 struct cpumask bad;
558 cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask);
559 cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask);
560 if (!cpumask_empty(&bad)) {
561 char buf[NR_CPUS * 5];
562 cpulist_scnprintf(buf, sizeof(buf), &bad);
Chris Metcalf0707ad32010-06-25 17:04:17 -0400563 pr_info("ktext: not using unavailable cpus %s\n", buf);
Chris Metcalf867e3592010-05-28 23:09:12 -0400564 }
565 if (cpumask_empty(&ktext_mask)) {
Chris Metcalf0707ad32010-06-25 17:04:17 -0400566 pr_warning("ktext: no valid cpus; caching on %d.\n",
567 smp_processor_id());
Chris Metcalf867e3592010-05-28 23:09:12 -0400568 cpumask_copy(&ktext_mask,
569 cpumask_of(smp_processor_id()));
570 }
571 }
572
573 address = MEM_SV_INTRPT;
574 pmd = get_pmd(pgtables, address);
575 if (ktext_small) {
576 /* Allocate an L2 PTE for the kernel text */
577 int cpu = 0;
578 pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC,
579 PAGE_HOME_IMMUTABLE);
580
581 if (ktext_local) {
582 if (ktext_nocache)
583 prot = hv_pte_set_mode(prot,
584 HV_PTE_MODE_UNCACHED);
585 else
586 prot = hv_pte_set_mode(prot,
587 HV_PTE_MODE_CACHE_NO_L3);
588 } else {
589 prot = hv_pte_set_mode(prot,
590 HV_PTE_MODE_CACHE_TILE_L3);
591 cpu = cpumask_first(&ktext_mask);
592
593 prot = ktext_set_nocache(prot);
594 }
595
596 BUG_ON(address != (unsigned long)_stext);
597 pfn = 0; /* code starts at PA 0 */
598 pte = alloc_pte();
599 for (pte_ofs = 0; address < (unsigned long)_einittext;
600 pfn++, pte_ofs++, address += PAGE_SIZE) {
601 if (!ktext_local) {
602 prot = set_remote_cache_cpu(prot, cpu);
603 cpu = cpumask_next(cpu, &ktext_mask);
604 if (cpu == NR_CPUS)
605 cpu = cpumask_first(&ktext_mask);
606 }
607 pte[pte_ofs] = pfn_pte(pfn, prot);
608 }
609 assign_pte(pmd, pte);
610 } else {
611 pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC);
612 pteval = pte_mkhuge(pteval);
613#if CHIP_HAS_CBOX_HOME_MAP()
614 if (ktext_hash) {
615 pteval = hv_pte_set_mode(pteval,
616 HV_PTE_MODE_CACHE_HASH_L3);
617 pteval = ktext_set_nocache(pteval);
618 } else
619#endif /* CHIP_HAS_CBOX_HOME_MAP() */
620 if (cpumask_weight(&ktext_mask) == 1) {
621 pteval = set_remote_cache_cpu(pteval,
622 cpumask_first(&ktext_mask));
623 pteval = hv_pte_set_mode(pteval,
624 HV_PTE_MODE_CACHE_TILE_L3);
625 pteval = ktext_set_nocache(pteval);
626 } else if (ktext_nocache)
627 pteval = hv_pte_set_mode(pteval,
628 HV_PTE_MODE_UNCACHED);
629 else
630 pteval = hv_pte_set_mode(pteval,
631 HV_PTE_MODE_CACHE_NO_L3);
632 *(pte_t *)pmd = pteval;
633 }
634
635 /* Set swapper_pgprot here so it is flushed to memory right away. */
636 swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir);
637
638 /*
639 * Since we may be changing the caching of the stack and page
640 * table itself, we invoke an assembly helper to do the
641 * following steps:
642 *
643 * - flush the cache so we start with an empty slate
644 * - install pgtables[] as the real page table
645 * - flush the TLB so the new page table takes effect
646 */
647 rc = flush_and_install_context(__pa(pgtables),
648 init_pgprot((unsigned long)pgtables),
649 __get_cpu_var(current_asid),
650 cpumask_bits(my_cpu_mask));
651 BUG_ON(rc != 0);
652
653 /* Copy the page table back to the normal swapper_pg_dir. */
654 memcpy(pgd_base, pgtables, sizeof(pgtables));
655 __install_page_table(pgd_base, __get_cpu_var(current_asid),
656 swapper_pgprot);
Chris Metcalf401586e2011-02-28 15:01:53 -0500657
658 /*
659 * We just read swapper_pgprot and thus brought it into the cache,
660 * with its new home & caching mode. When we start the other CPUs,
661 * they're going to reference swapper_pgprot via their initial fake
662 * VA-is-PA mappings, which cache everything locally. At that
663 * time, if it's in our cache with a conflicting home, the
664 * simulator's coherence checker will complain. So, flush it out
665 * of our cache; we're not going to ever use it again anyway.
666 */
667 __insn_finv(&swapper_pgprot);
Chris Metcalf867e3592010-05-28 23:09:12 -0400668}
669
670/*
671 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
672 * is valid. The argument is a physical page number.
673 *
674 * On Tile, the only valid things for which we can just hand out unchecked
675 * PTEs are the kernel code and data. Anything else might change its
676 * homing with time, and we wouldn't know to adjust the /dev/mem PTEs.
677 * Note that init_thread_union is released to heap soon after boot,
678 * so we include it in the init data.
679 *
680 * For TILE-Gx, we might want to consider allowing access to PA
681 * regions corresponding to PCI space, etc.
682 */
683int devmem_is_allowed(unsigned long pagenr)
684{
685 return pagenr < kaddr_to_pfn(_end) &&
686 !(pagenr >= kaddr_to_pfn(&init_thread_union) ||
687 pagenr < kaddr_to_pfn(_einitdata)) &&
688 !(pagenr >= kaddr_to_pfn(_sinittext) ||
689 pagenr <= kaddr_to_pfn(_einittext-1));
690}
691
692#ifdef CONFIG_HIGHMEM
693static void __init permanent_kmaps_init(pgd_t *pgd_base)
694{
695 pgd_t *pgd;
696 pud_t *pud;
697 pmd_t *pmd;
698 pte_t *pte;
699 unsigned long vaddr;
700
701 vaddr = PKMAP_BASE;
702 page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
703
704 pgd = swapper_pg_dir + pgd_index(vaddr);
705 pud = pud_offset(pgd, vaddr);
706 pmd = pmd_offset(pud, vaddr);
707 pte = pte_offset_kernel(pmd, vaddr);
708 pkmap_page_table = pte;
709}
710#endif /* CONFIG_HIGHMEM */
711
712
713static void __init init_free_pfn_range(unsigned long start, unsigned long end)
714{
715 unsigned long pfn;
716 struct page *page = pfn_to_page(start);
717
718 for (pfn = start; pfn < end; ) {
719 /* Optimize by freeing pages in large batches */
720 int order = __ffs(pfn);
721 int count, i;
722 struct page *p;
723
724 if (order >= MAX_ORDER)
725 order = MAX_ORDER-1;
726 count = 1 << order;
727 while (pfn + count > end) {
728 count >>= 1;
729 --order;
730 }
731 for (p = page, i = 0; i < count; ++i, ++p) {
732 __ClearPageReserved(p);
733 /*
734 * Hacky direct set to avoid unnecessary
735 * lock take/release for EVERY page here.
736 */
737 p->_count.counter = 0;
738 p->_mapcount.counter = -1;
739 }
740 init_page_count(page);
741 __free_pages(page, order);
742 totalram_pages += count;
743
744 page += count;
745 pfn += count;
746 }
747}
748
749static void __init set_non_bootmem_pages_init(void)
750{
751 struct zone *z;
752 for_each_zone(z) {
753 unsigned long start, end;
754 int nid = z->zone_pgdat->node_id;
Chris Metcalf0707ad32010-06-25 17:04:17 -0400755 int idx = zone_idx(z);
Chris Metcalf867e3592010-05-28 23:09:12 -0400756
757 start = z->zone_start_pfn;
758 if (start == 0)
759 continue; /* bootmem */
760 end = start + z->spanned_pages;
Chris Metcalf0707ad32010-06-25 17:04:17 -0400761 if (idx == ZONE_NORMAL) {
Chris Metcalf867e3592010-05-28 23:09:12 -0400762 BUG_ON(start != node_start_pfn[nid]);
763 start = node_free_pfn[nid];
764 }
765#ifdef CONFIG_HIGHMEM
Chris Metcalf0707ad32010-06-25 17:04:17 -0400766 if (idx == ZONE_HIGHMEM)
Chris Metcalf867e3592010-05-28 23:09:12 -0400767 totalhigh_pages += z->spanned_pages;
768#endif
769 if (kdata_huge) {
770 unsigned long percpu_pfn = node_percpu_pfn[nid];
771 if (start < percpu_pfn && end > percpu_pfn)
772 end = percpu_pfn;
773 }
774#ifdef CONFIG_PCI
775 if (start <= pci_reserve_start_pfn &&
776 end > pci_reserve_start_pfn) {
777 if (end > pci_reserve_end_pfn)
778 init_free_pfn_range(pci_reserve_end_pfn, end);
779 end = pci_reserve_start_pfn;
780 }
781#endif
782 init_free_pfn_range(start, end);
783 }
784}
785
786/*
787 * paging_init() sets up the page tables - note that all of lowmem is
788 * already mapped by head.S.
789 */
790void __init paging_init(void)
791{
792#ifdef CONFIG_HIGHMEM
793 unsigned long vaddr, end;
794#endif
795#ifdef __tilegx__
796 pud_t *pud;
797#endif
798 pgd_t *pgd_base = swapper_pg_dir;
799
800 kernel_physical_mapping_init(pgd_base);
801
802#ifdef CONFIG_HIGHMEM
803 /*
804 * Fixed mappings, only the page table structure has to be
805 * created - mappings will be set by set_fixmap():
806 */
807 vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;
808 end = (FIXADDR_TOP + PMD_SIZE - 1) & PMD_MASK;
809 page_table_range_init(vaddr, end, pgd_base);
810 permanent_kmaps_init(pgd_base);
811#endif
812
813#ifdef __tilegx__
814 /*
815 * Since GX allocates just one pmd_t array worth of vmalloc space,
816 * we go ahead and allocate it statically here, then share it
817 * globally. As a result we don't have to worry about any task
818 * changing init_mm once we get up and running, and there's no
819 * need for e.g. vmalloc_sync_all().
820 */
821 BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END));
822 pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START);
823 assign_pmd(pud, alloc_pmd());
824#endif
825}
826
827
828/*
829 * Walk the kernel page tables and derive the page_home() from
830 * the PTEs, so that set_pte() can properly validate the caching
831 * of all PTEs it sees.
832 */
833void __init set_page_homes(void)
834{
835}
836
837static void __init set_max_mapnr_init(void)
838{
839#ifdef CONFIG_FLATMEM
840 max_mapnr = max_low_pfn;
841#endif
842}
843
844void __init mem_init(void)
845{
846 int codesize, datasize, initsize;
847 int i;
848#ifndef __tilegx__
849 void *last;
850#endif
851
852#ifdef CONFIG_FLATMEM
853 if (!mem_map)
854 BUG();
855#endif
856
857#ifdef CONFIG_HIGHMEM
858 /* check that fixmap and pkmap do not overlap */
859 if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) {
Chris Metcalf0707ad32010-06-25 17:04:17 -0400860 pr_err("fixmap and kmap areas overlap"
Chris Metcalf867e3592010-05-28 23:09:12 -0400861 " - this will crash\n");
Chris Metcalf0707ad32010-06-25 17:04:17 -0400862 pr_err("pkstart: %lxh pkend: %lxh fixstart %lxh\n",
Chris Metcalf867e3592010-05-28 23:09:12 -0400863 PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1),
864 FIXADDR_START);
865 BUG();
866 }
867#endif
868
869 set_max_mapnr_init();
870
871 /* this will put all bootmem onto the freelists */
872 totalram_pages += free_all_bootmem();
873
874 /* count all remaining LOWMEM and give all HIGHMEM to page allocator */
875 set_non_bootmem_pages_init();
876
877 codesize = (unsigned long)&_etext - (unsigned long)&_text;
878 datasize = (unsigned long)&_end - (unsigned long)&_sdata;
879 initsize = (unsigned long)&_einittext - (unsigned long)&_sinittext;
880 initsize += (unsigned long)&_einitdata - (unsigned long)&_sinitdata;
881
Chris Metcalf0707ad32010-06-25 17:04:17 -0400882 pr_info("Memory: %luk/%luk available (%dk kernel code, %dk data, %dk init, %ldk highmem)\n",
Chris Metcalf867e3592010-05-28 23:09:12 -0400883 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
884 num_physpages << (PAGE_SHIFT-10),
885 codesize >> 10,
886 datasize >> 10,
887 initsize >> 10,
888 (unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))
889 );
890
891 /*
892 * In debug mode, dump some interesting memory mappings.
893 */
894#ifdef CONFIG_HIGHMEM
895 printk(KERN_DEBUG " KMAP %#lx - %#lx\n",
896 FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1);
897 printk(KERN_DEBUG " PKMAP %#lx - %#lx\n",
898 PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1);
899#endif
900#ifdef CONFIG_HUGEVMAP
901 printk(KERN_DEBUG " HUGEMAP %#lx - %#lx\n",
902 HUGE_VMAP_BASE, HUGE_VMAP_END - 1);
903#endif
904 printk(KERN_DEBUG " VMALLOC %#lx - %#lx\n",
905 _VMALLOC_START, _VMALLOC_END - 1);
906#ifdef __tilegx__
907 for (i = MAX_NUMNODES-1; i >= 0; --i) {
908 struct pglist_data *node = &node_data[i];
909 if (node->node_present_pages) {
910 unsigned long start = (unsigned long)
911 pfn_to_kaddr(node->node_start_pfn);
912 unsigned long end = start +
913 (node->node_present_pages << PAGE_SHIFT);
914 printk(KERN_DEBUG " MEM%d %#lx - %#lx\n",
915 i, start, end - 1);
916 }
917 }
918#else
919 last = high_memory;
920 for (i = MAX_NUMNODES-1; i >= 0; --i) {
921 if ((unsigned long)vbase_map[i] != -1UL) {
922 printk(KERN_DEBUG " LOWMEM%d %#lx - %#lx\n",
923 i, (unsigned long) (vbase_map[i]),
924 (unsigned long) (last-1));
925 last = vbase_map[i];
926 }
927 }
928#endif
929
930#ifndef __tilegx__
931 /*
932 * Convert from using one lock for all atomic operations to
933 * one per cpu.
934 */
935 __init_atomic_per_cpu();
936#endif
937}
938
939/*
940 * this is for the non-NUMA, single node SMP system case.
941 * Specifically, in the case of x86, we will always add
942 * memory to the highmem for now.
943 */
944#ifndef CONFIG_NEED_MULTIPLE_NODES
945int arch_add_memory(u64 start, u64 size)
946{
947 struct pglist_data *pgdata = &contig_page_data;
948 struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1;
949 unsigned long start_pfn = start >> PAGE_SHIFT;
950 unsigned long nr_pages = size >> PAGE_SHIFT;
951
952 return __add_pages(zone, start_pfn, nr_pages);
953}
954
955int remove_memory(u64 start, u64 size)
956{
957 return -EINVAL;
958}
959#endif
960
961struct kmem_cache *pgd_cache;
962
963void __init pgtable_cache_init(void)
964{
965 pgd_cache = kmem_cache_create("pgd",
966 PTRS_PER_PGD*sizeof(pgd_t),
967 PTRS_PER_PGD*sizeof(pgd_t),
968 0,
969 NULL);
970 if (!pgd_cache)
971 panic("pgtable_cache_init(): Cannot create pgd cache");
972}
973
974#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
975/*
976 * The __w1data area holds data that is only written during initialization,
977 * and is read-only and thus freely cacheable thereafter. Fix the page
978 * table entries that cover that region accordingly.
979 */
980static void mark_w1data_ro(void)
981{
982 /* Loop over page table entries */
983 unsigned long addr = (unsigned long)__w1data_begin;
984 BUG_ON((addr & (PAGE_SIZE-1)) != 0);
985 for (; addr <= (unsigned long)__w1data_end - 1; addr += PAGE_SIZE) {
986 unsigned long pfn = kaddr_to_pfn((void *)addr);
Chris Metcalf867e3592010-05-28 23:09:12 -0400987 pte_t *ptep = virt_to_pte(NULL, addr);
988 BUG_ON(pte_huge(*ptep)); /* not relevant for kdata_huge */
989 set_pte_at(&init_mm, addr, ptep, pfn_pte(pfn, PAGE_KERNEL_RO));
990 }
991}
992#endif
993
994#ifdef CONFIG_DEBUG_PAGEALLOC
995static long __write_once initfree;
996#else
997static long __write_once initfree = 1;
998#endif
999
1000/* Select whether to free (1) or mark unusable (0) the __init pages. */
1001static int __init set_initfree(char *str)
1002{
Chris Metcalfd59e6092010-11-01 15:25:16 -04001003 long val;
Chris Metcalfed54d382011-02-28 15:14:19 -05001004 if (strict_strtol(str, 0, &val) == 0) {
Chris Metcalfd59e6092010-11-01 15:25:16 -04001005 initfree = val;
1006 pr_info("initfree: %s free init pages\n",
1007 initfree ? "will" : "won't");
1008 }
Chris Metcalf867e3592010-05-28 23:09:12 -04001009 return 1;
1010}
1011__setup("initfree=", set_initfree);
1012
1013static void free_init_pages(char *what, unsigned long begin, unsigned long end)
1014{
1015 unsigned long addr = (unsigned long) begin;
1016
1017 if (kdata_huge && !initfree) {
Chris Metcalf0707ad32010-06-25 17:04:17 -04001018 pr_warning("Warning: ignoring initfree=0:"
1019 " incompatible with kdata=huge\n");
Chris Metcalf867e3592010-05-28 23:09:12 -04001020 initfree = 1;
1021 }
1022 end = (end + PAGE_SIZE - 1) & PAGE_MASK;
1023 local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin);
1024 for (addr = begin; addr < end; addr += PAGE_SIZE) {
1025 /*
1026 * Note we just reset the home here directly in the
1027 * page table. We know this is safe because our caller
1028 * just flushed the caches on all the other cpus,
1029 * and they won't be touching any of these pages.
1030 */
1031 int pfn = kaddr_to_pfn((void *)addr);
1032 struct page *page = pfn_to_page(pfn);
1033 pte_t *ptep = virt_to_pte(NULL, addr);
1034 if (!initfree) {
1035 /*
1036 * If debugging page accesses then do not free
1037 * this memory but mark them not present - any
1038 * buggy init-section access will create a
1039 * kernel page fault:
1040 */
1041 pte_clear(&init_mm, addr, ptep);
1042 continue;
1043 }
1044 __ClearPageReserved(page);
1045 init_page_count(page);
1046 if (pte_huge(*ptep))
1047 BUG_ON(!kdata_huge);
1048 else
1049 set_pte_at(&init_mm, addr, ptep,
1050 pfn_pte(pfn, PAGE_KERNEL));
1051 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1052 free_page(addr);
1053 totalram_pages++;
1054 }
Chris Metcalf0707ad32010-06-25 17:04:17 -04001055 pr_info("Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
Chris Metcalf867e3592010-05-28 23:09:12 -04001056}
1057
1058void free_initmem(void)
1059{
1060 const unsigned long text_delta = MEM_SV_INTRPT - PAGE_OFFSET;
1061
1062 /*
1063 * Evict the dirty initdata on the boot cpu, evict the w1data
1064 * wherever it's homed, and evict all the init code everywhere.
1065 * We are guaranteed that no one will touch the init pages any
1066 * more, and although other cpus may be touching the w1data,
1067 * we only actually change the caching on tile64, which won't
1068 * be keeping local copies in the other tiles' caches anyway.
1069 */
1070 homecache_evict(&cpu_cacheable_map);
1071
1072 /* Free the data pages that we won't use again after init. */
1073 free_init_pages("unused kernel data",
1074 (unsigned long)_sinitdata,
1075 (unsigned long)_einitdata);
1076
1077 /*
1078 * Free the pages mapped from 0xc0000000 that correspond to code
Chris Metcalfa78c9422010-10-14 16:23:03 -04001079 * pages from MEM_SV_INTRPT that we won't use again after init.
Chris Metcalf867e3592010-05-28 23:09:12 -04001080 */
1081 free_init_pages("unused kernel text",
1082 (unsigned long)_sinittext - text_delta,
1083 (unsigned long)_einittext - text_delta);
1084
1085#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
1086 /*
1087 * Upgrade the .w1data section to globally cached.
1088 * We don't do this on tilepro, since the cache architecture
1089 * pretty much makes it irrelevant, and in any case we end
1090 * up having racing issues with other tiles that may touch
1091 * the data after we flush the cache but before we update
1092 * the PTEs and flush the TLBs, causing sharer shootdowns
1093 * later. Even though this is to clean data, it seems like
1094 * an unnecessary complication.
1095 */
1096 mark_w1data_ro();
1097#endif
1098
1099 /* Do a global TLB flush so everyone sees the changes. */
1100 flush_tlb_all();
1101}