Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved. |
| 3 | * Copyright (c) 2001 Intel Corp. |
| 4 | * Copyright (c) 2001 Tony Luck <tony.luck@intel.com> |
| 5 | * Copyright (c) 2002 NEC Corp. |
| 6 | * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com> |
| 7 | * Copyright (c) 2004 Silicon Graphics, Inc |
| 8 | * Russ Anderson <rja@sgi.com> |
| 9 | * Jesse Barnes <jbarnes@sgi.com> |
| 10 | * Jack Steiner <steiner@sgi.com> |
| 11 | */ |
| 12 | |
| 13 | /* |
| 14 | * Platform initialization for Discontig Memory |
| 15 | */ |
| 16 | |
| 17 | #include <linux/kernel.h> |
| 18 | #include <linux/mm.h> |
| 19 | #include <linux/swap.h> |
| 20 | #include <linux/bootmem.h> |
| 21 | #include <linux/acpi.h> |
| 22 | #include <linux/efi.h> |
| 23 | #include <linux/nodemask.h> |
| 24 | #include <asm/pgalloc.h> |
| 25 | #include <asm/tlb.h> |
| 26 | #include <asm/meminit.h> |
| 27 | #include <asm/numa.h> |
| 28 | #include <asm/sections.h> |
| 29 | |
| 30 | /* |
| 31 | * Track per-node information needed to setup the boot memory allocator, the |
| 32 | * per-node areas, and the real VM. |
| 33 | */ |
| 34 | struct early_node_data { |
| 35 | struct ia64_node_data *node_data; |
| 36 | pg_data_t *pgdat; |
| 37 | unsigned long pernode_addr; |
| 38 | unsigned long pernode_size; |
| 39 | struct bootmem_data bootmem_data; |
| 40 | unsigned long num_physpages; |
| 41 | unsigned long num_dma_physpages; |
| 42 | unsigned long min_pfn; |
| 43 | unsigned long max_pfn; |
| 44 | }; |
| 45 | |
| 46 | static struct early_node_data mem_data[MAX_NUMNODES] __initdata; |
| 47 | |
| 48 | /** |
| 49 | * reassign_cpu_only_nodes - called from find_memory to move CPU-only nodes to a memory node |
| 50 | * |
| 51 | * This function will move nodes with only CPUs (no memory) |
| 52 | * to a node with memory which is at the minimum numa_slit distance. |
| 53 | * Any reassigments will result in the compression of the nodes |
| 54 | * and renumbering the nid values where appropriate. |
| 55 | * The static declarations below are to avoid large stack size which |
| 56 | * makes the code not re-entrant. |
| 57 | */ |
| 58 | static void __init reassign_cpu_only_nodes(void) |
| 59 | { |
| 60 | struct node_memblk_s *p; |
| 61 | int i, j, k, nnode, nid, cpu, cpunid, pxm; |
| 62 | u8 cslit, slit; |
| 63 | static DECLARE_BITMAP(nodes_with_mem, MAX_NUMNODES) __initdata; |
| 64 | static u8 numa_slit_fix[MAX_NUMNODES * MAX_NUMNODES] __initdata; |
| 65 | static int node_flip[MAX_NUMNODES] __initdata; |
| 66 | static int old_nid_map[NR_CPUS] __initdata; |
| 67 | |
| 68 | for (nnode = 0, p = &node_memblk[0]; p < &node_memblk[num_node_memblks]; p++) |
| 69 | if (!test_bit(p->nid, (void *) nodes_with_mem)) { |
| 70 | set_bit(p->nid, (void *) nodes_with_mem); |
| 71 | nnode++; |
| 72 | } |
| 73 | |
| 74 | /* |
| 75 | * All nids with memory. |
| 76 | */ |
| 77 | if (nnode == num_online_nodes()) |
| 78 | return; |
| 79 | |
| 80 | /* |
| 81 | * Change nids and attempt to migrate CPU-only nodes |
| 82 | * to the best numa_slit (closest neighbor) possible. |
| 83 | * For reassigned CPU nodes a nid can't be arrived at |
| 84 | * until after this loop because the target nid's new |
| 85 | * identity might not have been established yet. So |
| 86 | * new nid values are fabricated above num_online_nodes() and |
| 87 | * mapped back later to their true value. |
| 88 | */ |
| 89 | /* MCD - This code is a bit complicated, but may be unnecessary now. |
| 90 | * We can now handle much more interesting node-numbering. |
| 91 | * The old requirement that 0 <= nid <= numnodes <= MAX_NUMNODES |
| 92 | * and that there be no holes in the numbering 0..numnodes |
| 93 | * has become simply 0 <= nid <= MAX_NUMNODES. |
| 94 | */ |
| 95 | nid = 0; |
| 96 | for_each_online_node(i) { |
| 97 | if (test_bit(i, (void *) nodes_with_mem)) { |
| 98 | /* |
| 99 | * Save original nid value for numa_slit |
| 100 | * fixup and node_cpuid reassignments. |
| 101 | */ |
| 102 | node_flip[nid] = i; |
| 103 | |
| 104 | if (i == nid) { |
| 105 | nid++; |
| 106 | continue; |
| 107 | } |
| 108 | |
| 109 | for (p = &node_memblk[0]; p < &node_memblk[num_node_memblks]; p++) |
| 110 | if (p->nid == i) |
| 111 | p->nid = nid; |
| 112 | |
| 113 | cpunid = nid; |
| 114 | nid++; |
| 115 | } else |
| 116 | cpunid = MAX_NUMNODES; |
| 117 | |
| 118 | for (cpu = 0; cpu < NR_CPUS; cpu++) |
| 119 | if (node_cpuid[cpu].nid == i) { |
| 120 | /* |
| 121 | * For nodes not being reassigned just |
| 122 | * fix the cpu's nid and reverse pxm map |
| 123 | */ |
| 124 | if (cpunid < MAX_NUMNODES) { |
| 125 | pxm = nid_to_pxm_map[i]; |
| 126 | pxm_to_nid_map[pxm] = |
| 127 | node_cpuid[cpu].nid = cpunid; |
| 128 | continue; |
| 129 | } |
| 130 | |
| 131 | /* |
| 132 | * For nodes being reassigned, find best node by |
| 133 | * numa_slit information and then make a temporary |
| 134 | * nid value based on current nid and num_online_nodes(). |
| 135 | */ |
| 136 | slit = 0xff; |
| 137 | k = 2*num_online_nodes(); |
| 138 | for_each_online_node(j) { |
| 139 | if (i == j) |
| 140 | continue; |
| 141 | else if (test_bit(j, (void *) nodes_with_mem)) { |
| 142 | cslit = numa_slit[i * num_online_nodes() + j]; |
| 143 | if (cslit < slit) { |
| 144 | k = num_online_nodes() + j; |
| 145 | slit = cslit; |
| 146 | } |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | /* save old nid map so we can update the pxm */ |
| 151 | old_nid_map[cpu] = node_cpuid[cpu].nid; |
| 152 | node_cpuid[cpu].nid = k; |
| 153 | } |
| 154 | } |
| 155 | |
| 156 | /* |
| 157 | * Fixup temporary nid values for CPU-only nodes. |
| 158 | */ |
| 159 | for (cpu = 0; cpu < NR_CPUS; cpu++) |
| 160 | if (node_cpuid[cpu].nid == (2*num_online_nodes())) { |
| 161 | pxm = nid_to_pxm_map[old_nid_map[cpu]]; |
| 162 | pxm_to_nid_map[pxm] = node_cpuid[cpu].nid = nnode - 1; |
| 163 | } else { |
| 164 | for (i = 0; i < nnode; i++) { |
| 165 | if (node_flip[i] != (node_cpuid[cpu].nid - num_online_nodes())) |
| 166 | continue; |
| 167 | |
| 168 | pxm = nid_to_pxm_map[old_nid_map[cpu]]; |
| 169 | pxm_to_nid_map[pxm] = node_cpuid[cpu].nid = i; |
| 170 | break; |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | /* |
| 175 | * Fix numa_slit by compressing from larger |
| 176 | * nid array to reduced nid array. |
| 177 | */ |
| 178 | for (i = 0; i < nnode; i++) |
| 179 | for (j = 0; j < nnode; j++) |
| 180 | numa_slit_fix[i * nnode + j] = |
| 181 | numa_slit[node_flip[i] * num_online_nodes() + node_flip[j]]; |
| 182 | |
| 183 | memcpy(numa_slit, numa_slit_fix, sizeof (numa_slit)); |
| 184 | |
| 185 | nodes_clear(node_online_map); |
| 186 | for (i = 0; i < nnode; i++) |
| 187 | node_set_online(i); |
| 188 | |
| 189 | return; |
| 190 | } |
| 191 | |
| 192 | /* |
| 193 | * To prevent cache aliasing effects, align per-node structures so that they |
| 194 | * start at addresses that are strided by node number. |
| 195 | */ |
| 196 | #define NODEDATA_ALIGN(addr, node) \ |
| 197 | ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + (node)*PERCPU_PAGE_SIZE) |
| 198 | |
| 199 | /** |
| 200 | * build_node_maps - callback to setup bootmem structs for each node |
| 201 | * @start: physical start of range |
| 202 | * @len: length of range |
| 203 | * @node: node where this range resides |
| 204 | * |
| 205 | * We allocate a struct bootmem_data for each piece of memory that we wish to |
| 206 | * treat as a virtually contiguous block (i.e. each node). Each such block |
| 207 | * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down |
| 208 | * if necessary. Any non-existent pages will simply be part of the virtual |
| 209 | * memmap. We also update min_low_pfn and max_low_pfn here as we receive |
| 210 | * memory ranges from the caller. |
| 211 | */ |
| 212 | static int __init build_node_maps(unsigned long start, unsigned long len, |
| 213 | int node) |
| 214 | { |
| 215 | unsigned long cstart, epfn, end = start + len; |
| 216 | struct bootmem_data *bdp = &mem_data[node].bootmem_data; |
| 217 | |
| 218 | epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT; |
| 219 | cstart = GRANULEROUNDDOWN(start); |
| 220 | |
| 221 | if (!bdp->node_low_pfn) { |
| 222 | bdp->node_boot_start = cstart; |
| 223 | bdp->node_low_pfn = epfn; |
| 224 | } else { |
| 225 | bdp->node_boot_start = min(cstart, bdp->node_boot_start); |
| 226 | bdp->node_low_pfn = max(epfn, bdp->node_low_pfn); |
| 227 | } |
| 228 | |
| 229 | min_low_pfn = min(min_low_pfn, bdp->node_boot_start>>PAGE_SHIFT); |
| 230 | max_low_pfn = max(max_low_pfn, bdp->node_low_pfn); |
| 231 | |
| 232 | return 0; |
| 233 | } |
| 234 | |
| 235 | /** |
| 236 | * early_nr_phys_cpus_node - return number of physical cpus on a given node |
| 237 | * @node: node to check |
| 238 | * |
| 239 | * Count the number of physical cpus on @node. These are cpus that actually |
| 240 | * exist. We can't use nr_cpus_node() yet because |
| 241 | * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been |
| 242 | * called yet. |
| 243 | */ |
| 244 | static int early_nr_phys_cpus_node(int node) |
| 245 | { |
| 246 | int cpu, n = 0; |
| 247 | |
| 248 | for (cpu = 0; cpu < NR_CPUS; cpu++) |
| 249 | if (node == node_cpuid[cpu].nid) |
| 250 | if ((cpu == 0) || node_cpuid[cpu].phys_id) |
| 251 | n++; |
| 252 | |
| 253 | return n; |
| 254 | } |
| 255 | |
| 256 | |
| 257 | /** |
| 258 | * early_nr_cpus_node - return number of cpus on a given node |
| 259 | * @node: node to check |
| 260 | * |
| 261 | * Count the number of cpus on @node. We can't use nr_cpus_node() yet because |
| 262 | * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been |
| 263 | * called yet. Note that node 0 will also count all non-existent cpus. |
| 264 | */ |
| 265 | static int early_nr_cpus_node(int node) |
| 266 | { |
| 267 | int cpu, n = 0; |
| 268 | |
| 269 | for (cpu = 0; cpu < NR_CPUS; cpu++) |
| 270 | if (node == node_cpuid[cpu].nid) |
| 271 | n++; |
| 272 | |
| 273 | return n; |
| 274 | } |
| 275 | |
| 276 | /** |
| 277 | * find_pernode_space - allocate memory for memory map and per-node structures |
| 278 | * @start: physical start of range |
| 279 | * @len: length of range |
| 280 | * @node: node where this range resides |
| 281 | * |
| 282 | * This routine reserves space for the per-cpu data struct, the list of |
| 283 | * pg_data_ts and the per-node data struct. Each node will have something like |
| 284 | * the following in the first chunk of addr. space large enough to hold it. |
| 285 | * |
| 286 | * ________________________ |
| 287 | * | | |
| 288 | * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first |
| 289 | * | PERCPU_PAGE_SIZE * | start and length big enough |
| 290 | * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus. |
| 291 | * |------------------------| |
| 292 | * | local pg_data_t * | |
| 293 | * |------------------------| |
| 294 | * | local ia64_node_data | |
| 295 | * |------------------------| |
| 296 | * | ??? | |
| 297 | * |________________________| |
| 298 | * |
| 299 | * Once this space has been set aside, the bootmem maps are initialized. We |
| 300 | * could probably move the allocation of the per-cpu and ia64_node_data space |
| 301 | * outside of this function and use alloc_bootmem_node(), but doing it here |
| 302 | * is straightforward and we get the alignments we want so... |
| 303 | */ |
| 304 | static int __init find_pernode_space(unsigned long start, unsigned long len, |
| 305 | int node) |
| 306 | { |
| 307 | unsigned long epfn, cpu, cpus, phys_cpus; |
| 308 | unsigned long pernodesize = 0, pernode, pages, mapsize; |
| 309 | void *cpu_data; |
| 310 | struct bootmem_data *bdp = &mem_data[node].bootmem_data; |
| 311 | |
| 312 | epfn = (start + len) >> PAGE_SHIFT; |
| 313 | |
| 314 | pages = bdp->node_low_pfn - (bdp->node_boot_start >> PAGE_SHIFT); |
| 315 | mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT; |
| 316 | |
| 317 | /* |
| 318 | * Make sure this memory falls within this node's usable memory |
| 319 | * since we may have thrown some away in build_maps(). |
| 320 | */ |
| 321 | if (start < bdp->node_boot_start || epfn > bdp->node_low_pfn) |
| 322 | return 0; |
| 323 | |
| 324 | /* Don't setup this node's local space twice... */ |
| 325 | if (mem_data[node].pernode_addr) |
| 326 | return 0; |
| 327 | |
| 328 | /* |
| 329 | * Calculate total size needed, incl. what's necessary |
| 330 | * for good alignment and alias prevention. |
| 331 | */ |
| 332 | cpus = early_nr_cpus_node(node); |
| 333 | phys_cpus = early_nr_phys_cpus_node(node); |
| 334 | pernodesize += PERCPU_PAGE_SIZE * cpus; |
| 335 | pernodesize += node * L1_CACHE_BYTES; |
| 336 | pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t)); |
| 337 | pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); |
| 338 | pernodesize = PAGE_ALIGN(pernodesize); |
| 339 | pernode = NODEDATA_ALIGN(start, node); |
| 340 | |
| 341 | /* Is this range big enough for what we want to store here? */ |
| 342 | if (start + len > (pernode + pernodesize + mapsize)) { |
| 343 | mem_data[node].pernode_addr = pernode; |
| 344 | mem_data[node].pernode_size = pernodesize; |
| 345 | memset(__va(pernode), 0, pernodesize); |
| 346 | |
| 347 | cpu_data = (void *)pernode; |
| 348 | pernode += PERCPU_PAGE_SIZE * cpus; |
| 349 | pernode += node * L1_CACHE_BYTES; |
| 350 | |
| 351 | mem_data[node].pgdat = __va(pernode); |
| 352 | pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); |
| 353 | |
| 354 | mem_data[node].node_data = __va(pernode); |
| 355 | pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); |
| 356 | |
| 357 | mem_data[node].pgdat->bdata = bdp; |
| 358 | pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); |
| 359 | |
| 360 | /* |
| 361 | * Copy the static per-cpu data into the region we |
| 362 | * just set aside and then setup __per_cpu_offset |
| 363 | * for each CPU on this node. |
| 364 | */ |
| 365 | for (cpu = 0; cpu < NR_CPUS; cpu++) { |
| 366 | if (node == node_cpuid[cpu].nid) { |
| 367 | memcpy(__va(cpu_data), __phys_per_cpu_start, |
| 368 | __per_cpu_end - __per_cpu_start); |
| 369 | __per_cpu_offset[cpu] = (char*)__va(cpu_data) - |
| 370 | __per_cpu_start; |
| 371 | cpu_data += PERCPU_PAGE_SIZE; |
| 372 | } |
| 373 | } |
| 374 | } |
| 375 | |
| 376 | return 0; |
| 377 | } |
| 378 | |
| 379 | /** |
| 380 | * free_node_bootmem - free bootmem allocator memory for use |
| 381 | * @start: physical start of range |
| 382 | * @len: length of range |
| 383 | * @node: node where this range resides |
| 384 | * |
| 385 | * Simply calls the bootmem allocator to free the specified ranged from |
| 386 | * the given pg_data_t's bdata struct. After this function has been called |
| 387 | * for all the entries in the EFI memory map, the bootmem allocator will |
| 388 | * be ready to service allocation requests. |
| 389 | */ |
| 390 | static int __init free_node_bootmem(unsigned long start, unsigned long len, |
| 391 | int node) |
| 392 | { |
| 393 | free_bootmem_node(mem_data[node].pgdat, start, len); |
| 394 | |
| 395 | return 0; |
| 396 | } |
| 397 | |
| 398 | /** |
| 399 | * reserve_pernode_space - reserve memory for per-node space |
| 400 | * |
| 401 | * Reserve the space used by the bootmem maps & per-node space in the boot |
| 402 | * allocator so that when we actually create the real mem maps we don't |
| 403 | * use their memory. |
| 404 | */ |
| 405 | static void __init reserve_pernode_space(void) |
| 406 | { |
| 407 | unsigned long base, size, pages; |
| 408 | struct bootmem_data *bdp; |
| 409 | int node; |
| 410 | |
| 411 | for_each_online_node(node) { |
| 412 | pg_data_t *pdp = mem_data[node].pgdat; |
| 413 | |
| 414 | bdp = pdp->bdata; |
| 415 | |
| 416 | /* First the bootmem_map itself */ |
| 417 | pages = bdp->node_low_pfn - (bdp->node_boot_start>>PAGE_SHIFT); |
| 418 | size = bootmem_bootmap_pages(pages) << PAGE_SHIFT; |
| 419 | base = __pa(bdp->node_bootmem_map); |
| 420 | reserve_bootmem_node(pdp, base, size); |
| 421 | |
| 422 | /* Now the per-node space */ |
| 423 | size = mem_data[node].pernode_size; |
| 424 | base = __pa(mem_data[node].pernode_addr); |
| 425 | reserve_bootmem_node(pdp, base, size); |
| 426 | } |
| 427 | } |
| 428 | |
| 429 | /** |
| 430 | * initialize_pernode_data - fixup per-cpu & per-node pointers |
| 431 | * |
| 432 | * Each node's per-node area has a copy of the global pg_data_t list, so |
| 433 | * we copy that to each node here, as well as setting the per-cpu pointer |
| 434 | * to the local node data structure. The active_cpus field of the per-node |
| 435 | * structure gets setup by the platform_cpu_init() function later. |
| 436 | */ |
| 437 | static void __init initialize_pernode_data(void) |
| 438 | { |
| 439 | int cpu, node; |
| 440 | pg_data_t *pgdat_list[MAX_NUMNODES]; |
| 441 | |
| 442 | for_each_online_node(node) |
| 443 | pgdat_list[node] = mem_data[node].pgdat; |
| 444 | |
| 445 | /* Copy the pg_data_t list to each node and init the node field */ |
| 446 | for_each_online_node(node) { |
| 447 | memcpy(mem_data[node].node_data->pg_data_ptrs, pgdat_list, |
| 448 | sizeof(pgdat_list)); |
| 449 | } |
| 450 | |
| 451 | /* Set the node_data pointer for each per-cpu struct */ |
| 452 | for (cpu = 0; cpu < NR_CPUS; cpu++) { |
| 453 | node = node_cpuid[cpu].nid; |
| 454 | per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data; |
| 455 | } |
| 456 | } |
| 457 | |
| 458 | /** |
| 459 | * find_memory - walk the EFI memory map and setup the bootmem allocator |
| 460 | * |
| 461 | * Called early in boot to setup the bootmem allocator, and to |
| 462 | * allocate the per-cpu and per-node structures. |
| 463 | */ |
| 464 | void __init find_memory(void) |
| 465 | { |
| 466 | int node; |
| 467 | |
| 468 | reserve_memory(); |
| 469 | |
| 470 | if (num_online_nodes() == 0) { |
| 471 | printk(KERN_ERR "node info missing!\n"); |
| 472 | node_set_online(0); |
| 473 | } |
| 474 | |
| 475 | min_low_pfn = -1; |
| 476 | max_low_pfn = 0; |
| 477 | |
| 478 | if (num_online_nodes() > 1) |
| 479 | reassign_cpu_only_nodes(); |
| 480 | |
| 481 | /* These actually end up getting called by call_pernode_memory() */ |
| 482 | efi_memmap_walk(filter_rsvd_memory, build_node_maps); |
| 483 | efi_memmap_walk(filter_rsvd_memory, find_pernode_space); |
| 484 | |
| 485 | /* |
| 486 | * Initialize the boot memory maps in reverse order since that's |
| 487 | * what the bootmem allocator expects |
| 488 | */ |
| 489 | for (node = MAX_NUMNODES - 1; node >= 0; node--) { |
| 490 | unsigned long pernode, pernodesize, map; |
| 491 | struct bootmem_data *bdp; |
| 492 | |
| 493 | if (!node_online(node)) |
| 494 | continue; |
| 495 | |
| 496 | bdp = &mem_data[node].bootmem_data; |
| 497 | pernode = mem_data[node].pernode_addr; |
| 498 | pernodesize = mem_data[node].pernode_size; |
| 499 | map = pernode + pernodesize; |
| 500 | |
| 501 | /* Sanity check... */ |
| 502 | if (!pernode) |
| 503 | panic("pernode space for node %d " |
| 504 | "could not be allocated!", node); |
| 505 | |
| 506 | init_bootmem_node(mem_data[node].pgdat, |
| 507 | map>>PAGE_SHIFT, |
| 508 | bdp->node_boot_start>>PAGE_SHIFT, |
| 509 | bdp->node_low_pfn); |
| 510 | } |
| 511 | |
| 512 | efi_memmap_walk(filter_rsvd_memory, free_node_bootmem); |
| 513 | |
| 514 | reserve_pernode_space(); |
| 515 | initialize_pernode_data(); |
| 516 | |
| 517 | max_pfn = max_low_pfn; |
| 518 | |
| 519 | find_initrd(); |
| 520 | } |
| 521 | |
| 522 | /** |
| 523 | * per_cpu_init - setup per-cpu variables |
| 524 | * |
| 525 | * find_pernode_space() does most of this already, we just need to set |
| 526 | * local_per_cpu_offset |
| 527 | */ |
| 528 | void *per_cpu_init(void) |
| 529 | { |
| 530 | int cpu; |
| 531 | |
| 532 | if (smp_processor_id() == 0) { |
| 533 | for (cpu = 0; cpu < NR_CPUS; cpu++) { |
| 534 | per_cpu(local_per_cpu_offset, cpu) = |
| 535 | __per_cpu_offset[cpu]; |
| 536 | } |
| 537 | } |
| 538 | |
| 539 | return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; |
| 540 | } |
| 541 | |
| 542 | /** |
| 543 | * show_mem - give short summary of memory stats |
| 544 | * |
| 545 | * Shows a simple page count of reserved and used pages in the system. |
| 546 | * For discontig machines, it does this on a per-pgdat basis. |
| 547 | */ |
| 548 | void show_mem(void) |
| 549 | { |
| 550 | int i, total_reserved = 0; |
| 551 | int total_shared = 0, total_cached = 0; |
| 552 | unsigned long total_present = 0; |
| 553 | pg_data_t *pgdat; |
| 554 | |
| 555 | printk("Mem-info:\n"); |
| 556 | show_free_areas(); |
| 557 | printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); |
| 558 | for_each_pgdat(pgdat) { |
| 559 | unsigned long present = pgdat->node_present_pages; |
| 560 | int shared = 0, cached = 0, reserved = 0; |
| 561 | printk("Node ID: %d\n", pgdat->node_id); |
| 562 | for(i = 0; i < pgdat->node_spanned_pages; i++) { |
| 563 | if (!ia64_pfn_valid(pgdat->node_start_pfn+i)) |
| 564 | continue; |
| 565 | if (PageReserved(pgdat->node_mem_map+i)) |
| 566 | reserved++; |
| 567 | else if (PageSwapCache(pgdat->node_mem_map+i)) |
| 568 | cached++; |
| 569 | else if (page_count(pgdat->node_mem_map+i)) |
| 570 | shared += page_count(pgdat->node_mem_map+i)-1; |
| 571 | } |
| 572 | total_present += present; |
| 573 | total_reserved += reserved; |
| 574 | total_cached += cached; |
| 575 | total_shared += shared; |
| 576 | printk("\t%ld pages of RAM\n", present); |
| 577 | printk("\t%d reserved pages\n", reserved); |
| 578 | printk("\t%d pages shared\n", shared); |
| 579 | printk("\t%d pages swap cached\n", cached); |
| 580 | } |
| 581 | printk("%ld pages of RAM\n", total_present); |
| 582 | printk("%d reserved pages\n", total_reserved); |
| 583 | printk("%d pages shared\n", total_shared); |
| 584 | printk("%d pages swap cached\n", total_cached); |
| 585 | printk("Total of %ld pages in page table cache\n", pgtable_cache_size); |
| 586 | printk("%d free buffer pages\n", nr_free_buffer_pages()); |
| 587 | } |
| 588 | |
| 589 | /** |
| 590 | * call_pernode_memory - use SRAT to call callback functions with node info |
| 591 | * @start: physical start of range |
| 592 | * @len: length of range |
| 593 | * @arg: function to call for each range |
| 594 | * |
| 595 | * efi_memmap_walk() knows nothing about layout of memory across nodes. Find |
| 596 | * out to which node a block of memory belongs. Ignore memory that we cannot |
| 597 | * identify, and split blocks that run across multiple nodes. |
| 598 | * |
| 599 | * Take this opportunity to round the start address up and the end address |
| 600 | * down to page boundaries. |
| 601 | */ |
| 602 | void call_pernode_memory(unsigned long start, unsigned long len, void *arg) |
| 603 | { |
| 604 | unsigned long rs, re, end = start + len; |
| 605 | void (*func)(unsigned long, unsigned long, int); |
| 606 | int i; |
| 607 | |
| 608 | start = PAGE_ALIGN(start); |
| 609 | end &= PAGE_MASK; |
| 610 | if (start >= end) |
| 611 | return; |
| 612 | |
| 613 | func = arg; |
| 614 | |
| 615 | if (!num_node_memblks) { |
| 616 | /* No SRAT table, so assume one node (node 0) */ |
| 617 | if (start < end) |
| 618 | (*func)(start, end - start, 0); |
| 619 | return; |
| 620 | } |
| 621 | |
| 622 | for (i = 0; i < num_node_memblks; i++) { |
| 623 | rs = max(start, node_memblk[i].start_paddr); |
| 624 | re = min(end, node_memblk[i].start_paddr + |
| 625 | node_memblk[i].size); |
| 626 | |
| 627 | if (rs < re) |
| 628 | (*func)(rs, re - rs, node_memblk[i].nid); |
| 629 | |
| 630 | if (re == end) |
| 631 | break; |
| 632 | } |
| 633 | } |
| 634 | |
| 635 | /** |
| 636 | * count_node_pages - callback to build per-node memory info structures |
| 637 | * @start: physical start of range |
| 638 | * @len: length of range |
| 639 | * @node: node where this range resides |
| 640 | * |
| 641 | * Each node has it's own number of physical pages, DMAable pages, start, and |
| 642 | * end page frame number. This routine will be called by call_pernode_memory() |
| 643 | * for each piece of usable memory and will setup these values for each node. |
| 644 | * Very similar to build_maps(). |
| 645 | */ |
| 646 | static __init int count_node_pages(unsigned long start, unsigned long len, int node) |
| 647 | { |
| 648 | unsigned long end = start + len; |
| 649 | |
| 650 | mem_data[node].num_physpages += len >> PAGE_SHIFT; |
| 651 | if (start <= __pa(MAX_DMA_ADDRESS)) |
| 652 | mem_data[node].num_dma_physpages += |
| 653 | (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT; |
| 654 | start = GRANULEROUNDDOWN(start); |
| 655 | start = ORDERROUNDDOWN(start); |
| 656 | end = GRANULEROUNDUP(end); |
| 657 | mem_data[node].max_pfn = max(mem_data[node].max_pfn, |
| 658 | end >> PAGE_SHIFT); |
| 659 | mem_data[node].min_pfn = min(mem_data[node].min_pfn, |
| 660 | start >> PAGE_SHIFT); |
| 661 | |
| 662 | return 0; |
| 663 | } |
| 664 | |
| 665 | /** |
| 666 | * paging_init - setup page tables |
| 667 | * |
| 668 | * paging_init() sets up the page tables for each node of the system and frees |
| 669 | * the bootmem allocator memory for general use. |
| 670 | */ |
| 671 | void __init paging_init(void) |
| 672 | { |
| 673 | unsigned long max_dma; |
| 674 | unsigned long zones_size[MAX_NR_ZONES]; |
| 675 | unsigned long zholes_size[MAX_NR_ZONES]; |
| 676 | unsigned long pfn_offset = 0; |
| 677 | int node; |
| 678 | |
| 679 | max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; |
| 680 | |
| 681 | /* so min() will work in count_node_pages */ |
| 682 | for_each_online_node(node) |
| 683 | mem_data[node].min_pfn = ~0UL; |
| 684 | |
| 685 | efi_memmap_walk(filter_rsvd_memory, count_node_pages); |
| 686 | |
| 687 | for_each_online_node(node) { |
| 688 | memset(zones_size, 0, sizeof(zones_size)); |
| 689 | memset(zholes_size, 0, sizeof(zholes_size)); |
| 690 | |
| 691 | num_physpages += mem_data[node].num_physpages; |
| 692 | |
| 693 | if (mem_data[node].min_pfn >= max_dma) { |
| 694 | /* All of this node's memory is above ZONE_DMA */ |
| 695 | zones_size[ZONE_NORMAL] = mem_data[node].max_pfn - |
| 696 | mem_data[node].min_pfn; |
| 697 | zholes_size[ZONE_NORMAL] = mem_data[node].max_pfn - |
| 698 | mem_data[node].min_pfn - |
| 699 | mem_data[node].num_physpages; |
| 700 | } else if (mem_data[node].max_pfn < max_dma) { |
| 701 | /* All of this node's memory is in ZONE_DMA */ |
| 702 | zones_size[ZONE_DMA] = mem_data[node].max_pfn - |
| 703 | mem_data[node].min_pfn; |
| 704 | zholes_size[ZONE_DMA] = mem_data[node].max_pfn - |
| 705 | mem_data[node].min_pfn - |
| 706 | mem_data[node].num_dma_physpages; |
| 707 | } else { |
| 708 | /* This node has memory in both zones */ |
| 709 | zones_size[ZONE_DMA] = max_dma - |
| 710 | mem_data[node].min_pfn; |
| 711 | zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - |
| 712 | mem_data[node].num_dma_physpages; |
| 713 | zones_size[ZONE_NORMAL] = mem_data[node].max_pfn - |
| 714 | max_dma; |
| 715 | zholes_size[ZONE_NORMAL] = zones_size[ZONE_NORMAL] - |
| 716 | (mem_data[node].num_physpages - |
| 717 | mem_data[node].num_dma_physpages); |
| 718 | } |
| 719 | |
| 720 | if (node == 0) { |
| 721 | vmalloc_end -= |
| 722 | PAGE_ALIGN(max_low_pfn * sizeof(struct page)); |
| 723 | vmem_map = (struct page *) vmalloc_end; |
| 724 | |
| 725 | efi_memmap_walk(create_mem_map_page_table, NULL); |
| 726 | printk("Virtual mem_map starts at 0x%p\n", vmem_map); |
| 727 | } |
| 728 | |
| 729 | pfn_offset = mem_data[node].min_pfn; |
| 730 | |
| 731 | NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset; |
| 732 | free_area_init_node(node, NODE_DATA(node), zones_size, |
| 733 | pfn_offset, zholes_size); |
| 734 | } |
| 735 | |
| 736 | zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page)); |
| 737 | } |