Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 1 | /******************************************************************************* |
| 2 | |
| 3 | Intel PRO/1000 Linux driver |
| 4 | Copyright(c) 1999 - 2007 Intel Corporation. |
| 5 | |
| 6 | This program is free software; you can redistribute it and/or modify it |
| 7 | under the terms and conditions of the GNU General Public License, |
| 8 | version 2, as published by the Free Software Foundation. |
| 9 | |
| 10 | This program is distributed in the hope it will be useful, but WITHOUT |
| 11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 13 | more details. |
| 14 | |
| 15 | You should have received a copy of the GNU General Public License along with |
| 16 | this program; if not, write to the Free Software Foundation, Inc., |
| 17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | |
| 19 | The full GNU General Public License is included in this distribution in |
| 20 | the file called "COPYING". |
| 21 | |
| 22 | Contact Information: |
| 23 | Linux NICS <linux.nics@intel.com> |
| 24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| 25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| 26 | |
| 27 | *******************************************************************************/ |
| 28 | |
| 29 | /* |
| 30 | * 82562G-2 10/100 Network Connection |
| 31 | * 82562GT 10/100 Network Connection |
| 32 | * 82562GT-2 10/100 Network Connection |
| 33 | * 82562V 10/100 Network Connection |
| 34 | * 82562V-2 10/100 Network Connection |
| 35 | * 82566DC-2 Gigabit Network Connection |
| 36 | * 82566DC Gigabit Network Connection |
| 37 | * 82566DM-2 Gigabit Network Connection |
| 38 | * 82566DM Gigabit Network Connection |
| 39 | * 82566MC Gigabit Network Connection |
| 40 | * 82566MM Gigabit Network Connection |
| 41 | */ |
| 42 | |
| 43 | #include <linux/netdevice.h> |
| 44 | #include <linux/ethtool.h> |
| 45 | #include <linux/delay.h> |
| 46 | #include <linux/pci.h> |
| 47 | |
| 48 | #include "e1000.h" |
| 49 | |
| 50 | #define ICH_FLASH_GFPREG 0x0000 |
| 51 | #define ICH_FLASH_HSFSTS 0x0004 |
| 52 | #define ICH_FLASH_HSFCTL 0x0006 |
| 53 | #define ICH_FLASH_FADDR 0x0008 |
| 54 | #define ICH_FLASH_FDATA0 0x0010 |
| 55 | |
| 56 | #define ICH_FLASH_READ_COMMAND_TIMEOUT 500 |
| 57 | #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500 |
| 58 | #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000 |
| 59 | #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF |
| 60 | #define ICH_FLASH_CYCLE_REPEAT_COUNT 10 |
| 61 | |
| 62 | #define ICH_CYCLE_READ 0 |
| 63 | #define ICH_CYCLE_WRITE 2 |
| 64 | #define ICH_CYCLE_ERASE 3 |
| 65 | |
| 66 | #define FLASH_GFPREG_BASE_MASK 0x1FFF |
| 67 | #define FLASH_SECTOR_ADDR_SHIFT 12 |
| 68 | |
| 69 | #define ICH_FLASH_SEG_SIZE_256 256 |
| 70 | #define ICH_FLASH_SEG_SIZE_4K 4096 |
| 71 | #define ICH_FLASH_SEG_SIZE_8K 8192 |
| 72 | #define ICH_FLASH_SEG_SIZE_64K 65536 |
| 73 | |
| 74 | |
| 75 | #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */ |
| 76 | |
| 77 | #define E1000_ICH_MNG_IAMT_MODE 0x2 |
| 78 | |
| 79 | #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \ |
| 80 | (ID_LED_DEF1_OFF2 << 8) | \ |
| 81 | (ID_LED_DEF1_ON2 << 4) | \ |
| 82 | (ID_LED_DEF1_DEF2)) |
| 83 | |
| 84 | #define E1000_ICH_NVM_SIG_WORD 0x13 |
| 85 | #define E1000_ICH_NVM_SIG_MASK 0xC000 |
| 86 | |
| 87 | #define E1000_ICH8_LAN_INIT_TIMEOUT 1500 |
| 88 | |
| 89 | #define E1000_FEXTNVM_SW_CONFIG 1 |
| 90 | #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */ |
| 91 | |
| 92 | #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL |
| 93 | |
| 94 | #define E1000_ICH_RAR_ENTRIES 7 |
| 95 | |
| 96 | #define PHY_PAGE_SHIFT 5 |
| 97 | #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \ |
| 98 | ((reg) & MAX_PHY_REG_ADDRESS)) |
| 99 | #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */ |
| 100 | #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */ |
| 101 | |
| 102 | #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 |
| 103 | #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300 |
| 104 | #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200 |
| 105 | |
| 106 | /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ |
| 107 | /* Offset 04h HSFSTS */ |
| 108 | union ich8_hws_flash_status { |
| 109 | struct ich8_hsfsts { |
| 110 | u16 flcdone :1; /* bit 0 Flash Cycle Done */ |
| 111 | u16 flcerr :1; /* bit 1 Flash Cycle Error */ |
| 112 | u16 dael :1; /* bit 2 Direct Access error Log */ |
| 113 | u16 berasesz :2; /* bit 4:3 Sector Erase Size */ |
| 114 | u16 flcinprog :1; /* bit 5 flash cycle in Progress */ |
| 115 | u16 reserved1 :2; /* bit 13:6 Reserved */ |
| 116 | u16 reserved2 :6; /* bit 13:6 Reserved */ |
| 117 | u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */ |
| 118 | u16 flockdn :1; /* bit 15 Flash Config Lock-Down */ |
| 119 | } hsf_status; |
| 120 | u16 regval; |
| 121 | }; |
| 122 | |
| 123 | /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ |
| 124 | /* Offset 06h FLCTL */ |
| 125 | union ich8_hws_flash_ctrl { |
| 126 | struct ich8_hsflctl { |
| 127 | u16 flcgo :1; /* 0 Flash Cycle Go */ |
| 128 | u16 flcycle :2; /* 2:1 Flash Cycle */ |
| 129 | u16 reserved :5; /* 7:3 Reserved */ |
| 130 | u16 fldbcount :2; /* 9:8 Flash Data Byte Count */ |
| 131 | u16 flockdn :6; /* 15:10 Reserved */ |
| 132 | } hsf_ctrl; |
| 133 | u16 regval; |
| 134 | }; |
| 135 | |
| 136 | /* ICH Flash Region Access Permissions */ |
| 137 | union ich8_hws_flash_regacc { |
| 138 | struct ich8_flracc { |
| 139 | u32 grra :8; /* 0:7 GbE region Read Access */ |
| 140 | u32 grwa :8; /* 8:15 GbE region Write Access */ |
| 141 | u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */ |
| 142 | u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */ |
| 143 | } hsf_flregacc; |
| 144 | u16 regval; |
| 145 | }; |
| 146 | |
| 147 | static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw); |
| 148 | static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); |
| 149 | static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); |
| 150 | static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw); |
| 151 | static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); |
| 152 | static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, |
| 153 | u32 offset, u8 byte); |
| 154 | static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, |
| 155 | u16 *data); |
| 156 | static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, |
| 157 | u8 size, u16 *data); |
| 158 | static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw); |
| 159 | static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); |
| 160 | |
| 161 | static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg) |
| 162 | { |
| 163 | return readw(hw->flash_address + reg); |
| 164 | } |
| 165 | |
| 166 | static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg) |
| 167 | { |
| 168 | return readl(hw->flash_address + reg); |
| 169 | } |
| 170 | |
| 171 | static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val) |
| 172 | { |
| 173 | writew(val, hw->flash_address + reg); |
| 174 | } |
| 175 | |
| 176 | static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val) |
| 177 | { |
| 178 | writel(val, hw->flash_address + reg); |
| 179 | } |
| 180 | |
| 181 | #define er16flash(reg) __er16flash(hw, (reg)) |
| 182 | #define er32flash(reg) __er32flash(hw, (reg)) |
| 183 | #define ew16flash(reg,val) __ew16flash(hw, (reg), (val)) |
| 184 | #define ew32flash(reg,val) __ew32flash(hw, (reg), (val)) |
| 185 | |
| 186 | /** |
| 187 | * e1000_init_phy_params_ich8lan - Initialize PHY function pointers |
| 188 | * @hw: pointer to the HW structure |
| 189 | * |
| 190 | * Initialize family-specific PHY parameters and function pointers. |
| 191 | **/ |
| 192 | static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) |
| 193 | { |
| 194 | struct e1000_phy_info *phy = &hw->phy; |
| 195 | s32 ret_val; |
| 196 | u16 i = 0; |
| 197 | |
| 198 | phy->addr = 1; |
| 199 | phy->reset_delay_us = 100; |
| 200 | |
| 201 | phy->id = 0; |
| 202 | while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) && |
| 203 | (i++ < 100)) { |
| 204 | msleep(1); |
| 205 | ret_val = e1000e_get_phy_id(hw); |
| 206 | if (ret_val) |
| 207 | return ret_val; |
| 208 | } |
| 209 | |
| 210 | /* Verify phy id */ |
| 211 | switch (phy->id) { |
| 212 | case IGP03E1000_E_PHY_ID: |
| 213 | phy->type = e1000_phy_igp_3; |
| 214 | phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| 215 | break; |
| 216 | case IFE_E_PHY_ID: |
| 217 | case IFE_PLUS_E_PHY_ID: |
| 218 | case IFE_C_E_PHY_ID: |
| 219 | phy->type = e1000_phy_ife; |
| 220 | phy->autoneg_mask = E1000_ALL_NOT_GIG; |
| 221 | break; |
| 222 | default: |
| 223 | return -E1000_ERR_PHY; |
| 224 | break; |
| 225 | } |
| 226 | |
| 227 | return 0; |
| 228 | } |
| 229 | |
| 230 | /** |
| 231 | * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers |
| 232 | * @hw: pointer to the HW structure |
| 233 | * |
| 234 | * Initialize family-specific NVM parameters and function |
| 235 | * pointers. |
| 236 | **/ |
| 237 | static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) |
| 238 | { |
| 239 | struct e1000_nvm_info *nvm = &hw->nvm; |
| 240 | struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
| 241 | u32 gfpreg; |
| 242 | u32 sector_base_addr; |
| 243 | u32 sector_end_addr; |
| 244 | u16 i; |
| 245 | |
| 246 | /* Can't read flash registers if the register set isn't mapped. |
| 247 | */ |
| 248 | if (!hw->flash_address) { |
| 249 | hw_dbg(hw, "ERROR: Flash registers not mapped\n"); |
| 250 | return -E1000_ERR_CONFIG; |
| 251 | } |
| 252 | |
| 253 | nvm->type = e1000_nvm_flash_sw; |
| 254 | |
| 255 | gfpreg = er32flash(ICH_FLASH_GFPREG); |
| 256 | |
| 257 | /* sector_X_addr is a "sector"-aligned address (4096 bytes) |
| 258 | * Add 1 to sector_end_addr since this sector is included in |
| 259 | * the overall size. */ |
| 260 | sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; |
| 261 | sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; |
| 262 | |
| 263 | /* flash_base_addr is byte-aligned */ |
| 264 | nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT; |
| 265 | |
| 266 | /* find total size of the NVM, then cut in half since the total |
| 267 | * size represents two separate NVM banks. */ |
| 268 | nvm->flash_bank_size = (sector_end_addr - sector_base_addr) |
| 269 | << FLASH_SECTOR_ADDR_SHIFT; |
| 270 | nvm->flash_bank_size /= 2; |
| 271 | /* Adjust to word count */ |
| 272 | nvm->flash_bank_size /= sizeof(u16); |
| 273 | |
| 274 | nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS; |
| 275 | |
| 276 | /* Clear shadow ram */ |
| 277 | for (i = 0; i < nvm->word_size; i++) { |
| 278 | dev_spec->shadow_ram[i].modified = 0; |
| 279 | dev_spec->shadow_ram[i].value = 0xFFFF; |
| 280 | } |
| 281 | |
| 282 | return 0; |
| 283 | } |
| 284 | |
| 285 | /** |
| 286 | * e1000_init_mac_params_ich8lan - Initialize MAC function pointers |
| 287 | * @hw: pointer to the HW structure |
| 288 | * |
| 289 | * Initialize family-specific MAC parameters and function |
| 290 | * pointers. |
| 291 | **/ |
| 292 | static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter) |
| 293 | { |
| 294 | struct e1000_hw *hw = &adapter->hw; |
| 295 | struct e1000_mac_info *mac = &hw->mac; |
| 296 | |
| 297 | /* Set media type function pointer */ |
| 298 | hw->media_type = e1000_media_type_copper; |
| 299 | |
| 300 | /* Set mta register count */ |
| 301 | mac->mta_reg_count = 32; |
| 302 | /* Set rar entry count */ |
| 303 | mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; |
| 304 | if (mac->type == e1000_ich8lan) |
| 305 | mac->rar_entry_count--; |
| 306 | /* Set if manageability features are enabled. */ |
| 307 | mac->arc_subsystem_valid = 1; |
| 308 | |
| 309 | /* Enable PCS Lock-loss workaround for ICH8 */ |
| 310 | if (mac->type == e1000_ich8lan) |
| 311 | e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1); |
| 312 | |
| 313 | return 0; |
| 314 | } |
| 315 | |
| 316 | static s32 e1000_get_invariants_ich8lan(struct e1000_adapter *adapter) |
| 317 | { |
| 318 | struct e1000_hw *hw = &adapter->hw; |
| 319 | s32 rc; |
| 320 | |
| 321 | rc = e1000_init_mac_params_ich8lan(adapter); |
| 322 | if (rc) |
| 323 | return rc; |
| 324 | |
| 325 | rc = e1000_init_nvm_params_ich8lan(hw); |
| 326 | if (rc) |
| 327 | return rc; |
| 328 | |
| 329 | rc = e1000_init_phy_params_ich8lan(hw); |
| 330 | if (rc) |
| 331 | return rc; |
| 332 | |
| 333 | if ((adapter->hw.mac.type == e1000_ich8lan) && |
| 334 | (adapter->hw.phy.type == e1000_phy_igp_3)) |
| 335 | adapter->flags |= FLAG_LSC_GIG_SPEED_DROP; |
| 336 | |
| 337 | return 0; |
| 338 | } |
| 339 | |
| 340 | /** |
| 341 | * e1000_acquire_swflag_ich8lan - Acquire software control flag |
| 342 | * @hw: pointer to the HW structure |
| 343 | * |
| 344 | * Acquires the software control flag for performing NVM and PHY |
| 345 | * operations. This is a function pointer entry point only called by |
| 346 | * read/write routines for the PHY and NVM parts. |
| 347 | **/ |
| 348 | static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) |
| 349 | { |
| 350 | u32 extcnf_ctrl; |
| 351 | u32 timeout = PHY_CFG_TIMEOUT; |
| 352 | |
| 353 | while (timeout) { |
| 354 | extcnf_ctrl = er32(EXTCNF_CTRL); |
| 355 | extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; |
| 356 | ew32(EXTCNF_CTRL, extcnf_ctrl); |
| 357 | |
| 358 | extcnf_ctrl = er32(EXTCNF_CTRL); |
| 359 | if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) |
| 360 | break; |
| 361 | mdelay(1); |
| 362 | timeout--; |
| 363 | } |
| 364 | |
| 365 | if (!timeout) { |
| 366 | hw_dbg(hw, "FW or HW has locked the resource for too long.\n"); |
| 367 | return -E1000_ERR_CONFIG; |
| 368 | } |
| 369 | |
| 370 | return 0; |
| 371 | } |
| 372 | |
| 373 | /** |
| 374 | * e1000_release_swflag_ich8lan - Release software control flag |
| 375 | * @hw: pointer to the HW structure |
| 376 | * |
| 377 | * Releases the software control flag for performing NVM and PHY operations. |
| 378 | * This is a function pointer entry point only called by read/write |
| 379 | * routines for the PHY and NVM parts. |
| 380 | **/ |
| 381 | static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) |
| 382 | { |
| 383 | u32 extcnf_ctrl; |
| 384 | |
| 385 | extcnf_ctrl = er32(EXTCNF_CTRL); |
| 386 | extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; |
| 387 | ew32(EXTCNF_CTRL, extcnf_ctrl); |
| 388 | } |
| 389 | |
| 390 | /** |
| 391 | * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked |
| 392 | * @hw: pointer to the HW structure |
| 393 | * |
| 394 | * Checks if firmware is blocking the reset of the PHY. |
| 395 | * This is a function pointer entry point only called by |
| 396 | * reset routines. |
| 397 | **/ |
| 398 | static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) |
| 399 | { |
| 400 | u32 fwsm; |
| 401 | |
| 402 | fwsm = er32(FWSM); |
| 403 | |
| 404 | return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET; |
| 405 | } |
| 406 | |
| 407 | /** |
| 408 | * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex |
| 409 | * @hw: pointer to the HW structure |
| 410 | * |
| 411 | * Forces the speed and duplex settings of the PHY. |
| 412 | * This is a function pointer entry point only called by |
| 413 | * PHY setup routines. |
| 414 | **/ |
| 415 | static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw) |
| 416 | { |
| 417 | struct e1000_phy_info *phy = &hw->phy; |
| 418 | s32 ret_val; |
| 419 | u16 data; |
| 420 | bool link; |
| 421 | |
| 422 | if (phy->type != e1000_phy_ife) { |
| 423 | ret_val = e1000e_phy_force_speed_duplex_igp(hw); |
| 424 | return ret_val; |
| 425 | } |
| 426 | |
| 427 | ret_val = e1e_rphy(hw, PHY_CONTROL, &data); |
| 428 | if (ret_val) |
| 429 | return ret_val; |
| 430 | |
| 431 | e1000e_phy_force_speed_duplex_setup(hw, &data); |
| 432 | |
| 433 | ret_val = e1e_wphy(hw, PHY_CONTROL, data); |
| 434 | if (ret_val) |
| 435 | return ret_val; |
| 436 | |
| 437 | /* Disable MDI-X support for 10/100 */ |
| 438 | ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data); |
| 439 | if (ret_val) |
| 440 | return ret_val; |
| 441 | |
| 442 | data &= ~IFE_PMC_AUTO_MDIX; |
| 443 | data &= ~IFE_PMC_FORCE_MDIX; |
| 444 | |
| 445 | ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data); |
| 446 | if (ret_val) |
| 447 | return ret_val; |
| 448 | |
| 449 | hw_dbg(hw, "IFE PMC: %X\n", data); |
| 450 | |
| 451 | udelay(1); |
| 452 | |
| 453 | if (phy->wait_for_link) { |
| 454 | hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n"); |
| 455 | |
| 456 | ret_val = e1000e_phy_has_link_generic(hw, |
| 457 | PHY_FORCE_LIMIT, |
| 458 | 100000, |
| 459 | &link); |
| 460 | if (ret_val) |
| 461 | return ret_val; |
| 462 | |
| 463 | if (!link) |
| 464 | hw_dbg(hw, "Link taking longer than expected.\n"); |
| 465 | |
| 466 | /* Try once more */ |
| 467 | ret_val = e1000e_phy_has_link_generic(hw, |
| 468 | PHY_FORCE_LIMIT, |
| 469 | 100000, |
| 470 | &link); |
| 471 | if (ret_val) |
| 472 | return ret_val; |
| 473 | } |
| 474 | |
| 475 | return 0; |
| 476 | } |
| 477 | |
| 478 | /** |
| 479 | * e1000_phy_hw_reset_ich8lan - Performs a PHY reset |
| 480 | * @hw: pointer to the HW structure |
| 481 | * |
| 482 | * Resets the PHY |
| 483 | * This is a function pointer entry point called by drivers |
| 484 | * or other shared routines. |
| 485 | **/ |
| 486 | static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) |
| 487 | { |
| 488 | struct e1000_phy_info *phy = &hw->phy; |
| 489 | u32 i; |
| 490 | u32 data, cnf_size, cnf_base_addr, sw_cfg_mask; |
| 491 | s32 ret_val; |
| 492 | u16 loop = E1000_ICH8_LAN_INIT_TIMEOUT; |
| 493 | u16 word_addr, reg_data, reg_addr, phy_page = 0; |
| 494 | |
| 495 | ret_val = e1000e_phy_hw_reset_generic(hw); |
| 496 | if (ret_val) |
| 497 | return ret_val; |
| 498 | |
| 499 | /* Initialize the PHY from the NVM on ICH platforms. This |
| 500 | * is needed due to an issue where the NVM configuration is |
| 501 | * not properly autoloaded after power transitions. |
| 502 | * Therefore, after each PHY reset, we will load the |
| 503 | * configuration data out of the NVM manually. |
| 504 | */ |
| 505 | if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) { |
| 506 | struct e1000_adapter *adapter = hw->adapter; |
| 507 | |
| 508 | /* Check if SW needs configure the PHY */ |
| 509 | if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) || |
| 510 | (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M)) |
| 511 | sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; |
| 512 | else |
| 513 | sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; |
| 514 | |
| 515 | data = er32(FEXTNVM); |
| 516 | if (!(data & sw_cfg_mask)) |
| 517 | return 0; |
| 518 | |
| 519 | /* Wait for basic configuration completes before proceeding*/ |
| 520 | do { |
| 521 | data = er32(STATUS); |
| 522 | data &= E1000_STATUS_LAN_INIT_DONE; |
| 523 | udelay(100); |
| 524 | } while ((!data) && --loop); |
| 525 | |
| 526 | /* If basic configuration is incomplete before the above loop |
| 527 | * count reaches 0, loading the configuration from NVM will |
| 528 | * leave the PHY in a bad state possibly resulting in no link. |
| 529 | */ |
| 530 | if (loop == 0) { |
| 531 | hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n"); |
| 532 | } |
| 533 | |
| 534 | /* Clear the Init Done bit for the next init event */ |
| 535 | data = er32(STATUS); |
| 536 | data &= ~E1000_STATUS_LAN_INIT_DONE; |
| 537 | ew32(STATUS, data); |
| 538 | |
| 539 | /* Make sure HW does not configure LCD from PHY |
| 540 | * extended configuration before SW configuration */ |
| 541 | data = er32(EXTCNF_CTRL); |
| 542 | if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) |
| 543 | return 0; |
| 544 | |
| 545 | cnf_size = er32(EXTCNF_SIZE); |
| 546 | cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; |
| 547 | cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; |
| 548 | if (!cnf_size) |
| 549 | return 0; |
| 550 | |
| 551 | cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; |
| 552 | cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; |
| 553 | |
| 554 | /* Configure LCD from extended configuration |
| 555 | * region. */ |
| 556 | |
| 557 | /* cnf_base_addr is in DWORD */ |
| 558 | word_addr = (u16)(cnf_base_addr << 1); |
| 559 | |
| 560 | for (i = 0; i < cnf_size; i++) { |
| 561 | ret_val = e1000_read_nvm(hw, |
| 562 | (word_addr + i * 2), |
| 563 | 1, |
| 564 | ®_data); |
| 565 | if (ret_val) |
| 566 | return ret_val; |
| 567 | |
| 568 | ret_val = e1000_read_nvm(hw, |
| 569 | (word_addr + i * 2 + 1), |
| 570 | 1, |
| 571 | ®_addr); |
| 572 | if (ret_val) |
| 573 | return ret_val; |
| 574 | |
| 575 | /* Save off the PHY page for future writes. */ |
| 576 | if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { |
| 577 | phy_page = reg_data; |
| 578 | continue; |
| 579 | } |
| 580 | |
| 581 | reg_addr |= phy_page; |
| 582 | |
| 583 | ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data); |
| 584 | if (ret_val) |
| 585 | return ret_val; |
| 586 | } |
| 587 | } |
| 588 | |
| 589 | return 0; |
| 590 | } |
| 591 | |
| 592 | /** |
| 593 | * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states |
| 594 | * @hw: pointer to the HW structure |
| 595 | * |
| 596 | * Populates "phy" structure with various feature states. |
| 597 | * This function is only called by other family-specific |
| 598 | * routines. |
| 599 | **/ |
| 600 | static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw) |
| 601 | { |
| 602 | struct e1000_phy_info *phy = &hw->phy; |
| 603 | s32 ret_val; |
| 604 | u16 data; |
| 605 | bool link; |
| 606 | |
| 607 | ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); |
| 608 | if (ret_val) |
| 609 | return ret_val; |
| 610 | |
| 611 | if (!link) { |
| 612 | hw_dbg(hw, "Phy info is only valid if link is up\n"); |
| 613 | return -E1000_ERR_CONFIG; |
| 614 | } |
| 615 | |
| 616 | ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data); |
| 617 | if (ret_val) |
| 618 | return ret_val; |
| 619 | phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE)); |
| 620 | |
| 621 | if (phy->polarity_correction) { |
| 622 | ret_val = e1000_check_polarity_ife_ich8lan(hw); |
| 623 | if (ret_val) |
| 624 | return ret_val; |
| 625 | } else { |
| 626 | /* Polarity is forced */ |
| 627 | phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY) |
| 628 | ? e1000_rev_polarity_reversed |
| 629 | : e1000_rev_polarity_normal; |
| 630 | } |
| 631 | |
| 632 | ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data); |
| 633 | if (ret_val) |
| 634 | return ret_val; |
| 635 | |
| 636 | phy->is_mdix = (data & IFE_PMC_MDIX_STATUS); |
| 637 | |
| 638 | /* The following parameters are undefined for 10/100 operation. */ |
| 639 | phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; |
| 640 | phy->local_rx = e1000_1000t_rx_status_undefined; |
| 641 | phy->remote_rx = e1000_1000t_rx_status_undefined; |
| 642 | |
| 643 | return 0; |
| 644 | } |
| 645 | |
| 646 | /** |
| 647 | * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info |
| 648 | * @hw: pointer to the HW structure |
| 649 | * |
| 650 | * Wrapper for calling the get_phy_info routines for the appropriate phy type. |
| 651 | * This is a function pointer entry point called by drivers |
| 652 | * or other shared routines. |
| 653 | **/ |
| 654 | static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw) |
| 655 | { |
| 656 | switch (hw->phy.type) { |
| 657 | case e1000_phy_ife: |
| 658 | return e1000_get_phy_info_ife_ich8lan(hw); |
| 659 | break; |
| 660 | case e1000_phy_igp_3: |
| 661 | return e1000e_get_phy_info_igp(hw); |
| 662 | break; |
| 663 | default: |
| 664 | break; |
| 665 | } |
| 666 | |
| 667 | return -E1000_ERR_PHY_TYPE; |
| 668 | } |
| 669 | |
| 670 | /** |
| 671 | * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY |
| 672 | * @hw: pointer to the HW structure |
| 673 | * |
| 674 | * Polarity is determined on the polarity reveral feature being enabled. |
| 675 | * This function is only called by other family-specific |
| 676 | * routines. |
| 677 | **/ |
| 678 | static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw) |
| 679 | { |
| 680 | struct e1000_phy_info *phy = &hw->phy; |
| 681 | s32 ret_val; |
| 682 | u16 phy_data, offset, mask; |
| 683 | |
| 684 | /* Polarity is determined based on the reversal feature |
| 685 | * being enabled. |
| 686 | */ |
| 687 | if (phy->polarity_correction) { |
| 688 | offset = IFE_PHY_EXTENDED_STATUS_CONTROL; |
| 689 | mask = IFE_PESC_POLARITY_REVERSED; |
| 690 | } else { |
| 691 | offset = IFE_PHY_SPECIAL_CONTROL; |
| 692 | mask = IFE_PSC_FORCE_POLARITY; |
| 693 | } |
| 694 | |
| 695 | ret_val = e1e_rphy(hw, offset, &phy_data); |
| 696 | |
| 697 | if (!ret_val) |
| 698 | phy->cable_polarity = (phy_data & mask) |
| 699 | ? e1000_rev_polarity_reversed |
| 700 | : e1000_rev_polarity_normal; |
| 701 | |
| 702 | return ret_val; |
| 703 | } |
| 704 | |
| 705 | /** |
| 706 | * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state |
| 707 | * @hw: pointer to the HW structure |
| 708 | * @active: TRUE to enable LPLU, FALSE to disable |
| 709 | * |
| 710 | * Sets the LPLU D0 state according to the active flag. When |
| 711 | * activating LPLU this function also disables smart speed |
| 712 | * and vice versa. LPLU will not be activated unless the |
| 713 | * device autonegotiation advertisement meets standards of |
| 714 | * either 10 or 10/100 or 10/100/1000 at all duplexes. |
| 715 | * This is a function pointer entry point only called by |
| 716 | * PHY setup routines. |
| 717 | **/ |
| 718 | static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) |
| 719 | { |
| 720 | struct e1000_phy_info *phy = &hw->phy; |
| 721 | u32 phy_ctrl; |
| 722 | s32 ret_val = 0; |
| 723 | u16 data; |
| 724 | |
| 725 | if (phy->type != e1000_phy_igp_3) |
| 726 | return ret_val; |
| 727 | |
| 728 | phy_ctrl = er32(PHY_CTRL); |
| 729 | |
| 730 | if (active) { |
| 731 | phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; |
| 732 | ew32(PHY_CTRL, phy_ctrl); |
| 733 | |
| 734 | /* Call gig speed drop workaround on LPLU before accessing |
| 735 | * any PHY registers */ |
| 736 | if ((hw->mac.type == e1000_ich8lan) && |
| 737 | (hw->phy.type == e1000_phy_igp_3)) |
| 738 | e1000e_gig_downshift_workaround_ich8lan(hw); |
| 739 | |
| 740 | /* When LPLU is enabled, we should disable SmartSpeed */ |
| 741 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); |
| 742 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| 743 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); |
| 744 | if (ret_val) |
| 745 | return ret_val; |
| 746 | } else { |
| 747 | phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; |
| 748 | ew32(PHY_CTRL, phy_ctrl); |
| 749 | |
| 750 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used |
| 751 | * during Dx states where the power conservation is most |
| 752 | * important. During driver activity we should enable |
| 753 | * SmartSpeed, so performance is maintained. */ |
| 754 | if (phy->smart_speed == e1000_smart_speed_on) { |
| 755 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| 756 | &data); |
| 757 | if (ret_val) |
| 758 | return ret_val; |
| 759 | |
| 760 | data |= IGP01E1000_PSCFR_SMART_SPEED; |
| 761 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| 762 | data); |
| 763 | if (ret_val) |
| 764 | return ret_val; |
| 765 | } else if (phy->smart_speed == e1000_smart_speed_off) { |
| 766 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| 767 | &data); |
| 768 | if (ret_val) |
| 769 | return ret_val; |
| 770 | |
| 771 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| 772 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| 773 | data); |
| 774 | if (ret_val) |
| 775 | return ret_val; |
| 776 | } |
| 777 | } |
| 778 | |
| 779 | return 0; |
| 780 | } |
| 781 | |
| 782 | /** |
| 783 | * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state |
| 784 | * @hw: pointer to the HW structure |
| 785 | * @active: TRUE to enable LPLU, FALSE to disable |
| 786 | * |
| 787 | * Sets the LPLU D3 state according to the active flag. When |
| 788 | * activating LPLU this function also disables smart speed |
| 789 | * and vice versa. LPLU will not be activated unless the |
| 790 | * device autonegotiation advertisement meets standards of |
| 791 | * either 10 or 10/100 or 10/100/1000 at all duplexes. |
| 792 | * This is a function pointer entry point only called by |
| 793 | * PHY setup routines. |
| 794 | **/ |
| 795 | static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) |
| 796 | { |
| 797 | struct e1000_phy_info *phy = &hw->phy; |
| 798 | u32 phy_ctrl; |
| 799 | s32 ret_val; |
| 800 | u16 data; |
| 801 | |
| 802 | phy_ctrl = er32(PHY_CTRL); |
| 803 | |
| 804 | if (!active) { |
| 805 | phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; |
| 806 | ew32(PHY_CTRL, phy_ctrl); |
| 807 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used |
| 808 | * during Dx states where the power conservation is most |
| 809 | * important. During driver activity we should enable |
| 810 | * SmartSpeed, so performance is maintained. */ |
| 811 | if (phy->smart_speed == e1000_smart_speed_on) { |
| 812 | ret_val = e1e_rphy(hw, |
| 813 | IGP01E1000_PHY_PORT_CONFIG, |
| 814 | &data); |
| 815 | if (ret_val) |
| 816 | return ret_val; |
| 817 | |
| 818 | data |= IGP01E1000_PSCFR_SMART_SPEED; |
| 819 | ret_val = e1e_wphy(hw, |
| 820 | IGP01E1000_PHY_PORT_CONFIG, |
| 821 | data); |
| 822 | if (ret_val) |
| 823 | return ret_val; |
| 824 | } else if (phy->smart_speed == e1000_smart_speed_off) { |
| 825 | ret_val = e1e_rphy(hw, |
| 826 | IGP01E1000_PHY_PORT_CONFIG, |
| 827 | &data); |
| 828 | if (ret_val) |
| 829 | return ret_val; |
| 830 | |
| 831 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| 832 | ret_val = e1e_wphy(hw, |
| 833 | IGP01E1000_PHY_PORT_CONFIG, |
| 834 | data); |
| 835 | if (ret_val) |
| 836 | return ret_val; |
| 837 | } |
| 838 | } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || |
| 839 | (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || |
| 840 | (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { |
| 841 | phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; |
| 842 | ew32(PHY_CTRL, phy_ctrl); |
| 843 | |
| 844 | /* Call gig speed drop workaround on LPLU before accessing |
| 845 | * any PHY registers */ |
| 846 | if ((hw->mac.type == e1000_ich8lan) && |
| 847 | (hw->phy.type == e1000_phy_igp_3)) |
| 848 | e1000e_gig_downshift_workaround_ich8lan(hw); |
| 849 | |
| 850 | /* When LPLU is enabled, we should disable SmartSpeed */ |
| 851 | ret_val = e1e_rphy(hw, |
| 852 | IGP01E1000_PHY_PORT_CONFIG, |
| 853 | &data); |
| 854 | if (ret_val) |
| 855 | return ret_val; |
| 856 | |
| 857 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| 858 | ret_val = e1e_wphy(hw, |
| 859 | IGP01E1000_PHY_PORT_CONFIG, |
| 860 | data); |
| 861 | } |
| 862 | |
| 863 | return 0; |
| 864 | } |
| 865 | |
| 866 | /** |
| 867 | * e1000_read_nvm_ich8lan - Read word(s) from the NVM |
| 868 | * @hw: pointer to the HW structure |
| 869 | * @offset: The offset (in bytes) of the word(s) to read. |
| 870 | * @words: Size of data to read in words |
| 871 | * @data: Pointer to the word(s) to read at offset. |
| 872 | * |
| 873 | * Reads a word(s) from the NVM using the flash access registers. |
| 874 | **/ |
| 875 | static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, |
| 876 | u16 *data) |
| 877 | { |
| 878 | struct e1000_nvm_info *nvm = &hw->nvm; |
| 879 | struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
| 880 | u32 act_offset; |
| 881 | s32 ret_val; |
| 882 | u16 i, word; |
| 883 | |
| 884 | if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || |
| 885 | (words == 0)) { |
| 886 | hw_dbg(hw, "nvm parameter(s) out of bounds\n"); |
| 887 | return -E1000_ERR_NVM; |
| 888 | } |
| 889 | |
| 890 | ret_val = e1000_acquire_swflag_ich8lan(hw); |
| 891 | if (ret_val) |
| 892 | return ret_val; |
| 893 | |
| 894 | /* Start with the bank offset, then add the relative offset. */ |
| 895 | act_offset = (er32(EECD) & E1000_EECD_SEC1VAL) |
| 896 | ? nvm->flash_bank_size |
| 897 | : 0; |
| 898 | act_offset += offset; |
| 899 | |
| 900 | for (i = 0; i < words; i++) { |
| 901 | if ((dev_spec->shadow_ram) && |
| 902 | (dev_spec->shadow_ram[offset+i].modified)) { |
| 903 | data[i] = dev_spec->shadow_ram[offset+i].value; |
| 904 | } else { |
| 905 | ret_val = e1000_read_flash_word_ich8lan(hw, |
| 906 | act_offset + i, |
| 907 | &word); |
| 908 | if (ret_val) |
| 909 | break; |
| 910 | data[i] = word; |
| 911 | } |
| 912 | } |
| 913 | |
| 914 | e1000_release_swflag_ich8lan(hw); |
| 915 | |
| 916 | return ret_val; |
| 917 | } |
| 918 | |
| 919 | /** |
| 920 | * e1000_flash_cycle_init_ich8lan - Initialize flash |
| 921 | * @hw: pointer to the HW structure |
| 922 | * |
| 923 | * This function does initial flash setup so that a new read/write/erase cycle |
| 924 | * can be started. |
| 925 | **/ |
| 926 | static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) |
| 927 | { |
| 928 | union ich8_hws_flash_status hsfsts; |
| 929 | s32 ret_val = -E1000_ERR_NVM; |
| 930 | s32 i = 0; |
| 931 | |
| 932 | hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
| 933 | |
| 934 | /* Check if the flash descriptor is valid */ |
| 935 | if (hsfsts.hsf_status.fldesvalid == 0) { |
| 936 | hw_dbg(hw, "Flash descriptor invalid. " |
| 937 | "SW Sequencing must be used."); |
| 938 | return -E1000_ERR_NVM; |
| 939 | } |
| 940 | |
| 941 | /* Clear FCERR and DAEL in hw status by writing 1 */ |
| 942 | hsfsts.hsf_status.flcerr = 1; |
| 943 | hsfsts.hsf_status.dael = 1; |
| 944 | |
| 945 | ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); |
| 946 | |
| 947 | /* Either we should have a hardware SPI cycle in progress |
| 948 | * bit to check against, in order to start a new cycle or |
| 949 | * FDONE bit should be changed in the hardware so that it |
| 950 | * is 1 after harware reset, which can then be used as an |
| 951 | * indication whether a cycle is in progress or has been |
| 952 | * completed. |
| 953 | */ |
| 954 | |
| 955 | if (hsfsts.hsf_status.flcinprog == 0) { |
| 956 | /* There is no cycle running at present, |
| 957 | * so we can start a cycle */ |
| 958 | /* Begin by setting Flash Cycle Done. */ |
| 959 | hsfsts.hsf_status.flcdone = 1; |
| 960 | ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); |
| 961 | ret_val = 0; |
| 962 | } else { |
| 963 | /* otherwise poll for sometime so the current |
| 964 | * cycle has a chance to end before giving up. */ |
| 965 | for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { |
| 966 | hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS); |
| 967 | if (hsfsts.hsf_status.flcinprog == 0) { |
| 968 | ret_val = 0; |
| 969 | break; |
| 970 | } |
| 971 | udelay(1); |
| 972 | } |
| 973 | if (ret_val == 0) { |
| 974 | /* Successful in waiting for previous cycle to timeout, |
| 975 | * now set the Flash Cycle Done. */ |
| 976 | hsfsts.hsf_status.flcdone = 1; |
| 977 | ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); |
| 978 | } else { |
| 979 | hw_dbg(hw, "Flash controller busy, cannot get access"); |
| 980 | } |
| 981 | } |
| 982 | |
| 983 | return ret_val; |
| 984 | } |
| 985 | |
| 986 | /** |
| 987 | * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) |
| 988 | * @hw: pointer to the HW structure |
| 989 | * @timeout: maximum time to wait for completion |
| 990 | * |
| 991 | * This function starts a flash cycle and waits for its completion. |
| 992 | **/ |
| 993 | static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) |
| 994 | { |
| 995 | union ich8_hws_flash_ctrl hsflctl; |
| 996 | union ich8_hws_flash_status hsfsts; |
| 997 | s32 ret_val = -E1000_ERR_NVM; |
| 998 | u32 i = 0; |
| 999 | |
| 1000 | /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ |
| 1001 | hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); |
| 1002 | hsflctl.hsf_ctrl.flcgo = 1; |
| 1003 | ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); |
| 1004 | |
| 1005 | /* wait till FDONE bit is set to 1 */ |
| 1006 | do { |
| 1007 | hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
| 1008 | if (hsfsts.hsf_status.flcdone == 1) |
| 1009 | break; |
| 1010 | udelay(1); |
| 1011 | } while (i++ < timeout); |
| 1012 | |
| 1013 | if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) |
| 1014 | return 0; |
| 1015 | |
| 1016 | return ret_val; |
| 1017 | } |
| 1018 | |
| 1019 | /** |
| 1020 | * e1000_read_flash_word_ich8lan - Read word from flash |
| 1021 | * @hw: pointer to the HW structure |
| 1022 | * @offset: offset to data location |
| 1023 | * @data: pointer to the location for storing the data |
| 1024 | * |
| 1025 | * Reads the flash word at offset into data. Offset is converted |
| 1026 | * to bytes before read. |
| 1027 | **/ |
| 1028 | static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, |
| 1029 | u16 *data) |
| 1030 | { |
| 1031 | /* Must convert offset into bytes. */ |
| 1032 | offset <<= 1; |
| 1033 | |
| 1034 | return e1000_read_flash_data_ich8lan(hw, offset, 2, data); |
| 1035 | } |
| 1036 | |
| 1037 | /** |
| 1038 | * e1000_read_flash_data_ich8lan - Read byte or word from NVM |
| 1039 | * @hw: pointer to the HW structure |
| 1040 | * @offset: The offset (in bytes) of the byte or word to read. |
| 1041 | * @size: Size of data to read, 1=byte 2=word |
| 1042 | * @data: Pointer to the word to store the value read. |
| 1043 | * |
| 1044 | * Reads a byte or word from the NVM using the flash access registers. |
| 1045 | **/ |
| 1046 | static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, |
| 1047 | u8 size, u16 *data) |
| 1048 | { |
| 1049 | union ich8_hws_flash_status hsfsts; |
| 1050 | union ich8_hws_flash_ctrl hsflctl; |
| 1051 | u32 flash_linear_addr; |
| 1052 | u32 flash_data = 0; |
| 1053 | s32 ret_val = -E1000_ERR_NVM; |
| 1054 | u8 count = 0; |
| 1055 | |
| 1056 | if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) |
| 1057 | return -E1000_ERR_NVM; |
| 1058 | |
| 1059 | flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) + |
| 1060 | hw->nvm.flash_base_addr; |
| 1061 | |
| 1062 | do { |
| 1063 | udelay(1); |
| 1064 | /* Steps */ |
| 1065 | ret_val = e1000_flash_cycle_init_ich8lan(hw); |
| 1066 | if (ret_val != 0) |
| 1067 | break; |
| 1068 | |
| 1069 | hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); |
| 1070 | /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ |
| 1071 | hsflctl.hsf_ctrl.fldbcount = size - 1; |
| 1072 | hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; |
| 1073 | ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); |
| 1074 | |
| 1075 | ew32flash(ICH_FLASH_FADDR, flash_linear_addr); |
| 1076 | |
| 1077 | ret_val = e1000_flash_cycle_ich8lan(hw, |
| 1078 | ICH_FLASH_READ_COMMAND_TIMEOUT); |
| 1079 | |
| 1080 | /* Check if FCERR is set to 1, if set to 1, clear it |
| 1081 | * and try the whole sequence a few more times, else |
| 1082 | * read in (shift in) the Flash Data0, the order is |
| 1083 | * least significant byte first msb to lsb */ |
| 1084 | if (ret_val == 0) { |
| 1085 | flash_data = er32flash(ICH_FLASH_FDATA0); |
| 1086 | if (size == 1) { |
| 1087 | *data = (u8)(flash_data & 0x000000FF); |
| 1088 | } else if (size == 2) { |
| 1089 | *data = (u16)(flash_data & 0x0000FFFF); |
| 1090 | } |
| 1091 | break; |
| 1092 | } else { |
| 1093 | /* If we've gotten here, then things are probably |
| 1094 | * completely hosed, but if the error condition is |
| 1095 | * detected, it won't hurt to give it another try... |
| 1096 | * ICH_FLASH_CYCLE_REPEAT_COUNT times. |
| 1097 | */ |
| 1098 | hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
| 1099 | if (hsfsts.hsf_status.flcerr == 1) { |
| 1100 | /* Repeat for some time before giving up. */ |
| 1101 | continue; |
| 1102 | } else if (hsfsts.hsf_status.flcdone == 0) { |
| 1103 | hw_dbg(hw, "Timeout error - flash cycle " |
| 1104 | "did not complete."); |
| 1105 | break; |
| 1106 | } |
| 1107 | } |
| 1108 | } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); |
| 1109 | |
| 1110 | return ret_val; |
| 1111 | } |
| 1112 | |
| 1113 | /** |
| 1114 | * e1000_write_nvm_ich8lan - Write word(s) to the NVM |
| 1115 | * @hw: pointer to the HW structure |
| 1116 | * @offset: The offset (in bytes) of the word(s) to write. |
| 1117 | * @words: Size of data to write in words |
| 1118 | * @data: Pointer to the word(s) to write at offset. |
| 1119 | * |
| 1120 | * Writes a byte or word to the NVM using the flash access registers. |
| 1121 | **/ |
| 1122 | static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, |
| 1123 | u16 *data) |
| 1124 | { |
| 1125 | struct e1000_nvm_info *nvm = &hw->nvm; |
| 1126 | struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
| 1127 | s32 ret_val; |
| 1128 | u16 i; |
| 1129 | |
| 1130 | if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || |
| 1131 | (words == 0)) { |
| 1132 | hw_dbg(hw, "nvm parameter(s) out of bounds\n"); |
| 1133 | return -E1000_ERR_NVM; |
| 1134 | } |
| 1135 | |
| 1136 | ret_val = e1000_acquire_swflag_ich8lan(hw); |
| 1137 | if (ret_val) |
| 1138 | return ret_val; |
| 1139 | |
| 1140 | for (i = 0; i < words; i++) { |
| 1141 | dev_spec->shadow_ram[offset+i].modified = 1; |
| 1142 | dev_spec->shadow_ram[offset+i].value = data[i]; |
| 1143 | } |
| 1144 | |
| 1145 | e1000_release_swflag_ich8lan(hw); |
| 1146 | |
| 1147 | return 0; |
| 1148 | } |
| 1149 | |
| 1150 | /** |
| 1151 | * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM |
| 1152 | * @hw: pointer to the HW structure |
| 1153 | * |
| 1154 | * The NVM checksum is updated by calling the generic update_nvm_checksum, |
| 1155 | * which writes the checksum to the shadow ram. The changes in the shadow |
| 1156 | * ram are then committed to the EEPROM by processing each bank at a time |
| 1157 | * checking for the modified bit and writing only the pending changes. |
| 1158 | * After a succesful commit, the shadow ram is cleared and is ready for |
| 1159 | * future writes. |
| 1160 | **/ |
| 1161 | static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) |
| 1162 | { |
| 1163 | struct e1000_nvm_info *nvm = &hw->nvm; |
| 1164 | struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
| 1165 | u32 i, act_offset, new_bank_offset, old_bank_offset; |
| 1166 | s32 ret_val; |
| 1167 | u16 data; |
| 1168 | |
| 1169 | ret_val = e1000e_update_nvm_checksum_generic(hw); |
| 1170 | if (ret_val) |
| 1171 | return ret_val;; |
| 1172 | |
| 1173 | if (nvm->type != e1000_nvm_flash_sw) |
| 1174 | return ret_val;; |
| 1175 | |
| 1176 | ret_val = e1000_acquire_swflag_ich8lan(hw); |
| 1177 | if (ret_val) |
| 1178 | return ret_val;; |
| 1179 | |
| 1180 | /* We're writing to the opposite bank so if we're on bank 1, |
| 1181 | * write to bank 0 etc. We also need to erase the segment that |
| 1182 | * is going to be written */ |
| 1183 | if (!(er32(EECD) & E1000_EECD_SEC1VAL)) { |
| 1184 | new_bank_offset = nvm->flash_bank_size; |
| 1185 | old_bank_offset = 0; |
| 1186 | e1000_erase_flash_bank_ich8lan(hw, 1); |
| 1187 | } else { |
| 1188 | old_bank_offset = nvm->flash_bank_size; |
| 1189 | new_bank_offset = 0; |
| 1190 | e1000_erase_flash_bank_ich8lan(hw, 0); |
| 1191 | } |
| 1192 | |
| 1193 | for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { |
| 1194 | /* Determine whether to write the value stored |
| 1195 | * in the other NVM bank or a modified value stored |
| 1196 | * in the shadow RAM */ |
| 1197 | if (dev_spec->shadow_ram[i].modified) { |
| 1198 | data = dev_spec->shadow_ram[i].value; |
| 1199 | } else { |
| 1200 | e1000_read_flash_word_ich8lan(hw, |
| 1201 | i + old_bank_offset, |
| 1202 | &data); |
| 1203 | } |
| 1204 | |
| 1205 | /* If the word is 0x13, then make sure the signature bits |
| 1206 | * (15:14) are 11b until the commit has completed. |
| 1207 | * This will allow us to write 10b which indicates the |
| 1208 | * signature is valid. We want to do this after the write |
| 1209 | * has completed so that we don't mark the segment valid |
| 1210 | * while the write is still in progress */ |
| 1211 | if (i == E1000_ICH_NVM_SIG_WORD) |
| 1212 | data |= E1000_ICH_NVM_SIG_MASK; |
| 1213 | |
| 1214 | /* Convert offset to bytes. */ |
| 1215 | act_offset = (i + new_bank_offset) << 1; |
| 1216 | |
| 1217 | udelay(100); |
| 1218 | /* Write the bytes to the new bank. */ |
| 1219 | ret_val = e1000_retry_write_flash_byte_ich8lan(hw, |
| 1220 | act_offset, |
| 1221 | (u8)data); |
| 1222 | if (ret_val) |
| 1223 | break; |
| 1224 | |
| 1225 | udelay(100); |
| 1226 | ret_val = e1000_retry_write_flash_byte_ich8lan(hw, |
| 1227 | act_offset + 1, |
| 1228 | (u8)(data >> 8)); |
| 1229 | if (ret_val) |
| 1230 | break; |
| 1231 | } |
| 1232 | |
| 1233 | /* Don't bother writing the segment valid bits if sector |
| 1234 | * programming failed. */ |
| 1235 | if (ret_val) { |
| 1236 | hw_dbg(hw, "Flash commit failed.\n"); |
| 1237 | e1000_release_swflag_ich8lan(hw); |
| 1238 | return ret_val; |
| 1239 | } |
| 1240 | |
| 1241 | /* Finally validate the new segment by setting bit 15:14 |
| 1242 | * to 10b in word 0x13 , this can be done without an |
| 1243 | * erase as well since these bits are 11 to start with |
| 1244 | * and we need to change bit 14 to 0b */ |
| 1245 | act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; |
| 1246 | e1000_read_flash_word_ich8lan(hw, act_offset, &data); |
| 1247 | data &= 0xBFFF; |
| 1248 | ret_val = e1000_retry_write_flash_byte_ich8lan(hw, |
| 1249 | act_offset * 2 + 1, |
| 1250 | (u8)(data >> 8)); |
| 1251 | if (ret_val) { |
| 1252 | e1000_release_swflag_ich8lan(hw); |
| 1253 | return ret_val; |
| 1254 | } |
| 1255 | |
| 1256 | /* And invalidate the previously valid segment by setting |
| 1257 | * its signature word (0x13) high_byte to 0b. This can be |
| 1258 | * done without an erase because flash erase sets all bits |
| 1259 | * to 1's. We can write 1's to 0's without an erase */ |
| 1260 | act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; |
| 1261 | ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); |
| 1262 | if (ret_val) { |
| 1263 | e1000_release_swflag_ich8lan(hw); |
| 1264 | return ret_val; |
| 1265 | } |
| 1266 | |
| 1267 | /* Great! Everything worked, we can now clear the cached entries. */ |
| 1268 | for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { |
| 1269 | dev_spec->shadow_ram[i].modified = 0; |
| 1270 | dev_spec->shadow_ram[i].value = 0xFFFF; |
| 1271 | } |
| 1272 | |
| 1273 | e1000_release_swflag_ich8lan(hw); |
| 1274 | |
| 1275 | /* Reload the EEPROM, or else modifications will not appear |
| 1276 | * until after the next adapter reset. |
| 1277 | */ |
| 1278 | e1000e_reload_nvm(hw); |
| 1279 | msleep(10); |
| 1280 | |
| 1281 | return ret_val; |
| 1282 | } |
| 1283 | |
| 1284 | /** |
| 1285 | * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum |
| 1286 | * @hw: pointer to the HW structure |
| 1287 | * |
| 1288 | * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. |
| 1289 | * If the bit is 0, that the EEPROM had been modified, but the checksum was not |
| 1290 | * calculated, in which case we need to calculate the checksum and set bit 6. |
| 1291 | **/ |
| 1292 | static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) |
| 1293 | { |
| 1294 | s32 ret_val; |
| 1295 | u16 data; |
| 1296 | |
| 1297 | /* Read 0x19 and check bit 6. If this bit is 0, the checksum |
| 1298 | * needs to be fixed. This bit is an indication that the NVM |
| 1299 | * was prepared by OEM software and did not calculate the |
| 1300 | * checksum...a likely scenario. |
| 1301 | */ |
| 1302 | ret_val = e1000_read_nvm(hw, 0x19, 1, &data); |
| 1303 | if (ret_val) |
| 1304 | return ret_val; |
| 1305 | |
| 1306 | if ((data & 0x40) == 0) { |
| 1307 | data |= 0x40; |
| 1308 | ret_val = e1000_write_nvm(hw, 0x19, 1, &data); |
| 1309 | if (ret_val) |
| 1310 | return ret_val; |
| 1311 | ret_val = e1000e_update_nvm_checksum(hw); |
| 1312 | if (ret_val) |
| 1313 | return ret_val; |
| 1314 | } |
| 1315 | |
| 1316 | return e1000e_validate_nvm_checksum_generic(hw); |
| 1317 | } |
| 1318 | |
| 1319 | /** |
| 1320 | * e1000_write_flash_data_ich8lan - Writes bytes to the NVM |
| 1321 | * @hw: pointer to the HW structure |
| 1322 | * @offset: The offset (in bytes) of the byte/word to read. |
| 1323 | * @size: Size of data to read, 1=byte 2=word |
| 1324 | * @data: The byte(s) to write to the NVM. |
| 1325 | * |
| 1326 | * Writes one/two bytes to the NVM using the flash access registers. |
| 1327 | **/ |
| 1328 | static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, |
| 1329 | u8 size, u16 data) |
| 1330 | { |
| 1331 | union ich8_hws_flash_status hsfsts; |
| 1332 | union ich8_hws_flash_ctrl hsflctl; |
| 1333 | u32 flash_linear_addr; |
| 1334 | u32 flash_data = 0; |
| 1335 | s32 ret_val; |
| 1336 | u8 count = 0; |
| 1337 | |
| 1338 | if (size < 1 || size > 2 || data > size * 0xff || |
| 1339 | offset > ICH_FLASH_LINEAR_ADDR_MASK) |
| 1340 | return -E1000_ERR_NVM; |
| 1341 | |
| 1342 | flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) + |
| 1343 | hw->nvm.flash_base_addr; |
| 1344 | |
| 1345 | do { |
| 1346 | udelay(1); |
| 1347 | /* Steps */ |
| 1348 | ret_val = e1000_flash_cycle_init_ich8lan(hw); |
| 1349 | if (ret_val) |
| 1350 | break; |
| 1351 | |
| 1352 | hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); |
| 1353 | /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ |
| 1354 | hsflctl.hsf_ctrl.fldbcount = size -1; |
| 1355 | hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; |
| 1356 | ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); |
| 1357 | |
| 1358 | ew32flash(ICH_FLASH_FADDR, flash_linear_addr); |
| 1359 | |
| 1360 | if (size == 1) |
| 1361 | flash_data = (u32)data & 0x00FF; |
| 1362 | else |
| 1363 | flash_data = (u32)data; |
| 1364 | |
| 1365 | ew32flash(ICH_FLASH_FDATA0, flash_data); |
| 1366 | |
| 1367 | /* check if FCERR is set to 1 , if set to 1, clear it |
| 1368 | * and try the whole sequence a few more times else done */ |
| 1369 | ret_val = e1000_flash_cycle_ich8lan(hw, |
| 1370 | ICH_FLASH_WRITE_COMMAND_TIMEOUT); |
| 1371 | if (!ret_val) |
| 1372 | break; |
| 1373 | |
| 1374 | /* If we're here, then things are most likely |
| 1375 | * completely hosed, but if the error condition |
| 1376 | * is detected, it won't hurt to give it another |
| 1377 | * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. |
| 1378 | */ |
| 1379 | hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
| 1380 | if (hsfsts.hsf_status.flcerr == 1) |
| 1381 | /* Repeat for some time before giving up. */ |
| 1382 | continue; |
| 1383 | if (hsfsts.hsf_status.flcdone == 0) { |
| 1384 | hw_dbg(hw, "Timeout error - flash cycle " |
| 1385 | "did not complete."); |
| 1386 | break; |
| 1387 | } |
| 1388 | } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); |
| 1389 | |
| 1390 | return ret_val; |
| 1391 | } |
| 1392 | |
| 1393 | /** |
| 1394 | * e1000_write_flash_byte_ich8lan - Write a single byte to NVM |
| 1395 | * @hw: pointer to the HW structure |
| 1396 | * @offset: The index of the byte to read. |
| 1397 | * @data: The byte to write to the NVM. |
| 1398 | * |
| 1399 | * Writes a single byte to the NVM using the flash access registers. |
| 1400 | **/ |
| 1401 | static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, |
| 1402 | u8 data) |
| 1403 | { |
| 1404 | u16 word = (u16)data; |
| 1405 | |
| 1406 | return e1000_write_flash_data_ich8lan(hw, offset, 1, word); |
| 1407 | } |
| 1408 | |
| 1409 | /** |
| 1410 | * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM |
| 1411 | * @hw: pointer to the HW structure |
| 1412 | * @offset: The offset of the byte to write. |
| 1413 | * @byte: The byte to write to the NVM. |
| 1414 | * |
| 1415 | * Writes a single byte to the NVM using the flash access registers. |
| 1416 | * Goes through a retry algorithm before giving up. |
| 1417 | **/ |
| 1418 | static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, |
| 1419 | u32 offset, u8 byte) |
| 1420 | { |
| 1421 | s32 ret_val; |
| 1422 | u16 program_retries; |
| 1423 | |
| 1424 | ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); |
| 1425 | if (!ret_val) |
| 1426 | return ret_val; |
| 1427 | |
| 1428 | for (program_retries = 0; program_retries < 100; program_retries++) { |
| 1429 | hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset); |
| 1430 | udelay(100); |
| 1431 | ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); |
| 1432 | if (!ret_val) |
| 1433 | break; |
| 1434 | } |
| 1435 | if (program_retries == 100) |
| 1436 | return -E1000_ERR_NVM; |
| 1437 | |
| 1438 | return 0; |
| 1439 | } |
| 1440 | |
| 1441 | /** |
| 1442 | * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM |
| 1443 | * @hw: pointer to the HW structure |
| 1444 | * @bank: 0 for first bank, 1 for second bank, etc. |
| 1445 | * |
| 1446 | * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. |
| 1447 | * bank N is 4096 * N + flash_reg_addr. |
| 1448 | **/ |
| 1449 | static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) |
| 1450 | { |
| 1451 | struct e1000_nvm_info *nvm = &hw->nvm; |
| 1452 | union ich8_hws_flash_status hsfsts; |
| 1453 | union ich8_hws_flash_ctrl hsflctl; |
| 1454 | u32 flash_linear_addr; |
| 1455 | /* bank size is in 16bit words - adjust to bytes */ |
| 1456 | u32 flash_bank_size = nvm->flash_bank_size * 2; |
| 1457 | s32 ret_val; |
| 1458 | s32 count = 0; |
| 1459 | s32 iteration; |
| 1460 | s32 sector_size; |
| 1461 | s32 j; |
| 1462 | |
| 1463 | hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
| 1464 | |
| 1465 | /* Determine HW Sector size: Read BERASE bits of hw flash status |
| 1466 | * register */ |
| 1467 | /* 00: The Hw sector is 256 bytes, hence we need to erase 16 |
| 1468 | * consecutive sectors. The start index for the nth Hw sector |
| 1469 | * can be calculated as = bank * 4096 + n * 256 |
| 1470 | * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. |
| 1471 | * The start index for the nth Hw sector can be calculated |
| 1472 | * as = bank * 4096 |
| 1473 | * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 |
| 1474 | * (ich9 only, otherwise error condition) |
| 1475 | * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 |
| 1476 | */ |
| 1477 | switch (hsfsts.hsf_status.berasesz) { |
| 1478 | case 0: |
| 1479 | /* Hw sector size 256 */ |
| 1480 | sector_size = ICH_FLASH_SEG_SIZE_256; |
| 1481 | iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; |
| 1482 | break; |
| 1483 | case 1: |
| 1484 | sector_size = ICH_FLASH_SEG_SIZE_4K; |
| 1485 | iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_4K; |
| 1486 | break; |
| 1487 | case 2: |
| 1488 | if (hw->mac.type == e1000_ich9lan) { |
| 1489 | sector_size = ICH_FLASH_SEG_SIZE_8K; |
| 1490 | iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K; |
| 1491 | } else { |
| 1492 | return -E1000_ERR_NVM; |
| 1493 | } |
| 1494 | break; |
| 1495 | case 3: |
| 1496 | sector_size = ICH_FLASH_SEG_SIZE_64K; |
| 1497 | iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_64K; |
| 1498 | break; |
| 1499 | default: |
| 1500 | return -E1000_ERR_NVM; |
| 1501 | } |
| 1502 | |
| 1503 | /* Start with the base address, then add the sector offset. */ |
| 1504 | flash_linear_addr = hw->nvm.flash_base_addr; |
| 1505 | flash_linear_addr += (bank) ? (sector_size * iteration) : 0; |
| 1506 | |
| 1507 | for (j = 0; j < iteration ; j++) { |
| 1508 | do { |
| 1509 | /* Steps */ |
| 1510 | ret_val = e1000_flash_cycle_init_ich8lan(hw); |
| 1511 | if (ret_val) |
| 1512 | return ret_val; |
| 1513 | |
| 1514 | /* Write a value 11 (block Erase) in Flash |
| 1515 | * Cycle field in hw flash control */ |
| 1516 | hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); |
| 1517 | hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; |
| 1518 | ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); |
| 1519 | |
| 1520 | /* Write the last 24 bits of an index within the |
| 1521 | * block into Flash Linear address field in Flash |
| 1522 | * Address. |
| 1523 | */ |
| 1524 | flash_linear_addr += (j * sector_size); |
| 1525 | ew32flash(ICH_FLASH_FADDR, flash_linear_addr); |
| 1526 | |
| 1527 | ret_val = e1000_flash_cycle_ich8lan(hw, |
| 1528 | ICH_FLASH_ERASE_COMMAND_TIMEOUT); |
| 1529 | if (ret_val == 0) |
| 1530 | break; |
| 1531 | |
| 1532 | /* Check if FCERR is set to 1. If 1, |
| 1533 | * clear it and try the whole sequence |
| 1534 | * a few more times else Done */ |
| 1535 | hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
| 1536 | if (hsfsts.hsf_status.flcerr == 1) |
| 1537 | /* repeat for some time before |
| 1538 | * giving up */ |
| 1539 | continue; |
| 1540 | else if (hsfsts.hsf_status.flcdone == 0) |
| 1541 | return ret_val; |
| 1542 | } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); |
| 1543 | } |
| 1544 | |
| 1545 | return 0; |
| 1546 | } |
| 1547 | |
| 1548 | /** |
| 1549 | * e1000_valid_led_default_ich8lan - Set the default LED settings |
| 1550 | * @hw: pointer to the HW structure |
| 1551 | * @data: Pointer to the LED settings |
| 1552 | * |
| 1553 | * Reads the LED default settings from the NVM to data. If the NVM LED |
| 1554 | * settings is all 0's or F's, set the LED default to a valid LED default |
| 1555 | * setting. |
| 1556 | **/ |
| 1557 | static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) |
| 1558 | { |
| 1559 | s32 ret_val; |
| 1560 | |
| 1561 | ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); |
| 1562 | if (ret_val) { |
| 1563 | hw_dbg(hw, "NVM Read Error\n"); |
| 1564 | return ret_val; |
| 1565 | } |
| 1566 | |
| 1567 | if (*data == ID_LED_RESERVED_0000 || |
| 1568 | *data == ID_LED_RESERVED_FFFF) |
| 1569 | *data = ID_LED_DEFAULT_ICH8LAN; |
| 1570 | |
| 1571 | return 0; |
| 1572 | } |
| 1573 | |
| 1574 | /** |
| 1575 | * e1000_get_bus_info_ich8lan - Get/Set the bus type and width |
| 1576 | * @hw: pointer to the HW structure |
| 1577 | * |
| 1578 | * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability |
| 1579 | * register, so the the bus width is hard coded. |
| 1580 | **/ |
| 1581 | static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) |
| 1582 | { |
| 1583 | struct e1000_bus_info *bus = &hw->bus; |
| 1584 | s32 ret_val; |
| 1585 | |
| 1586 | ret_val = e1000e_get_bus_info_pcie(hw); |
| 1587 | |
| 1588 | /* ICH devices are "PCI Express"-ish. They have |
| 1589 | * a configuration space, but do not contain |
| 1590 | * PCI Express Capability registers, so bus width |
| 1591 | * must be hardcoded. |
| 1592 | */ |
| 1593 | if (bus->width == e1000_bus_width_unknown) |
| 1594 | bus->width = e1000_bus_width_pcie_x1; |
| 1595 | |
| 1596 | return ret_val; |
| 1597 | } |
| 1598 | |
| 1599 | /** |
| 1600 | * e1000_reset_hw_ich8lan - Reset the hardware |
| 1601 | * @hw: pointer to the HW structure |
| 1602 | * |
| 1603 | * Does a full reset of the hardware which includes a reset of the PHY and |
| 1604 | * MAC. |
| 1605 | **/ |
| 1606 | static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) |
| 1607 | { |
| 1608 | u32 ctrl, icr, kab; |
| 1609 | s32 ret_val; |
| 1610 | |
| 1611 | /* Prevent the PCI-E bus from sticking if there is no TLP connection |
| 1612 | * on the last TLP read/write transaction when MAC is reset. |
| 1613 | */ |
| 1614 | ret_val = e1000e_disable_pcie_master(hw); |
| 1615 | if (ret_val) { |
| 1616 | hw_dbg(hw, "PCI-E Master disable polling has failed.\n"); |
| 1617 | } |
| 1618 | |
| 1619 | hw_dbg(hw, "Masking off all interrupts\n"); |
| 1620 | ew32(IMC, 0xffffffff); |
| 1621 | |
| 1622 | /* Disable the Transmit and Receive units. Then delay to allow |
| 1623 | * any pending transactions to complete before we hit the MAC |
| 1624 | * with the global reset. |
| 1625 | */ |
| 1626 | ew32(RCTL, 0); |
| 1627 | ew32(TCTL, E1000_TCTL_PSP); |
| 1628 | e1e_flush(); |
| 1629 | |
| 1630 | msleep(10); |
| 1631 | |
| 1632 | /* Workaround for ICH8 bit corruption issue in FIFO memory */ |
| 1633 | if (hw->mac.type == e1000_ich8lan) { |
| 1634 | /* Set Tx and Rx buffer allocation to 8k apiece. */ |
| 1635 | ew32(PBA, E1000_PBA_8K); |
| 1636 | /* Set Packet Buffer Size to 16k. */ |
| 1637 | ew32(PBS, E1000_PBS_16K); |
| 1638 | } |
| 1639 | |
| 1640 | ctrl = er32(CTRL); |
| 1641 | |
| 1642 | if (!e1000_check_reset_block(hw)) { |
| 1643 | /* PHY HW reset requires MAC CORE reset at the same |
| 1644 | * time to make sure the interface between MAC and the |
| 1645 | * external PHY is reset. |
| 1646 | */ |
| 1647 | ctrl |= E1000_CTRL_PHY_RST; |
| 1648 | } |
| 1649 | ret_val = e1000_acquire_swflag_ich8lan(hw); |
| 1650 | hw_dbg(hw, "Issuing a global reset to ich8lan"); |
| 1651 | ew32(CTRL, (ctrl | E1000_CTRL_RST)); |
| 1652 | msleep(20); |
| 1653 | |
| 1654 | ret_val = e1000e_get_auto_rd_done(hw); |
| 1655 | if (ret_val) { |
| 1656 | /* |
| 1657 | * When auto config read does not complete, do not |
| 1658 | * return with an error. This can happen in situations |
| 1659 | * where there is no eeprom and prevents getting link. |
| 1660 | */ |
| 1661 | hw_dbg(hw, "Auto Read Done did not complete\n"); |
| 1662 | } |
| 1663 | |
| 1664 | ew32(IMC, 0xffffffff); |
| 1665 | icr = er32(ICR); |
| 1666 | |
| 1667 | kab = er32(KABGTXD); |
| 1668 | kab |= E1000_KABGTXD_BGSQLBIAS; |
| 1669 | ew32(KABGTXD, kab); |
| 1670 | |
| 1671 | return ret_val; |
| 1672 | } |
| 1673 | |
| 1674 | /** |
| 1675 | * e1000_init_hw_ich8lan - Initialize the hardware |
| 1676 | * @hw: pointer to the HW structure |
| 1677 | * |
| 1678 | * Prepares the hardware for transmit and receive by doing the following: |
| 1679 | * - initialize hardware bits |
| 1680 | * - initialize LED identification |
| 1681 | * - setup receive address registers |
| 1682 | * - setup flow control |
| 1683 | * - setup transmit discriptors |
| 1684 | * - clear statistics |
| 1685 | **/ |
| 1686 | static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) |
| 1687 | { |
| 1688 | struct e1000_mac_info *mac = &hw->mac; |
| 1689 | u32 ctrl_ext, txdctl, snoop; |
| 1690 | s32 ret_val; |
| 1691 | u16 i; |
| 1692 | |
| 1693 | e1000_initialize_hw_bits_ich8lan(hw); |
| 1694 | |
| 1695 | /* Initialize identification LED */ |
| 1696 | ret_val = e1000e_id_led_init(hw); |
| 1697 | if (ret_val) { |
| 1698 | hw_dbg(hw, "Error initializing identification LED\n"); |
| 1699 | return ret_val; |
| 1700 | } |
| 1701 | |
| 1702 | /* Setup the receive address. */ |
| 1703 | e1000e_init_rx_addrs(hw, mac->rar_entry_count); |
| 1704 | |
| 1705 | /* Zero out the Multicast HASH table */ |
| 1706 | hw_dbg(hw, "Zeroing the MTA\n"); |
| 1707 | for (i = 0; i < mac->mta_reg_count; i++) |
| 1708 | E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); |
| 1709 | |
| 1710 | /* Setup link and flow control */ |
| 1711 | ret_val = e1000_setup_link_ich8lan(hw); |
| 1712 | |
| 1713 | /* Set the transmit descriptor write-back policy for both queues */ |
| 1714 | txdctl = er32(TXDCTL); |
| 1715 | txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | |
| 1716 | E1000_TXDCTL_FULL_TX_DESC_WB; |
| 1717 | txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) | |
| 1718 | E1000_TXDCTL_MAX_TX_DESC_PREFETCH; |
| 1719 | ew32(TXDCTL, txdctl); |
| 1720 | txdctl = er32(TXDCTL1); |
| 1721 | txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | |
| 1722 | E1000_TXDCTL_FULL_TX_DESC_WB; |
| 1723 | txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) | |
| 1724 | E1000_TXDCTL_MAX_TX_DESC_PREFETCH; |
| 1725 | ew32(TXDCTL1, txdctl); |
| 1726 | |
| 1727 | /* ICH8 has opposite polarity of no_snoop bits. |
| 1728 | * By default, we should use snoop behavior. */ |
| 1729 | if (mac->type == e1000_ich8lan) |
| 1730 | snoop = PCIE_ICH8_SNOOP_ALL; |
| 1731 | else |
| 1732 | snoop = (u32) ~(PCIE_NO_SNOOP_ALL); |
| 1733 | e1000e_set_pcie_no_snoop(hw, snoop); |
| 1734 | |
| 1735 | ctrl_ext = er32(CTRL_EXT); |
| 1736 | ctrl_ext |= E1000_CTRL_EXT_RO_DIS; |
| 1737 | ew32(CTRL_EXT, ctrl_ext); |
| 1738 | |
| 1739 | /* Clear all of the statistics registers (clear on read). It is |
| 1740 | * important that we do this after we have tried to establish link |
| 1741 | * because the symbol error count will increment wildly if there |
| 1742 | * is no link. |
| 1743 | */ |
| 1744 | e1000_clear_hw_cntrs_ich8lan(hw); |
| 1745 | |
| 1746 | return 0; |
| 1747 | } |
| 1748 | /** |
| 1749 | * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits |
| 1750 | * @hw: pointer to the HW structure |
| 1751 | * |
| 1752 | * Sets/Clears required hardware bits necessary for correctly setting up the |
| 1753 | * hardware for transmit and receive. |
| 1754 | **/ |
| 1755 | static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) |
| 1756 | { |
| 1757 | u32 reg; |
| 1758 | |
| 1759 | /* Extended Device Control */ |
| 1760 | reg = er32(CTRL_EXT); |
| 1761 | reg |= (1 << 22); |
| 1762 | ew32(CTRL_EXT, reg); |
| 1763 | |
| 1764 | /* Transmit Descriptor Control 0 */ |
| 1765 | reg = er32(TXDCTL); |
| 1766 | reg |= (1 << 22); |
| 1767 | ew32(TXDCTL, reg); |
| 1768 | |
| 1769 | /* Transmit Descriptor Control 1 */ |
| 1770 | reg = er32(TXDCTL1); |
| 1771 | reg |= (1 << 22); |
| 1772 | ew32(TXDCTL1, reg); |
| 1773 | |
| 1774 | /* Transmit Arbitration Control 0 */ |
| 1775 | reg = er32(TARC0); |
| 1776 | if (hw->mac.type == e1000_ich8lan) |
| 1777 | reg |= (1 << 28) | (1 << 29); |
| 1778 | reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27); |
| 1779 | ew32(TARC0, reg); |
| 1780 | |
| 1781 | /* Transmit Arbitration Control 1 */ |
| 1782 | reg = er32(TARC1); |
| 1783 | if (er32(TCTL) & E1000_TCTL_MULR) |
| 1784 | reg &= ~(1 << 28); |
| 1785 | else |
| 1786 | reg |= (1 << 28); |
| 1787 | reg |= (1 << 24) | (1 << 26) | (1 << 30); |
| 1788 | ew32(TARC1, reg); |
| 1789 | |
| 1790 | /* Device Status */ |
| 1791 | if (hw->mac.type == e1000_ich8lan) { |
| 1792 | reg = er32(STATUS); |
| 1793 | reg &= ~(1 << 31); |
| 1794 | ew32(STATUS, reg); |
| 1795 | } |
| 1796 | } |
| 1797 | |
| 1798 | /** |
| 1799 | * e1000_setup_link_ich8lan - Setup flow control and link settings |
| 1800 | * @hw: pointer to the HW structure |
| 1801 | * |
| 1802 | * Determines which flow control settings to use, then configures flow |
| 1803 | * control. Calls the appropriate media-specific link configuration |
| 1804 | * function. Assuming the adapter has a valid link partner, a valid link |
| 1805 | * should be established. Assumes the hardware has previously been reset |
| 1806 | * and the transmitter and receiver are not enabled. |
| 1807 | **/ |
| 1808 | static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) |
| 1809 | { |
| 1810 | struct e1000_mac_info *mac = &hw->mac; |
| 1811 | s32 ret_val; |
| 1812 | |
| 1813 | if (e1000_check_reset_block(hw)) |
| 1814 | return 0; |
| 1815 | |
| 1816 | /* ICH parts do not have a word in the NVM to determine |
| 1817 | * the default flow control setting, so we explicitly |
| 1818 | * set it to full. |
| 1819 | */ |
| 1820 | if (mac->fc == e1000_fc_default) |
| 1821 | mac->fc = e1000_fc_full; |
| 1822 | |
| 1823 | mac->original_fc = mac->fc; |
| 1824 | |
| 1825 | hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", mac->fc); |
| 1826 | |
| 1827 | /* Continue to configure the copper link. */ |
| 1828 | ret_val = e1000_setup_copper_link_ich8lan(hw); |
| 1829 | if (ret_val) |
| 1830 | return ret_val; |
| 1831 | |
| 1832 | ew32(FCTTV, mac->fc_pause_time); |
| 1833 | |
| 1834 | return e1000e_set_fc_watermarks(hw); |
| 1835 | } |
| 1836 | |
| 1837 | /** |
| 1838 | * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface |
| 1839 | * @hw: pointer to the HW structure |
| 1840 | * |
| 1841 | * Configures the kumeran interface to the PHY to wait the appropriate time |
| 1842 | * when polling the PHY, then call the generic setup_copper_link to finish |
| 1843 | * configuring the copper link. |
| 1844 | **/ |
| 1845 | static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) |
| 1846 | { |
| 1847 | u32 ctrl; |
| 1848 | s32 ret_val; |
| 1849 | u16 reg_data; |
| 1850 | |
| 1851 | ctrl = er32(CTRL); |
| 1852 | ctrl |= E1000_CTRL_SLU; |
| 1853 | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| 1854 | ew32(CTRL, ctrl); |
| 1855 | |
| 1856 | /* Set the mac to wait the maximum time between each iteration |
| 1857 | * and increase the max iterations when polling the phy; |
| 1858 | * this fixes erroneous timeouts at 10Mbps. */ |
| 1859 | ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF); |
| 1860 | if (ret_val) |
| 1861 | return ret_val; |
| 1862 | ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data); |
| 1863 | if (ret_val) |
| 1864 | return ret_val; |
| 1865 | reg_data |= 0x3F; |
| 1866 | ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data); |
| 1867 | if (ret_val) |
| 1868 | return ret_val; |
| 1869 | |
| 1870 | if (hw->phy.type == e1000_phy_igp_3) { |
| 1871 | ret_val = e1000e_copper_link_setup_igp(hw); |
| 1872 | if (ret_val) |
| 1873 | return ret_val; |
| 1874 | } |
| 1875 | |
| 1876 | return e1000e_setup_copper_link(hw); |
| 1877 | } |
| 1878 | |
| 1879 | /** |
| 1880 | * e1000_get_link_up_info_ich8lan - Get current link speed and duplex |
| 1881 | * @hw: pointer to the HW structure |
| 1882 | * @speed: pointer to store current link speed |
| 1883 | * @duplex: pointer to store the current link duplex |
| 1884 | * |
| 1885 | * Calls the generic get_speed_and_duplex to retreive the current link |
| 1886 | * information and then calls the Kumeran lock loss workaround for links at |
| 1887 | * gigabit speeds. |
| 1888 | **/ |
| 1889 | static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, |
| 1890 | u16 *duplex) |
| 1891 | { |
| 1892 | s32 ret_val; |
| 1893 | |
| 1894 | ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex); |
| 1895 | if (ret_val) |
| 1896 | return ret_val; |
| 1897 | |
| 1898 | if ((hw->mac.type == e1000_ich8lan) && |
| 1899 | (hw->phy.type == e1000_phy_igp_3) && |
| 1900 | (*speed == SPEED_1000)) { |
| 1901 | ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); |
| 1902 | } |
| 1903 | |
| 1904 | return ret_val; |
| 1905 | } |
| 1906 | |
| 1907 | /** |
| 1908 | * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround |
| 1909 | * @hw: pointer to the HW structure |
| 1910 | * |
| 1911 | * Work-around for 82566 Kumeran PCS lock loss: |
| 1912 | * On link status change (i.e. PCI reset, speed change) and link is up and |
| 1913 | * speed is gigabit- |
| 1914 | * 0) if workaround is optionally disabled do nothing |
| 1915 | * 1) wait 1ms for Kumeran link to come up |
| 1916 | * 2) check Kumeran Diagnostic register PCS lock loss bit |
| 1917 | * 3) if not set the link is locked (all is good), otherwise... |
| 1918 | * 4) reset the PHY |
| 1919 | * 5) repeat up to 10 times |
| 1920 | * Note: this is only called for IGP3 copper when speed is 1gb. |
| 1921 | **/ |
| 1922 | static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) |
| 1923 | { |
| 1924 | struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
| 1925 | u32 phy_ctrl; |
| 1926 | s32 ret_val; |
| 1927 | u16 i, data; |
| 1928 | bool link; |
| 1929 | |
| 1930 | if (!dev_spec->kmrn_lock_loss_workaround_enabled) |
| 1931 | return 0; |
| 1932 | |
| 1933 | /* Make sure link is up before proceeding. If not just return. |
| 1934 | * Attempting this while link is negotiating fouled up link |
| 1935 | * stability */ |
| 1936 | ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); |
| 1937 | if (!link) |
| 1938 | return 0; |
| 1939 | |
| 1940 | for (i = 0; i < 10; i++) { |
| 1941 | /* read once to clear */ |
| 1942 | ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); |
| 1943 | if (ret_val) |
| 1944 | return ret_val; |
| 1945 | /* and again to get new status */ |
| 1946 | ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); |
| 1947 | if (ret_val) |
| 1948 | return ret_val; |
| 1949 | |
| 1950 | /* check for PCS lock */ |
| 1951 | if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) |
| 1952 | return 0; |
| 1953 | |
| 1954 | /* Issue PHY reset */ |
| 1955 | e1000_phy_hw_reset(hw); |
| 1956 | mdelay(5); |
| 1957 | } |
| 1958 | /* Disable GigE link negotiation */ |
| 1959 | phy_ctrl = er32(PHY_CTRL); |
| 1960 | phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | |
| 1961 | E1000_PHY_CTRL_NOND0A_GBE_DISABLE); |
| 1962 | ew32(PHY_CTRL, phy_ctrl); |
| 1963 | |
| 1964 | /* Call gig speed drop workaround on Giga disable before accessing |
| 1965 | * any PHY registers */ |
| 1966 | e1000e_gig_downshift_workaround_ich8lan(hw); |
| 1967 | |
| 1968 | /* unable to acquire PCS lock */ |
| 1969 | return -E1000_ERR_PHY; |
| 1970 | } |
| 1971 | |
| 1972 | /** |
| 1973 | * e1000_set_kmrn_lock_loss_workaound_ich8lan - Set Kumeran workaround state |
| 1974 | * @hw: pointer to the HW structure |
| 1975 | * @state: boolean value used to set the current Kumaran workaround state |
| 1976 | * |
| 1977 | * If ICH8, set the current Kumeran workaround state (enabled - TRUE |
| 1978 | * /disabled - FALSE). |
| 1979 | **/ |
| 1980 | void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, |
| 1981 | bool state) |
| 1982 | { |
| 1983 | struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
| 1984 | |
| 1985 | if (hw->mac.type != e1000_ich8lan) { |
| 1986 | hw_dbg(hw, "Workaround applies to ICH8 only.\n"); |
| 1987 | return; |
| 1988 | } |
| 1989 | |
| 1990 | dev_spec->kmrn_lock_loss_workaround_enabled = state; |
| 1991 | } |
| 1992 | |
| 1993 | /** |
| 1994 | * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 |
| 1995 | * @hw: pointer to the HW structure |
| 1996 | * |
| 1997 | * Workaround for 82566 power-down on D3 entry: |
| 1998 | * 1) disable gigabit link |
| 1999 | * 2) write VR power-down enable |
| 2000 | * 3) read it back |
| 2001 | * Continue if successful, else issue LCD reset and repeat |
| 2002 | **/ |
| 2003 | void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) |
| 2004 | { |
| 2005 | u32 reg; |
| 2006 | u16 data; |
| 2007 | u8 retry = 0; |
| 2008 | |
| 2009 | if (hw->phy.type != e1000_phy_igp_3) |
| 2010 | return; |
| 2011 | |
| 2012 | /* Try the workaround twice (if needed) */ |
| 2013 | do { |
| 2014 | /* Disable link */ |
| 2015 | reg = er32(PHY_CTRL); |
| 2016 | reg |= (E1000_PHY_CTRL_GBE_DISABLE | |
| 2017 | E1000_PHY_CTRL_NOND0A_GBE_DISABLE); |
| 2018 | ew32(PHY_CTRL, reg); |
| 2019 | |
| 2020 | /* Call gig speed drop workaround on Giga disable before |
| 2021 | * accessing any PHY registers */ |
| 2022 | if (hw->mac.type == e1000_ich8lan) |
| 2023 | e1000e_gig_downshift_workaround_ich8lan(hw); |
| 2024 | |
| 2025 | /* Write VR power-down enable */ |
| 2026 | e1e_rphy(hw, IGP3_VR_CTRL, &data); |
| 2027 | data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; |
| 2028 | e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN); |
| 2029 | |
| 2030 | /* Read it back and test */ |
| 2031 | e1e_rphy(hw, IGP3_VR_CTRL, &data); |
| 2032 | data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; |
| 2033 | if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) |
| 2034 | break; |
| 2035 | |
| 2036 | /* Issue PHY reset and repeat at most one more time */ |
| 2037 | reg = er32(CTRL); |
| 2038 | ew32(CTRL, reg | E1000_CTRL_PHY_RST); |
| 2039 | retry++; |
| 2040 | } while (retry); |
| 2041 | } |
| 2042 | |
| 2043 | /** |
| 2044 | * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working |
| 2045 | * @hw: pointer to the HW structure |
| 2046 | * |
| 2047 | * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), |
| 2048 | * LPLU, Giga disable, MDIC PHY reset): |
| 2049 | * 1) Set Kumeran Near-end loopback |
| 2050 | * 2) Clear Kumeran Near-end loopback |
| 2051 | * Should only be called for ICH8[m] devices with IGP_3 Phy. |
| 2052 | **/ |
| 2053 | void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) |
| 2054 | { |
| 2055 | s32 ret_val; |
| 2056 | u16 reg_data; |
| 2057 | |
| 2058 | if ((hw->mac.type != e1000_ich8lan) || |
| 2059 | (hw->phy.type != e1000_phy_igp_3)) |
| 2060 | return; |
| 2061 | |
| 2062 | ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, |
| 2063 | ®_data); |
| 2064 | if (ret_val) |
| 2065 | return; |
| 2066 | reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; |
| 2067 | ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, |
| 2068 | reg_data); |
| 2069 | if (ret_val) |
| 2070 | return; |
| 2071 | reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; |
| 2072 | ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, |
| 2073 | reg_data); |
| 2074 | } |
| 2075 | |
| 2076 | /** |
| 2077 | * e1000_cleanup_led_ich8lan - Restore the default LED operation |
| 2078 | * @hw: pointer to the HW structure |
| 2079 | * |
| 2080 | * Return the LED back to the default configuration. |
| 2081 | **/ |
| 2082 | static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) |
| 2083 | { |
| 2084 | if (hw->phy.type == e1000_phy_ife) |
| 2085 | return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); |
| 2086 | |
| 2087 | ew32(LEDCTL, hw->mac.ledctl_default); |
| 2088 | return 0; |
| 2089 | } |
| 2090 | |
| 2091 | /** |
| 2092 | * e1000_led_on_ich8lan - Turn LED's on |
| 2093 | * @hw: pointer to the HW structure |
| 2094 | * |
| 2095 | * Turn on the LED's. |
| 2096 | **/ |
| 2097 | static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) |
| 2098 | { |
| 2099 | if (hw->phy.type == e1000_phy_ife) |
| 2100 | return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, |
| 2101 | (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); |
| 2102 | |
| 2103 | ew32(LEDCTL, hw->mac.ledctl_mode2); |
| 2104 | return 0; |
| 2105 | } |
| 2106 | |
| 2107 | /** |
| 2108 | * e1000_led_off_ich8lan - Turn LED's off |
| 2109 | * @hw: pointer to the HW structure |
| 2110 | * |
| 2111 | * Turn off the LED's. |
| 2112 | **/ |
| 2113 | static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) |
| 2114 | { |
| 2115 | if (hw->phy.type == e1000_phy_ife) |
| 2116 | return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, |
| 2117 | (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF)); |
| 2118 | |
| 2119 | ew32(LEDCTL, hw->mac.ledctl_mode1); |
| 2120 | return 0; |
| 2121 | } |
| 2122 | |
| 2123 | /** |
| 2124 | * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters |
| 2125 | * @hw: pointer to the HW structure |
| 2126 | * |
| 2127 | * Clears hardware counters specific to the silicon family and calls |
| 2128 | * clear_hw_cntrs_generic to clear all general purpose counters. |
| 2129 | **/ |
| 2130 | static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) |
| 2131 | { |
| 2132 | u32 temp; |
| 2133 | |
| 2134 | e1000e_clear_hw_cntrs_base(hw); |
| 2135 | |
| 2136 | temp = er32(ALGNERRC); |
| 2137 | temp = er32(RXERRC); |
| 2138 | temp = er32(TNCRS); |
| 2139 | temp = er32(CEXTERR); |
| 2140 | temp = er32(TSCTC); |
| 2141 | temp = er32(TSCTFC); |
| 2142 | |
| 2143 | temp = er32(MGTPRC); |
| 2144 | temp = er32(MGTPDC); |
| 2145 | temp = er32(MGTPTC); |
| 2146 | |
| 2147 | temp = er32(IAC); |
| 2148 | temp = er32(ICRXOC); |
| 2149 | |
| 2150 | } |
| 2151 | |
| 2152 | static struct e1000_mac_operations ich8_mac_ops = { |
| 2153 | .mng_mode_enab = E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT, |
| 2154 | .check_for_link = e1000e_check_for_copper_link, |
| 2155 | .cleanup_led = e1000_cleanup_led_ich8lan, |
| 2156 | .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan, |
| 2157 | .get_bus_info = e1000_get_bus_info_ich8lan, |
| 2158 | .get_link_up_info = e1000_get_link_up_info_ich8lan, |
| 2159 | .led_on = e1000_led_on_ich8lan, |
| 2160 | .led_off = e1000_led_off_ich8lan, |
| 2161 | .mc_addr_list_update = e1000e_mc_addr_list_update_generic, |
| 2162 | .reset_hw = e1000_reset_hw_ich8lan, |
| 2163 | .init_hw = e1000_init_hw_ich8lan, |
| 2164 | .setup_link = e1000_setup_link_ich8lan, |
| 2165 | .setup_physical_interface= e1000_setup_copper_link_ich8lan, |
| 2166 | }; |
| 2167 | |
| 2168 | static struct e1000_phy_operations ich8_phy_ops = { |
| 2169 | .acquire_phy = e1000_acquire_swflag_ich8lan, |
| 2170 | .check_reset_block = e1000_check_reset_block_ich8lan, |
| 2171 | .commit_phy = NULL, |
| 2172 | .force_speed_duplex = e1000_phy_force_speed_duplex_ich8lan, |
| 2173 | .get_cfg_done = e1000e_get_cfg_done, |
| 2174 | .get_cable_length = e1000e_get_cable_length_igp_2, |
| 2175 | .get_phy_info = e1000_get_phy_info_ich8lan, |
| 2176 | .read_phy_reg = e1000e_read_phy_reg_igp, |
| 2177 | .release_phy = e1000_release_swflag_ich8lan, |
| 2178 | .reset_phy = e1000_phy_hw_reset_ich8lan, |
| 2179 | .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan, |
| 2180 | .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan, |
| 2181 | .write_phy_reg = e1000e_write_phy_reg_igp, |
| 2182 | }; |
| 2183 | |
| 2184 | static struct e1000_nvm_operations ich8_nvm_ops = { |
| 2185 | .acquire_nvm = e1000_acquire_swflag_ich8lan, |
| 2186 | .read_nvm = e1000_read_nvm_ich8lan, |
| 2187 | .release_nvm = e1000_release_swflag_ich8lan, |
| 2188 | .update_nvm = e1000_update_nvm_checksum_ich8lan, |
| 2189 | .valid_led_default = e1000_valid_led_default_ich8lan, |
| 2190 | .validate_nvm = e1000_validate_nvm_checksum_ich8lan, |
| 2191 | .write_nvm = e1000_write_nvm_ich8lan, |
| 2192 | }; |
| 2193 | |
| 2194 | struct e1000_info e1000_ich8_info = { |
| 2195 | .mac = e1000_ich8lan, |
| 2196 | .flags = FLAG_HAS_WOL |
| 2197 | | FLAG_RX_CSUM_ENABLED |
| 2198 | | FLAG_HAS_CTRLEXT_ON_LOAD |
| 2199 | | FLAG_HAS_AMT |
| 2200 | | FLAG_HAS_FLASH |
| 2201 | | FLAG_APME_IN_WUC, |
| 2202 | .pba = 8, |
| 2203 | .get_invariants = e1000_get_invariants_ich8lan, |
| 2204 | .mac_ops = &ich8_mac_ops, |
| 2205 | .phy_ops = &ich8_phy_ops, |
| 2206 | .nvm_ops = &ich8_nvm_ops, |
| 2207 | }; |
| 2208 | |
| 2209 | struct e1000_info e1000_ich9_info = { |
| 2210 | .mac = e1000_ich9lan, |
| 2211 | .flags = FLAG_HAS_JUMBO_FRAMES |
| 2212 | | FLAG_HAS_WOL |
| 2213 | | FLAG_RX_CSUM_ENABLED |
| 2214 | | FLAG_HAS_CTRLEXT_ON_LOAD |
| 2215 | | FLAG_HAS_AMT |
| 2216 | | FLAG_HAS_ERT |
| 2217 | | FLAG_HAS_FLASH |
| 2218 | | FLAG_APME_IN_WUC, |
| 2219 | .pba = 10, |
| 2220 | .get_invariants = e1000_get_invariants_ich8lan, |
| 2221 | .mac_ops = &ich8_mac_ops, |
| 2222 | .phy_ops = &ich8_phy_ops, |
| 2223 | .nvm_ops = &ich8_nvm_ops, |
| 2224 | }; |
| 2225 | |