Jaegeuk Kim | 0b81d07 | 2015-05-15 16:26:10 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * This contains encryption functions for per-file encryption. |
| 3 | * |
| 4 | * Copyright (C) 2015, Google, Inc. |
| 5 | * Copyright (C) 2015, Motorola Mobility |
| 6 | * |
| 7 | * Written by Michael Halcrow, 2014. |
| 8 | * |
| 9 | * Filename encryption additions |
| 10 | * Uday Savagaonkar, 2014 |
| 11 | * Encryption policy handling additions |
| 12 | * Ildar Muslukhov, 2014 |
| 13 | * Add fscrypt_pullback_bio_page() |
| 14 | * Jaegeuk Kim, 2015. |
| 15 | * |
| 16 | * This has not yet undergone a rigorous security audit. |
| 17 | * |
| 18 | * The usage of AES-XTS should conform to recommendations in NIST |
| 19 | * Special Publication 800-38E and IEEE P1619/D16. |
| 20 | */ |
| 21 | |
| 22 | #include <linux/crypto.h> |
| 23 | #include <linux/ecryptfs.h> |
| 24 | #include <linux/pagemap.h> |
| 25 | #include <linux/mempool.h> |
| 26 | #include <linux/module.h> |
| 27 | #include <linux/scatterlist.h> |
| 28 | #include <linux/ratelimit.h> |
| 29 | #include <linux/bio.h> |
| 30 | #include <linux/dcache.h> |
| 31 | #include <linux/fscrypto.h> |
| 32 | |
| 33 | static unsigned int num_prealloc_crypto_pages = 32; |
| 34 | static unsigned int num_prealloc_crypto_ctxs = 128; |
| 35 | |
| 36 | module_param(num_prealloc_crypto_pages, uint, 0444); |
| 37 | MODULE_PARM_DESC(num_prealloc_crypto_pages, |
| 38 | "Number of crypto pages to preallocate"); |
| 39 | module_param(num_prealloc_crypto_ctxs, uint, 0444); |
| 40 | MODULE_PARM_DESC(num_prealloc_crypto_ctxs, |
| 41 | "Number of crypto contexts to preallocate"); |
| 42 | |
| 43 | static mempool_t *fscrypt_bounce_page_pool = NULL; |
| 44 | |
| 45 | static LIST_HEAD(fscrypt_free_ctxs); |
| 46 | static DEFINE_SPINLOCK(fscrypt_ctx_lock); |
| 47 | |
| 48 | static struct workqueue_struct *fscrypt_read_workqueue; |
| 49 | static DEFINE_MUTEX(fscrypt_init_mutex); |
| 50 | |
| 51 | static struct kmem_cache *fscrypt_ctx_cachep; |
| 52 | struct kmem_cache *fscrypt_info_cachep; |
| 53 | |
| 54 | /** |
| 55 | * fscrypt_release_ctx() - Releases an encryption context |
| 56 | * @ctx: The encryption context to release. |
| 57 | * |
| 58 | * If the encryption context was allocated from the pre-allocated pool, returns |
| 59 | * it to that pool. Else, frees it. |
| 60 | * |
| 61 | * If there's a bounce page in the context, this frees that. |
| 62 | */ |
| 63 | void fscrypt_release_ctx(struct fscrypt_ctx *ctx) |
| 64 | { |
| 65 | unsigned long flags; |
| 66 | |
| 67 | if (ctx->flags & FS_WRITE_PATH_FL && ctx->w.bounce_page) { |
| 68 | mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool); |
| 69 | ctx->w.bounce_page = NULL; |
| 70 | } |
| 71 | ctx->w.control_page = NULL; |
| 72 | if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) { |
| 73 | kmem_cache_free(fscrypt_ctx_cachep, ctx); |
| 74 | } else { |
| 75 | spin_lock_irqsave(&fscrypt_ctx_lock, flags); |
| 76 | list_add(&ctx->free_list, &fscrypt_free_ctxs); |
| 77 | spin_unlock_irqrestore(&fscrypt_ctx_lock, flags); |
| 78 | } |
| 79 | } |
| 80 | EXPORT_SYMBOL(fscrypt_release_ctx); |
| 81 | |
| 82 | /** |
| 83 | * fscrypt_get_ctx() - Gets an encryption context |
| 84 | * @inode: The inode for which we are doing the crypto |
| 85 | * |
| 86 | * Allocates and initializes an encryption context. |
| 87 | * |
| 88 | * Return: An allocated and initialized encryption context on success; error |
| 89 | * value or NULL otherwise. |
| 90 | */ |
| 91 | struct fscrypt_ctx *fscrypt_get_ctx(struct inode *inode) |
| 92 | { |
| 93 | struct fscrypt_ctx *ctx = NULL; |
| 94 | struct fscrypt_info *ci = inode->i_crypt_info; |
| 95 | unsigned long flags; |
| 96 | |
| 97 | if (ci == NULL) |
| 98 | return ERR_PTR(-ENOKEY); |
| 99 | |
| 100 | /* |
| 101 | * We first try getting the ctx from a free list because in |
| 102 | * the common case the ctx will have an allocated and |
| 103 | * initialized crypto tfm, so it's probably a worthwhile |
| 104 | * optimization. For the bounce page, we first try getting it |
| 105 | * from the kernel allocator because that's just about as fast |
| 106 | * as getting it from a list and because a cache of free pages |
| 107 | * should generally be a "last resort" option for a filesystem |
| 108 | * to be able to do its job. |
| 109 | */ |
| 110 | spin_lock_irqsave(&fscrypt_ctx_lock, flags); |
| 111 | ctx = list_first_entry_or_null(&fscrypt_free_ctxs, |
| 112 | struct fscrypt_ctx, free_list); |
| 113 | if (ctx) |
| 114 | list_del(&ctx->free_list); |
| 115 | spin_unlock_irqrestore(&fscrypt_ctx_lock, flags); |
| 116 | if (!ctx) { |
| 117 | ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS); |
| 118 | if (!ctx) |
| 119 | return ERR_PTR(-ENOMEM); |
| 120 | ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL; |
| 121 | } else { |
| 122 | ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL; |
| 123 | } |
| 124 | ctx->flags &= ~FS_WRITE_PATH_FL; |
| 125 | return ctx; |
| 126 | } |
| 127 | EXPORT_SYMBOL(fscrypt_get_ctx); |
| 128 | |
| 129 | /** |
| 130 | * fscrypt_complete() - The completion callback for page encryption |
| 131 | * @req: The asynchronous encryption request context |
| 132 | * @res: The result of the encryption operation |
| 133 | */ |
| 134 | static void fscrypt_complete(struct crypto_async_request *req, int res) |
| 135 | { |
| 136 | struct fscrypt_completion_result *ecr = req->data; |
| 137 | |
| 138 | if (res == -EINPROGRESS) |
| 139 | return; |
| 140 | ecr->res = res; |
| 141 | complete(&ecr->completion); |
| 142 | } |
| 143 | |
| 144 | typedef enum { |
| 145 | FS_DECRYPT = 0, |
| 146 | FS_ENCRYPT, |
| 147 | } fscrypt_direction_t; |
| 148 | |
| 149 | static int do_page_crypto(struct inode *inode, |
| 150 | fscrypt_direction_t rw, pgoff_t index, |
| 151 | struct page *src_page, struct page *dest_page) |
| 152 | { |
| 153 | u8 xts_tweak[FS_XTS_TWEAK_SIZE]; |
| 154 | struct ablkcipher_request *req = NULL; |
| 155 | DECLARE_FS_COMPLETION_RESULT(ecr); |
| 156 | struct scatterlist dst, src; |
| 157 | struct fscrypt_info *ci = inode->i_crypt_info; |
| 158 | struct crypto_ablkcipher *tfm = ci->ci_ctfm; |
| 159 | int res = 0; |
| 160 | |
| 161 | req = ablkcipher_request_alloc(tfm, GFP_NOFS); |
| 162 | if (!req) { |
| 163 | printk_ratelimited(KERN_ERR |
| 164 | "%s: crypto_request_alloc() failed\n", |
| 165 | __func__); |
| 166 | return -ENOMEM; |
| 167 | } |
| 168 | |
| 169 | ablkcipher_request_set_callback( |
| 170 | req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, |
| 171 | fscrypt_complete, &ecr); |
| 172 | |
| 173 | BUILD_BUG_ON(FS_XTS_TWEAK_SIZE < sizeof(index)); |
| 174 | memcpy(xts_tweak, &inode->i_ino, sizeof(index)); |
| 175 | memset(&xts_tweak[sizeof(index)], 0, |
| 176 | FS_XTS_TWEAK_SIZE - sizeof(index)); |
| 177 | |
| 178 | sg_init_table(&dst, 1); |
| 179 | sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0); |
| 180 | sg_init_table(&src, 1); |
| 181 | sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0); |
| 182 | ablkcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE, |
| 183 | xts_tweak); |
| 184 | if (rw == FS_DECRYPT) |
| 185 | res = crypto_ablkcipher_decrypt(req); |
| 186 | else |
| 187 | res = crypto_ablkcipher_encrypt(req); |
| 188 | if (res == -EINPROGRESS || res == -EBUSY) { |
| 189 | BUG_ON(req->base.data != &ecr); |
| 190 | wait_for_completion(&ecr.completion); |
| 191 | res = ecr.res; |
| 192 | } |
| 193 | ablkcipher_request_free(req); |
| 194 | if (res) { |
| 195 | printk_ratelimited(KERN_ERR |
| 196 | "%s: crypto_ablkcipher_encrypt() returned %d\n", |
| 197 | __func__, res); |
| 198 | return res; |
| 199 | } |
| 200 | return 0; |
| 201 | } |
| 202 | |
| 203 | static struct page *alloc_bounce_page(struct fscrypt_ctx *ctx) |
| 204 | { |
| 205 | ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, |
| 206 | GFP_NOWAIT); |
| 207 | if (ctx->w.bounce_page == NULL) |
| 208 | return ERR_PTR(-ENOMEM); |
| 209 | ctx->flags |= FS_WRITE_PATH_FL; |
| 210 | return ctx->w.bounce_page; |
| 211 | } |
| 212 | |
| 213 | /** |
| 214 | * fscypt_encrypt_page() - Encrypts a page |
| 215 | * @inode: The inode for which the encryption should take place |
| 216 | * @plaintext_page: The page to encrypt. Must be locked. |
| 217 | * |
| 218 | * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx |
| 219 | * encryption context. |
| 220 | * |
| 221 | * Called on the page write path. The caller must call |
| 222 | * fscrypt_restore_control_page() on the returned ciphertext page to |
| 223 | * release the bounce buffer and the encryption context. |
| 224 | * |
| 225 | * Return: An allocated page with the encrypted content on success. Else, an |
| 226 | * error value or NULL. |
| 227 | */ |
| 228 | struct page *fscrypt_encrypt_page(struct inode *inode, |
| 229 | struct page *plaintext_page) |
| 230 | { |
| 231 | struct fscrypt_ctx *ctx; |
| 232 | struct page *ciphertext_page = NULL; |
| 233 | int err; |
| 234 | |
| 235 | BUG_ON(!PageLocked(plaintext_page)); |
| 236 | |
| 237 | ctx = fscrypt_get_ctx(inode); |
| 238 | if (IS_ERR(ctx)) |
| 239 | return (struct page *)ctx; |
| 240 | |
| 241 | /* The encryption operation will require a bounce page. */ |
| 242 | ciphertext_page = alloc_bounce_page(ctx); |
| 243 | if (IS_ERR(ciphertext_page)) |
| 244 | goto errout; |
| 245 | |
| 246 | ctx->w.control_page = plaintext_page; |
| 247 | err = do_page_crypto(inode, FS_ENCRYPT, plaintext_page->index, |
| 248 | plaintext_page, ciphertext_page); |
| 249 | if (err) { |
| 250 | ciphertext_page = ERR_PTR(err); |
| 251 | goto errout; |
| 252 | } |
| 253 | SetPagePrivate(ciphertext_page); |
| 254 | set_page_private(ciphertext_page, (unsigned long)ctx); |
| 255 | lock_page(ciphertext_page); |
| 256 | return ciphertext_page; |
| 257 | |
| 258 | errout: |
| 259 | fscrypt_release_ctx(ctx); |
| 260 | return ciphertext_page; |
| 261 | } |
| 262 | EXPORT_SYMBOL(fscrypt_encrypt_page); |
| 263 | |
| 264 | /** |
| 265 | * f2crypt_decrypt_page() - Decrypts a page in-place |
| 266 | * @page: The page to decrypt. Must be locked. |
| 267 | * |
| 268 | * Decrypts page in-place using the ctx encryption context. |
| 269 | * |
| 270 | * Called from the read completion callback. |
| 271 | * |
| 272 | * Return: Zero on success, non-zero otherwise. |
| 273 | */ |
| 274 | int fscrypt_decrypt_page(struct page *page) |
| 275 | { |
| 276 | BUG_ON(!PageLocked(page)); |
| 277 | |
| 278 | return do_page_crypto(page->mapping->host, |
| 279 | FS_DECRYPT, page->index, page, page); |
| 280 | } |
| 281 | EXPORT_SYMBOL(fscrypt_decrypt_page); |
| 282 | |
| 283 | int fscrypt_zeroout_range(struct inode *inode, pgoff_t lblk, |
| 284 | sector_t pblk, unsigned int len) |
| 285 | { |
| 286 | struct fscrypt_ctx *ctx; |
| 287 | struct page *ciphertext_page = NULL; |
| 288 | struct bio *bio; |
| 289 | int ret, err = 0; |
| 290 | |
| 291 | BUG_ON(inode->i_sb->s_blocksize != PAGE_CACHE_SIZE); |
| 292 | |
| 293 | ctx = fscrypt_get_ctx(inode); |
| 294 | if (IS_ERR(ctx)) |
| 295 | return PTR_ERR(ctx); |
| 296 | |
| 297 | ciphertext_page = alloc_bounce_page(ctx); |
| 298 | if (IS_ERR(ciphertext_page)) { |
| 299 | err = PTR_ERR(ciphertext_page); |
| 300 | goto errout; |
| 301 | } |
| 302 | |
| 303 | while (len--) { |
| 304 | err = do_page_crypto(inode, FS_ENCRYPT, lblk, |
| 305 | ZERO_PAGE(0), ciphertext_page); |
| 306 | if (err) |
| 307 | goto errout; |
| 308 | |
| 309 | bio = bio_alloc(GFP_KERNEL, 1); |
| 310 | if (!bio) { |
| 311 | err = -ENOMEM; |
| 312 | goto errout; |
| 313 | } |
| 314 | bio->bi_bdev = inode->i_sb->s_bdev; |
| 315 | bio->bi_iter.bi_sector = |
| 316 | pblk << (inode->i_sb->s_blocksize_bits - 9); |
| 317 | ret = bio_add_page(bio, ciphertext_page, |
| 318 | inode->i_sb->s_blocksize, 0); |
| 319 | if (ret != inode->i_sb->s_blocksize) { |
| 320 | /* should never happen! */ |
| 321 | WARN_ON(1); |
| 322 | bio_put(bio); |
| 323 | err = -EIO; |
| 324 | goto errout; |
| 325 | } |
| 326 | err = submit_bio_wait(WRITE, bio); |
| 327 | if ((err == 0) && bio->bi_error) |
| 328 | err = -EIO; |
| 329 | bio_put(bio); |
| 330 | if (err) |
| 331 | goto errout; |
| 332 | lblk++; |
| 333 | pblk++; |
| 334 | } |
| 335 | err = 0; |
| 336 | errout: |
| 337 | fscrypt_release_ctx(ctx); |
| 338 | return err; |
| 339 | } |
| 340 | EXPORT_SYMBOL(fscrypt_zeroout_range); |
| 341 | |
| 342 | /* |
| 343 | * Validate dentries for encrypted directories to make sure we aren't |
| 344 | * potentially caching stale data after a key has been added or |
| 345 | * removed. |
| 346 | */ |
| 347 | static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags) |
| 348 | { |
| 349 | struct inode *dir = d_inode(dentry->d_parent); |
| 350 | struct fscrypt_info *ci = dir->i_crypt_info; |
| 351 | int dir_has_key, cached_with_key; |
| 352 | |
| 353 | if (!dir->i_sb->s_cop->is_encrypted(dir)) |
| 354 | return 0; |
| 355 | |
| 356 | if (ci && ci->ci_keyring_key && |
| 357 | (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) | |
| 358 | (1 << KEY_FLAG_REVOKED) | |
| 359 | (1 << KEY_FLAG_DEAD)))) |
| 360 | ci = NULL; |
| 361 | |
| 362 | /* this should eventually be an flag in d_flags */ |
| 363 | spin_lock(&dentry->d_lock); |
| 364 | cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY; |
| 365 | spin_unlock(&dentry->d_lock); |
| 366 | dir_has_key = (ci != NULL); |
| 367 | |
| 368 | /* |
| 369 | * If the dentry was cached without the key, and it is a |
| 370 | * negative dentry, it might be a valid name. We can't check |
| 371 | * if the key has since been made available due to locking |
| 372 | * reasons, so we fail the validation so ext4_lookup() can do |
| 373 | * this check. |
| 374 | * |
| 375 | * We also fail the validation if the dentry was created with |
| 376 | * the key present, but we no longer have the key, or vice versa. |
| 377 | */ |
| 378 | if ((!cached_with_key && d_is_negative(dentry)) || |
| 379 | (!cached_with_key && dir_has_key) || |
| 380 | (cached_with_key && !dir_has_key)) |
| 381 | return 0; |
| 382 | return 1; |
| 383 | } |
| 384 | |
| 385 | const struct dentry_operations fscrypt_d_ops = { |
| 386 | .d_revalidate = fscrypt_d_revalidate, |
| 387 | }; |
| 388 | EXPORT_SYMBOL(fscrypt_d_ops); |
| 389 | |
| 390 | /* |
| 391 | * Call fscrypt_decrypt_page on every single page, reusing the encryption |
| 392 | * context. |
| 393 | */ |
| 394 | static void completion_pages(struct work_struct *work) |
| 395 | { |
| 396 | struct fscrypt_ctx *ctx = |
| 397 | container_of(work, struct fscrypt_ctx, r.work); |
| 398 | struct bio *bio = ctx->r.bio; |
| 399 | struct bio_vec *bv; |
| 400 | int i; |
| 401 | |
| 402 | bio_for_each_segment_all(bv, bio, i) { |
| 403 | struct page *page = bv->bv_page; |
| 404 | int ret = fscrypt_decrypt_page(page); |
| 405 | |
| 406 | if (ret) { |
| 407 | WARN_ON_ONCE(1); |
| 408 | SetPageError(page); |
| 409 | } else { |
| 410 | SetPageUptodate(page); |
| 411 | } |
| 412 | unlock_page(page); |
| 413 | } |
| 414 | fscrypt_release_ctx(ctx); |
| 415 | bio_put(bio); |
| 416 | } |
| 417 | |
| 418 | void fscrypt_decrypt_bio_pages(struct fscrypt_ctx *ctx, struct bio *bio) |
| 419 | { |
| 420 | INIT_WORK(&ctx->r.work, completion_pages); |
| 421 | ctx->r.bio = bio; |
| 422 | queue_work(fscrypt_read_workqueue, &ctx->r.work); |
| 423 | } |
| 424 | EXPORT_SYMBOL(fscrypt_decrypt_bio_pages); |
| 425 | |
| 426 | void fscrypt_pullback_bio_page(struct page **page, bool restore) |
| 427 | { |
| 428 | struct fscrypt_ctx *ctx; |
| 429 | struct page *bounce_page; |
| 430 | |
| 431 | /* The bounce data pages are unmapped. */ |
| 432 | if ((*page)->mapping) |
| 433 | return; |
| 434 | |
| 435 | /* The bounce data page is unmapped. */ |
| 436 | bounce_page = *page; |
| 437 | ctx = (struct fscrypt_ctx *)page_private(bounce_page); |
| 438 | |
| 439 | /* restore control page */ |
| 440 | *page = ctx->w.control_page; |
| 441 | |
| 442 | if (restore) |
| 443 | fscrypt_restore_control_page(bounce_page); |
| 444 | } |
| 445 | EXPORT_SYMBOL(fscrypt_pullback_bio_page); |
| 446 | |
| 447 | void fscrypt_restore_control_page(struct page *page) |
| 448 | { |
| 449 | struct fscrypt_ctx *ctx; |
| 450 | |
| 451 | ctx = (struct fscrypt_ctx *)page_private(page); |
| 452 | set_page_private(page, (unsigned long)NULL); |
| 453 | ClearPagePrivate(page); |
| 454 | unlock_page(page); |
| 455 | fscrypt_release_ctx(ctx); |
| 456 | } |
| 457 | EXPORT_SYMBOL(fscrypt_restore_control_page); |
| 458 | |
| 459 | static void fscrypt_destroy(void) |
| 460 | { |
| 461 | struct fscrypt_ctx *pos, *n; |
| 462 | |
| 463 | list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list) |
| 464 | kmem_cache_free(fscrypt_ctx_cachep, pos); |
| 465 | INIT_LIST_HEAD(&fscrypt_free_ctxs); |
| 466 | mempool_destroy(fscrypt_bounce_page_pool); |
| 467 | fscrypt_bounce_page_pool = NULL; |
| 468 | } |
| 469 | |
| 470 | /** |
| 471 | * fscrypt_initialize() - allocate major buffers for fs encryption. |
| 472 | * |
| 473 | * We only call this when we start accessing encrypted files, since it |
| 474 | * results in memory getting allocated that wouldn't otherwise be used. |
| 475 | * |
| 476 | * Return: Zero on success, non-zero otherwise. |
| 477 | */ |
| 478 | int fscrypt_initialize(void) |
| 479 | { |
| 480 | int i, res = -ENOMEM; |
| 481 | |
| 482 | if (fscrypt_bounce_page_pool) |
| 483 | return 0; |
| 484 | |
| 485 | mutex_lock(&fscrypt_init_mutex); |
| 486 | if (fscrypt_bounce_page_pool) |
| 487 | goto already_initialized; |
| 488 | |
| 489 | for (i = 0; i < num_prealloc_crypto_ctxs; i++) { |
| 490 | struct fscrypt_ctx *ctx; |
| 491 | |
| 492 | ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS); |
| 493 | if (!ctx) |
| 494 | goto fail; |
| 495 | list_add(&ctx->free_list, &fscrypt_free_ctxs); |
| 496 | } |
| 497 | |
| 498 | fscrypt_bounce_page_pool = |
| 499 | mempool_create_page_pool(num_prealloc_crypto_pages, 0); |
| 500 | if (!fscrypt_bounce_page_pool) |
| 501 | goto fail; |
| 502 | |
| 503 | already_initialized: |
| 504 | mutex_unlock(&fscrypt_init_mutex); |
| 505 | return 0; |
| 506 | fail: |
| 507 | fscrypt_destroy(); |
| 508 | mutex_unlock(&fscrypt_init_mutex); |
| 509 | return res; |
| 510 | } |
| 511 | EXPORT_SYMBOL(fscrypt_initialize); |
| 512 | |
| 513 | /** |
| 514 | * fscrypt_init() - Set up for fs encryption. |
| 515 | */ |
| 516 | static int __init fscrypt_init(void) |
| 517 | { |
| 518 | fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue", |
| 519 | WQ_HIGHPRI, 0); |
| 520 | if (!fscrypt_read_workqueue) |
| 521 | goto fail; |
| 522 | |
| 523 | fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT); |
| 524 | if (!fscrypt_ctx_cachep) |
| 525 | goto fail_free_queue; |
| 526 | |
| 527 | fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT); |
| 528 | if (!fscrypt_info_cachep) |
| 529 | goto fail_free_ctx; |
| 530 | |
| 531 | return 0; |
| 532 | |
| 533 | fail_free_ctx: |
| 534 | kmem_cache_destroy(fscrypt_ctx_cachep); |
| 535 | fail_free_queue: |
| 536 | destroy_workqueue(fscrypt_read_workqueue); |
| 537 | fail: |
| 538 | return -ENOMEM; |
| 539 | } |
| 540 | module_init(fscrypt_init) |
| 541 | |
| 542 | /** |
| 543 | * fscrypt_exit() - Shutdown the fs encryption system |
| 544 | */ |
| 545 | static void __exit fscrypt_exit(void) |
| 546 | { |
| 547 | fscrypt_destroy(); |
| 548 | |
| 549 | if (fscrypt_read_workqueue) |
| 550 | destroy_workqueue(fscrypt_read_workqueue); |
| 551 | kmem_cache_destroy(fscrypt_ctx_cachep); |
| 552 | kmem_cache_destroy(fscrypt_info_cachep); |
| 553 | } |
| 554 | module_exit(fscrypt_exit); |
| 555 | |
| 556 | MODULE_LICENSE("GPL"); |