Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 2 | MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP |
| 3 | M68000 Hi-Performance Microprocessor Division |
| 4 | M68060 Software Package |
| 5 | Production Release P1.00 -- October 10, 1994 |
| 6 | |
| 7 | M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. |
| 8 | |
| 9 | THE SOFTWARE is provided on an "AS IS" basis and without warranty. |
| 10 | To the maximum extent permitted by applicable law, |
| 11 | MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, |
| 12 | INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE |
| 13 | and any warranty against infringement with regard to the SOFTWARE |
| 14 | (INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. |
| 15 | |
| 16 | To the maximum extent permitted by applicable law, |
| 17 | IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER |
| 18 | (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, |
| 19 | BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) |
| 20 | ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. |
| 21 | Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. |
| 22 | |
| 23 | You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE |
| 24 | so long as this entire notice is retained without alteration in any modified and/or |
| 25 | redistributed versions, and that such modified versions are clearly identified as such. |
| 26 | No licenses are granted by implication, estoppel or otherwise under any patents |
| 27 | or trademarks of Motorola, Inc. |
| 28 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 29 | # freal.s: |
| 30 | # This file is appended to the top of the 060FPSP package |
| 31 | # and contains the entry points into the package. The user, in |
| 32 | # effect, branches to one of the branch table entries located |
| 33 | # after _060FPSP_TABLE. |
| 34 | # Also, subroutine stubs exist in this file (_fpsp_done for |
| 35 | # example) that are referenced by the FPSP package itself in order |
| 36 | # to call a given routine. The stub routine actually performs the |
| 37 | # callout. The FPSP code does a "bsr" to the stub routine. This |
| 38 | # extra layer of hierarchy adds a slight performance penalty but |
| 39 | # it makes the FPSP code easier to read and more mainatinable. |
| 40 | # |
| 41 | |
| 42 | set _off_bsun, 0x00 |
| 43 | set _off_snan, 0x04 |
| 44 | set _off_operr, 0x08 |
| 45 | set _off_ovfl, 0x0c |
| 46 | set _off_unfl, 0x10 |
| 47 | set _off_dz, 0x14 |
| 48 | set _off_inex, 0x18 |
| 49 | set _off_fline, 0x1c |
| 50 | set _off_fpu_dis, 0x20 |
| 51 | set _off_trap, 0x24 |
| 52 | set _off_trace, 0x28 |
| 53 | set _off_access, 0x2c |
| 54 | set _off_done, 0x30 |
| 55 | |
| 56 | set _off_imr, 0x40 |
| 57 | set _off_dmr, 0x44 |
| 58 | set _off_dmw, 0x48 |
| 59 | set _off_irw, 0x4c |
| 60 | set _off_irl, 0x50 |
| 61 | set _off_drb, 0x54 |
| 62 | set _off_drw, 0x58 |
| 63 | set _off_drl, 0x5c |
| 64 | set _off_dwb, 0x60 |
| 65 | set _off_dww, 0x64 |
| 66 | set _off_dwl, 0x68 |
| 67 | |
| 68 | _060FPSP_TABLE: |
| 69 | |
| 70 | ############################################################### |
| 71 | |
| 72 | # Here's the table of ENTRY POINTS for those linking the package. |
| 73 | bra.l _fpsp_snan |
| 74 | short 0x0000 |
| 75 | bra.l _fpsp_operr |
| 76 | short 0x0000 |
| 77 | bra.l _fpsp_ovfl |
| 78 | short 0x0000 |
| 79 | bra.l _fpsp_unfl |
| 80 | short 0x0000 |
| 81 | bra.l _fpsp_dz |
| 82 | short 0x0000 |
| 83 | bra.l _fpsp_inex |
| 84 | short 0x0000 |
| 85 | bra.l _fpsp_fline |
| 86 | short 0x0000 |
| 87 | bra.l _fpsp_unsupp |
| 88 | short 0x0000 |
| 89 | bra.l _fpsp_effadd |
| 90 | short 0x0000 |
| 91 | |
| 92 | space 56 |
| 93 | |
| 94 | ############################################################### |
| 95 | global _fpsp_done |
| 96 | _fpsp_done: |
| 97 | mov.l %d0,-(%sp) |
| 98 | mov.l (_060FPSP_TABLE-0x80+_off_done,%pc),%d0 |
| 99 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| 100 | mov.l 0x4(%sp),%d0 |
| 101 | rtd &0x4 |
| 102 | |
| 103 | global _real_ovfl |
| 104 | _real_ovfl: |
| 105 | mov.l %d0,-(%sp) |
| 106 | mov.l (_060FPSP_TABLE-0x80+_off_ovfl,%pc),%d0 |
| 107 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| 108 | mov.l 0x4(%sp),%d0 |
| 109 | rtd &0x4 |
| 110 | |
| 111 | global _real_unfl |
| 112 | _real_unfl: |
| 113 | mov.l %d0,-(%sp) |
| 114 | mov.l (_060FPSP_TABLE-0x80+_off_unfl,%pc),%d0 |
| 115 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| 116 | mov.l 0x4(%sp),%d0 |
| 117 | rtd &0x4 |
| 118 | |
| 119 | global _real_inex |
| 120 | _real_inex: |
| 121 | mov.l %d0,-(%sp) |
| 122 | mov.l (_060FPSP_TABLE-0x80+_off_inex,%pc),%d0 |
| 123 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| 124 | mov.l 0x4(%sp),%d0 |
| 125 | rtd &0x4 |
| 126 | |
| 127 | global _real_bsun |
| 128 | _real_bsun: |
| 129 | mov.l %d0,-(%sp) |
| 130 | mov.l (_060FPSP_TABLE-0x80+_off_bsun,%pc),%d0 |
| 131 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| 132 | mov.l 0x4(%sp),%d0 |
| 133 | rtd &0x4 |
| 134 | |
| 135 | global _real_operr |
| 136 | _real_operr: |
| 137 | mov.l %d0,-(%sp) |
| 138 | mov.l (_060FPSP_TABLE-0x80+_off_operr,%pc),%d0 |
| 139 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| 140 | mov.l 0x4(%sp),%d0 |
| 141 | rtd &0x4 |
| 142 | |
| 143 | global _real_snan |
| 144 | _real_snan: |
| 145 | mov.l %d0,-(%sp) |
| 146 | mov.l (_060FPSP_TABLE-0x80+_off_snan,%pc),%d0 |
| 147 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| 148 | mov.l 0x4(%sp),%d0 |
| 149 | rtd &0x4 |
| 150 | |
| 151 | global _real_dz |
| 152 | _real_dz: |
| 153 | mov.l %d0,-(%sp) |
| 154 | mov.l (_060FPSP_TABLE-0x80+_off_dz,%pc),%d0 |
| 155 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| 156 | mov.l 0x4(%sp),%d0 |
| 157 | rtd &0x4 |
| 158 | |
| 159 | global _real_fline |
| 160 | _real_fline: |
| 161 | mov.l %d0,-(%sp) |
| 162 | mov.l (_060FPSP_TABLE-0x80+_off_fline,%pc),%d0 |
| 163 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| 164 | mov.l 0x4(%sp),%d0 |
| 165 | rtd &0x4 |
| 166 | |
| 167 | global _real_fpu_disabled |
| 168 | _real_fpu_disabled: |
| 169 | mov.l %d0,-(%sp) |
| 170 | mov.l (_060FPSP_TABLE-0x80+_off_fpu_dis,%pc),%d0 |
| 171 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| 172 | mov.l 0x4(%sp),%d0 |
| 173 | rtd &0x4 |
| 174 | |
| 175 | global _real_trap |
| 176 | _real_trap: |
| 177 | mov.l %d0,-(%sp) |
| 178 | mov.l (_060FPSP_TABLE-0x80+_off_trap,%pc),%d0 |
| 179 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| 180 | mov.l 0x4(%sp),%d0 |
| 181 | rtd &0x4 |
| 182 | |
| 183 | global _real_trace |
| 184 | _real_trace: |
| 185 | mov.l %d0,-(%sp) |
| 186 | mov.l (_060FPSP_TABLE-0x80+_off_trace,%pc),%d0 |
| 187 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| 188 | mov.l 0x4(%sp),%d0 |
| 189 | rtd &0x4 |
| 190 | |
| 191 | global _real_access |
| 192 | _real_access: |
| 193 | mov.l %d0,-(%sp) |
| 194 | mov.l (_060FPSP_TABLE-0x80+_off_access,%pc),%d0 |
| 195 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| 196 | mov.l 0x4(%sp),%d0 |
| 197 | rtd &0x4 |
| 198 | |
| 199 | ####################################### |
| 200 | |
| 201 | global _imem_read |
| 202 | _imem_read: |
| 203 | mov.l %d0,-(%sp) |
| 204 | mov.l (_060FPSP_TABLE-0x80+_off_imr,%pc),%d0 |
| 205 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| 206 | mov.l 0x4(%sp),%d0 |
| 207 | rtd &0x4 |
| 208 | |
| 209 | global _dmem_read |
| 210 | _dmem_read: |
| 211 | mov.l %d0,-(%sp) |
| 212 | mov.l (_060FPSP_TABLE-0x80+_off_dmr,%pc),%d0 |
| 213 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| 214 | mov.l 0x4(%sp),%d0 |
| 215 | rtd &0x4 |
| 216 | |
| 217 | global _dmem_write |
| 218 | _dmem_write: |
| 219 | mov.l %d0,-(%sp) |
| 220 | mov.l (_060FPSP_TABLE-0x80+_off_dmw,%pc),%d0 |
| 221 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| 222 | mov.l 0x4(%sp),%d0 |
| 223 | rtd &0x4 |
| 224 | |
| 225 | global _imem_read_word |
| 226 | _imem_read_word: |
| 227 | mov.l %d0,-(%sp) |
| 228 | mov.l (_060FPSP_TABLE-0x80+_off_irw,%pc),%d0 |
| 229 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| 230 | mov.l 0x4(%sp),%d0 |
| 231 | rtd &0x4 |
| 232 | |
| 233 | global _imem_read_long |
| 234 | _imem_read_long: |
| 235 | mov.l %d0,-(%sp) |
| 236 | mov.l (_060FPSP_TABLE-0x80+_off_irl,%pc),%d0 |
| 237 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| 238 | mov.l 0x4(%sp),%d0 |
| 239 | rtd &0x4 |
| 240 | |
| 241 | global _dmem_read_byte |
| 242 | _dmem_read_byte: |
| 243 | mov.l %d0,-(%sp) |
| 244 | mov.l (_060FPSP_TABLE-0x80+_off_drb,%pc),%d0 |
| 245 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| 246 | mov.l 0x4(%sp),%d0 |
| 247 | rtd &0x4 |
| 248 | |
| 249 | global _dmem_read_word |
| 250 | _dmem_read_word: |
| 251 | mov.l %d0,-(%sp) |
| 252 | mov.l (_060FPSP_TABLE-0x80+_off_drw,%pc),%d0 |
| 253 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| 254 | mov.l 0x4(%sp),%d0 |
| 255 | rtd &0x4 |
| 256 | |
| 257 | global _dmem_read_long |
| 258 | _dmem_read_long: |
| 259 | mov.l %d0,-(%sp) |
| 260 | mov.l (_060FPSP_TABLE-0x80+_off_drl,%pc),%d0 |
| 261 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| 262 | mov.l 0x4(%sp),%d0 |
| 263 | rtd &0x4 |
| 264 | |
| 265 | global _dmem_write_byte |
| 266 | _dmem_write_byte: |
| 267 | mov.l %d0,-(%sp) |
| 268 | mov.l (_060FPSP_TABLE-0x80+_off_dwb,%pc),%d0 |
| 269 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| 270 | mov.l 0x4(%sp),%d0 |
| 271 | rtd &0x4 |
| 272 | |
| 273 | global _dmem_write_word |
| 274 | _dmem_write_word: |
| 275 | mov.l %d0,-(%sp) |
| 276 | mov.l (_060FPSP_TABLE-0x80+_off_dww,%pc),%d0 |
| 277 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| 278 | mov.l 0x4(%sp),%d0 |
| 279 | rtd &0x4 |
| 280 | |
| 281 | global _dmem_write_long |
| 282 | _dmem_write_long: |
| 283 | mov.l %d0,-(%sp) |
| 284 | mov.l (_060FPSP_TABLE-0x80+_off_dwl,%pc),%d0 |
| 285 | pea.l (_060FPSP_TABLE-0x80,%pc,%d0) |
| 286 | mov.l 0x4(%sp),%d0 |
| 287 | rtd &0x4 |
| 288 | |
| 289 | # |
| 290 | # This file contains a set of define statements for constants |
| 291 | # in order to promote readability within the corecode itself. |
| 292 | # |
| 293 | |
| 294 | set LOCAL_SIZE, 192 # stack frame size(bytes) |
| 295 | set LV, -LOCAL_SIZE # stack offset |
| 296 | |
| 297 | set EXC_SR, 0x4 # stack status register |
| 298 | set EXC_PC, 0x6 # stack pc |
| 299 | set EXC_VOFF, 0xa # stacked vector offset |
| 300 | set EXC_EA, 0xc # stacked <ea> |
| 301 | |
| 302 | set EXC_FP, 0x0 # frame pointer |
| 303 | |
| 304 | set EXC_AREGS, -68 # offset of all address regs |
| 305 | set EXC_DREGS, -100 # offset of all data regs |
| 306 | set EXC_FPREGS, -36 # offset of all fp regs |
| 307 | |
| 308 | set EXC_A7, EXC_AREGS+(7*4) # offset of saved a7 |
| 309 | set OLD_A7, EXC_AREGS+(6*4) # extra copy of saved a7 |
| 310 | set EXC_A6, EXC_AREGS+(6*4) # offset of saved a6 |
| 311 | set EXC_A5, EXC_AREGS+(5*4) |
| 312 | set EXC_A4, EXC_AREGS+(4*4) |
| 313 | set EXC_A3, EXC_AREGS+(3*4) |
| 314 | set EXC_A2, EXC_AREGS+(2*4) |
| 315 | set EXC_A1, EXC_AREGS+(1*4) |
| 316 | set EXC_A0, EXC_AREGS+(0*4) |
| 317 | set EXC_D7, EXC_DREGS+(7*4) |
| 318 | set EXC_D6, EXC_DREGS+(6*4) |
| 319 | set EXC_D5, EXC_DREGS+(5*4) |
| 320 | set EXC_D4, EXC_DREGS+(4*4) |
| 321 | set EXC_D3, EXC_DREGS+(3*4) |
| 322 | set EXC_D2, EXC_DREGS+(2*4) |
| 323 | set EXC_D1, EXC_DREGS+(1*4) |
| 324 | set EXC_D0, EXC_DREGS+(0*4) |
| 325 | |
| 326 | set EXC_FP0, EXC_FPREGS+(0*12) # offset of saved fp0 |
| 327 | set EXC_FP1, EXC_FPREGS+(1*12) # offset of saved fp1 |
| 328 | set EXC_FP2, EXC_FPREGS+(2*12) # offset of saved fp2 (not used) |
| 329 | |
| 330 | set FP_SCR1, LV+80 # fp scratch 1 |
| 331 | set FP_SCR1_EX, FP_SCR1+0 |
| 332 | set FP_SCR1_SGN, FP_SCR1+2 |
| 333 | set FP_SCR1_HI, FP_SCR1+4 |
| 334 | set FP_SCR1_LO, FP_SCR1+8 |
| 335 | |
| 336 | set FP_SCR0, LV+68 # fp scratch 0 |
| 337 | set FP_SCR0_EX, FP_SCR0+0 |
| 338 | set FP_SCR0_SGN, FP_SCR0+2 |
| 339 | set FP_SCR0_HI, FP_SCR0+4 |
| 340 | set FP_SCR0_LO, FP_SCR0+8 |
| 341 | |
| 342 | set FP_DST, LV+56 # fp destination operand |
| 343 | set FP_DST_EX, FP_DST+0 |
| 344 | set FP_DST_SGN, FP_DST+2 |
| 345 | set FP_DST_HI, FP_DST+4 |
| 346 | set FP_DST_LO, FP_DST+8 |
| 347 | |
| 348 | set FP_SRC, LV+44 # fp source operand |
| 349 | set FP_SRC_EX, FP_SRC+0 |
| 350 | set FP_SRC_SGN, FP_SRC+2 |
| 351 | set FP_SRC_HI, FP_SRC+4 |
| 352 | set FP_SRC_LO, FP_SRC+8 |
| 353 | |
| 354 | set USER_FPIAR, LV+40 # FP instr address register |
| 355 | |
| 356 | set USER_FPSR, LV+36 # FP status register |
| 357 | set FPSR_CC, USER_FPSR+0 # FPSR condition codes |
| 358 | set FPSR_QBYTE, USER_FPSR+1 # FPSR qoutient byte |
| 359 | set FPSR_EXCEPT, USER_FPSR+2 # FPSR exception status byte |
| 360 | set FPSR_AEXCEPT, USER_FPSR+3 # FPSR accrued exception byte |
| 361 | |
| 362 | set USER_FPCR, LV+32 # FP control register |
| 363 | set FPCR_ENABLE, USER_FPCR+2 # FPCR exception enable |
| 364 | set FPCR_MODE, USER_FPCR+3 # FPCR rounding mode control |
| 365 | |
| 366 | set L_SCR3, LV+28 # integer scratch 3 |
| 367 | set L_SCR2, LV+24 # integer scratch 2 |
| 368 | set L_SCR1, LV+20 # integer scratch 1 |
| 369 | |
| 370 | set STORE_FLG, LV+19 # flag: operand store (ie. not fcmp/ftst) |
| 371 | |
| 372 | set EXC_TEMP2, LV+24 # temporary space |
| 373 | set EXC_TEMP, LV+16 # temporary space |
| 374 | |
| 375 | set DTAG, LV+15 # destination operand type |
| 376 | set STAG, LV+14 # source operand type |
| 377 | |
| 378 | set SPCOND_FLG, LV+10 # flag: special case (see below) |
| 379 | |
| 380 | set EXC_CC, LV+8 # saved condition codes |
| 381 | set EXC_EXTWPTR, LV+4 # saved current PC (active) |
| 382 | set EXC_EXTWORD, LV+2 # saved extension word |
| 383 | set EXC_CMDREG, LV+2 # saved extension word |
| 384 | set EXC_OPWORD, LV+0 # saved operation word |
| 385 | |
| 386 | ################################ |
| 387 | |
| 388 | # Helpful macros |
| 389 | |
| 390 | set FTEMP, 0 # offsets within an |
| 391 | set FTEMP_EX, 0 # extended precision |
| 392 | set FTEMP_SGN, 2 # value saved in memory. |
| 393 | set FTEMP_HI, 4 |
| 394 | set FTEMP_LO, 8 |
| 395 | set FTEMP_GRS, 12 |
| 396 | |
| 397 | set LOCAL, 0 # offsets within an |
| 398 | set LOCAL_EX, 0 # extended precision |
| 399 | set LOCAL_SGN, 2 # value saved in memory. |
| 400 | set LOCAL_HI, 4 |
| 401 | set LOCAL_LO, 8 |
| 402 | set LOCAL_GRS, 12 |
| 403 | |
| 404 | set DST, 0 # offsets within an |
| 405 | set DST_EX, 0 # extended precision |
| 406 | set DST_HI, 4 # value saved in memory. |
| 407 | set DST_LO, 8 |
| 408 | |
| 409 | set SRC, 0 # offsets within an |
| 410 | set SRC_EX, 0 # extended precision |
| 411 | set SRC_HI, 4 # value saved in memory. |
| 412 | set SRC_LO, 8 |
| 413 | |
| 414 | set SGL_LO, 0x3f81 # min sgl prec exponent |
| 415 | set SGL_HI, 0x407e # max sgl prec exponent |
| 416 | set DBL_LO, 0x3c01 # min dbl prec exponent |
| 417 | set DBL_HI, 0x43fe # max dbl prec exponent |
| 418 | set EXT_LO, 0x0 # min ext prec exponent |
| 419 | set EXT_HI, 0x7ffe # max ext prec exponent |
| 420 | |
| 421 | set EXT_BIAS, 0x3fff # extended precision bias |
| 422 | set SGL_BIAS, 0x007f # single precision bias |
| 423 | set DBL_BIAS, 0x03ff # double precision bias |
| 424 | |
| 425 | set NORM, 0x00 # operand type for STAG/DTAG |
| 426 | set ZERO, 0x01 # operand type for STAG/DTAG |
| 427 | set INF, 0x02 # operand type for STAG/DTAG |
| 428 | set QNAN, 0x03 # operand type for STAG/DTAG |
| 429 | set DENORM, 0x04 # operand type for STAG/DTAG |
| 430 | set SNAN, 0x05 # operand type for STAG/DTAG |
| 431 | set UNNORM, 0x06 # operand type for STAG/DTAG |
| 432 | |
| 433 | ################## |
| 434 | # FPSR/FPCR bits # |
| 435 | ################## |
| 436 | set neg_bit, 0x3 # negative result |
| 437 | set z_bit, 0x2 # zero result |
| 438 | set inf_bit, 0x1 # infinite result |
| 439 | set nan_bit, 0x0 # NAN result |
| 440 | |
| 441 | set q_sn_bit, 0x7 # sign bit of quotient byte |
| 442 | |
| 443 | set bsun_bit, 7 # branch on unordered |
| 444 | set snan_bit, 6 # signalling NAN |
| 445 | set operr_bit, 5 # operand error |
| 446 | set ovfl_bit, 4 # overflow |
| 447 | set unfl_bit, 3 # underflow |
| 448 | set dz_bit, 2 # divide by zero |
| 449 | set inex2_bit, 1 # inexact result 2 |
| 450 | set inex1_bit, 0 # inexact result 1 |
| 451 | |
| 452 | set aiop_bit, 7 # accrued inexact operation bit |
| 453 | set aovfl_bit, 6 # accrued overflow bit |
| 454 | set aunfl_bit, 5 # accrued underflow bit |
| 455 | set adz_bit, 4 # accrued dz bit |
| 456 | set ainex_bit, 3 # accrued inexact bit |
| 457 | |
| 458 | ############################# |
| 459 | # FPSR individual bit masks # |
| 460 | ############################# |
| 461 | set neg_mask, 0x08000000 # negative bit mask (lw) |
| 462 | set inf_mask, 0x02000000 # infinity bit mask (lw) |
| 463 | set z_mask, 0x04000000 # zero bit mask (lw) |
| 464 | set nan_mask, 0x01000000 # nan bit mask (lw) |
| 465 | |
| 466 | set neg_bmask, 0x08 # negative bit mask (byte) |
| 467 | set inf_bmask, 0x02 # infinity bit mask (byte) |
| 468 | set z_bmask, 0x04 # zero bit mask (byte) |
| 469 | set nan_bmask, 0x01 # nan bit mask (byte) |
| 470 | |
| 471 | set bsun_mask, 0x00008000 # bsun exception mask |
| 472 | set snan_mask, 0x00004000 # snan exception mask |
| 473 | set operr_mask, 0x00002000 # operr exception mask |
| 474 | set ovfl_mask, 0x00001000 # overflow exception mask |
| 475 | set unfl_mask, 0x00000800 # underflow exception mask |
| 476 | set dz_mask, 0x00000400 # dz exception mask |
| 477 | set inex2_mask, 0x00000200 # inex2 exception mask |
| 478 | set inex1_mask, 0x00000100 # inex1 exception mask |
| 479 | |
| 480 | set aiop_mask, 0x00000080 # accrued illegal operation |
| 481 | set aovfl_mask, 0x00000040 # accrued overflow |
| 482 | set aunfl_mask, 0x00000020 # accrued underflow |
| 483 | set adz_mask, 0x00000010 # accrued divide by zero |
| 484 | set ainex_mask, 0x00000008 # accrued inexact |
| 485 | |
| 486 | ###################################### |
| 487 | # FPSR combinations used in the FPSP # |
| 488 | ###################################### |
| 489 | set dzinf_mask, inf_mask+dz_mask+adz_mask |
| 490 | set opnan_mask, nan_mask+operr_mask+aiop_mask |
| 491 | set nzi_mask, 0x01ffffff #clears N, Z, and I |
| 492 | set unfinx_mask, unfl_mask+inex2_mask+aunfl_mask+ainex_mask |
| 493 | set unf2inx_mask, unfl_mask+inex2_mask+ainex_mask |
| 494 | set ovfinx_mask, ovfl_mask+inex2_mask+aovfl_mask+ainex_mask |
| 495 | set inx1a_mask, inex1_mask+ainex_mask |
| 496 | set inx2a_mask, inex2_mask+ainex_mask |
| 497 | set snaniop_mask, nan_mask+snan_mask+aiop_mask |
| 498 | set snaniop2_mask, snan_mask+aiop_mask |
| 499 | set naniop_mask, nan_mask+aiop_mask |
| 500 | set neginf_mask, neg_mask+inf_mask |
| 501 | set infaiop_mask, inf_mask+aiop_mask |
| 502 | set negz_mask, neg_mask+z_mask |
| 503 | set opaop_mask, operr_mask+aiop_mask |
| 504 | set unfl_inx_mask, unfl_mask+aunfl_mask+ainex_mask |
| 505 | set ovfl_inx_mask, ovfl_mask+aovfl_mask+ainex_mask |
| 506 | |
| 507 | ######### |
| 508 | # misc. # |
| 509 | ######### |
| 510 | set rnd_stky_bit, 29 # stky bit pos in longword |
| 511 | |
| 512 | set sign_bit, 0x7 # sign bit |
| 513 | set signan_bit, 0x6 # signalling nan bit |
| 514 | |
| 515 | set sgl_thresh, 0x3f81 # minimum sgl exponent |
| 516 | set dbl_thresh, 0x3c01 # minimum dbl exponent |
| 517 | |
| 518 | set x_mode, 0x0 # extended precision |
| 519 | set s_mode, 0x4 # single precision |
| 520 | set d_mode, 0x8 # double precision |
| 521 | |
| 522 | set rn_mode, 0x0 # round-to-nearest |
| 523 | set rz_mode, 0x1 # round-to-zero |
| 524 | set rm_mode, 0x2 # round-tp-minus-infinity |
| 525 | set rp_mode, 0x3 # round-to-plus-infinity |
| 526 | |
| 527 | set mantissalen, 64 # length of mantissa in bits |
| 528 | |
| 529 | set BYTE, 1 # len(byte) == 1 byte |
| 530 | set WORD, 2 # len(word) == 2 bytes |
| 531 | set LONG, 4 # len(longword) == 2 bytes |
| 532 | |
| 533 | set BSUN_VEC, 0xc0 # bsun vector offset |
| 534 | set INEX_VEC, 0xc4 # inexact vector offset |
| 535 | set DZ_VEC, 0xc8 # dz vector offset |
| 536 | set UNFL_VEC, 0xcc # unfl vector offset |
| 537 | set OPERR_VEC, 0xd0 # operr vector offset |
| 538 | set OVFL_VEC, 0xd4 # ovfl vector offset |
| 539 | set SNAN_VEC, 0xd8 # snan vector offset |
| 540 | |
| 541 | ########################### |
| 542 | # SPecial CONDition FLaGs # |
| 543 | ########################### |
| 544 | set ftrapcc_flg, 0x01 # flag bit: ftrapcc exception |
| 545 | set fbsun_flg, 0x02 # flag bit: bsun exception |
| 546 | set mia7_flg, 0x04 # flag bit: (a7)+ <ea> |
| 547 | set mda7_flg, 0x08 # flag bit: -(a7) <ea> |
| 548 | set fmovm_flg, 0x40 # flag bit: fmovm instruction |
| 549 | set immed_flg, 0x80 # flag bit: &<data> <ea> |
| 550 | |
| 551 | set ftrapcc_bit, 0x0 |
| 552 | set fbsun_bit, 0x1 |
| 553 | set mia7_bit, 0x2 |
| 554 | set mda7_bit, 0x3 |
| 555 | set immed_bit, 0x7 |
| 556 | |
| 557 | ################################## |
| 558 | # TRANSCENDENTAL "LAST-OP" FLAGS # |
| 559 | ################################## |
| 560 | set FMUL_OP, 0x0 # fmul instr performed last |
| 561 | set FDIV_OP, 0x1 # fdiv performed last |
| 562 | set FADD_OP, 0x2 # fadd performed last |
| 563 | set FMOV_OP, 0x3 # fmov performed last |
| 564 | |
| 565 | ############# |
| 566 | # CONSTANTS # |
| 567 | ############# |
| 568 | T1: long 0x40C62D38,0xD3D64634 # 16381 LOG2 LEAD |
| 569 | T2: long 0x3D6F90AE,0xB1E75CC7 # 16381 LOG2 TRAIL |
| 570 | |
| 571 | PI: long 0x40000000,0xC90FDAA2,0x2168C235,0x00000000 |
| 572 | PIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 |
| 573 | |
| 574 | TWOBYPI: |
| 575 | long 0x3FE45F30,0x6DC9C883 |
| 576 | |
| 577 | ######################################################################### |
| 578 | # XDEF **************************************************************** # |
| 579 | # _fpsp_ovfl(): 060FPSP entry point for FP Overflow exception. # |
| 580 | # # |
| 581 | # This handler should be the first code executed upon taking the # |
| 582 | # FP Overflow exception in an operating system. # |
| 583 | # # |
| 584 | # XREF **************************************************************** # |
| 585 | # _imem_read_long() - read instruction longword # |
| 586 | # fix_skewed_ops() - adjust src operand in fsave frame # |
| 587 | # set_tag_x() - determine optype of src/dst operands # |
| 588 | # store_fpreg() - store opclass 0 or 2 result to FP regfile # |
| 589 | # unnorm_fix() - change UNNORM operands to NORM or ZERO # |
| 590 | # load_fpn2() - load dst operand from FP regfile # |
| 591 | # fout() - emulate an opclass 3 instruction # |
| 592 | # tbl_unsupp - add of table of emulation routines for opclass 0,2 # |
| 593 | # _fpsp_done() - "callout" for 060FPSP exit (all work done!) # |
| 594 | # _real_ovfl() - "callout" for Overflow exception enabled code # |
| 595 | # _real_inex() - "callout" for Inexact exception enabled code # |
| 596 | # _real_trace() - "callout" for Trace exception code # |
| 597 | # # |
| 598 | # INPUT *************************************************************** # |
| 599 | # - The system stack contains the FP Ovfl exception stack frame # |
| 600 | # - The fsave frame contains the source operand # |
| 601 | # # |
| 602 | # OUTPUT ************************************************************** # |
| 603 | # Overflow Exception enabled: # |
| 604 | # - The system stack is unchanged # |
| 605 | # - The fsave frame contains the adjusted src op for opclass 0,2 # |
| 606 | # Overflow Exception disabled: # |
| 607 | # - The system stack is unchanged # |
| 608 | # - The "exception present" flag in the fsave frame is cleared # |
| 609 | # # |
| 610 | # ALGORITHM *********************************************************** # |
| 611 | # On the 060, if an FP overflow is present as the result of any # |
| 612 | # instruction, the 060 will take an overflow exception whether the # |
| 613 | # exception is enabled or disabled in the FPCR. For the disabled case, # |
| 614 | # This handler emulates the instruction to determine what the correct # |
| 615 | # default result should be for the operation. This default result is # |
| 616 | # then stored in either the FP regfile, data regfile, or memory. # |
| 617 | # Finally, the handler exits through the "callout" _fpsp_done() # |
| 618 | # denoting that no exceptional conditions exist within the machine. # |
| 619 | # If the exception is enabled, then this handler must create the # |
| 620 | # exceptional operand and plave it in the fsave state frame, and store # |
| 621 | # the default result (only if the instruction is opclass 3). For # |
| 622 | # exceptions enabled, this handler must exit through the "callout" # |
| 623 | # _real_ovfl() so that the operating system enabled overflow handler # |
| 624 | # can handle this case. # |
| 625 | # Two other conditions exist. First, if overflow was disabled # |
| 626 | # but the inexact exception was enabled, this handler must exit # |
| 627 | # through the "callout" _real_inex() regardless of whether the result # |
| 628 | # was inexact. # |
| 629 | # Also, in the case of an opclass three instruction where # |
| 630 | # overflow was disabled and the trace exception was enabled, this # |
| 631 | # handler must exit through the "callout" _real_trace(). # |
| 632 | # # |
| 633 | ######################################################################### |
| 634 | |
| 635 | global _fpsp_ovfl |
| 636 | _fpsp_ovfl: |
| 637 | |
| 638 | #$# sub.l &24,%sp # make room for src/dst |
| 639 | |
| 640 | link.w %a6,&-LOCAL_SIZE # init stack frame |
| 641 | |
| 642 | fsave FP_SRC(%a6) # grab the "busy" frame |
| 643 | |
| 644 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 645 | fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs |
| 646 | fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack |
| 647 | |
| 648 | # the FPIAR holds the "current PC" of the faulting instruction |
| 649 | mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) |
| 650 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 651 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 652 | bsr.l _imem_read_long # fetch the instruction words |
| 653 | mov.l %d0,EXC_OPWORD(%a6) |
| 654 | |
| 655 | ############################################################################## |
| 656 | |
| 657 | btst &0x5,EXC_CMDREG(%a6) # is instr an fmove out? |
| 658 | bne.w fovfl_out |
| 659 | |
| 660 | |
| 661 | lea FP_SRC(%a6),%a0 # pass: ptr to src op |
| 662 | bsr.l fix_skewed_ops # fix src op |
| 663 | |
| 664 | # since, I believe, only NORMs and DENORMs can come through here, |
| 665 | # maybe we can avoid the subroutine call. |
| 666 | lea FP_SRC(%a6),%a0 # pass: ptr to src op |
| 667 | bsr.l set_tag_x # tag the operand type |
| 668 | mov.b %d0,STAG(%a6) # maybe NORM,DENORM |
| 669 | |
| 670 | # bit five of the fp extension word separates the monadic and dyadic operations |
| 671 | # that can pass through fpsp_ovfl(). remember that fcmp, ftst, and fsincos |
| 672 | # will never take this exception. |
| 673 | btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? |
| 674 | beq.b fovfl_extract # monadic |
| 675 | |
| 676 | bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg |
| 677 | bsr.l load_fpn2 # load dst into FP_DST |
| 678 | |
| 679 | lea FP_DST(%a6),%a0 # pass: ptr to dst op |
| 680 | bsr.l set_tag_x # tag the operand type |
| 681 | cmpi.b %d0,&UNNORM # is operand an UNNORM? |
| 682 | bne.b fovfl_op2_done # no |
| 683 | bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO |
| 684 | fovfl_op2_done: |
| 685 | mov.b %d0,DTAG(%a6) # save dst optype tag |
| 686 | |
| 687 | fovfl_extract: |
| 688 | |
| 689 | #$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) |
| 690 | #$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) |
| 691 | #$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) |
| 692 | #$# mov.l FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6) |
| 693 | #$# mov.l FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6) |
| 694 | #$# mov.l FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6) |
| 695 | |
| 696 | clr.l %d0 |
| 697 | mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode |
| 698 | |
| 699 | mov.b 1+EXC_CMDREG(%a6),%d1 |
| 700 | andi.w &0x007f,%d1 # extract extension |
| 701 | |
| 702 | andi.l &0x00ff01ff,USER_FPSR(%a6) # zero all but accured field |
| 703 | |
| 704 | fmov.l &0x0,%fpcr # zero current control regs |
| 705 | fmov.l &0x0,%fpsr |
| 706 | |
| 707 | lea FP_SRC(%a6),%a0 |
| 708 | lea FP_DST(%a6),%a1 |
| 709 | |
| 710 | # maybe we can make these entry points ONLY the OVFL entry points of each routine. |
| 711 | mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr |
| 712 | jsr (tbl_unsupp.l,%pc,%d1.l*1) |
| 713 | |
| 714 | # the operation has been emulated. the result is in fp0. |
| 715 | # the EXOP, if an exception occurred, is in fp1. |
| 716 | # we must save the default result regardless of whether |
| 717 | # traps are enabled or disabled. |
| 718 | bfextu EXC_CMDREG(%a6){&6:&3},%d0 |
| 719 | bsr.l store_fpreg |
| 720 | |
| 721 | # the exceptional possibilities we have left ourselves with are ONLY overflow |
| 722 | # and inexact. and, the inexact is such that overflow occurred and was disabled |
| 723 | # but inexact was enabled. |
| 724 | btst &ovfl_bit,FPCR_ENABLE(%a6) |
| 725 | bne.b fovfl_ovfl_on |
| 726 | |
| 727 | btst &inex2_bit,FPCR_ENABLE(%a6) |
| 728 | bne.b fovfl_inex_on |
| 729 | |
| 730 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| 731 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 732 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 733 | |
| 734 | unlk %a6 |
| 735 | #$# add.l &24,%sp |
| 736 | bra.l _fpsp_done |
| 737 | |
| 738 | # overflow is enabled AND overflow, of course, occurred. so, we have the EXOP |
| 739 | # in fp1. now, simply jump to _real_ovfl()! |
| 740 | fovfl_ovfl_on: |
| 741 | fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack |
| 742 | |
| 743 | mov.w &0xe005,2+FP_SRC(%a6) # save exc status |
| 744 | |
| 745 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| 746 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 747 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 748 | |
| 749 | frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! |
| 750 | |
| 751 | unlk %a6 |
| 752 | |
| 753 | bra.l _real_ovfl |
| 754 | |
| 755 | # overflow occurred but is disabled. meanwhile, inexact is enabled. therefore, |
| 756 | # we must jump to real_inex(). |
| 757 | fovfl_inex_on: |
| 758 | |
| 759 | fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack |
| 760 | |
| 761 | mov.b &0xc4,1+EXC_VOFF(%a6) # vector offset = 0xc4 |
| 762 | mov.w &0xe001,2+FP_SRC(%a6) # save exc status |
| 763 | |
| 764 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| 765 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 766 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 767 | |
| 768 | frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! |
| 769 | |
| 770 | unlk %a6 |
| 771 | |
| 772 | bra.l _real_inex |
| 773 | |
| 774 | ######################################################################## |
| 775 | fovfl_out: |
| 776 | |
| 777 | |
| 778 | #$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) |
| 779 | #$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) |
| 780 | #$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) |
| 781 | |
| 782 | # the src operand is definitely a NORM(!), so tag it as such |
| 783 | mov.b &NORM,STAG(%a6) # set src optype tag |
| 784 | |
| 785 | clr.l %d0 |
| 786 | mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode |
| 787 | |
| 788 | and.l &0xffff00ff,USER_FPSR(%a6) # zero all but accured field |
| 789 | |
| 790 | fmov.l &0x0,%fpcr # zero current control regs |
| 791 | fmov.l &0x0,%fpsr |
| 792 | |
| 793 | lea FP_SRC(%a6),%a0 # pass ptr to src operand |
| 794 | |
| 795 | bsr.l fout |
| 796 | |
| 797 | btst &ovfl_bit,FPCR_ENABLE(%a6) |
| 798 | bne.w fovfl_ovfl_on |
| 799 | |
| 800 | btst &inex2_bit,FPCR_ENABLE(%a6) |
| 801 | bne.w fovfl_inex_on |
| 802 | |
| 803 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| 804 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 805 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 806 | |
| 807 | unlk %a6 |
| 808 | #$# add.l &24,%sp |
| 809 | |
| 810 | btst &0x7,(%sp) # is trace on? |
| 811 | beq.l _fpsp_done # no |
| 812 | |
| 813 | fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR |
| 814 | mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024 |
| 815 | bra.l _real_trace |
| 816 | |
| 817 | ######################################################################### |
| 818 | # XDEF **************************************************************** # |
| 819 | # _fpsp_unfl(): 060FPSP entry point for FP Underflow exception. # |
| 820 | # # |
| 821 | # This handler should be the first code executed upon taking the # |
| 822 | # FP Underflow exception in an operating system. # |
| 823 | # # |
| 824 | # XREF **************************************************************** # |
| 825 | # _imem_read_long() - read instruction longword # |
| 826 | # fix_skewed_ops() - adjust src operand in fsave frame # |
| 827 | # set_tag_x() - determine optype of src/dst operands # |
| 828 | # store_fpreg() - store opclass 0 or 2 result to FP regfile # |
| 829 | # unnorm_fix() - change UNNORM operands to NORM or ZERO # |
| 830 | # load_fpn2() - load dst operand from FP regfile # |
| 831 | # fout() - emulate an opclass 3 instruction # |
| 832 | # tbl_unsupp - add of table of emulation routines for opclass 0,2 # |
| 833 | # _fpsp_done() - "callout" for 060FPSP exit (all work done!) # |
| 834 | # _real_ovfl() - "callout" for Overflow exception enabled code # |
| 835 | # _real_inex() - "callout" for Inexact exception enabled code # |
| 836 | # _real_trace() - "callout" for Trace exception code # |
| 837 | # # |
| 838 | # INPUT *************************************************************** # |
| 839 | # - The system stack contains the FP Unfl exception stack frame # |
| 840 | # - The fsave frame contains the source operand # |
| 841 | # # |
| 842 | # OUTPUT ************************************************************** # |
| 843 | # Underflow Exception enabled: # |
| 844 | # - The system stack is unchanged # |
| 845 | # - The fsave frame contains the adjusted src op for opclass 0,2 # |
| 846 | # Underflow Exception disabled: # |
| 847 | # - The system stack is unchanged # |
| 848 | # - The "exception present" flag in the fsave frame is cleared # |
| 849 | # # |
| 850 | # ALGORITHM *********************************************************** # |
| 851 | # On the 060, if an FP underflow is present as the result of any # |
| 852 | # instruction, the 060 will take an underflow exception whether the # |
| 853 | # exception is enabled or disabled in the FPCR. For the disabled case, # |
| 854 | # This handler emulates the instruction to determine what the correct # |
| 855 | # default result should be for the operation. This default result is # |
| 856 | # then stored in either the FP regfile, data regfile, or memory. # |
| 857 | # Finally, the handler exits through the "callout" _fpsp_done() # |
| 858 | # denoting that no exceptional conditions exist within the machine. # |
| 859 | # If the exception is enabled, then this handler must create the # |
| 860 | # exceptional operand and plave it in the fsave state frame, and store # |
| 861 | # the default result (only if the instruction is opclass 3). For # |
| 862 | # exceptions enabled, this handler must exit through the "callout" # |
| 863 | # _real_unfl() so that the operating system enabled overflow handler # |
| 864 | # can handle this case. # |
| 865 | # Two other conditions exist. First, if underflow was disabled # |
| 866 | # but the inexact exception was enabled and the result was inexact, # |
| 867 | # this handler must exit through the "callout" _real_inex(). # |
| 868 | # was inexact. # |
| 869 | # Also, in the case of an opclass three instruction where # |
| 870 | # underflow was disabled and the trace exception was enabled, this # |
| 871 | # handler must exit through the "callout" _real_trace(). # |
| 872 | # # |
| 873 | ######################################################################### |
| 874 | |
| 875 | global _fpsp_unfl |
| 876 | _fpsp_unfl: |
| 877 | |
| 878 | #$# sub.l &24,%sp # make room for src/dst |
| 879 | |
| 880 | link.w %a6,&-LOCAL_SIZE # init stack frame |
| 881 | |
| 882 | fsave FP_SRC(%a6) # grab the "busy" frame |
| 883 | |
| 884 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 885 | fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs |
| 886 | fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack |
| 887 | |
| 888 | # the FPIAR holds the "current PC" of the faulting instruction |
| 889 | mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) |
| 890 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 891 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 892 | bsr.l _imem_read_long # fetch the instruction words |
| 893 | mov.l %d0,EXC_OPWORD(%a6) |
| 894 | |
| 895 | ############################################################################## |
| 896 | |
| 897 | btst &0x5,EXC_CMDREG(%a6) # is instr an fmove out? |
| 898 | bne.w funfl_out |
| 899 | |
| 900 | |
| 901 | lea FP_SRC(%a6),%a0 # pass: ptr to src op |
| 902 | bsr.l fix_skewed_ops # fix src op |
| 903 | |
| 904 | lea FP_SRC(%a6),%a0 # pass: ptr to src op |
| 905 | bsr.l set_tag_x # tag the operand type |
| 906 | mov.b %d0,STAG(%a6) # maybe NORM,DENORM |
| 907 | |
| 908 | # bit five of the fp ext word separates the monadic and dyadic operations |
| 909 | # that can pass through fpsp_unfl(). remember that fcmp, and ftst |
| 910 | # will never take this exception. |
| 911 | btst &0x5,1+EXC_CMDREG(%a6) # is op monadic or dyadic? |
| 912 | beq.b funfl_extract # monadic |
| 913 | |
| 914 | # now, what's left that's not dyadic is fsincos. we can distinguish it |
| 915 | # from all dyadics by the '0110xxx pattern |
| 916 | btst &0x4,1+EXC_CMDREG(%a6) # is op an fsincos? |
| 917 | bne.b funfl_extract # yes |
| 918 | |
| 919 | bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg |
| 920 | bsr.l load_fpn2 # load dst into FP_DST |
| 921 | |
| 922 | lea FP_DST(%a6),%a0 # pass: ptr to dst op |
| 923 | bsr.l set_tag_x # tag the operand type |
| 924 | cmpi.b %d0,&UNNORM # is operand an UNNORM? |
| 925 | bne.b funfl_op2_done # no |
| 926 | bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO |
| 927 | funfl_op2_done: |
| 928 | mov.b %d0,DTAG(%a6) # save dst optype tag |
| 929 | |
| 930 | funfl_extract: |
| 931 | |
| 932 | #$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) |
| 933 | #$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) |
| 934 | #$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) |
| 935 | #$# mov.l FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6) |
| 936 | #$# mov.l FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6) |
| 937 | #$# mov.l FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6) |
| 938 | |
| 939 | clr.l %d0 |
| 940 | mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode |
| 941 | |
| 942 | mov.b 1+EXC_CMDREG(%a6),%d1 |
| 943 | andi.w &0x007f,%d1 # extract extension |
| 944 | |
| 945 | andi.l &0x00ff01ff,USER_FPSR(%a6) |
| 946 | |
| 947 | fmov.l &0x0,%fpcr # zero current control regs |
| 948 | fmov.l &0x0,%fpsr |
| 949 | |
| 950 | lea FP_SRC(%a6),%a0 |
| 951 | lea FP_DST(%a6),%a1 |
| 952 | |
| 953 | # maybe we can make these entry points ONLY the OVFL entry points of each routine. |
| 954 | mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr |
| 955 | jsr (tbl_unsupp.l,%pc,%d1.l*1) |
| 956 | |
| 957 | bfextu EXC_CMDREG(%a6){&6:&3},%d0 |
| 958 | bsr.l store_fpreg |
| 959 | |
| 960 | # The `060 FPU multiplier hardware is such that if the result of a |
| 961 | # multiply operation is the smallest possible normalized number |
| 962 | # (0x00000000_80000000_00000000), then the machine will take an |
| 963 | # underflow exception. Since this is incorrect, we need to check |
| 964 | # if our emulation, after re-doing the operation, decided that |
| 965 | # no underflow was called for. We do these checks only in |
| 966 | # funfl_{unfl,inex}_on() because w/ both exceptions disabled, this |
| 967 | # special case will simply exit gracefully with the correct result. |
| 968 | |
| 969 | # the exceptional possibilities we have left ourselves with are ONLY overflow |
| 970 | # and inexact. and, the inexact is such that overflow occurred and was disabled |
| 971 | # but inexact was enabled. |
| 972 | btst &unfl_bit,FPCR_ENABLE(%a6) |
| 973 | bne.b funfl_unfl_on |
| 974 | |
| 975 | funfl_chkinex: |
| 976 | btst &inex2_bit,FPCR_ENABLE(%a6) |
| 977 | bne.b funfl_inex_on |
| 978 | |
| 979 | funfl_exit: |
| 980 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| 981 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 982 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 983 | |
| 984 | unlk %a6 |
| 985 | #$# add.l &24,%sp |
| 986 | bra.l _fpsp_done |
| 987 | |
| 988 | # overflow is enabled AND overflow, of course, occurred. so, we have the EXOP |
| 989 | # in fp1 (don't forget to save fp0). what to do now? |
| 990 | # well, we simply have to get to go to _real_unfl()! |
| 991 | funfl_unfl_on: |
| 992 | |
| 993 | # The `060 FPU multiplier hardware is such that if the result of a |
| 994 | # multiply operation is the smallest possible normalized number |
| 995 | # (0x00000000_80000000_00000000), then the machine will take an |
| 996 | # underflow exception. Since this is incorrect, we check here to see |
| 997 | # if our emulation, after re-doing the operation, decided that |
| 998 | # no underflow was called for. |
| 999 | btst &unfl_bit,FPSR_EXCEPT(%a6) |
| 1000 | beq.w funfl_chkinex |
| 1001 | |
| 1002 | funfl_unfl_on2: |
| 1003 | fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack |
| 1004 | |
| 1005 | mov.w &0xe003,2+FP_SRC(%a6) # save exc status |
| 1006 | |
| 1007 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| 1008 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 1009 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1010 | |
| 1011 | frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! |
| 1012 | |
| 1013 | unlk %a6 |
| 1014 | |
| 1015 | bra.l _real_unfl |
| 1016 | |
| 1017 | # undeflow occurred but is disabled. meanwhile, inexact is enabled. therefore, |
| 1018 | # we must jump to real_inex(). |
| 1019 | funfl_inex_on: |
| 1020 | |
| 1021 | # The `060 FPU multiplier hardware is such that if the result of a |
| 1022 | # multiply operation is the smallest possible normalized number |
| 1023 | # (0x00000000_80000000_00000000), then the machine will take an |
| 1024 | # underflow exception. |
| 1025 | # But, whether bogus or not, if inexact is enabled AND it occurred, |
| 1026 | # then we have to branch to real_inex. |
| 1027 | |
| 1028 | btst &inex2_bit,FPSR_EXCEPT(%a6) |
| 1029 | beq.w funfl_exit |
| 1030 | |
| 1031 | funfl_inex_on2: |
| 1032 | |
| 1033 | fmovm.x &0x40,FP_SRC(%a6) # save EXOP to stack |
| 1034 | |
| 1035 | mov.b &0xc4,1+EXC_VOFF(%a6) # vector offset = 0xc4 |
| 1036 | mov.w &0xe001,2+FP_SRC(%a6) # save exc status |
| 1037 | |
| 1038 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| 1039 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 1040 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1041 | |
| 1042 | frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! |
| 1043 | |
| 1044 | unlk %a6 |
| 1045 | |
| 1046 | bra.l _real_inex |
| 1047 | |
| 1048 | ####################################################################### |
| 1049 | funfl_out: |
| 1050 | |
| 1051 | |
| 1052 | #$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) |
| 1053 | #$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) |
| 1054 | #$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) |
| 1055 | |
| 1056 | # the src operand is definitely a NORM(!), so tag it as such |
| 1057 | mov.b &NORM,STAG(%a6) # set src optype tag |
| 1058 | |
| 1059 | clr.l %d0 |
| 1060 | mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode |
| 1061 | |
| 1062 | and.l &0xffff00ff,USER_FPSR(%a6) # zero all but accured field |
| 1063 | |
| 1064 | fmov.l &0x0,%fpcr # zero current control regs |
| 1065 | fmov.l &0x0,%fpsr |
| 1066 | |
| 1067 | lea FP_SRC(%a6),%a0 # pass ptr to src operand |
| 1068 | |
| 1069 | bsr.l fout |
| 1070 | |
| 1071 | btst &unfl_bit,FPCR_ENABLE(%a6) |
| 1072 | bne.w funfl_unfl_on2 |
| 1073 | |
| 1074 | btst &inex2_bit,FPCR_ENABLE(%a6) |
| 1075 | bne.w funfl_inex_on2 |
| 1076 | |
| 1077 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| 1078 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 1079 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1080 | |
| 1081 | unlk %a6 |
| 1082 | #$# add.l &24,%sp |
| 1083 | |
| 1084 | btst &0x7,(%sp) # is trace on? |
| 1085 | beq.l _fpsp_done # no |
| 1086 | |
| 1087 | fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR |
| 1088 | mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024 |
| 1089 | bra.l _real_trace |
| 1090 | |
| 1091 | ######################################################################### |
| 1092 | # XDEF **************************************************************** # |
| 1093 | # _fpsp_unsupp(): 060FPSP entry point for FP "Unimplemented # |
| 1094 | # Data Type" exception. # |
| 1095 | # # |
| 1096 | # This handler should be the first code executed upon taking the # |
| 1097 | # FP Unimplemented Data Type exception in an operating system. # |
| 1098 | # # |
| 1099 | # XREF **************************************************************** # |
| 1100 | # _imem_read_{word,long}() - read instruction word/longword # |
| 1101 | # fix_skewed_ops() - adjust src operand in fsave frame # |
| 1102 | # set_tag_x() - determine optype of src/dst operands # |
| 1103 | # store_fpreg() - store opclass 0 or 2 result to FP regfile # |
| 1104 | # unnorm_fix() - change UNNORM operands to NORM or ZERO # |
| 1105 | # load_fpn2() - load dst operand from FP regfile # |
| 1106 | # load_fpn1() - load src operand from FP regfile # |
| 1107 | # fout() - emulate an opclass 3 instruction # |
| 1108 | # tbl_unsupp - add of table of emulation routines for opclass 0,2 # |
| 1109 | # _real_inex() - "callout" to operating system inexact handler # |
| 1110 | # _fpsp_done() - "callout" for exit; work all done # |
| 1111 | # _real_trace() - "callout" for Trace enabled exception # |
| 1112 | # funimp_skew() - adjust fsave src ops to "incorrect" value # |
| 1113 | # _real_snan() - "callout" for SNAN exception # |
| 1114 | # _real_operr() - "callout" for OPERR exception # |
| 1115 | # _real_ovfl() - "callout" for OVFL exception # |
| 1116 | # _real_unfl() - "callout" for UNFL exception # |
| 1117 | # get_packed() - fetch packed operand from memory # |
| 1118 | # # |
| 1119 | # INPUT *************************************************************** # |
| 1120 | # - The system stack contains the "Unimp Data Type" stk frame # |
| 1121 | # - The fsave frame contains the ssrc op (for UNNORM/DENORM) # |
| 1122 | # # |
| 1123 | # OUTPUT ************************************************************** # |
| 1124 | # If Inexact exception (opclass 3): # |
| 1125 | # - The system stack is changed to an Inexact exception stk frame # |
| 1126 | # If SNAN exception (opclass 3): # |
| 1127 | # - The system stack is changed to an SNAN exception stk frame # |
| 1128 | # If OPERR exception (opclass 3): # |
| 1129 | # - The system stack is changed to an OPERR exception stk frame # |
| 1130 | # If OVFL exception (opclass 3): # |
| 1131 | # - The system stack is changed to an OVFL exception stk frame # |
| 1132 | # If UNFL exception (opclass 3): # |
| 1133 | # - The system stack is changed to an UNFL exception stack frame # |
| 1134 | # If Trace exception enabled: # |
| 1135 | # - The system stack is changed to a Trace exception stack frame # |
| 1136 | # Else: (normal case) # |
| 1137 | # - Correct result has been stored as appropriate # |
| 1138 | # # |
| 1139 | # ALGORITHM *********************************************************** # |
| 1140 | # Two main instruction types can enter here: (1) DENORM or UNNORM # |
| 1141 | # unimplemented data types. These can be either opclass 0,2 or 3 # |
| 1142 | # instructions, and (2) PACKED unimplemented data format instructions # |
| 1143 | # also of opclasses 0,2, or 3. # |
| 1144 | # For UNNORM/DENORM opclass 0 and 2, the handler fetches the src # |
| 1145 | # operand from the fsave state frame and the dst operand (if dyadic) # |
| 1146 | # from the FP register file. The instruction is then emulated by # |
| 1147 | # choosing an emulation routine from a table of routines indexed by # |
| 1148 | # instruction type. Once the instruction has been emulated and result # |
| 1149 | # saved, then we check to see if any enabled exceptions resulted from # |
| 1150 | # instruction emulation. If none, then we exit through the "callout" # |
| 1151 | # _fpsp_done(). If there is an enabled FP exception, then we insert # |
| 1152 | # this exception into the FPU in the fsave state frame and then exit # |
| 1153 | # through _fpsp_done(). # |
| 1154 | # PACKED opclass 0 and 2 is similar in how the instruction is # |
| 1155 | # emulated and exceptions handled. The differences occur in how the # |
| 1156 | # handler loads the packed op (by calling get_packed() routine) and # |
| 1157 | # by the fact that a Trace exception could be pending for PACKED ops. # |
| 1158 | # If a Trace exception is pending, then the current exception stack # |
| 1159 | # frame is changed to a Trace exception stack frame and an exit is # |
| 1160 | # made through _real_trace(). # |
| 1161 | # For UNNORM/DENORM opclass 3, the actual move out to memory is # |
| 1162 | # performed by calling the routine fout(). If no exception should occur # |
| 1163 | # as the result of emulation, then an exit either occurs through # |
| 1164 | # _fpsp_done() or through _real_trace() if a Trace exception is pending # |
| 1165 | # (a Trace stack frame must be created here, too). If an FP exception # |
| 1166 | # should occur, then we must create an exception stack frame of that # |
| 1167 | # type and jump to either _real_snan(), _real_operr(), _real_inex(), # |
| 1168 | # _real_unfl(), or _real_ovfl() as appropriate. PACKED opclass 3 # |
| 1169 | # emulation is performed in a similar manner. # |
| 1170 | # # |
| 1171 | ######################################################################### |
| 1172 | |
| 1173 | # |
| 1174 | # (1) DENORM and UNNORM (unimplemented) data types: |
| 1175 | # |
| 1176 | # post-instruction |
| 1177 | # ***************** |
| 1178 | # * EA * |
| 1179 | # pre-instruction * * |
| 1180 | # ***************** ***************** |
| 1181 | # * 0x0 * 0x0dc * * 0x3 * 0x0dc * |
| 1182 | # ***************** ***************** |
| 1183 | # * Next * * Next * |
| 1184 | # * PC * * PC * |
| 1185 | # ***************** ***************** |
| 1186 | # * SR * * SR * |
| 1187 | # ***************** ***************** |
| 1188 | # |
| 1189 | # (2) PACKED format (unsupported) opclasses two and three: |
| 1190 | # ***************** |
| 1191 | # * EA * |
| 1192 | # * * |
| 1193 | # ***************** |
| 1194 | # * 0x2 * 0x0dc * |
| 1195 | # ***************** |
| 1196 | # * Next * |
| 1197 | # * PC * |
| 1198 | # ***************** |
| 1199 | # * SR * |
| 1200 | # ***************** |
| 1201 | # |
| 1202 | global _fpsp_unsupp |
| 1203 | _fpsp_unsupp: |
| 1204 | |
| 1205 | link.w %a6,&-LOCAL_SIZE # init stack frame |
| 1206 | |
| 1207 | fsave FP_SRC(%a6) # save fp state |
| 1208 | |
| 1209 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 1210 | fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs |
| 1211 | fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack |
| 1212 | |
| 1213 | btst &0x5,EXC_SR(%a6) # user or supervisor mode? |
| 1214 | bne.b fu_s |
| 1215 | fu_u: |
| 1216 | mov.l %usp,%a0 # fetch user stack pointer |
| 1217 | mov.l %a0,EXC_A7(%a6) # save on stack |
| 1218 | bra.b fu_cont |
| 1219 | # if the exception is an opclass zero or two unimplemented data type |
| 1220 | # exception, then the a7' calculated here is wrong since it doesn't |
| 1221 | # stack an ea. however, we don't need an a7' for this case anyways. |
| 1222 | fu_s: |
| 1223 | lea 0x4+EXC_EA(%a6),%a0 # load old a7' |
| 1224 | mov.l %a0,EXC_A7(%a6) # save on stack |
| 1225 | |
| 1226 | fu_cont: |
| 1227 | |
| 1228 | # the FPIAR holds the "current PC" of the faulting instruction |
| 1229 | # the FPIAR should be set correctly for ALL exceptions passing through |
| 1230 | # this point. |
| 1231 | mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) |
| 1232 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 1233 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 1234 | bsr.l _imem_read_long # fetch the instruction words |
| 1235 | mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD |
| 1236 | |
| 1237 | ############################ |
| 1238 | |
| 1239 | clr.b SPCOND_FLG(%a6) # clear special condition flag |
| 1240 | |
| 1241 | # Separate opclass three (fpn-to-mem) ops since they have a different |
| 1242 | # stack frame and protocol. |
| 1243 | btst &0x5,EXC_CMDREG(%a6) # is it an fmove out? |
| 1244 | bne.w fu_out # yes |
| 1245 | |
| 1246 | # Separate packed opclass two instructions. |
| 1247 | bfextu EXC_CMDREG(%a6){&0:&6},%d0 |
| 1248 | cmpi.b %d0,&0x13 |
| 1249 | beq.w fu_in_pack |
| 1250 | |
| 1251 | |
| 1252 | # I'm not sure at this point what FPSR bits are valid for this instruction. |
| 1253 | # so, since the emulation routines re-create them anyways, zero exception field |
| 1254 | andi.l &0x00ff00ff,USER_FPSR(%a6) # zero exception field |
| 1255 | |
| 1256 | fmov.l &0x0,%fpcr # zero current control regs |
| 1257 | fmov.l &0x0,%fpsr |
| 1258 | |
| 1259 | # Opclass two w/ memory-to-fpn operation will have an incorrect extended |
| 1260 | # precision format if the src format was single or double and the |
| 1261 | # source data type was an INF, NAN, DENORM, or UNNORM |
| 1262 | lea FP_SRC(%a6),%a0 # pass ptr to input |
| 1263 | bsr.l fix_skewed_ops |
| 1264 | |
| 1265 | # we don't know whether the src operand or the dst operand (or both) is the |
| 1266 | # UNNORM or DENORM. call the function that tags the operand type. if the |
| 1267 | # input is an UNNORM, then convert it to a NORM, DENORM, or ZERO. |
| 1268 | lea FP_SRC(%a6),%a0 # pass: ptr to src op |
| 1269 | bsr.l set_tag_x # tag the operand type |
| 1270 | cmpi.b %d0,&UNNORM # is operand an UNNORM? |
| 1271 | bne.b fu_op2 # no |
| 1272 | bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO |
| 1273 | |
| 1274 | fu_op2: |
| 1275 | mov.b %d0,STAG(%a6) # save src optype tag |
| 1276 | |
| 1277 | bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg |
| 1278 | |
| 1279 | # bit five of the fp extension word separates the monadic and dyadic operations |
| 1280 | # at this point |
| 1281 | btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? |
| 1282 | beq.b fu_extract # monadic |
| 1283 | cmpi.b 1+EXC_CMDREG(%a6),&0x3a # is operation an ftst? |
| 1284 | beq.b fu_extract # yes, so it's monadic, too |
| 1285 | |
| 1286 | bsr.l load_fpn2 # load dst into FP_DST |
| 1287 | |
| 1288 | lea FP_DST(%a6),%a0 # pass: ptr to dst op |
| 1289 | bsr.l set_tag_x # tag the operand type |
| 1290 | cmpi.b %d0,&UNNORM # is operand an UNNORM? |
| 1291 | bne.b fu_op2_done # no |
| 1292 | bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO |
| 1293 | fu_op2_done: |
| 1294 | mov.b %d0,DTAG(%a6) # save dst optype tag |
| 1295 | |
| 1296 | fu_extract: |
| 1297 | clr.l %d0 |
| 1298 | mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec |
| 1299 | |
| 1300 | bfextu 1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension |
| 1301 | |
| 1302 | lea FP_SRC(%a6),%a0 |
| 1303 | lea FP_DST(%a6),%a1 |
| 1304 | |
| 1305 | mov.l (tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr |
| 1306 | jsr (tbl_unsupp.l,%pc,%d1.l*1) |
| 1307 | |
| 1308 | # |
| 1309 | # Exceptions in order of precedence: |
| 1310 | # BSUN : none |
| 1311 | # SNAN : all dyadic ops |
| 1312 | # OPERR : fsqrt(-NORM) |
| 1313 | # OVFL : all except ftst,fcmp |
| 1314 | # UNFL : all except ftst,fcmp |
| 1315 | # DZ : fdiv |
| 1316 | # INEX2 : all except ftst,fcmp |
| 1317 | # INEX1 : none (packed doesn't go through here) |
| 1318 | # |
| 1319 | |
| 1320 | # we determine the highest priority exception(if any) set by the |
| 1321 | # emulation routine that has also been enabled by the user. |
| 1322 | mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions set |
| 1323 | bne.b fu_in_ena # some are enabled |
| 1324 | |
| 1325 | fu_in_cont: |
| 1326 | # fcmp and ftst do not store any result. |
| 1327 | mov.b 1+EXC_CMDREG(%a6),%d0 # fetch extension |
| 1328 | andi.b &0x38,%d0 # extract bits 3-5 |
| 1329 | cmpi.b %d0,&0x38 # is instr fcmp or ftst? |
| 1330 | beq.b fu_in_exit # yes |
| 1331 | |
| 1332 | bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg |
| 1333 | bsr.l store_fpreg # store the result |
| 1334 | |
| 1335 | fu_in_exit: |
| 1336 | |
| 1337 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| 1338 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 1339 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1340 | |
| 1341 | unlk %a6 |
| 1342 | |
| 1343 | bra.l _fpsp_done |
| 1344 | |
| 1345 | fu_in_ena: |
| 1346 | and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled |
| 1347 | bfffo %d0{&24:&8},%d0 # find highest priority exception |
| 1348 | bne.b fu_in_exc # there is at least one set |
| 1349 | |
| 1350 | # |
| 1351 | # No exceptions occurred that were also enabled. Now: |
| 1352 | # |
| 1353 | # if (OVFL && ovfl_disabled && inexact_enabled) { |
| 1354 | # branch to _real_inex() (even if the result was exact!); |
| 1355 | # } else { |
| 1356 | # save the result in the proper fp reg (unless the op is fcmp or ftst); |
| 1357 | # return; |
| 1358 | # } |
| 1359 | # |
| 1360 | btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? |
| 1361 | beq.b fu_in_cont # no |
| 1362 | |
| 1363 | fu_in_ovflchk: |
| 1364 | btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? |
| 1365 | beq.b fu_in_cont # no |
| 1366 | bra.w fu_in_exc_ovfl # go insert overflow frame |
| 1367 | |
| 1368 | # |
| 1369 | # An exception occurred and that exception was enabled: |
| 1370 | # |
| 1371 | # shift enabled exception field into lo byte of d0; |
| 1372 | # if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) || |
| 1373 | # ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) { |
| 1374 | # /* |
| 1375 | # * this is the case where we must call _real_inex() now or else |
| 1376 | # * there will be no other way to pass it the exceptional operand |
| 1377 | # */ |
| 1378 | # call _real_inex(); |
| 1379 | # } else { |
| 1380 | # restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU; |
| 1381 | # } |
| 1382 | # |
| 1383 | fu_in_exc: |
| 1384 | subi.l &24,%d0 # fix offset to be 0-8 |
| 1385 | cmpi.b %d0,&0x6 # is exception INEX? (6) |
| 1386 | bne.b fu_in_exc_exit # no |
| 1387 | |
| 1388 | # the enabled exception was inexact |
| 1389 | btst &unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur? |
| 1390 | bne.w fu_in_exc_unfl # yes |
| 1391 | btst &ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur? |
| 1392 | bne.w fu_in_exc_ovfl # yes |
| 1393 | |
| 1394 | # here, we insert the correct fsave status value into the fsave frame for the |
| 1395 | # corresponding exception. the operand in the fsave frame should be the original |
| 1396 | # src operand. |
| 1397 | fu_in_exc_exit: |
| 1398 | mov.l %d0,-(%sp) # save d0 |
| 1399 | bsr.l funimp_skew # skew sgl or dbl inputs |
| 1400 | mov.l (%sp)+,%d0 # restore d0 |
| 1401 | |
| 1402 | mov.w (tbl_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) # create exc status |
| 1403 | |
| 1404 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| 1405 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 1406 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1407 | |
| 1408 | frestore FP_SRC(%a6) # restore src op |
| 1409 | |
| 1410 | unlk %a6 |
| 1411 | |
| 1412 | bra.l _fpsp_done |
| 1413 | |
| 1414 | tbl_except: |
| 1415 | short 0xe000,0xe006,0xe004,0xe005 |
| 1416 | short 0xe003,0xe002,0xe001,0xe001 |
| 1417 | |
| 1418 | fu_in_exc_unfl: |
| 1419 | mov.w &0x4,%d0 |
| 1420 | bra.b fu_in_exc_exit |
| 1421 | fu_in_exc_ovfl: |
| 1422 | mov.w &0x03,%d0 |
| 1423 | bra.b fu_in_exc_exit |
| 1424 | |
| 1425 | # If the input operand to this operation was opclass two and a single |
| 1426 | # or double precision denorm, inf, or nan, the operand needs to be |
| 1427 | # "corrected" in order to have the proper equivalent extended precision |
| 1428 | # number. |
| 1429 | global fix_skewed_ops |
| 1430 | fix_skewed_ops: |
| 1431 | bfextu EXC_CMDREG(%a6){&0:&6},%d0 # extract opclass,src fmt |
| 1432 | cmpi.b %d0,&0x11 # is class = 2 & fmt = sgl? |
| 1433 | beq.b fso_sgl # yes |
| 1434 | cmpi.b %d0,&0x15 # is class = 2 & fmt = dbl? |
| 1435 | beq.b fso_dbl # yes |
| 1436 | rts # no |
| 1437 | |
| 1438 | fso_sgl: |
| 1439 | mov.w LOCAL_EX(%a0),%d0 # fetch src exponent |
| 1440 | andi.w &0x7fff,%d0 # strip sign |
| 1441 | cmpi.w %d0,&0x3f80 # is |exp| == $3f80? |
| 1442 | beq.b fso_sgl_dnrm_zero # yes |
| 1443 | cmpi.w %d0,&0x407f # no; is |exp| == $407f? |
| 1444 | beq.b fso_infnan # yes |
| 1445 | rts # no |
| 1446 | |
| 1447 | fso_sgl_dnrm_zero: |
| 1448 | andi.l &0x7fffffff,LOCAL_HI(%a0) # clear j-bit |
| 1449 | beq.b fso_zero # it's a skewed zero |
| 1450 | fso_sgl_dnrm: |
| 1451 | # here, we count on norm not to alter a0... |
| 1452 | bsr.l norm # normalize mantissa |
| 1453 | neg.w %d0 # -shft amt |
| 1454 | addi.w &0x3f81,%d0 # adjust new exponent |
| 1455 | andi.w &0x8000,LOCAL_EX(%a0) # clear old exponent |
| 1456 | or.w %d0,LOCAL_EX(%a0) # insert new exponent |
| 1457 | rts |
| 1458 | |
| 1459 | fso_zero: |
| 1460 | andi.w &0x8000,LOCAL_EX(%a0) # clear bogus exponent |
| 1461 | rts |
| 1462 | |
| 1463 | fso_infnan: |
| 1464 | andi.b &0x7f,LOCAL_HI(%a0) # clear j-bit |
| 1465 | ori.w &0x7fff,LOCAL_EX(%a0) # make exponent = $7fff |
| 1466 | rts |
| 1467 | |
| 1468 | fso_dbl: |
| 1469 | mov.w LOCAL_EX(%a0),%d0 # fetch src exponent |
| 1470 | andi.w &0x7fff,%d0 # strip sign |
| 1471 | cmpi.w %d0,&0x3c00 # is |exp| == $3c00? |
| 1472 | beq.b fso_dbl_dnrm_zero # yes |
| 1473 | cmpi.w %d0,&0x43ff # no; is |exp| == $43ff? |
| 1474 | beq.b fso_infnan # yes |
| 1475 | rts # no |
| 1476 | |
| 1477 | fso_dbl_dnrm_zero: |
| 1478 | andi.l &0x7fffffff,LOCAL_HI(%a0) # clear j-bit |
| 1479 | bne.b fso_dbl_dnrm # it's a skewed denorm |
| 1480 | tst.l LOCAL_LO(%a0) # is it a zero? |
| 1481 | beq.b fso_zero # yes |
| 1482 | fso_dbl_dnrm: |
| 1483 | # here, we count on norm not to alter a0... |
| 1484 | bsr.l norm # normalize mantissa |
| 1485 | neg.w %d0 # -shft amt |
| 1486 | addi.w &0x3c01,%d0 # adjust new exponent |
| 1487 | andi.w &0x8000,LOCAL_EX(%a0) # clear old exponent |
| 1488 | or.w %d0,LOCAL_EX(%a0) # insert new exponent |
| 1489 | rts |
| 1490 | |
| 1491 | ################################################################# |
| 1492 | |
| 1493 | # fmove out took an unimplemented data type exception. |
| 1494 | # the src operand is in FP_SRC. Call _fout() to write out the result and |
| 1495 | # to determine which exceptions, if any, to take. |
| 1496 | fu_out: |
| 1497 | |
| 1498 | # Separate packed move outs from the UNNORM and DENORM move outs. |
| 1499 | bfextu EXC_CMDREG(%a6){&3:&3},%d0 |
| 1500 | cmpi.b %d0,&0x3 |
| 1501 | beq.w fu_out_pack |
| 1502 | cmpi.b %d0,&0x7 |
| 1503 | beq.w fu_out_pack |
| 1504 | |
| 1505 | |
| 1506 | # I'm not sure at this point what FPSR bits are valid for this instruction. |
| 1507 | # so, since the emulation routines re-create them anyways, zero exception field. |
| 1508 | # fmove out doesn't affect ccodes. |
| 1509 | and.l &0xffff00ff,USER_FPSR(%a6) # zero exception field |
| 1510 | |
| 1511 | fmov.l &0x0,%fpcr # zero current control regs |
| 1512 | fmov.l &0x0,%fpsr |
| 1513 | |
| 1514 | # the src can ONLY be a DENORM or an UNNORM! so, don't make any big subroutine |
| 1515 | # call here. just figure out what it is... |
| 1516 | mov.w FP_SRC_EX(%a6),%d0 # get exponent |
| 1517 | andi.w &0x7fff,%d0 # strip sign |
| 1518 | beq.b fu_out_denorm # it's a DENORM |
| 1519 | |
| 1520 | lea FP_SRC(%a6),%a0 |
| 1521 | bsr.l unnorm_fix # yes; fix it |
| 1522 | |
| 1523 | mov.b %d0,STAG(%a6) |
| 1524 | |
| 1525 | bra.b fu_out_cont |
| 1526 | fu_out_denorm: |
| 1527 | mov.b &DENORM,STAG(%a6) |
| 1528 | fu_out_cont: |
| 1529 | |
| 1530 | clr.l %d0 |
| 1531 | mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec |
| 1532 | |
| 1533 | lea FP_SRC(%a6),%a0 # pass ptr to src operand |
| 1534 | |
| 1535 | mov.l (%a6),EXC_A6(%a6) # in case a6 changes |
| 1536 | bsr.l fout # call fmove out routine |
| 1537 | |
| 1538 | # Exceptions in order of precedence: |
| 1539 | # BSUN : none |
| 1540 | # SNAN : none |
| 1541 | # OPERR : fmove.{b,w,l} out of large UNNORM |
| 1542 | # OVFL : fmove.{s,d} |
| 1543 | # UNFL : fmove.{s,d,x} |
| 1544 | # DZ : none |
| 1545 | # INEX2 : all |
| 1546 | # INEX1 : none (packed doesn't travel through here) |
| 1547 | |
| 1548 | # determine the highest priority exception(if any) set by the |
| 1549 | # emulation routine that has also been enabled by the user. |
| 1550 | mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled |
| 1551 | bne.w fu_out_ena # some are enabled |
| 1552 | |
| 1553 | fu_out_done: |
| 1554 | |
| 1555 | mov.l EXC_A6(%a6),(%a6) # in case a6 changed |
| 1556 | |
| 1557 | # on extended precision opclass three instructions using pre-decrement or |
| 1558 | # post-increment addressing mode, the address register is not updated. is the |
| 1559 | # address register was the stack pointer used from user mode, then let's update |
| 1560 | # it here. if it was used from supervisor mode, then we have to handle this |
| 1561 | # as a special case. |
| 1562 | btst &0x5,EXC_SR(%a6) |
| 1563 | bne.b fu_out_done_s |
| 1564 | |
| 1565 | mov.l EXC_A7(%a6),%a0 # restore a7 |
| 1566 | mov.l %a0,%usp |
| 1567 | |
| 1568 | fu_out_done_cont: |
| 1569 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| 1570 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 1571 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1572 | |
| 1573 | unlk %a6 |
| 1574 | |
| 1575 | btst &0x7,(%sp) # is trace on? |
| 1576 | bne.b fu_out_trace # yes |
| 1577 | |
| 1578 | bra.l _fpsp_done |
| 1579 | |
| 1580 | # is the ea mode pre-decrement of the stack pointer from supervisor mode? |
| 1581 | # ("fmov.x fpm,-(a7)") if so, |
| 1582 | fu_out_done_s: |
| 1583 | cmpi.b SPCOND_FLG(%a6),&mda7_flg |
| 1584 | bne.b fu_out_done_cont |
| 1585 | |
| 1586 | # the extended precision result is still in fp0. but, we need to save it |
| 1587 | # somewhere on the stack until we can copy it to its final resting place. |
| 1588 | # here, we're counting on the top of the stack to be the old place-holders |
| 1589 | # for fp0/fp1 which have already been restored. that way, we can write |
| 1590 | # over those destinations with the shifted stack frame. |
| 1591 | fmovm.x &0x80,FP_SRC(%a6) # put answer on stack |
| 1592 | |
| 1593 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| 1594 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 1595 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1596 | |
| 1597 | mov.l (%a6),%a6 # restore frame pointer |
| 1598 | |
| 1599 | mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) |
| 1600 | mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) |
| 1601 | |
| 1602 | # now, copy the result to the proper place on the stack |
| 1603 | mov.l LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) |
| 1604 | mov.l LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) |
| 1605 | mov.l LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) |
| 1606 | |
| 1607 | add.l &LOCAL_SIZE-0x8,%sp |
| 1608 | |
| 1609 | btst &0x7,(%sp) |
| 1610 | bne.b fu_out_trace |
| 1611 | |
| 1612 | bra.l _fpsp_done |
| 1613 | |
| 1614 | fu_out_ena: |
| 1615 | and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled |
| 1616 | bfffo %d0{&24:&8},%d0 # find highest priority exception |
| 1617 | bne.b fu_out_exc # there is at least one set |
| 1618 | |
| 1619 | # no exceptions were set. |
| 1620 | # if a disabled overflow occurred and inexact was enabled but the result |
| 1621 | # was exact, then a branch to _real_inex() is made. |
| 1622 | btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? |
| 1623 | beq.w fu_out_done # no |
| 1624 | |
| 1625 | fu_out_ovflchk: |
| 1626 | btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? |
| 1627 | beq.w fu_out_done # no |
| 1628 | bra.w fu_inex # yes |
| 1629 | |
| 1630 | # |
| 1631 | # The fp move out that took the "Unimplemented Data Type" exception was |
| 1632 | # being traced. Since the stack frames are similar, get the "current" PC |
| 1633 | # from FPIAR and put it in the trace stack frame then jump to _real_trace(). |
| 1634 | # |
| 1635 | # UNSUPP FRAME TRACE FRAME |
| 1636 | # ***************** ***************** |
| 1637 | # * EA * * Current * |
| 1638 | # * * * PC * |
| 1639 | # ***************** ***************** |
| 1640 | # * 0x3 * 0x0dc * * 0x2 * 0x024 * |
| 1641 | # ***************** ***************** |
| 1642 | # * Next * * Next * |
| 1643 | # * PC * * PC * |
| 1644 | # ***************** ***************** |
| 1645 | # * SR * * SR * |
| 1646 | # ***************** ***************** |
| 1647 | # |
| 1648 | fu_out_trace: |
| 1649 | mov.w &0x2024,0x6(%sp) |
| 1650 | fmov.l %fpiar,0x8(%sp) |
| 1651 | bra.l _real_trace |
| 1652 | |
| 1653 | # an exception occurred and that exception was enabled. |
| 1654 | fu_out_exc: |
| 1655 | subi.l &24,%d0 # fix offset to be 0-8 |
| 1656 | |
| 1657 | # we don't mess with the existing fsave frame. just re-insert it and |
| 1658 | # jump to the "_real_{}()" handler... |
| 1659 | mov.w (tbl_fu_out.b,%pc,%d0.w*2),%d0 |
| 1660 | jmp (tbl_fu_out.b,%pc,%d0.w*1) |
| 1661 | |
| 1662 | swbeg &0x8 |
| 1663 | tbl_fu_out: |
| 1664 | short tbl_fu_out - tbl_fu_out # BSUN can't happen |
| 1665 | short tbl_fu_out - tbl_fu_out # SNAN can't happen |
| 1666 | short fu_operr - tbl_fu_out # OPERR |
| 1667 | short fu_ovfl - tbl_fu_out # OVFL |
| 1668 | short fu_unfl - tbl_fu_out # UNFL |
| 1669 | short tbl_fu_out - tbl_fu_out # DZ can't happen |
| 1670 | short fu_inex - tbl_fu_out # INEX2 |
| 1671 | short tbl_fu_out - tbl_fu_out # INEX1 won't make it here |
| 1672 | |
| 1673 | # for snan,operr,ovfl,unfl, src op is still in FP_SRC so just |
| 1674 | # frestore it. |
| 1675 | fu_snan: |
| 1676 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| 1677 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 1678 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1679 | |
| 1680 | mov.w &0x30d8,EXC_VOFF(%a6) # vector offset = 0xd8 |
| 1681 | mov.w &0xe006,2+FP_SRC(%a6) |
| 1682 | |
| 1683 | frestore FP_SRC(%a6) |
| 1684 | |
| 1685 | unlk %a6 |
| 1686 | |
| 1687 | |
| 1688 | bra.l _real_snan |
| 1689 | |
| 1690 | fu_operr: |
| 1691 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| 1692 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 1693 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1694 | |
| 1695 | mov.w &0x30d0,EXC_VOFF(%a6) # vector offset = 0xd0 |
| 1696 | mov.w &0xe004,2+FP_SRC(%a6) |
| 1697 | |
| 1698 | frestore FP_SRC(%a6) |
| 1699 | |
| 1700 | unlk %a6 |
| 1701 | |
| 1702 | |
| 1703 | bra.l _real_operr |
| 1704 | |
| 1705 | fu_ovfl: |
| 1706 | fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack |
| 1707 | |
| 1708 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| 1709 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 1710 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1711 | |
| 1712 | mov.w &0x30d4,EXC_VOFF(%a6) # vector offset = 0xd4 |
| 1713 | mov.w &0xe005,2+FP_SRC(%a6) |
| 1714 | |
| 1715 | frestore FP_SRC(%a6) # restore EXOP |
| 1716 | |
| 1717 | unlk %a6 |
| 1718 | |
| 1719 | bra.l _real_ovfl |
| 1720 | |
| 1721 | # underflow can happen for extended precision. extended precision opclass |
| 1722 | # three instruction exceptions don't update the stack pointer. so, if the |
| 1723 | # exception occurred from user mode, then simply update a7 and exit normally. |
| 1724 | # if the exception occurred from supervisor mode, check if |
| 1725 | fu_unfl: |
| 1726 | mov.l EXC_A6(%a6),(%a6) # restore a6 |
| 1727 | |
| 1728 | btst &0x5,EXC_SR(%a6) |
| 1729 | bne.w fu_unfl_s |
| 1730 | |
| 1731 | mov.l EXC_A7(%a6),%a0 # restore a7 whether we need |
| 1732 | mov.l %a0,%usp # to or not... |
| 1733 | |
| 1734 | fu_unfl_cont: |
| 1735 | fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack |
| 1736 | |
| 1737 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| 1738 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 1739 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1740 | |
| 1741 | mov.w &0x30cc,EXC_VOFF(%a6) # vector offset = 0xcc |
| 1742 | mov.w &0xe003,2+FP_SRC(%a6) |
| 1743 | |
| 1744 | frestore FP_SRC(%a6) # restore EXOP |
| 1745 | |
| 1746 | unlk %a6 |
| 1747 | |
| 1748 | bra.l _real_unfl |
| 1749 | |
| 1750 | fu_unfl_s: |
| 1751 | cmpi.b SPCOND_FLG(%a6),&mda7_flg # was the <ea> mode -(sp)? |
| 1752 | bne.b fu_unfl_cont |
| 1753 | |
| 1754 | # the extended precision result is still in fp0. but, we need to save it |
| 1755 | # somewhere on the stack until we can copy it to its final resting place |
| 1756 | # (where the exc frame is currently). make sure it's not at the top of the |
| 1757 | # frame or it will get overwritten when the exc stack frame is shifted "down". |
| 1758 | fmovm.x &0x80,FP_SRC(%a6) # put answer on stack |
| 1759 | fmovm.x &0x40,FP_DST(%a6) # put EXOP on stack |
| 1760 | |
| 1761 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| 1762 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 1763 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1764 | |
| 1765 | mov.w &0x30cc,EXC_VOFF(%a6) # vector offset = 0xcc |
| 1766 | mov.w &0xe003,2+FP_DST(%a6) |
| 1767 | |
| 1768 | frestore FP_DST(%a6) # restore EXOP |
| 1769 | |
| 1770 | mov.l (%a6),%a6 # restore frame pointer |
| 1771 | |
| 1772 | mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) |
| 1773 | mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) |
| 1774 | mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) |
| 1775 | |
| 1776 | # now, copy the result to the proper place on the stack |
| 1777 | mov.l LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) |
| 1778 | mov.l LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) |
| 1779 | mov.l LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) |
| 1780 | |
| 1781 | add.l &LOCAL_SIZE-0x8,%sp |
| 1782 | |
| 1783 | bra.l _real_unfl |
| 1784 | |
| 1785 | # fmove in and out enter here. |
| 1786 | fu_inex: |
| 1787 | fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack |
| 1788 | |
| 1789 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| 1790 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 1791 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1792 | |
| 1793 | mov.w &0x30c4,EXC_VOFF(%a6) # vector offset = 0xc4 |
| 1794 | mov.w &0xe001,2+FP_SRC(%a6) |
| 1795 | |
| 1796 | frestore FP_SRC(%a6) # restore EXOP |
| 1797 | |
| 1798 | unlk %a6 |
| 1799 | |
| 1800 | |
| 1801 | bra.l _real_inex |
| 1802 | |
| 1803 | ######################################################################### |
| 1804 | ######################################################################### |
| 1805 | fu_in_pack: |
| 1806 | |
| 1807 | |
| 1808 | # I'm not sure at this point what FPSR bits are valid for this instruction. |
| 1809 | # so, since the emulation routines re-create them anyways, zero exception field |
| 1810 | andi.l &0x0ff00ff,USER_FPSR(%a6) # zero exception field |
| 1811 | |
| 1812 | fmov.l &0x0,%fpcr # zero current control regs |
| 1813 | fmov.l &0x0,%fpsr |
| 1814 | |
| 1815 | bsr.l get_packed # fetch packed src operand |
| 1816 | |
| 1817 | lea FP_SRC(%a6),%a0 # pass ptr to src |
| 1818 | bsr.l set_tag_x # set src optype tag |
| 1819 | |
| 1820 | mov.b %d0,STAG(%a6) # save src optype tag |
| 1821 | |
| 1822 | bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg |
| 1823 | |
| 1824 | # bit five of the fp extension word separates the monadic and dyadic operations |
| 1825 | # at this point |
| 1826 | btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? |
| 1827 | beq.b fu_extract_p # monadic |
| 1828 | cmpi.b 1+EXC_CMDREG(%a6),&0x3a # is operation an ftst? |
| 1829 | beq.b fu_extract_p # yes, so it's monadic, too |
| 1830 | |
| 1831 | bsr.l load_fpn2 # load dst into FP_DST |
| 1832 | |
| 1833 | lea FP_DST(%a6),%a0 # pass: ptr to dst op |
| 1834 | bsr.l set_tag_x # tag the operand type |
| 1835 | cmpi.b %d0,&UNNORM # is operand an UNNORM? |
| 1836 | bne.b fu_op2_done_p # no |
| 1837 | bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO |
| 1838 | fu_op2_done_p: |
| 1839 | mov.b %d0,DTAG(%a6) # save dst optype tag |
| 1840 | |
| 1841 | fu_extract_p: |
| 1842 | clr.l %d0 |
| 1843 | mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec |
| 1844 | |
| 1845 | bfextu 1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension |
| 1846 | |
| 1847 | lea FP_SRC(%a6),%a0 |
| 1848 | lea FP_DST(%a6),%a1 |
| 1849 | |
| 1850 | mov.l (tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr |
| 1851 | jsr (tbl_unsupp.l,%pc,%d1.l*1) |
| 1852 | |
| 1853 | # |
| 1854 | # Exceptions in order of precedence: |
| 1855 | # BSUN : none |
| 1856 | # SNAN : all dyadic ops |
| 1857 | # OPERR : fsqrt(-NORM) |
| 1858 | # OVFL : all except ftst,fcmp |
| 1859 | # UNFL : all except ftst,fcmp |
| 1860 | # DZ : fdiv |
| 1861 | # INEX2 : all except ftst,fcmp |
| 1862 | # INEX1 : all |
| 1863 | # |
| 1864 | |
| 1865 | # we determine the highest priority exception(if any) set by the |
| 1866 | # emulation routine that has also been enabled by the user. |
| 1867 | mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled |
| 1868 | bne.w fu_in_ena_p # some are enabled |
| 1869 | |
| 1870 | fu_in_cont_p: |
| 1871 | # fcmp and ftst do not store any result. |
| 1872 | mov.b 1+EXC_CMDREG(%a6),%d0 # fetch extension |
| 1873 | andi.b &0x38,%d0 # extract bits 3-5 |
| 1874 | cmpi.b %d0,&0x38 # is instr fcmp or ftst? |
| 1875 | beq.b fu_in_exit_p # yes |
| 1876 | |
| 1877 | bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg |
| 1878 | bsr.l store_fpreg # store the result |
| 1879 | |
| 1880 | fu_in_exit_p: |
| 1881 | |
| 1882 | btst &0x5,EXC_SR(%a6) # user or supervisor? |
| 1883 | bne.w fu_in_exit_s_p # supervisor |
| 1884 | |
| 1885 | mov.l EXC_A7(%a6),%a0 # update user a7 |
| 1886 | mov.l %a0,%usp |
| 1887 | |
| 1888 | fu_in_exit_cont_p: |
| 1889 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| 1890 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 1891 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1892 | |
| 1893 | unlk %a6 # unravel stack frame |
| 1894 | |
| 1895 | btst &0x7,(%sp) # is trace on? |
| 1896 | bne.w fu_trace_p # yes |
| 1897 | |
| 1898 | bra.l _fpsp_done # exit to os |
| 1899 | |
| 1900 | # the exception occurred in supervisor mode. check to see if the |
| 1901 | # addressing mode was (a7)+. if so, we'll need to shift the |
| 1902 | # stack frame "up". |
| 1903 | fu_in_exit_s_p: |
| 1904 | btst &mia7_bit,SPCOND_FLG(%a6) # was ea mode (a7)+ |
| 1905 | beq.b fu_in_exit_cont_p # no |
| 1906 | |
| 1907 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| 1908 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 1909 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1910 | |
| 1911 | unlk %a6 # unravel stack frame |
| 1912 | |
| 1913 | # shift the stack frame "up". we don't really care about the <ea> field. |
| 1914 | mov.l 0x4(%sp),0x10(%sp) |
| 1915 | mov.l 0x0(%sp),0xc(%sp) |
| 1916 | add.l &0xc,%sp |
| 1917 | |
| 1918 | btst &0x7,(%sp) # is trace on? |
| 1919 | bne.w fu_trace_p # yes |
| 1920 | |
| 1921 | bra.l _fpsp_done # exit to os |
| 1922 | |
| 1923 | fu_in_ena_p: |
| 1924 | and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled & set |
| 1925 | bfffo %d0{&24:&8},%d0 # find highest priority exception |
| 1926 | bne.b fu_in_exc_p # at least one was set |
| 1927 | |
| 1928 | # |
| 1929 | # No exceptions occurred that were also enabled. Now: |
| 1930 | # |
| 1931 | # if (OVFL && ovfl_disabled && inexact_enabled) { |
| 1932 | # branch to _real_inex() (even if the result was exact!); |
| 1933 | # } else { |
| 1934 | # save the result in the proper fp reg (unless the op is fcmp or ftst); |
| 1935 | # return; |
| 1936 | # } |
| 1937 | # |
| 1938 | btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? |
| 1939 | beq.w fu_in_cont_p # no |
| 1940 | |
| 1941 | fu_in_ovflchk_p: |
| 1942 | btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? |
| 1943 | beq.w fu_in_cont_p # no |
| 1944 | bra.w fu_in_exc_ovfl_p # do _real_inex() now |
| 1945 | |
| 1946 | # |
| 1947 | # An exception occurred and that exception was enabled: |
| 1948 | # |
| 1949 | # shift enabled exception field into lo byte of d0; |
| 1950 | # if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) || |
| 1951 | # ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) { |
| 1952 | # /* |
| 1953 | # * this is the case where we must call _real_inex() now or else |
| 1954 | # * there will be no other way to pass it the exceptional operand |
| 1955 | # */ |
| 1956 | # call _real_inex(); |
| 1957 | # } else { |
| 1958 | # restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU; |
| 1959 | # } |
| 1960 | # |
| 1961 | fu_in_exc_p: |
| 1962 | subi.l &24,%d0 # fix offset to be 0-8 |
| 1963 | cmpi.b %d0,&0x6 # is exception INEX? (6 or 7) |
| 1964 | blt.b fu_in_exc_exit_p # no |
| 1965 | |
| 1966 | # the enabled exception was inexact |
| 1967 | btst &unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur? |
| 1968 | bne.w fu_in_exc_unfl_p # yes |
| 1969 | btst &ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur? |
| 1970 | bne.w fu_in_exc_ovfl_p # yes |
| 1971 | |
| 1972 | # here, we insert the correct fsave status value into the fsave frame for the |
| 1973 | # corresponding exception. the operand in the fsave frame should be the original |
| 1974 | # src operand. |
| 1975 | # as a reminder for future predicted pain and agony, we are passing in fsave the |
| 1976 | # "non-skewed" operand for cases of sgl and dbl src INFs,NANs, and DENORMs. |
| 1977 | # this is INCORRECT for enabled SNAN which would give to the user the skewed SNAN!!! |
| 1978 | fu_in_exc_exit_p: |
| 1979 | btst &0x5,EXC_SR(%a6) # user or supervisor? |
| 1980 | bne.w fu_in_exc_exit_s_p # supervisor |
| 1981 | |
| 1982 | mov.l EXC_A7(%a6),%a0 # update user a7 |
| 1983 | mov.l %a0,%usp |
| 1984 | |
| 1985 | fu_in_exc_exit_cont_p: |
| 1986 | mov.w (tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6) |
| 1987 | |
| 1988 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| 1989 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 1990 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 1991 | |
| 1992 | frestore FP_SRC(%a6) # restore src op |
| 1993 | |
| 1994 | unlk %a6 |
| 1995 | |
| 1996 | btst &0x7,(%sp) # is trace enabled? |
| 1997 | bne.w fu_trace_p # yes |
| 1998 | |
| 1999 | bra.l _fpsp_done |
| 2000 | |
| 2001 | tbl_except_p: |
| 2002 | short 0xe000,0xe006,0xe004,0xe005 |
| 2003 | short 0xe003,0xe002,0xe001,0xe001 |
| 2004 | |
| 2005 | fu_in_exc_ovfl_p: |
| 2006 | mov.w &0x3,%d0 |
| 2007 | bra.w fu_in_exc_exit_p |
| 2008 | |
| 2009 | fu_in_exc_unfl_p: |
| 2010 | mov.w &0x4,%d0 |
| 2011 | bra.w fu_in_exc_exit_p |
| 2012 | |
| 2013 | fu_in_exc_exit_s_p: |
| 2014 | btst &mia7_bit,SPCOND_FLG(%a6) |
| 2015 | beq.b fu_in_exc_exit_cont_p |
| 2016 | |
| 2017 | mov.w (tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6) |
| 2018 | |
| 2019 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| 2020 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 2021 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 2022 | |
| 2023 | frestore FP_SRC(%a6) # restore src op |
| 2024 | |
| 2025 | unlk %a6 # unravel stack frame |
| 2026 | |
| 2027 | # shift stack frame "up". who cares about <ea> field. |
| 2028 | mov.l 0x4(%sp),0x10(%sp) |
| 2029 | mov.l 0x0(%sp),0xc(%sp) |
| 2030 | add.l &0xc,%sp |
| 2031 | |
| 2032 | btst &0x7,(%sp) # is trace on? |
| 2033 | bne.b fu_trace_p # yes |
| 2034 | |
| 2035 | bra.l _fpsp_done # exit to os |
| 2036 | |
| 2037 | # |
| 2038 | # The opclass two PACKED instruction that took an "Unimplemented Data Type" |
| 2039 | # exception was being traced. Make the "current" PC the FPIAR and put it in the |
| 2040 | # trace stack frame then jump to _real_trace(). |
| 2041 | # |
| 2042 | # UNSUPP FRAME TRACE FRAME |
| 2043 | # ***************** ***************** |
| 2044 | # * EA * * Current * |
| 2045 | # * * * PC * |
| 2046 | # ***************** ***************** |
| 2047 | # * 0x2 * 0x0dc * * 0x2 * 0x024 * |
| 2048 | # ***************** ***************** |
| 2049 | # * Next * * Next * |
| 2050 | # * PC * * PC * |
| 2051 | # ***************** ***************** |
| 2052 | # * SR * * SR * |
| 2053 | # ***************** ***************** |
| 2054 | fu_trace_p: |
| 2055 | mov.w &0x2024,0x6(%sp) |
| 2056 | fmov.l %fpiar,0x8(%sp) |
| 2057 | |
| 2058 | bra.l _real_trace |
| 2059 | |
| 2060 | ######################################################### |
| 2061 | ######################################################### |
| 2062 | fu_out_pack: |
| 2063 | |
| 2064 | |
| 2065 | # I'm not sure at this point what FPSR bits are valid for this instruction. |
| 2066 | # so, since the emulation routines re-create them anyways, zero exception field. |
| 2067 | # fmove out doesn't affect ccodes. |
| 2068 | and.l &0xffff00ff,USER_FPSR(%a6) # zero exception field |
| 2069 | |
| 2070 | fmov.l &0x0,%fpcr # zero current control regs |
| 2071 | fmov.l &0x0,%fpsr |
| 2072 | |
| 2073 | bfextu EXC_CMDREG(%a6){&6:&3},%d0 |
| 2074 | bsr.l load_fpn1 |
| 2075 | |
| 2076 | # unlike other opclass 3, unimplemented data type exceptions, packed must be |
| 2077 | # able to detect all operand types. |
| 2078 | lea FP_SRC(%a6),%a0 |
| 2079 | bsr.l set_tag_x # tag the operand type |
| 2080 | cmpi.b %d0,&UNNORM # is operand an UNNORM? |
| 2081 | bne.b fu_op2_p # no |
| 2082 | bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO |
| 2083 | |
| 2084 | fu_op2_p: |
| 2085 | mov.b %d0,STAG(%a6) # save src optype tag |
| 2086 | |
| 2087 | clr.l %d0 |
| 2088 | mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec |
| 2089 | |
| 2090 | lea FP_SRC(%a6),%a0 # pass ptr to src operand |
| 2091 | |
| 2092 | mov.l (%a6),EXC_A6(%a6) # in case a6 changes |
| 2093 | bsr.l fout # call fmove out routine |
| 2094 | |
| 2095 | # Exceptions in order of precedence: |
| 2096 | # BSUN : no |
| 2097 | # SNAN : yes |
| 2098 | # OPERR : if ((k_factor > +17) || (dec. exp exceeds 3 digits)) |
| 2099 | # OVFL : no |
| 2100 | # UNFL : no |
| 2101 | # DZ : no |
| 2102 | # INEX2 : yes |
| 2103 | # INEX1 : no |
| 2104 | |
| 2105 | # determine the highest priority exception(if any) set by the |
| 2106 | # emulation routine that has also been enabled by the user. |
| 2107 | mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled |
| 2108 | bne.w fu_out_ena_p # some are enabled |
| 2109 | |
| 2110 | fu_out_exit_p: |
| 2111 | mov.l EXC_A6(%a6),(%a6) # restore a6 |
| 2112 | |
| 2113 | btst &0x5,EXC_SR(%a6) # user or supervisor? |
| 2114 | bne.b fu_out_exit_s_p # supervisor |
| 2115 | |
| 2116 | mov.l EXC_A7(%a6),%a0 # update user a7 |
| 2117 | mov.l %a0,%usp |
| 2118 | |
| 2119 | fu_out_exit_cont_p: |
| 2120 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| 2121 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 2122 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 2123 | |
| 2124 | unlk %a6 # unravel stack frame |
| 2125 | |
| 2126 | btst &0x7,(%sp) # is trace on? |
| 2127 | bne.w fu_trace_p # yes |
| 2128 | |
| 2129 | bra.l _fpsp_done # exit to os |
| 2130 | |
| 2131 | # the exception occurred in supervisor mode. check to see if the |
| 2132 | # addressing mode was -(a7). if so, we'll need to shift the |
| 2133 | # stack frame "down". |
| 2134 | fu_out_exit_s_p: |
| 2135 | btst &mda7_bit,SPCOND_FLG(%a6) # was ea mode -(a7) |
| 2136 | beq.b fu_out_exit_cont_p # no |
| 2137 | |
| 2138 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| 2139 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 2140 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 2141 | |
| 2142 | mov.l (%a6),%a6 # restore frame pointer |
| 2143 | |
| 2144 | mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) |
| 2145 | mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) |
| 2146 | |
| 2147 | # now, copy the result to the proper place on the stack |
| 2148 | mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) |
| 2149 | mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) |
| 2150 | mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) |
| 2151 | |
| 2152 | add.l &LOCAL_SIZE-0x8,%sp |
| 2153 | |
| 2154 | btst &0x7,(%sp) |
| 2155 | bne.w fu_trace_p |
| 2156 | |
| 2157 | bra.l _fpsp_done |
| 2158 | |
| 2159 | fu_out_ena_p: |
| 2160 | and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled |
| 2161 | bfffo %d0{&24:&8},%d0 # find highest priority exception |
| 2162 | beq.w fu_out_exit_p |
| 2163 | |
| 2164 | mov.l EXC_A6(%a6),(%a6) # restore a6 |
| 2165 | |
| 2166 | # an exception occurred and that exception was enabled. |
| 2167 | # the only exception possible on packed move out are INEX, OPERR, and SNAN. |
| 2168 | fu_out_exc_p: |
| 2169 | cmpi.b %d0,&0x1a |
| 2170 | bgt.w fu_inex_p2 |
| 2171 | beq.w fu_operr_p |
| 2172 | |
| 2173 | fu_snan_p: |
| 2174 | btst &0x5,EXC_SR(%a6) |
| 2175 | bne.b fu_snan_s_p |
| 2176 | |
| 2177 | mov.l EXC_A7(%a6),%a0 |
| 2178 | mov.l %a0,%usp |
| 2179 | bra.w fu_snan |
| 2180 | |
| 2181 | fu_snan_s_p: |
| 2182 | cmpi.b SPCOND_FLG(%a6),&mda7_flg |
| 2183 | bne.w fu_snan |
| 2184 | |
| 2185 | # the instruction was "fmove.p fpn,-(a7)" from supervisor mode. |
| 2186 | # the strategy is to move the exception frame "down" 12 bytes. then, we |
| 2187 | # can store the default result where the exception frame was. |
| 2188 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| 2189 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 2190 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 2191 | |
| 2192 | mov.w &0x30d8,EXC_VOFF(%a6) # vector offset = 0xd0 |
| 2193 | mov.w &0xe006,2+FP_SRC(%a6) # set fsave status |
| 2194 | |
| 2195 | frestore FP_SRC(%a6) # restore src operand |
| 2196 | |
| 2197 | mov.l (%a6),%a6 # restore frame pointer |
| 2198 | |
| 2199 | mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) |
| 2200 | mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) |
| 2201 | mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) |
| 2202 | |
| 2203 | # now, we copy the default result to its proper location |
| 2204 | mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) |
| 2205 | mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) |
| 2206 | mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) |
| 2207 | |
| 2208 | add.l &LOCAL_SIZE-0x8,%sp |
| 2209 | |
| 2210 | |
| 2211 | bra.l _real_snan |
| 2212 | |
| 2213 | fu_operr_p: |
| 2214 | btst &0x5,EXC_SR(%a6) |
| 2215 | bne.w fu_operr_p_s |
| 2216 | |
| 2217 | mov.l EXC_A7(%a6),%a0 |
| 2218 | mov.l %a0,%usp |
| 2219 | bra.w fu_operr |
| 2220 | |
| 2221 | fu_operr_p_s: |
| 2222 | cmpi.b SPCOND_FLG(%a6),&mda7_flg |
| 2223 | bne.w fu_operr |
| 2224 | |
| 2225 | # the instruction was "fmove.p fpn,-(a7)" from supervisor mode. |
| 2226 | # the strategy is to move the exception frame "down" 12 bytes. then, we |
| 2227 | # can store the default result where the exception frame was. |
| 2228 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| 2229 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 2230 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 2231 | |
| 2232 | mov.w &0x30d0,EXC_VOFF(%a6) # vector offset = 0xd0 |
| 2233 | mov.w &0xe004,2+FP_SRC(%a6) # set fsave status |
| 2234 | |
| 2235 | frestore FP_SRC(%a6) # restore src operand |
| 2236 | |
| 2237 | mov.l (%a6),%a6 # restore frame pointer |
| 2238 | |
| 2239 | mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) |
| 2240 | mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) |
| 2241 | mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) |
| 2242 | |
| 2243 | # now, we copy the default result to its proper location |
| 2244 | mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) |
| 2245 | mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) |
| 2246 | mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) |
| 2247 | |
| 2248 | add.l &LOCAL_SIZE-0x8,%sp |
| 2249 | |
| 2250 | |
| 2251 | bra.l _real_operr |
| 2252 | |
| 2253 | fu_inex_p2: |
| 2254 | btst &0x5,EXC_SR(%a6) |
| 2255 | bne.w fu_inex_s_p2 |
| 2256 | |
| 2257 | mov.l EXC_A7(%a6),%a0 |
| 2258 | mov.l %a0,%usp |
| 2259 | bra.w fu_inex |
| 2260 | |
| 2261 | fu_inex_s_p2: |
| 2262 | cmpi.b SPCOND_FLG(%a6),&mda7_flg |
| 2263 | bne.w fu_inex |
| 2264 | |
| 2265 | # the instruction was "fmove.p fpn,-(a7)" from supervisor mode. |
| 2266 | # the strategy is to move the exception frame "down" 12 bytes. then, we |
| 2267 | # can store the default result where the exception frame was. |
| 2268 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 |
| 2269 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 2270 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 2271 | |
| 2272 | mov.w &0x30c4,EXC_VOFF(%a6) # vector offset = 0xc4 |
| 2273 | mov.w &0xe001,2+FP_SRC(%a6) # set fsave status |
| 2274 | |
| 2275 | frestore FP_SRC(%a6) # restore src operand |
| 2276 | |
| 2277 | mov.l (%a6),%a6 # restore frame pointer |
| 2278 | |
| 2279 | mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) |
| 2280 | mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) |
| 2281 | mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) |
| 2282 | |
| 2283 | # now, we copy the default result to its proper location |
| 2284 | mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) |
| 2285 | mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) |
| 2286 | mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) |
| 2287 | |
| 2288 | add.l &LOCAL_SIZE-0x8,%sp |
| 2289 | |
| 2290 | |
| 2291 | bra.l _real_inex |
| 2292 | |
| 2293 | ######################################################################### |
| 2294 | |
| 2295 | # |
| 2296 | # if we're stuffing a source operand back into an fsave frame then we |
| 2297 | # have to make sure that for single or double source operands that the |
| 2298 | # format stuffed is as weird as the hardware usually makes it. |
| 2299 | # |
| 2300 | global funimp_skew |
| 2301 | funimp_skew: |
| 2302 | bfextu EXC_EXTWORD(%a6){&3:&3},%d0 # extract src specifier |
| 2303 | cmpi.b %d0,&0x1 # was src sgl? |
| 2304 | beq.b funimp_skew_sgl # yes |
| 2305 | cmpi.b %d0,&0x5 # was src dbl? |
| 2306 | beq.b funimp_skew_dbl # yes |
| 2307 | rts |
| 2308 | |
| 2309 | funimp_skew_sgl: |
| 2310 | mov.w FP_SRC_EX(%a6),%d0 # fetch DENORM exponent |
| 2311 | andi.w &0x7fff,%d0 # strip sign |
| 2312 | beq.b funimp_skew_sgl_not |
| 2313 | cmpi.w %d0,&0x3f80 |
| 2314 | bgt.b funimp_skew_sgl_not |
| 2315 | neg.w %d0 # make exponent negative |
| 2316 | addi.w &0x3f81,%d0 # find amt to shift |
| 2317 | mov.l FP_SRC_HI(%a6),%d1 # fetch DENORM hi(man) |
| 2318 | lsr.l %d0,%d1 # shift it |
| 2319 | bset &31,%d1 # set j-bit |
| 2320 | mov.l %d1,FP_SRC_HI(%a6) # insert new hi(man) |
| 2321 | andi.w &0x8000,FP_SRC_EX(%a6) # clear old exponent |
| 2322 | ori.w &0x3f80,FP_SRC_EX(%a6) # insert new "skewed" exponent |
| 2323 | funimp_skew_sgl_not: |
| 2324 | rts |
| 2325 | |
| 2326 | funimp_skew_dbl: |
| 2327 | mov.w FP_SRC_EX(%a6),%d0 # fetch DENORM exponent |
| 2328 | andi.w &0x7fff,%d0 # strip sign |
| 2329 | beq.b funimp_skew_dbl_not |
| 2330 | cmpi.w %d0,&0x3c00 |
| 2331 | bgt.b funimp_skew_dbl_not |
| 2332 | |
| 2333 | tst.b FP_SRC_EX(%a6) # make "internal format" |
| 2334 | smi.b 0x2+FP_SRC(%a6) |
| 2335 | mov.w %d0,FP_SRC_EX(%a6) # insert exponent with cleared sign |
| 2336 | clr.l %d0 # clear g,r,s |
| 2337 | lea FP_SRC(%a6),%a0 # pass ptr to src op |
| 2338 | mov.w &0x3c01,%d1 # pass denorm threshold |
| 2339 | bsr.l dnrm_lp # denorm it |
| 2340 | mov.w &0x3c00,%d0 # new exponent |
| 2341 | tst.b 0x2+FP_SRC(%a6) # is sign set? |
| 2342 | beq.b fss_dbl_denorm_done # no |
| 2343 | bset &15,%d0 # set sign |
| 2344 | fss_dbl_denorm_done: |
| 2345 | bset &0x7,FP_SRC_HI(%a6) # set j-bit |
| 2346 | mov.w %d0,FP_SRC_EX(%a6) # insert new exponent |
| 2347 | funimp_skew_dbl_not: |
| 2348 | rts |
| 2349 | |
| 2350 | ######################################################################### |
| 2351 | global _mem_write2 |
| 2352 | _mem_write2: |
| 2353 | btst &0x5,EXC_SR(%a6) |
| 2354 | beq.l _dmem_write |
| 2355 | mov.l 0x0(%a0),FP_DST_EX(%a6) |
| 2356 | mov.l 0x4(%a0),FP_DST_HI(%a6) |
| 2357 | mov.l 0x8(%a0),FP_DST_LO(%a6) |
| 2358 | clr.l %d1 |
| 2359 | rts |
| 2360 | |
| 2361 | ######################################################################### |
| 2362 | # XDEF **************************************************************** # |
| 2363 | # _fpsp_effadd(): 060FPSP entry point for FP "Unimplemented # |
| 2364 | # effective address" exception. # |
| 2365 | # # |
| 2366 | # This handler should be the first code executed upon taking the # |
| 2367 | # FP Unimplemented Effective Address exception in an operating # |
| 2368 | # system. # |
| 2369 | # # |
| 2370 | # XREF **************************************************************** # |
| 2371 | # _imem_read_long() - read instruction longword # |
| 2372 | # fix_skewed_ops() - adjust src operand in fsave frame # |
| 2373 | # set_tag_x() - determine optype of src/dst operands # |
| 2374 | # store_fpreg() - store opclass 0 or 2 result to FP regfile # |
| 2375 | # unnorm_fix() - change UNNORM operands to NORM or ZERO # |
| 2376 | # load_fpn2() - load dst operand from FP regfile # |
| 2377 | # tbl_unsupp - add of table of emulation routines for opclass 0,2 # |
| 2378 | # decbin() - convert packed data to FP binary data # |
| 2379 | # _real_fpu_disabled() - "callout" for "FPU disabled" exception # |
| 2380 | # _real_access() - "callout" for access error exception # |
| 2381 | # _mem_read() - read extended immediate operand from memory # |
| 2382 | # _fpsp_done() - "callout" for exit; work all done # |
| 2383 | # _real_trace() - "callout" for Trace enabled exception # |
| 2384 | # fmovm_dynamic() - emulate dynamic fmovm instruction # |
| 2385 | # fmovm_ctrl() - emulate fmovm control instruction # |
| 2386 | # # |
| 2387 | # INPUT *************************************************************** # |
| 2388 | # - The system stack contains the "Unimplemented <ea>" stk frame # |
| 2389 | # # |
| 2390 | # OUTPUT ************************************************************** # |
| 2391 | # If access error: # |
| 2392 | # - The system stack is changed to an access error stack frame # |
| 2393 | # If FPU disabled: # |
| 2394 | # - The system stack is changed to an FPU disabled stack frame # |
| 2395 | # If Trace exception enabled: # |
| 2396 | # - The system stack is changed to a Trace exception stack frame # |
| 2397 | # Else: (normal case) # |
| 2398 | # - None (correct result has been stored as appropriate) # |
| 2399 | # # |
| 2400 | # ALGORITHM *********************************************************** # |
| 2401 | # This exception handles 3 types of operations: # |
| 2402 | # (1) FP Instructions using extended precision or packed immediate # |
| 2403 | # addressing mode. # |
| 2404 | # (2) The "fmovm.x" instruction w/ dynamic register specification. # |
| 2405 | # (3) The "fmovm.l" instruction w/ 2 or 3 control registers. # |
| 2406 | # # |
| 2407 | # For immediate data operations, the data is read in w/ a # |
| 2408 | # _mem_read() "callout", converted to FP binary (if packed), and used # |
| 2409 | # as the source operand to the instruction specified by the instruction # |
| 2410 | # word. If no FP exception should be reported ads a result of the # |
| 2411 | # emulation, then the result is stored to the destination register and # |
| 2412 | # the handler exits through _fpsp_done(). If an enabled exc has been # |
| 2413 | # signalled as a result of emulation, then an fsave state frame # |
| 2414 | # corresponding to the FP exception type must be entered into the 060 # |
| 2415 | # FPU before exiting. In either the enabled or disabled cases, we # |
| 2416 | # must also check if a Trace exception is pending, in which case, we # |
| 2417 | # must create a Trace exception stack frame from the current exception # |
| 2418 | # stack frame. If no Trace is pending, we simply exit through # |
| 2419 | # _fpsp_done(). # |
| 2420 | # For "fmovm.x", call the routine fmovm_dynamic() which will # |
| 2421 | # decode and emulate the instruction. No FP exceptions can be pending # |
| 2422 | # as a result of this operation emulation. A Trace exception can be # |
| 2423 | # pending, though, which means the current stack frame must be changed # |
| 2424 | # to a Trace stack frame and an exit made through _real_trace(). # |
| 2425 | # For the case of "fmovm.x Dn,-(a7)", where the offending instruction # |
| 2426 | # was executed from supervisor mode, this handler must store the FP # |
| 2427 | # register file values to the system stack by itself since # |
| 2428 | # fmovm_dynamic() can't handle this. A normal exit is made through # |
| 2429 | # fpsp_done(). # |
| 2430 | # For "fmovm.l", fmovm_ctrl() is used to emulate the instruction. # |
| 2431 | # Again, a Trace exception may be pending and an exit made through # |
| 2432 | # _real_trace(). Else, a normal exit is made through _fpsp_done(). # |
| 2433 | # # |
| 2434 | # Before any of the above is attempted, it must be checked to # |
| 2435 | # see if the FPU is disabled. Since the "Unimp <ea>" exception is taken # |
| 2436 | # before the "FPU disabled" exception, but the "FPU disabled" exception # |
| 2437 | # has higher priority, we check the disabled bit in the PCR. If set, # |
| 2438 | # then we must create an 8 word "FPU disabled" exception stack frame # |
| 2439 | # from the current 4 word exception stack frame. This includes # |
| 2440 | # reproducing the effective address of the instruction to put on the # |
| 2441 | # new stack frame. # |
| 2442 | # # |
| 2443 | # In the process of all emulation work, if a _mem_read() # |
| 2444 | # "callout" returns a failing result indicating an access error, then # |
| 2445 | # we must create an access error stack frame from the current stack # |
| 2446 | # frame. This information includes a faulting address and a fault- # |
| 2447 | # status-longword. These are created within this handler. # |
| 2448 | # # |
| 2449 | ######################################################################### |
| 2450 | |
| 2451 | global _fpsp_effadd |
| 2452 | _fpsp_effadd: |
| 2453 | |
| 2454 | # This exception type takes priority over the "Line F Emulator" |
| 2455 | # exception. Therefore, the FPU could be disabled when entering here. |
| 2456 | # So, we must check to see if it's disabled and handle that case separately. |
| 2457 | mov.l %d0,-(%sp) # save d0 |
| 2458 | movc %pcr,%d0 # load proc cr |
| 2459 | btst &0x1,%d0 # is FPU disabled? |
| 2460 | bne.w iea_disabled # yes |
| 2461 | mov.l (%sp)+,%d0 # restore d0 |
| 2462 | |
| 2463 | link %a6,&-LOCAL_SIZE # init stack frame |
| 2464 | |
| 2465 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 2466 | fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs |
| 2467 | fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack |
| 2468 | |
| 2469 | # PC of instruction that took the exception is the PC in the frame |
| 2470 | mov.l EXC_PC(%a6),EXC_EXTWPTR(%a6) |
| 2471 | |
| 2472 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 2473 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 2474 | bsr.l _imem_read_long # fetch the instruction words |
| 2475 | mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD |
| 2476 | |
| 2477 | ######################################################################### |
| 2478 | |
| 2479 | tst.w %d0 # is operation fmovem? |
| 2480 | bmi.w iea_fmovm # yes |
| 2481 | |
| 2482 | # |
| 2483 | # here, we will have: |
| 2484 | # fabs fdabs fsabs facos fmod |
| 2485 | # fadd fdadd fsadd fasin frem |
| 2486 | # fcmp fatan fscale |
| 2487 | # fdiv fddiv fsdiv fatanh fsin |
| 2488 | # fint fcos fsincos |
| 2489 | # fintrz fcosh fsinh |
| 2490 | # fmove fdmove fsmove fetox ftan |
| 2491 | # fmul fdmul fsmul fetoxm1 ftanh |
| 2492 | # fneg fdneg fsneg fgetexp ftentox |
| 2493 | # fsgldiv fgetman ftwotox |
| 2494 | # fsglmul flog10 |
| 2495 | # fsqrt flog2 |
| 2496 | # fsub fdsub fssub flogn |
| 2497 | # ftst flognp1 |
| 2498 | # which can all use f<op>.{x,p} |
| 2499 | # so, now it's immediate data extended precision AND PACKED FORMAT! |
| 2500 | # |
| 2501 | iea_op: |
| 2502 | andi.l &0x00ff00ff,USER_FPSR(%a6) |
| 2503 | |
| 2504 | btst &0xa,%d0 # is src fmt x or p? |
| 2505 | bne.b iea_op_pack # packed |
| 2506 | |
| 2507 | |
| 2508 | mov.l EXC_EXTWPTR(%a6),%a0 # pass: ptr to #<data> |
| 2509 | lea FP_SRC(%a6),%a1 # pass: ptr to super addr |
| 2510 | mov.l &0xc,%d0 # pass: 12 bytes |
| 2511 | bsr.l _imem_read # read extended immediate |
| 2512 | |
| 2513 | tst.l %d1 # did ifetch fail? |
| 2514 | bne.w iea_iacc # yes |
| 2515 | |
| 2516 | bra.b iea_op_setsrc |
| 2517 | |
| 2518 | iea_op_pack: |
| 2519 | |
| 2520 | mov.l EXC_EXTWPTR(%a6),%a0 # pass: ptr to #<data> |
| 2521 | lea FP_SRC(%a6),%a1 # pass: ptr to super dst |
| 2522 | mov.l &0xc,%d0 # pass: 12 bytes |
| 2523 | bsr.l _imem_read # read packed operand |
| 2524 | |
| 2525 | tst.l %d1 # did ifetch fail? |
| 2526 | bne.w iea_iacc # yes |
| 2527 | |
| 2528 | # The packed operand is an INF or a NAN if the exponent field is all ones. |
| 2529 | bfextu FP_SRC(%a6){&1:&15},%d0 # get exp |
| 2530 | cmpi.w %d0,&0x7fff # INF or NAN? |
| 2531 | beq.b iea_op_setsrc # operand is an INF or NAN |
| 2532 | |
| 2533 | # The packed operand is a zero if the mantissa is all zero, else it's |
| 2534 | # a normal packed op. |
| 2535 | mov.b 3+FP_SRC(%a6),%d0 # get byte 4 |
| 2536 | andi.b &0x0f,%d0 # clear all but last nybble |
| 2537 | bne.b iea_op_gp_not_spec # not a zero |
| 2538 | tst.l FP_SRC_HI(%a6) # is lw 2 zero? |
| 2539 | bne.b iea_op_gp_not_spec # not a zero |
| 2540 | tst.l FP_SRC_LO(%a6) # is lw 3 zero? |
| 2541 | beq.b iea_op_setsrc # operand is a ZERO |
| 2542 | iea_op_gp_not_spec: |
| 2543 | lea FP_SRC(%a6),%a0 # pass: ptr to packed op |
| 2544 | bsr.l decbin # convert to extended |
| 2545 | fmovm.x &0x80,FP_SRC(%a6) # make this the srcop |
| 2546 | |
| 2547 | iea_op_setsrc: |
| 2548 | addi.l &0xc,EXC_EXTWPTR(%a6) # update extension word pointer |
| 2549 | |
| 2550 | # FP_SRC now holds the src operand. |
| 2551 | lea FP_SRC(%a6),%a0 # pass: ptr to src op |
| 2552 | bsr.l set_tag_x # tag the operand type |
| 2553 | mov.b %d0,STAG(%a6) # could be ANYTHING!!! |
| 2554 | cmpi.b %d0,&UNNORM # is operand an UNNORM? |
| 2555 | bne.b iea_op_getdst # no |
| 2556 | bsr.l unnorm_fix # yes; convert to NORM/DENORM/ZERO |
| 2557 | mov.b %d0,STAG(%a6) # set new optype tag |
| 2558 | iea_op_getdst: |
| 2559 | clr.b STORE_FLG(%a6) # clear "store result" boolean |
| 2560 | |
| 2561 | btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? |
| 2562 | beq.b iea_op_extract # monadic |
| 2563 | btst &0x4,1+EXC_CMDREG(%a6) # is operation fsincos,ftst,fcmp? |
| 2564 | bne.b iea_op_spec # yes |
| 2565 | |
| 2566 | iea_op_loaddst: |
| 2567 | bfextu EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno |
| 2568 | bsr.l load_fpn2 # load dst operand |
| 2569 | |
| 2570 | lea FP_DST(%a6),%a0 # pass: ptr to dst op |
| 2571 | bsr.l set_tag_x # tag the operand type |
| 2572 | mov.b %d0,DTAG(%a6) # could be ANYTHING!!! |
| 2573 | cmpi.b %d0,&UNNORM # is operand an UNNORM? |
| 2574 | bne.b iea_op_extract # no |
| 2575 | bsr.l unnorm_fix # yes; convert to NORM/DENORM/ZERO |
| 2576 | mov.b %d0,DTAG(%a6) # set new optype tag |
| 2577 | bra.b iea_op_extract |
| 2578 | |
| 2579 | # the operation is fsincos, ftst, or fcmp. only fcmp is dyadic |
| 2580 | iea_op_spec: |
| 2581 | btst &0x3,1+EXC_CMDREG(%a6) # is operation fsincos? |
| 2582 | beq.b iea_op_extract # yes |
| 2583 | # now, we're left with ftst and fcmp. so, first let's tag them so that they don't |
| 2584 | # store a result. then, only fcmp will branch back and pick up a dst operand. |
| 2585 | st STORE_FLG(%a6) # don't store a final result |
| 2586 | btst &0x1,1+EXC_CMDREG(%a6) # is operation fcmp? |
| 2587 | beq.b iea_op_loaddst # yes |
| 2588 | |
| 2589 | iea_op_extract: |
| 2590 | clr.l %d0 |
| 2591 | mov.b FPCR_MODE(%a6),%d0 # pass: rnd mode,prec |
| 2592 | |
| 2593 | mov.b 1+EXC_CMDREG(%a6),%d1 |
| 2594 | andi.w &0x007f,%d1 # extract extension |
| 2595 | |
| 2596 | fmov.l &0x0,%fpcr |
| 2597 | fmov.l &0x0,%fpsr |
| 2598 | |
| 2599 | lea FP_SRC(%a6),%a0 |
| 2600 | lea FP_DST(%a6),%a1 |
| 2601 | |
| 2602 | mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr |
| 2603 | jsr (tbl_unsupp.l,%pc,%d1.l*1) |
| 2604 | |
| 2605 | # |
| 2606 | # Exceptions in order of precedence: |
| 2607 | # BSUN : none |
| 2608 | # SNAN : all operations |
| 2609 | # OPERR : all reg-reg or mem-reg operations that can normally operr |
| 2610 | # OVFL : same as OPERR |
| 2611 | # UNFL : same as OPERR |
| 2612 | # DZ : same as OPERR |
| 2613 | # INEX2 : same as OPERR |
| 2614 | # INEX1 : all packed immediate operations |
| 2615 | # |
| 2616 | |
| 2617 | # we determine the highest priority exception(if any) set by the |
| 2618 | # emulation routine that has also been enabled by the user. |
| 2619 | mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled |
| 2620 | bne.b iea_op_ena # some are enabled |
| 2621 | |
| 2622 | # now, we save the result, unless, of course, the operation was ftst or fcmp. |
| 2623 | # these don't save results. |
| 2624 | iea_op_save: |
| 2625 | tst.b STORE_FLG(%a6) # does this op store a result? |
| 2626 | bne.b iea_op_exit1 # exit with no frestore |
| 2627 | |
| 2628 | iea_op_store: |
| 2629 | bfextu EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno |
| 2630 | bsr.l store_fpreg # store the result |
| 2631 | |
| 2632 | iea_op_exit1: |
| 2633 | mov.l EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC" |
| 2634 | mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame |
| 2635 | |
| 2636 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| 2637 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 2638 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 2639 | |
| 2640 | unlk %a6 # unravel the frame |
| 2641 | |
| 2642 | btst &0x7,(%sp) # is trace on? |
| 2643 | bne.w iea_op_trace # yes |
| 2644 | |
| 2645 | bra.l _fpsp_done # exit to os |
| 2646 | |
| 2647 | iea_op_ena: |
| 2648 | and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enable and set |
| 2649 | bfffo %d0{&24:&8},%d0 # find highest priority exception |
| 2650 | bne.b iea_op_exc # at least one was set |
| 2651 | |
| 2652 | # no exception occurred. now, did a disabled, exact overflow occur with inexact |
| 2653 | # enabled? if so, then we have to stuff an overflow frame into the FPU. |
| 2654 | btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? |
| 2655 | beq.b iea_op_save |
| 2656 | |
| 2657 | iea_op_ovfl: |
| 2658 | btst &inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled? |
| 2659 | beq.b iea_op_store # no |
| 2660 | bra.b iea_op_exc_ovfl # yes |
| 2661 | |
| 2662 | # an enabled exception occurred. we have to insert the exception type back into |
| 2663 | # the machine. |
| 2664 | iea_op_exc: |
| 2665 | subi.l &24,%d0 # fix offset to be 0-8 |
| 2666 | cmpi.b %d0,&0x6 # is exception INEX? |
| 2667 | bne.b iea_op_exc_force # no |
| 2668 | |
| 2669 | # the enabled exception was inexact. so, if it occurs with an overflow |
| 2670 | # or underflow that was disabled, then we have to force an overflow or |
| 2671 | # underflow frame. |
| 2672 | btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? |
| 2673 | bne.b iea_op_exc_ovfl # yes |
| 2674 | btst &unfl_bit,FPSR_EXCEPT(%a6) # did underflow occur? |
| 2675 | bne.b iea_op_exc_unfl # yes |
| 2676 | |
| 2677 | iea_op_exc_force: |
| 2678 | mov.w (tbl_iea_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) |
| 2679 | bra.b iea_op_exit2 # exit with frestore |
| 2680 | |
| 2681 | tbl_iea_except: |
| 2682 | short 0xe002, 0xe006, 0xe004, 0xe005 |
| 2683 | short 0xe003, 0xe002, 0xe001, 0xe001 |
| 2684 | |
| 2685 | iea_op_exc_ovfl: |
| 2686 | mov.w &0xe005,2+FP_SRC(%a6) |
| 2687 | bra.b iea_op_exit2 |
| 2688 | |
| 2689 | iea_op_exc_unfl: |
| 2690 | mov.w &0xe003,2+FP_SRC(%a6) |
| 2691 | |
| 2692 | iea_op_exit2: |
| 2693 | mov.l EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC" |
| 2694 | mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame |
| 2695 | |
| 2696 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| 2697 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 2698 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 2699 | |
| 2700 | frestore FP_SRC(%a6) # restore exceptional state |
| 2701 | |
| 2702 | unlk %a6 # unravel the frame |
| 2703 | |
| 2704 | btst &0x7,(%sp) # is trace on? |
| 2705 | bne.b iea_op_trace # yes |
| 2706 | |
| 2707 | bra.l _fpsp_done # exit to os |
| 2708 | |
| 2709 | # |
| 2710 | # The opclass two instruction that took an "Unimplemented Effective Address" |
| 2711 | # exception was being traced. Make the "current" PC the FPIAR and put it in |
| 2712 | # the trace stack frame then jump to _real_trace(). |
| 2713 | # |
| 2714 | # UNIMP EA FRAME TRACE FRAME |
| 2715 | # ***************** ***************** |
| 2716 | # * 0x0 * 0x0f0 * * Current * |
| 2717 | # ***************** * PC * |
| 2718 | # * Current * ***************** |
| 2719 | # * PC * * 0x2 * 0x024 * |
| 2720 | # ***************** ***************** |
| 2721 | # * SR * * Next * |
| 2722 | # ***************** * PC * |
| 2723 | # ***************** |
| 2724 | # * SR * |
| 2725 | # ***************** |
| 2726 | iea_op_trace: |
| 2727 | mov.l (%sp),-(%sp) # shift stack frame "down" |
| 2728 | mov.w 0x8(%sp),0x4(%sp) |
| 2729 | mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024 |
| 2730 | fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR |
| 2731 | |
| 2732 | bra.l _real_trace |
| 2733 | |
| 2734 | ######################################################################### |
| 2735 | iea_fmovm: |
| 2736 | btst &14,%d0 # ctrl or data reg |
| 2737 | beq.w iea_fmovm_ctrl |
| 2738 | |
| 2739 | iea_fmovm_data: |
| 2740 | |
| 2741 | btst &0x5,EXC_SR(%a6) # user or supervisor mode |
| 2742 | bne.b iea_fmovm_data_s |
| 2743 | |
| 2744 | iea_fmovm_data_u: |
| 2745 | mov.l %usp,%a0 |
| 2746 | mov.l %a0,EXC_A7(%a6) # store current a7 |
| 2747 | bsr.l fmovm_dynamic # do dynamic fmovm |
| 2748 | mov.l EXC_A7(%a6),%a0 # load possibly new a7 |
| 2749 | mov.l %a0,%usp # update usp |
| 2750 | bra.w iea_fmovm_exit |
| 2751 | |
| 2752 | iea_fmovm_data_s: |
| 2753 | clr.b SPCOND_FLG(%a6) |
| 2754 | lea 0x2+EXC_VOFF(%a6),%a0 |
| 2755 | mov.l %a0,EXC_A7(%a6) |
| 2756 | bsr.l fmovm_dynamic # do dynamic fmovm |
| 2757 | |
| 2758 | cmpi.b SPCOND_FLG(%a6),&mda7_flg |
| 2759 | beq.w iea_fmovm_data_predec |
| 2760 | cmpi.b SPCOND_FLG(%a6),&mia7_flg |
| 2761 | bne.w iea_fmovm_exit |
| 2762 | |
| 2763 | # right now, d0 = the size. |
| 2764 | # the data has been fetched from the supervisor stack, but we have not |
| 2765 | # incremented the stack pointer by the appropriate number of bytes. |
| 2766 | # do it here. |
| 2767 | iea_fmovm_data_postinc: |
| 2768 | btst &0x7,EXC_SR(%a6) |
| 2769 | bne.b iea_fmovm_data_pi_trace |
| 2770 | |
| 2771 | mov.w EXC_SR(%a6),(EXC_SR,%a6,%d0) |
| 2772 | mov.l EXC_EXTWPTR(%a6),(EXC_PC,%a6,%d0) |
| 2773 | mov.w &0x00f0,(EXC_VOFF,%a6,%d0) |
| 2774 | |
| 2775 | lea (EXC_SR,%a6,%d0),%a0 |
| 2776 | mov.l %a0,EXC_SR(%a6) |
| 2777 | |
| 2778 | fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 |
| 2779 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 2780 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 2781 | |
| 2782 | unlk %a6 |
| 2783 | mov.l (%sp)+,%sp |
| 2784 | bra.l _fpsp_done |
| 2785 | |
| 2786 | iea_fmovm_data_pi_trace: |
| 2787 | mov.w EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0) |
| 2788 | mov.l EXC_EXTWPTR(%a6),(EXC_PC-0x4,%a6,%d0) |
| 2789 | mov.w &0x2024,(EXC_VOFF-0x4,%a6,%d0) |
| 2790 | mov.l EXC_PC(%a6),(EXC_VOFF+0x2-0x4,%a6,%d0) |
| 2791 | |
| 2792 | lea (EXC_SR-0x4,%a6,%d0),%a0 |
| 2793 | mov.l %a0,EXC_SR(%a6) |
| 2794 | |
| 2795 | fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 |
| 2796 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 2797 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 2798 | |
| 2799 | unlk %a6 |
| 2800 | mov.l (%sp)+,%sp |
| 2801 | bra.l _real_trace |
| 2802 | |
| 2803 | # right now, d1 = size and d0 = the strg. |
| 2804 | iea_fmovm_data_predec: |
| 2805 | mov.b %d1,EXC_VOFF(%a6) # store strg |
| 2806 | mov.b %d0,0x1+EXC_VOFF(%a6) # store size |
| 2807 | |
| 2808 | fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 |
| 2809 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 2810 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 2811 | |
| 2812 | mov.l (%a6),-(%sp) # make a copy of a6 |
| 2813 | mov.l %d0,-(%sp) # save d0 |
| 2814 | mov.l %d1,-(%sp) # save d1 |
| 2815 | mov.l EXC_EXTWPTR(%a6),-(%sp) # make a copy of Next PC |
| 2816 | |
| 2817 | clr.l %d0 |
| 2818 | mov.b 0x1+EXC_VOFF(%a6),%d0 # fetch size |
| 2819 | neg.l %d0 # get negative of size |
| 2820 | |
| 2821 | btst &0x7,EXC_SR(%a6) # is trace enabled? |
| 2822 | beq.b iea_fmovm_data_p2 |
| 2823 | |
| 2824 | mov.w EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0) |
| 2825 | mov.l EXC_PC(%a6),(EXC_VOFF-0x2,%a6,%d0) |
| 2826 | mov.l (%sp)+,(EXC_PC-0x4,%a6,%d0) |
| 2827 | mov.w &0x2024,(EXC_VOFF-0x4,%a6,%d0) |
| 2828 | |
| 2829 | pea (%a6,%d0) # create final sp |
| 2830 | bra.b iea_fmovm_data_p3 |
| 2831 | |
| 2832 | iea_fmovm_data_p2: |
| 2833 | mov.w EXC_SR(%a6),(EXC_SR,%a6,%d0) |
| 2834 | mov.l (%sp)+,(EXC_PC,%a6,%d0) |
| 2835 | mov.w &0x00f0,(EXC_VOFF,%a6,%d0) |
| 2836 | |
| 2837 | pea (0x4,%a6,%d0) # create final sp |
| 2838 | |
| 2839 | iea_fmovm_data_p3: |
| 2840 | clr.l %d1 |
| 2841 | mov.b EXC_VOFF(%a6),%d1 # fetch strg |
| 2842 | |
| 2843 | tst.b %d1 |
| 2844 | bpl.b fm_1 |
| 2845 | fmovm.x &0x80,(0x4+0x8,%a6,%d0) |
| 2846 | addi.l &0xc,%d0 |
| 2847 | fm_1: |
| 2848 | lsl.b &0x1,%d1 |
| 2849 | bpl.b fm_2 |
| 2850 | fmovm.x &0x40,(0x4+0x8,%a6,%d0) |
| 2851 | addi.l &0xc,%d0 |
| 2852 | fm_2: |
| 2853 | lsl.b &0x1,%d1 |
| 2854 | bpl.b fm_3 |
| 2855 | fmovm.x &0x20,(0x4+0x8,%a6,%d0) |
| 2856 | addi.l &0xc,%d0 |
| 2857 | fm_3: |
| 2858 | lsl.b &0x1,%d1 |
| 2859 | bpl.b fm_4 |
| 2860 | fmovm.x &0x10,(0x4+0x8,%a6,%d0) |
| 2861 | addi.l &0xc,%d0 |
| 2862 | fm_4: |
| 2863 | lsl.b &0x1,%d1 |
| 2864 | bpl.b fm_5 |
| 2865 | fmovm.x &0x08,(0x4+0x8,%a6,%d0) |
| 2866 | addi.l &0xc,%d0 |
| 2867 | fm_5: |
| 2868 | lsl.b &0x1,%d1 |
| 2869 | bpl.b fm_6 |
| 2870 | fmovm.x &0x04,(0x4+0x8,%a6,%d0) |
| 2871 | addi.l &0xc,%d0 |
| 2872 | fm_6: |
| 2873 | lsl.b &0x1,%d1 |
| 2874 | bpl.b fm_7 |
| 2875 | fmovm.x &0x02,(0x4+0x8,%a6,%d0) |
| 2876 | addi.l &0xc,%d0 |
| 2877 | fm_7: |
| 2878 | lsl.b &0x1,%d1 |
| 2879 | bpl.b fm_end |
| 2880 | fmovm.x &0x01,(0x4+0x8,%a6,%d0) |
| 2881 | fm_end: |
| 2882 | mov.l 0x4(%sp),%d1 |
| 2883 | mov.l 0x8(%sp),%d0 |
| 2884 | mov.l 0xc(%sp),%a6 |
| 2885 | mov.l (%sp)+,%sp |
| 2886 | |
| 2887 | btst &0x7,(%sp) # is trace enabled? |
| 2888 | beq.l _fpsp_done |
| 2889 | bra.l _real_trace |
| 2890 | |
| 2891 | ######################################################################### |
| 2892 | iea_fmovm_ctrl: |
| 2893 | |
| 2894 | bsr.l fmovm_ctrl # load ctrl regs |
| 2895 | |
| 2896 | iea_fmovm_exit: |
| 2897 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| 2898 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 2899 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 2900 | |
| 2901 | btst &0x7,EXC_SR(%a6) # is trace on? |
| 2902 | bne.b iea_fmovm_trace # yes |
| 2903 | |
| 2904 | mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set Next PC |
| 2905 | |
| 2906 | unlk %a6 # unravel the frame |
| 2907 | |
| 2908 | bra.l _fpsp_done # exit to os |
| 2909 | |
| 2910 | # |
| 2911 | # The control reg instruction that took an "Unimplemented Effective Address" |
| 2912 | # exception was being traced. The "Current PC" for the trace frame is the |
| 2913 | # PC stacked for Unimp EA. The "Next PC" is in EXC_EXTWPTR. |
| 2914 | # After fixing the stack frame, jump to _real_trace(). |
| 2915 | # |
| 2916 | # UNIMP EA FRAME TRACE FRAME |
| 2917 | # ***************** ***************** |
| 2918 | # * 0x0 * 0x0f0 * * Current * |
| 2919 | # ***************** * PC * |
| 2920 | # * Current * ***************** |
| 2921 | # * PC * * 0x2 * 0x024 * |
| 2922 | # ***************** ***************** |
| 2923 | # * SR * * Next * |
| 2924 | # ***************** * PC * |
| 2925 | # ***************** |
| 2926 | # * SR * |
| 2927 | # ***************** |
| 2928 | # this ain't a pretty solution, but it works: |
| 2929 | # -restore a6 (not with unlk) |
| 2930 | # -shift stack frame down over where old a6 used to be |
| 2931 | # -add LOCAL_SIZE to stack pointer |
| 2932 | iea_fmovm_trace: |
| 2933 | mov.l (%a6),%a6 # restore frame pointer |
| 2934 | mov.w EXC_SR+LOCAL_SIZE(%sp),0x0+LOCAL_SIZE(%sp) |
| 2935 | mov.l EXC_PC+LOCAL_SIZE(%sp),0x8+LOCAL_SIZE(%sp) |
| 2936 | mov.l EXC_EXTWPTR+LOCAL_SIZE(%sp),0x2+LOCAL_SIZE(%sp) |
| 2937 | mov.w &0x2024,0x6+LOCAL_SIZE(%sp) # stk fmt = 0x2; voff = 0x024 |
| 2938 | add.l &LOCAL_SIZE,%sp # clear stack frame |
| 2939 | |
| 2940 | bra.l _real_trace |
| 2941 | |
| 2942 | ######################################################################### |
| 2943 | # The FPU is disabled and so we should really have taken the "Line |
| 2944 | # F Emulator" exception. So, here we create an 8-word stack frame |
| 2945 | # from our 4-word stack frame. This means we must calculate the length |
| 2946 | # the faulting instruction to get the "next PC". This is trivial for |
| 2947 | # immediate operands but requires some extra work for fmovm dynamic |
| 2948 | # which can use most addressing modes. |
| 2949 | iea_disabled: |
| 2950 | mov.l (%sp)+,%d0 # restore d0 |
| 2951 | |
| 2952 | link %a6,&-LOCAL_SIZE # init stack frame |
| 2953 | |
| 2954 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 2955 | |
| 2956 | # PC of instruction that took the exception is the PC in the frame |
| 2957 | mov.l EXC_PC(%a6),EXC_EXTWPTR(%a6) |
| 2958 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 2959 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 2960 | bsr.l _imem_read_long # fetch the instruction words |
| 2961 | mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD |
| 2962 | |
| 2963 | tst.w %d0 # is instr fmovm? |
| 2964 | bmi.b iea_dis_fmovm # yes |
| 2965 | # instruction is using an extended precision immediate operand. therefore, |
| 2966 | # the total instruction length is 16 bytes. |
| 2967 | iea_dis_immed: |
| 2968 | mov.l &0x10,%d0 # 16 bytes of instruction |
| 2969 | bra.b iea_dis_cont |
| 2970 | iea_dis_fmovm: |
| 2971 | btst &0xe,%d0 # is instr fmovm ctrl |
| 2972 | bne.b iea_dis_fmovm_data # no |
| 2973 | # the instruction is a fmovm.l with 2 or 3 registers. |
| 2974 | bfextu %d0{&19:&3},%d1 |
| 2975 | mov.l &0xc,%d0 |
| 2976 | cmpi.b %d1,&0x7 # move all regs? |
| 2977 | bne.b iea_dis_cont |
| 2978 | addq.l &0x4,%d0 |
| 2979 | bra.b iea_dis_cont |
| 2980 | # the instruction is an fmovm.x dynamic which can use many addressing |
| 2981 | # modes and thus can have several different total instruction lengths. |
| 2982 | # call fmovm_calc_ea which will go through the ea calc process and, |
| 2983 | # as a by-product, will tell us how long the instruction is. |
| 2984 | iea_dis_fmovm_data: |
| 2985 | clr.l %d0 |
| 2986 | bsr.l fmovm_calc_ea |
| 2987 | mov.l EXC_EXTWPTR(%a6),%d0 |
| 2988 | sub.l EXC_PC(%a6),%d0 |
| 2989 | iea_dis_cont: |
| 2990 | mov.w %d0,EXC_VOFF(%a6) # store stack shift value |
| 2991 | |
| 2992 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 2993 | |
| 2994 | unlk %a6 |
| 2995 | |
| 2996 | # here, we actually create the 8-word frame from the 4-word frame, |
| 2997 | # with the "next PC" as additional info. |
| 2998 | # the <ea> field is let as undefined. |
| 2999 | subq.l &0x8,%sp # make room for new stack |
| 3000 | mov.l %d0,-(%sp) # save d0 |
| 3001 | mov.w 0xc(%sp),0x4(%sp) # move SR |
| 3002 | mov.l 0xe(%sp),0x6(%sp) # move Current PC |
| 3003 | clr.l %d0 |
| 3004 | mov.w 0x12(%sp),%d0 |
| 3005 | mov.l 0x6(%sp),0x10(%sp) # move Current PC |
| 3006 | add.l %d0,0x6(%sp) # make Next PC |
| 3007 | mov.w &0x402c,0xa(%sp) # insert offset,frame format |
| 3008 | mov.l (%sp)+,%d0 # restore d0 |
| 3009 | |
| 3010 | bra.l _real_fpu_disabled |
| 3011 | |
| 3012 | ########## |
| 3013 | |
| 3014 | iea_iacc: |
| 3015 | movc %pcr,%d0 |
| 3016 | btst &0x1,%d0 |
| 3017 | bne.b iea_iacc_cont |
| 3018 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 3019 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 on stack |
| 3020 | iea_iacc_cont: |
| 3021 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 3022 | |
| 3023 | unlk %a6 |
| 3024 | |
| 3025 | subq.w &0x8,%sp # make stack frame bigger |
| 3026 | mov.l 0x8(%sp),(%sp) # store SR,hi(PC) |
| 3027 | mov.w 0xc(%sp),0x4(%sp) # store lo(PC) |
| 3028 | mov.w &0x4008,0x6(%sp) # store voff |
| 3029 | mov.l 0x2(%sp),0x8(%sp) # store ea |
| 3030 | mov.l &0x09428001,0xc(%sp) # store fslw |
| 3031 | |
| 3032 | iea_acc_done: |
| 3033 | btst &0x5,(%sp) # user or supervisor mode? |
| 3034 | beq.b iea_acc_done2 # user |
| 3035 | bset &0x2,0xd(%sp) # set supervisor TM bit |
| 3036 | |
| 3037 | iea_acc_done2: |
| 3038 | bra.l _real_access |
| 3039 | |
| 3040 | iea_dacc: |
| 3041 | lea -LOCAL_SIZE(%a6),%sp |
| 3042 | |
| 3043 | movc %pcr,%d1 |
| 3044 | btst &0x1,%d1 |
| 3045 | bne.b iea_dacc_cont |
| 3046 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 on stack |
| 3047 | fmovm.l LOCAL_SIZE+USER_FPCR(%sp),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 3048 | iea_dacc_cont: |
| 3049 | mov.l (%a6),%a6 |
| 3050 | |
| 3051 | mov.l 0x4+LOCAL_SIZE(%sp),-0x8+0x4+LOCAL_SIZE(%sp) |
| 3052 | mov.w 0x8+LOCAL_SIZE(%sp),-0x8+0x8+LOCAL_SIZE(%sp) |
| 3053 | mov.w &0x4008,-0x8+0xa+LOCAL_SIZE(%sp) |
| 3054 | mov.l %a0,-0x8+0xc+LOCAL_SIZE(%sp) |
| 3055 | mov.w %d0,-0x8+0x10+LOCAL_SIZE(%sp) |
| 3056 | mov.w &0x0001,-0x8+0x12+LOCAL_SIZE(%sp) |
| 3057 | |
| 3058 | movm.l LOCAL_SIZE+EXC_DREGS(%sp),&0x0303 # restore d0-d1/a0-a1 |
| 3059 | add.w &LOCAL_SIZE-0x4,%sp |
| 3060 | |
| 3061 | bra.b iea_acc_done |
| 3062 | |
| 3063 | ######################################################################### |
| 3064 | # XDEF **************************************************************** # |
| 3065 | # _fpsp_operr(): 060FPSP entry point for FP Operr exception. # |
| 3066 | # # |
| 3067 | # This handler should be the first code executed upon taking the # |
| 3068 | # FP Operand Error exception in an operating system. # |
| 3069 | # # |
| 3070 | # XREF **************************************************************** # |
| 3071 | # _imem_read_long() - read instruction longword # |
| 3072 | # fix_skewed_ops() - adjust src operand in fsave frame # |
| 3073 | # _real_operr() - "callout" to operating system operr handler # |
| 3074 | # _dmem_write_{byte,word,long}() - store data to mem (opclass 3) # |
| 3075 | # store_dreg_{b,w,l}() - store data to data regfile (opclass 3) # |
| 3076 | # facc_out_{b,w,l}() - store to memory took access error (opcl 3) # |
| 3077 | # # |
| 3078 | # INPUT *************************************************************** # |
| 3079 | # - The system stack contains the FP Operr exception frame # |
| 3080 | # - The fsave frame contains the source operand # |
| 3081 | # # |
| 3082 | # OUTPUT ************************************************************** # |
| 3083 | # No access error: # |
| 3084 | # - The system stack is unchanged # |
| 3085 | # - The fsave frame contains the adjusted src op for opclass 0,2 # |
| 3086 | # # |
| 3087 | # ALGORITHM *********************************************************** # |
| 3088 | # In a system where the FP Operr exception is enabled, the goal # |
| 3089 | # is to get to the handler specified at _real_operr(). But, on the 060, # |
| 3090 | # for opclass zero and two instruction taking this exception, the # |
| 3091 | # input operand in the fsave frame may be incorrect for some cases # |
| 3092 | # and needs to be corrected. This handler calls fix_skewed_ops() to # |
| 3093 | # do just this and then exits through _real_operr(). # |
| 3094 | # For opclass 3 instructions, the 060 doesn't store the default # |
| 3095 | # operr result out to memory or data register file as it should. # |
| 3096 | # This code must emulate the move out before finally exiting through # |
| 3097 | # _real_inex(). The move out, if to memory, is performed using # |
| 3098 | # _mem_write() "callout" routines that may return a failing result. # |
| 3099 | # In this special case, the handler must exit through facc_out() # |
| 3100 | # which creates an access error stack frame from the current operr # |
| 3101 | # stack frame. # |
| 3102 | # # |
| 3103 | ######################################################################### |
| 3104 | |
| 3105 | global _fpsp_operr |
| 3106 | _fpsp_operr: |
| 3107 | |
| 3108 | link.w %a6,&-LOCAL_SIZE # init stack frame |
| 3109 | |
| 3110 | fsave FP_SRC(%a6) # grab the "busy" frame |
| 3111 | |
| 3112 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 3113 | fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs |
| 3114 | fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack |
| 3115 | |
| 3116 | # the FPIAR holds the "current PC" of the faulting instruction |
| 3117 | mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) |
| 3118 | |
| 3119 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 3120 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 3121 | bsr.l _imem_read_long # fetch the instruction words |
| 3122 | mov.l %d0,EXC_OPWORD(%a6) |
| 3123 | |
| 3124 | ############################################################################## |
| 3125 | |
| 3126 | btst &13,%d0 # is instr an fmove out? |
| 3127 | bne.b foperr_out # fmove out |
| 3128 | |
| 3129 | |
| 3130 | # here, we simply see if the operand in the fsave frame needs to be "unskewed". |
| 3131 | # this would be the case for opclass two operations with a source infinity or |
| 3132 | # denorm operand in the sgl or dbl format. NANs also become skewed, but can't |
| 3133 | # cause an operr so we don't need to check for them here. |
| 3134 | lea FP_SRC(%a6),%a0 # pass: ptr to src op |
| 3135 | bsr.l fix_skewed_ops # fix src op |
| 3136 | |
| 3137 | foperr_exit: |
| 3138 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| 3139 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 3140 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 3141 | |
| 3142 | frestore FP_SRC(%a6) |
| 3143 | |
| 3144 | unlk %a6 |
| 3145 | bra.l _real_operr |
| 3146 | |
| 3147 | ######################################################################## |
| 3148 | |
| 3149 | # |
| 3150 | # the hardware does not save the default result to memory on enabled |
| 3151 | # operand error exceptions. we do this here before passing control to |
| 3152 | # the user operand error handler. |
| 3153 | # |
| 3154 | # byte, word, and long destination format operations can pass |
| 3155 | # through here. we simply need to test the sign of the src |
| 3156 | # operand and save the appropriate minimum or maximum integer value |
| 3157 | # to the effective address as pointed to by the stacked effective address. |
| 3158 | # |
| 3159 | # although packed opclass three operations can take operand error |
| 3160 | # exceptions, they won't pass through here since they are caught |
| 3161 | # first by the unsupported data format exception handler. that handler |
| 3162 | # sends them directly to _real_operr() if necessary. |
| 3163 | # |
| 3164 | foperr_out: |
| 3165 | |
| 3166 | mov.w FP_SRC_EX(%a6),%d1 # fetch exponent |
| 3167 | andi.w &0x7fff,%d1 |
| 3168 | cmpi.w %d1,&0x7fff |
| 3169 | bne.b foperr_out_not_qnan |
| 3170 | # the operand is either an infinity or a QNAN. |
| 3171 | tst.l FP_SRC_LO(%a6) |
| 3172 | bne.b foperr_out_qnan |
| 3173 | mov.l FP_SRC_HI(%a6),%d1 |
| 3174 | andi.l &0x7fffffff,%d1 |
| 3175 | beq.b foperr_out_not_qnan |
| 3176 | foperr_out_qnan: |
| 3177 | mov.l FP_SRC_HI(%a6),L_SCR1(%a6) |
| 3178 | bra.b foperr_out_jmp |
| 3179 | |
| 3180 | foperr_out_not_qnan: |
| 3181 | mov.l &0x7fffffff,%d1 |
| 3182 | tst.b FP_SRC_EX(%a6) |
| 3183 | bpl.b foperr_out_not_qnan2 |
| 3184 | addq.l &0x1,%d1 |
| 3185 | foperr_out_not_qnan2: |
| 3186 | mov.l %d1,L_SCR1(%a6) |
| 3187 | |
| 3188 | foperr_out_jmp: |
| 3189 | bfextu %d0{&19:&3},%d0 # extract dst format field |
| 3190 | mov.b 1+EXC_OPWORD(%a6),%d1 # extract <ea> mode,reg |
| 3191 | mov.w (tbl_operr.b,%pc,%d0.w*2),%a0 |
| 3192 | jmp (tbl_operr.b,%pc,%a0) |
| 3193 | |
| 3194 | tbl_operr: |
| 3195 | short foperr_out_l - tbl_operr # long word integer |
| 3196 | short tbl_operr - tbl_operr # sgl prec shouldn't happen |
| 3197 | short tbl_operr - tbl_operr # ext prec shouldn't happen |
| 3198 | short foperr_exit - tbl_operr # packed won't enter here |
| 3199 | short foperr_out_w - tbl_operr # word integer |
| 3200 | short tbl_operr - tbl_operr # dbl prec shouldn't happen |
| 3201 | short foperr_out_b - tbl_operr # byte integer |
| 3202 | short tbl_operr - tbl_operr # packed won't enter here |
| 3203 | |
| 3204 | foperr_out_b: |
| 3205 | mov.b L_SCR1(%a6),%d0 # load positive default result |
| 3206 | cmpi.b %d1,&0x7 # is <ea> mode a data reg? |
| 3207 | ble.b foperr_out_b_save_dn # yes |
| 3208 | mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result |
| 3209 | bsr.l _dmem_write_byte # write the default result |
| 3210 | |
| 3211 | tst.l %d1 # did dstore fail? |
| 3212 | bne.l facc_out_b # yes |
| 3213 | |
| 3214 | bra.w foperr_exit |
| 3215 | foperr_out_b_save_dn: |
| 3216 | andi.w &0x0007,%d1 |
| 3217 | bsr.l store_dreg_b # store result to regfile |
| 3218 | bra.w foperr_exit |
| 3219 | |
| 3220 | foperr_out_w: |
| 3221 | mov.w L_SCR1(%a6),%d0 # load positive default result |
| 3222 | cmpi.b %d1,&0x7 # is <ea> mode a data reg? |
| 3223 | ble.b foperr_out_w_save_dn # yes |
| 3224 | mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result |
| 3225 | bsr.l _dmem_write_word # write the default result |
| 3226 | |
| 3227 | tst.l %d1 # did dstore fail? |
| 3228 | bne.l facc_out_w # yes |
| 3229 | |
| 3230 | bra.w foperr_exit |
| 3231 | foperr_out_w_save_dn: |
| 3232 | andi.w &0x0007,%d1 |
| 3233 | bsr.l store_dreg_w # store result to regfile |
| 3234 | bra.w foperr_exit |
| 3235 | |
| 3236 | foperr_out_l: |
| 3237 | mov.l L_SCR1(%a6),%d0 # load positive default result |
| 3238 | cmpi.b %d1,&0x7 # is <ea> mode a data reg? |
| 3239 | ble.b foperr_out_l_save_dn # yes |
| 3240 | mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result |
| 3241 | bsr.l _dmem_write_long # write the default result |
| 3242 | |
| 3243 | tst.l %d1 # did dstore fail? |
| 3244 | bne.l facc_out_l # yes |
| 3245 | |
| 3246 | bra.w foperr_exit |
| 3247 | foperr_out_l_save_dn: |
| 3248 | andi.w &0x0007,%d1 |
| 3249 | bsr.l store_dreg_l # store result to regfile |
| 3250 | bra.w foperr_exit |
| 3251 | |
| 3252 | ######################################################################### |
| 3253 | # XDEF **************************************************************** # |
| 3254 | # _fpsp_snan(): 060FPSP entry point for FP SNAN exception. # |
| 3255 | # # |
| 3256 | # This handler should be the first code executed upon taking the # |
| 3257 | # FP Signalling NAN exception in an operating system. # |
| 3258 | # # |
| 3259 | # XREF **************************************************************** # |
| 3260 | # _imem_read_long() - read instruction longword # |
| 3261 | # fix_skewed_ops() - adjust src operand in fsave frame # |
| 3262 | # _real_snan() - "callout" to operating system SNAN handler # |
| 3263 | # _dmem_write_{byte,word,long}() - store data to mem (opclass 3) # |
| 3264 | # store_dreg_{b,w,l}() - store data to data regfile (opclass 3) # |
| 3265 | # facc_out_{b,w,l,d,x}() - store to mem took acc error (opcl 3) # |
| 3266 | # _calc_ea_fout() - fix An if <ea> is -() or ()+; also get <ea> # |
| 3267 | # # |
| 3268 | # INPUT *************************************************************** # |
| 3269 | # - The system stack contains the FP SNAN exception frame # |
| 3270 | # - The fsave frame contains the source operand # |
| 3271 | # # |
| 3272 | # OUTPUT ************************************************************** # |
| 3273 | # No access error: # |
| 3274 | # - The system stack is unchanged # |
| 3275 | # - The fsave frame contains the adjusted src op for opclass 0,2 # |
| 3276 | # # |
| 3277 | # ALGORITHM *********************************************************** # |
| 3278 | # In a system where the FP SNAN exception is enabled, the goal # |
| 3279 | # is to get to the handler specified at _real_snan(). But, on the 060, # |
| 3280 | # for opclass zero and two instructions taking this exception, the # |
| 3281 | # input operand in the fsave frame may be incorrect for some cases # |
| 3282 | # and needs to be corrected. This handler calls fix_skewed_ops() to # |
| 3283 | # do just this and then exits through _real_snan(). # |
| 3284 | # For opclass 3 instructions, the 060 doesn't store the default # |
| 3285 | # SNAN result out to memory or data register file as it should. # |
| 3286 | # This code must emulate the move out before finally exiting through # |
| 3287 | # _real_snan(). The move out, if to memory, is performed using # |
| 3288 | # _mem_write() "callout" routines that may return a failing result. # |
| 3289 | # In this special case, the handler must exit through facc_out() # |
| 3290 | # which creates an access error stack frame from the current SNAN # |
| 3291 | # stack frame. # |
| 3292 | # For the case of an extended precision opclass 3 instruction, # |
| 3293 | # if the effective addressing mode was -() or ()+, then the address # |
| 3294 | # register must get updated by calling _calc_ea_fout(). If the <ea> # |
| 3295 | # was -(a7) from supervisor mode, then the exception frame currently # |
| 3296 | # on the system stack must be carefully moved "down" to make room # |
| 3297 | # for the operand being moved. # |
| 3298 | # # |
| 3299 | ######################################################################### |
| 3300 | |
| 3301 | global _fpsp_snan |
| 3302 | _fpsp_snan: |
| 3303 | |
| 3304 | link.w %a6,&-LOCAL_SIZE # init stack frame |
| 3305 | |
| 3306 | fsave FP_SRC(%a6) # grab the "busy" frame |
| 3307 | |
| 3308 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 3309 | fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs |
| 3310 | fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack |
| 3311 | |
| 3312 | # the FPIAR holds the "current PC" of the faulting instruction |
| 3313 | mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) |
| 3314 | |
| 3315 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 3316 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 3317 | bsr.l _imem_read_long # fetch the instruction words |
| 3318 | mov.l %d0,EXC_OPWORD(%a6) |
| 3319 | |
| 3320 | ############################################################################## |
| 3321 | |
| 3322 | btst &13,%d0 # is instr an fmove out? |
| 3323 | bne.w fsnan_out # fmove out |
| 3324 | |
| 3325 | |
| 3326 | # here, we simply see if the operand in the fsave frame needs to be "unskewed". |
| 3327 | # this would be the case for opclass two operations with a source infinity or |
| 3328 | # denorm operand in the sgl or dbl format. NANs also become skewed and must be |
| 3329 | # fixed here. |
| 3330 | lea FP_SRC(%a6),%a0 # pass: ptr to src op |
| 3331 | bsr.l fix_skewed_ops # fix src op |
| 3332 | |
| 3333 | fsnan_exit: |
| 3334 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| 3335 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 3336 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 3337 | |
| 3338 | frestore FP_SRC(%a6) |
| 3339 | |
| 3340 | unlk %a6 |
| 3341 | bra.l _real_snan |
| 3342 | |
| 3343 | ######################################################################## |
| 3344 | |
| 3345 | # |
| 3346 | # the hardware does not save the default result to memory on enabled |
| 3347 | # snan exceptions. we do this here before passing control to |
| 3348 | # the user snan handler. |
| 3349 | # |
| 3350 | # byte, word, long, and packed destination format operations can pass |
| 3351 | # through here. since packed format operations already were handled by |
| 3352 | # fpsp_unsupp(), then we need to do nothing else for them here. |
| 3353 | # for byte, word, and long, we simply need to test the sign of the src |
| 3354 | # operand and save the appropriate minimum or maximum integer value |
| 3355 | # to the effective address as pointed to by the stacked effective address. |
| 3356 | # |
| 3357 | fsnan_out: |
| 3358 | |
| 3359 | bfextu %d0{&19:&3},%d0 # extract dst format field |
| 3360 | mov.b 1+EXC_OPWORD(%a6),%d1 # extract <ea> mode,reg |
| 3361 | mov.w (tbl_snan.b,%pc,%d0.w*2),%a0 |
| 3362 | jmp (tbl_snan.b,%pc,%a0) |
| 3363 | |
| 3364 | tbl_snan: |
| 3365 | short fsnan_out_l - tbl_snan # long word integer |
| 3366 | short fsnan_out_s - tbl_snan # sgl prec shouldn't happen |
| 3367 | short fsnan_out_x - tbl_snan # ext prec shouldn't happen |
| 3368 | short tbl_snan - tbl_snan # packed needs no help |
| 3369 | short fsnan_out_w - tbl_snan # word integer |
| 3370 | short fsnan_out_d - tbl_snan # dbl prec shouldn't happen |
| 3371 | short fsnan_out_b - tbl_snan # byte integer |
| 3372 | short tbl_snan - tbl_snan # packed needs no help |
| 3373 | |
| 3374 | fsnan_out_b: |
| 3375 | mov.b FP_SRC_HI(%a6),%d0 # load upper byte of SNAN |
| 3376 | bset &6,%d0 # set SNAN bit |
| 3377 | cmpi.b %d1,&0x7 # is <ea> mode a data reg? |
| 3378 | ble.b fsnan_out_b_dn # yes |
| 3379 | mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result |
| 3380 | bsr.l _dmem_write_byte # write the default result |
| 3381 | |
| 3382 | tst.l %d1 # did dstore fail? |
| 3383 | bne.l facc_out_b # yes |
| 3384 | |
| 3385 | bra.w fsnan_exit |
| 3386 | fsnan_out_b_dn: |
| 3387 | andi.w &0x0007,%d1 |
| 3388 | bsr.l store_dreg_b # store result to regfile |
| 3389 | bra.w fsnan_exit |
| 3390 | |
| 3391 | fsnan_out_w: |
| 3392 | mov.w FP_SRC_HI(%a6),%d0 # load upper word of SNAN |
| 3393 | bset &14,%d0 # set SNAN bit |
| 3394 | cmpi.b %d1,&0x7 # is <ea> mode a data reg? |
| 3395 | ble.b fsnan_out_w_dn # yes |
| 3396 | mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result |
| 3397 | bsr.l _dmem_write_word # write the default result |
| 3398 | |
| 3399 | tst.l %d1 # did dstore fail? |
| 3400 | bne.l facc_out_w # yes |
| 3401 | |
| 3402 | bra.w fsnan_exit |
| 3403 | fsnan_out_w_dn: |
| 3404 | andi.w &0x0007,%d1 |
| 3405 | bsr.l store_dreg_w # store result to regfile |
| 3406 | bra.w fsnan_exit |
| 3407 | |
| 3408 | fsnan_out_l: |
| 3409 | mov.l FP_SRC_HI(%a6),%d0 # load upper longword of SNAN |
| 3410 | bset &30,%d0 # set SNAN bit |
| 3411 | cmpi.b %d1,&0x7 # is <ea> mode a data reg? |
| 3412 | ble.b fsnan_out_l_dn # yes |
| 3413 | mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result |
| 3414 | bsr.l _dmem_write_long # write the default result |
| 3415 | |
| 3416 | tst.l %d1 # did dstore fail? |
| 3417 | bne.l facc_out_l # yes |
| 3418 | |
| 3419 | bra.w fsnan_exit |
| 3420 | fsnan_out_l_dn: |
| 3421 | andi.w &0x0007,%d1 |
| 3422 | bsr.l store_dreg_l # store result to regfile |
| 3423 | bra.w fsnan_exit |
| 3424 | |
| 3425 | fsnan_out_s: |
| 3426 | cmpi.b %d1,&0x7 # is <ea> mode a data reg? |
| 3427 | ble.b fsnan_out_d_dn # yes |
| 3428 | mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign |
| 3429 | andi.l &0x80000000,%d0 # keep sign |
| 3430 | ori.l &0x7fc00000,%d0 # insert new exponent,SNAN bit |
| 3431 | mov.l FP_SRC_HI(%a6),%d1 # load mantissa |
| 3432 | lsr.l &0x8,%d1 # shift mantissa for sgl |
| 3433 | or.l %d1,%d0 # create sgl SNAN |
| 3434 | mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result |
| 3435 | bsr.l _dmem_write_long # write the default result |
| 3436 | |
| 3437 | tst.l %d1 # did dstore fail? |
| 3438 | bne.l facc_out_l # yes |
| 3439 | |
| 3440 | bra.w fsnan_exit |
| 3441 | fsnan_out_d_dn: |
| 3442 | mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign |
| 3443 | andi.l &0x80000000,%d0 # keep sign |
| 3444 | ori.l &0x7fc00000,%d0 # insert new exponent,SNAN bit |
| 3445 | mov.l %d1,-(%sp) |
| 3446 | mov.l FP_SRC_HI(%a6),%d1 # load mantissa |
| 3447 | lsr.l &0x8,%d1 # shift mantissa for sgl |
| 3448 | or.l %d1,%d0 # create sgl SNAN |
| 3449 | mov.l (%sp)+,%d1 |
| 3450 | andi.w &0x0007,%d1 |
| 3451 | bsr.l store_dreg_l # store result to regfile |
| 3452 | bra.w fsnan_exit |
| 3453 | |
| 3454 | fsnan_out_d: |
| 3455 | mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign |
| 3456 | andi.l &0x80000000,%d0 # keep sign |
| 3457 | ori.l &0x7ff80000,%d0 # insert new exponent,SNAN bit |
| 3458 | mov.l FP_SRC_HI(%a6),%d1 # load hi mantissa |
| 3459 | mov.l %d0,FP_SCR0_EX(%a6) # store to temp space |
| 3460 | mov.l &11,%d0 # load shift amt |
| 3461 | lsr.l %d0,%d1 |
| 3462 | or.l %d1,FP_SCR0_EX(%a6) # create dbl hi |
| 3463 | mov.l FP_SRC_HI(%a6),%d1 # load hi mantissa |
| 3464 | andi.l &0x000007ff,%d1 |
| 3465 | ror.l %d0,%d1 |
| 3466 | mov.l %d1,FP_SCR0_HI(%a6) # store to temp space |
| 3467 | mov.l FP_SRC_LO(%a6),%d1 # load lo mantissa |
| 3468 | lsr.l %d0,%d1 |
| 3469 | or.l %d1,FP_SCR0_HI(%a6) # create dbl lo |
| 3470 | lea FP_SCR0(%a6),%a0 # pass: ptr to operand |
| 3471 | mov.l EXC_EA(%a6),%a1 # pass: dst addr |
| 3472 | movq.l &0x8,%d0 # pass: size of 8 bytes |
| 3473 | bsr.l _dmem_write # write the default result |
| 3474 | |
| 3475 | tst.l %d1 # did dstore fail? |
| 3476 | bne.l facc_out_d # yes |
| 3477 | |
| 3478 | bra.w fsnan_exit |
| 3479 | |
| 3480 | # for extended precision, if the addressing mode is pre-decrement or |
| 3481 | # post-increment, then the address register did not get updated. |
| 3482 | # in addition, for pre-decrement, the stacked <ea> is incorrect. |
| 3483 | fsnan_out_x: |
| 3484 | clr.b SPCOND_FLG(%a6) # clear special case flag |
| 3485 | |
| 3486 | mov.w FP_SRC_EX(%a6),FP_SCR0_EX(%a6) |
| 3487 | clr.w 2+FP_SCR0(%a6) |
| 3488 | mov.l FP_SRC_HI(%a6),%d0 |
| 3489 | bset &30,%d0 |
| 3490 | mov.l %d0,FP_SCR0_HI(%a6) |
| 3491 | mov.l FP_SRC_LO(%a6),FP_SCR0_LO(%a6) |
| 3492 | |
| 3493 | btst &0x5,EXC_SR(%a6) # supervisor mode exception? |
| 3494 | bne.b fsnan_out_x_s # yes |
| 3495 | |
| 3496 | mov.l %usp,%a0 # fetch user stack pointer |
| 3497 | mov.l %a0,EXC_A7(%a6) # save on stack for calc_ea() |
| 3498 | mov.l (%a6),EXC_A6(%a6) |
| 3499 | |
| 3500 | bsr.l _calc_ea_fout # find the correct ea,update An |
| 3501 | mov.l %a0,%a1 |
| 3502 | mov.l %a0,EXC_EA(%a6) # stack correct <ea> |
| 3503 | |
| 3504 | mov.l EXC_A7(%a6),%a0 |
| 3505 | mov.l %a0,%usp # restore user stack pointer |
| 3506 | mov.l EXC_A6(%a6),(%a6) |
| 3507 | |
| 3508 | fsnan_out_x_save: |
| 3509 | lea FP_SCR0(%a6),%a0 # pass: ptr to operand |
| 3510 | movq.l &0xc,%d0 # pass: size of extended |
| 3511 | bsr.l _dmem_write # write the default result |
| 3512 | |
| 3513 | tst.l %d1 # did dstore fail? |
| 3514 | bne.l facc_out_x # yes |
| 3515 | |
| 3516 | bra.w fsnan_exit |
| 3517 | |
| 3518 | fsnan_out_x_s: |
| 3519 | mov.l (%a6),EXC_A6(%a6) |
| 3520 | |
| 3521 | bsr.l _calc_ea_fout # find the correct ea,update An |
| 3522 | mov.l %a0,%a1 |
| 3523 | mov.l %a0,EXC_EA(%a6) # stack correct <ea> |
| 3524 | |
| 3525 | mov.l EXC_A6(%a6),(%a6) |
| 3526 | |
| 3527 | cmpi.b SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)? |
| 3528 | bne.b fsnan_out_x_save # no |
| 3529 | |
| 3530 | # the operation was "fmove.x SNAN,-(a7)" from supervisor mode. |
| 3531 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| 3532 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 3533 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 3534 | |
| 3535 | frestore FP_SRC(%a6) |
| 3536 | |
| 3537 | mov.l EXC_A6(%a6),%a6 # restore frame pointer |
| 3538 | |
| 3539 | mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) |
| 3540 | mov.l LOCAL_SIZE+EXC_PC+0x2(%sp),LOCAL_SIZE+EXC_PC+0x2-0xc(%sp) |
| 3541 | mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) |
| 3542 | |
| 3543 | mov.l LOCAL_SIZE+FP_SCR0_EX(%sp),LOCAL_SIZE+EXC_SR(%sp) |
| 3544 | mov.l LOCAL_SIZE+FP_SCR0_HI(%sp),LOCAL_SIZE+EXC_PC+0x2(%sp) |
| 3545 | mov.l LOCAL_SIZE+FP_SCR0_LO(%sp),LOCAL_SIZE+EXC_EA(%sp) |
| 3546 | |
| 3547 | add.l &LOCAL_SIZE-0x8,%sp |
| 3548 | |
| 3549 | bra.l _real_snan |
| 3550 | |
| 3551 | ######################################################################### |
| 3552 | # XDEF **************************************************************** # |
| 3553 | # _fpsp_inex(): 060FPSP entry point for FP Inexact exception. # |
| 3554 | # # |
| 3555 | # This handler should be the first code executed upon taking the # |
| 3556 | # FP Inexact exception in an operating system. # |
| 3557 | # # |
| 3558 | # XREF **************************************************************** # |
| 3559 | # _imem_read_long() - read instruction longword # |
| 3560 | # fix_skewed_ops() - adjust src operand in fsave frame # |
| 3561 | # set_tag_x() - determine optype of src/dst operands # |
| 3562 | # store_fpreg() - store opclass 0 or 2 result to FP regfile # |
| 3563 | # unnorm_fix() - change UNNORM operands to NORM or ZERO # |
| 3564 | # load_fpn2() - load dst operand from FP regfile # |
| 3565 | # smovcr() - emulate an "fmovcr" instruction # |
| 3566 | # fout() - emulate an opclass 3 instruction # |
| 3567 | # tbl_unsupp - add of table of emulation routines for opclass 0,2 # |
| 3568 | # _real_inex() - "callout" to operating system inexact handler # |
| 3569 | # # |
| 3570 | # INPUT *************************************************************** # |
| 3571 | # - The system stack contains the FP Inexact exception frame # |
| 3572 | # - The fsave frame contains the source operand # |
| 3573 | # # |
| 3574 | # OUTPUT ************************************************************** # |
| 3575 | # - The system stack is unchanged # |
| 3576 | # - The fsave frame contains the adjusted src op for opclass 0,2 # |
| 3577 | # # |
| 3578 | # ALGORITHM *********************************************************** # |
| 3579 | # In a system where the FP Inexact exception is enabled, the goal # |
| 3580 | # is to get to the handler specified at _real_inex(). But, on the 060, # |
| 3581 | # for opclass zero and two instruction taking this exception, the # |
| 3582 | # hardware doesn't store the correct result to the destination FP # |
| 3583 | # register as did the '040 and '881/2. This handler must emulate the # |
| 3584 | # instruction in order to get this value and then store it to the # |
| 3585 | # correct register before calling _real_inex(). # |
| 3586 | # For opclass 3 instructions, the 060 doesn't store the default # |
| 3587 | # inexact result out to memory or data register file as it should. # |
| 3588 | # This code must emulate the move out by calling fout() before finally # |
| 3589 | # exiting through _real_inex(). # |
| 3590 | # # |
| 3591 | ######################################################################### |
| 3592 | |
| 3593 | global _fpsp_inex |
| 3594 | _fpsp_inex: |
| 3595 | |
| 3596 | link.w %a6,&-LOCAL_SIZE # init stack frame |
| 3597 | |
| 3598 | fsave FP_SRC(%a6) # grab the "busy" frame |
| 3599 | |
| 3600 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 3601 | fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs |
| 3602 | fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack |
| 3603 | |
| 3604 | # the FPIAR holds the "current PC" of the faulting instruction |
| 3605 | mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) |
| 3606 | |
| 3607 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 3608 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 3609 | bsr.l _imem_read_long # fetch the instruction words |
| 3610 | mov.l %d0,EXC_OPWORD(%a6) |
| 3611 | |
| 3612 | ############################################################################## |
| 3613 | |
| 3614 | btst &13,%d0 # is instr an fmove out? |
| 3615 | bne.w finex_out # fmove out |
| 3616 | |
| 3617 | |
| 3618 | # the hardware, for "fabs" and "fneg" w/ a long source format, puts the |
| 3619 | # longword integer directly into the upper longword of the mantissa along |
| 3620 | # w/ an exponent value of 0x401e. we convert this to extended precision here. |
| 3621 | bfextu %d0{&19:&3},%d0 # fetch instr size |
| 3622 | bne.b finex_cont # instr size is not long |
| 3623 | cmpi.w FP_SRC_EX(%a6),&0x401e # is exponent 0x401e? |
| 3624 | bne.b finex_cont # no |
| 3625 | fmov.l &0x0,%fpcr |
| 3626 | fmov.l FP_SRC_HI(%a6),%fp0 # load integer src |
| 3627 | fmov.x %fp0,FP_SRC(%a6) # store integer as extended precision |
| 3628 | mov.w &0xe001,0x2+FP_SRC(%a6) |
| 3629 | |
| 3630 | finex_cont: |
| 3631 | lea FP_SRC(%a6),%a0 # pass: ptr to src op |
| 3632 | bsr.l fix_skewed_ops # fix src op |
| 3633 | |
| 3634 | # Here, we zero the ccode and exception byte field since we're going to |
| 3635 | # emulate the whole instruction. Notice, though, that we don't kill the |
| 3636 | # INEX1 bit. This is because a packed op has long since been converted |
| 3637 | # to extended before arriving here. Therefore, we need to retain the |
| 3638 | # INEX1 bit from when the operand was first converted. |
| 3639 | andi.l &0x00ff01ff,USER_FPSR(%a6) # zero all but accured field |
| 3640 | |
| 3641 | fmov.l &0x0,%fpcr # zero current control regs |
| 3642 | fmov.l &0x0,%fpsr |
| 3643 | |
| 3644 | bfextu EXC_EXTWORD(%a6){&0:&6},%d1 # extract upper 6 of cmdreg |
| 3645 | cmpi.b %d1,&0x17 # is op an fmovecr? |
| 3646 | beq.w finex_fmovcr # yes |
| 3647 | |
| 3648 | lea FP_SRC(%a6),%a0 # pass: ptr to src op |
| 3649 | bsr.l set_tag_x # tag the operand type |
| 3650 | mov.b %d0,STAG(%a6) # maybe NORM,DENORM |
| 3651 | |
| 3652 | # bits four and five of the fp extension word separate the monadic and dyadic |
| 3653 | # operations that can pass through fpsp_inex(). remember that fcmp and ftst |
| 3654 | # will never take this exception, but fsincos will. |
| 3655 | btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? |
| 3656 | beq.b finex_extract # monadic |
| 3657 | |
| 3658 | btst &0x4,1+EXC_CMDREG(%a6) # is operation an fsincos? |
| 3659 | bne.b finex_extract # yes |
| 3660 | |
| 3661 | bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg |
| 3662 | bsr.l load_fpn2 # load dst into FP_DST |
| 3663 | |
| 3664 | lea FP_DST(%a6),%a0 # pass: ptr to dst op |
| 3665 | bsr.l set_tag_x # tag the operand type |
| 3666 | cmpi.b %d0,&UNNORM # is operand an UNNORM? |
| 3667 | bne.b finex_op2_done # no |
| 3668 | bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO |
| 3669 | finex_op2_done: |
| 3670 | mov.b %d0,DTAG(%a6) # save dst optype tag |
| 3671 | |
| 3672 | finex_extract: |
| 3673 | clr.l %d0 |
| 3674 | mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode |
| 3675 | |
| 3676 | mov.b 1+EXC_CMDREG(%a6),%d1 |
| 3677 | andi.w &0x007f,%d1 # extract extension |
| 3678 | |
| 3679 | lea FP_SRC(%a6),%a0 |
| 3680 | lea FP_DST(%a6),%a1 |
| 3681 | |
| 3682 | mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr |
| 3683 | jsr (tbl_unsupp.l,%pc,%d1.l*1) |
| 3684 | |
| 3685 | # the operation has been emulated. the result is in fp0. |
| 3686 | finex_save: |
| 3687 | bfextu EXC_CMDREG(%a6){&6:&3},%d0 |
| 3688 | bsr.l store_fpreg |
| 3689 | |
| 3690 | finex_exit: |
| 3691 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| 3692 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 3693 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 3694 | |
| 3695 | frestore FP_SRC(%a6) |
| 3696 | |
| 3697 | unlk %a6 |
| 3698 | bra.l _real_inex |
| 3699 | |
| 3700 | finex_fmovcr: |
| 3701 | clr.l %d0 |
| 3702 | mov.b FPCR_MODE(%a6),%d0 # pass rnd prec,mode |
| 3703 | mov.b 1+EXC_CMDREG(%a6),%d1 |
| 3704 | andi.l &0x0000007f,%d1 # pass rom offset |
| 3705 | bsr.l smovcr |
| 3706 | bra.b finex_save |
| 3707 | |
| 3708 | ######################################################################## |
| 3709 | |
| 3710 | # |
| 3711 | # the hardware does not save the default result to memory on enabled |
| 3712 | # inexact exceptions. we do this here before passing control to |
| 3713 | # the user inexact handler. |
| 3714 | # |
| 3715 | # byte, word, and long destination format operations can pass |
| 3716 | # through here. so can double and single precision. |
| 3717 | # although packed opclass three operations can take inexact |
| 3718 | # exceptions, they won't pass through here since they are caught |
| 3719 | # first by the unsupported data format exception handler. that handler |
| 3720 | # sends them directly to _real_inex() if necessary. |
| 3721 | # |
| 3722 | finex_out: |
| 3723 | |
| 3724 | mov.b &NORM,STAG(%a6) # src is a NORM |
| 3725 | |
| 3726 | clr.l %d0 |
| 3727 | mov.b FPCR_MODE(%a6),%d0 # pass rnd prec,mode |
| 3728 | |
| 3729 | andi.l &0xffff00ff,USER_FPSR(%a6) # zero exception field |
| 3730 | |
| 3731 | lea FP_SRC(%a6),%a0 # pass ptr to src operand |
| 3732 | |
| 3733 | bsr.l fout # store the default result |
| 3734 | |
| 3735 | bra.b finex_exit |
| 3736 | |
| 3737 | ######################################################################### |
| 3738 | # XDEF **************************************************************** # |
| 3739 | # _fpsp_dz(): 060FPSP entry point for FP DZ exception. # |
| 3740 | # # |
| 3741 | # This handler should be the first code executed upon taking # |
| 3742 | # the FP DZ exception in an operating system. # |
| 3743 | # # |
| 3744 | # XREF **************************************************************** # |
| 3745 | # _imem_read_long() - read instruction longword from memory # |
| 3746 | # fix_skewed_ops() - adjust fsave operand # |
| 3747 | # _real_dz() - "callout" exit point from FP DZ handler # |
| 3748 | # # |
| 3749 | # INPUT *************************************************************** # |
| 3750 | # - The system stack contains the FP DZ exception stack. # |
| 3751 | # - The fsave frame contains the source operand. # |
| 3752 | # # |
| 3753 | # OUTPUT ************************************************************** # |
| 3754 | # - The system stack contains the FP DZ exception stack. # |
| 3755 | # - The fsave frame contains the adjusted source operand. # |
| 3756 | # # |
| 3757 | # ALGORITHM *********************************************************** # |
| 3758 | # In a system where the DZ exception is enabled, the goal is to # |
| 3759 | # get to the handler specified at _real_dz(). But, on the 060, when the # |
| 3760 | # exception is taken, the input operand in the fsave state frame may # |
| 3761 | # be incorrect for some cases and need to be adjusted. So, this package # |
| 3762 | # adjusts the operand using fix_skewed_ops() and then branches to # |
| 3763 | # _real_dz(). # |
| 3764 | # # |
| 3765 | ######################################################################### |
| 3766 | |
| 3767 | global _fpsp_dz |
| 3768 | _fpsp_dz: |
| 3769 | |
| 3770 | link.w %a6,&-LOCAL_SIZE # init stack frame |
| 3771 | |
| 3772 | fsave FP_SRC(%a6) # grab the "busy" frame |
| 3773 | |
| 3774 | movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 |
| 3775 | fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs |
| 3776 | fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack |
| 3777 | |
| 3778 | # the FPIAR holds the "current PC" of the faulting instruction |
| 3779 | mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) |
| 3780 | |
| 3781 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 3782 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 3783 | bsr.l _imem_read_long # fetch the instruction words |
| 3784 | mov.l %d0,EXC_OPWORD(%a6) |
| 3785 | |
| 3786 | ############################################################################## |
| 3787 | |
| 3788 | |
| 3789 | # here, we simply see if the operand in the fsave frame needs to be "unskewed". |
| 3790 | # this would be the case for opclass two operations with a source zero |
| 3791 | # in the sgl or dbl format. |
| 3792 | lea FP_SRC(%a6),%a0 # pass: ptr to src op |
| 3793 | bsr.l fix_skewed_ops # fix src op |
| 3794 | |
| 3795 | fdz_exit: |
| 3796 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| 3797 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 3798 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 3799 | |
| 3800 | frestore FP_SRC(%a6) |
| 3801 | |
| 3802 | unlk %a6 |
| 3803 | bra.l _real_dz |
| 3804 | |
| 3805 | ######################################################################### |
| 3806 | # XDEF **************************************************************** # |
| 3807 | # _fpsp_fline(): 060FPSP entry point for "Line F emulator" # |
| 3808 | # exception when the "reduced" version of the # |
| 3809 | # FPSP is implemented that does not emulate # |
| 3810 | # FP unimplemented instructions. # |
| 3811 | # # |
| 3812 | # This handler should be the first code executed upon taking a # |
| 3813 | # "Line F Emulator" exception in an operating system integrating # |
| 3814 | # the reduced version of 060FPSP. # |
| 3815 | # # |
| 3816 | # XREF **************************************************************** # |
| 3817 | # _real_fpu_disabled() - Handle "FPU disabled" exceptions # |
| 3818 | # _real_fline() - Handle all other cases (treated equally) # |
| 3819 | # # |
| 3820 | # INPUT *************************************************************** # |
| 3821 | # - The system stack contains a "Line F Emulator" exception # |
| 3822 | # stack frame. # |
| 3823 | # # |
| 3824 | # OUTPUT ************************************************************** # |
| 3825 | # - The system stack is unchanged. # |
| 3826 | # # |
| 3827 | # ALGORITHM *********************************************************** # |
| 3828 | # When a "Line F Emulator" exception occurs in a system where # |
| 3829 | # "FPU Unimplemented" instructions will not be emulated, the exception # |
| 3830 | # can occur because then FPU is disabled or the instruction is to be # |
| 3831 | # classifed as "Line F". This module determines which case exists and # |
| 3832 | # calls the appropriate "callout". # |
| 3833 | # # |
| 3834 | ######################################################################### |
| 3835 | |
| 3836 | global _fpsp_fline |
| 3837 | _fpsp_fline: |
| 3838 | |
| 3839 | # check to see if the FPU is disabled. if so, jump to the OS entry |
| 3840 | # point for that condition. |
| 3841 | cmpi.w 0x6(%sp),&0x402c |
| 3842 | beq.l _real_fpu_disabled |
| 3843 | |
| 3844 | bra.l _real_fline |
| 3845 | |
| 3846 | ######################################################################### |
| 3847 | # XDEF **************************************************************** # |
| 3848 | # _dcalc_ea(): calc correct <ea> from <ea> stacked on exception # |
| 3849 | # # |
| 3850 | # XREF **************************************************************** # |
| 3851 | # inc_areg() - increment an address register # |
| 3852 | # dec_areg() - decrement an address register # |
| 3853 | # # |
| 3854 | # INPUT *************************************************************** # |
| 3855 | # d0 = number of bytes to adjust <ea> by # |
| 3856 | # # |
| 3857 | # OUTPUT ************************************************************** # |
| 3858 | # None # |
| 3859 | # # |
| 3860 | # ALGORITHM *********************************************************** # |
| 3861 | # "Dummy" CALCulate Effective Address: # |
| 3862 | # The stacked <ea> for FP unimplemented instructions and opclass # |
| 3863 | # two packed instructions is correct with the exception of... # |
| 3864 | # # |
| 3865 | # 1) -(An) : The register is not updated regardless of size. # |
| 3866 | # Also, for extended precision and packed, the # |
| 3867 | # stacked <ea> value is 8 bytes too big # |
| 3868 | # 2) (An)+ : The register is not updated. # |
| 3869 | # 3) #<data> : The upper longword of the immediate operand is # |
| 3870 | # stacked b,w,l and s sizes are completely stacked. # |
| 3871 | # d,x, and p are not. # |
| 3872 | # # |
| 3873 | ######################################################################### |
| 3874 | |
| 3875 | global _dcalc_ea |
| 3876 | _dcalc_ea: |
| 3877 | mov.l %d0, %a0 # move # bytes to %a0 |
| 3878 | |
| 3879 | mov.b 1+EXC_OPWORD(%a6), %d0 # fetch opcode word |
| 3880 | mov.l %d0, %d1 # make a copy |
| 3881 | |
| 3882 | andi.w &0x38, %d0 # extract mode field |
| 3883 | andi.l &0x7, %d1 # extract reg field |
| 3884 | |
| 3885 | cmpi.b %d0,&0x18 # is mode (An)+ ? |
| 3886 | beq.b dcea_pi # yes |
| 3887 | |
| 3888 | cmpi.b %d0,&0x20 # is mode -(An) ? |
| 3889 | beq.b dcea_pd # yes |
| 3890 | |
| 3891 | or.w %d1,%d0 # concat mode,reg |
| 3892 | cmpi.b %d0,&0x3c # is mode #<data>? |
| 3893 | |
| 3894 | beq.b dcea_imm # yes |
| 3895 | |
| 3896 | mov.l EXC_EA(%a6),%a0 # return <ea> |
| 3897 | rts |
| 3898 | |
| 3899 | # need to set immediate data flag here since we'll need to do |
| 3900 | # an imem_read to fetch this later. |
| 3901 | dcea_imm: |
| 3902 | mov.b &immed_flg,SPCOND_FLG(%a6) |
| 3903 | lea ([USER_FPIAR,%a6],0x4),%a0 # no; return <ea> |
| 3904 | rts |
| 3905 | |
| 3906 | # here, the <ea> is stacked correctly. however, we must update the |
| 3907 | # address register... |
| 3908 | dcea_pi: |
| 3909 | mov.l %a0,%d0 # pass amt to inc by |
| 3910 | bsr.l inc_areg # inc addr register |
| 3911 | |
| 3912 | mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct |
| 3913 | rts |
| 3914 | |
| 3915 | # the <ea> is stacked correctly for all but extended and packed which |
| 3916 | # the <ea>s are 8 bytes too large. |
| 3917 | # it would make no sense to have a pre-decrement to a7 in supervisor |
| 3918 | # mode so we don't even worry about this tricky case here : ) |
| 3919 | dcea_pd: |
| 3920 | mov.l %a0,%d0 # pass amt to dec by |
| 3921 | bsr.l dec_areg # dec addr register |
| 3922 | |
| 3923 | mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct |
| 3924 | |
| 3925 | cmpi.b %d0,&0xc # is opsize ext or packed? |
| 3926 | beq.b dcea_pd2 # yes |
| 3927 | rts |
| 3928 | dcea_pd2: |
| 3929 | sub.l &0x8,%a0 # correct <ea> |
| 3930 | mov.l %a0,EXC_EA(%a6) # put correct <ea> on stack |
| 3931 | rts |
| 3932 | |
| 3933 | ######################################################################### |
| 3934 | # XDEF **************************************************************** # |
| 3935 | # _calc_ea_fout(): calculate correct stacked <ea> for extended # |
| 3936 | # and packed data opclass 3 operations. # |
| 3937 | # # |
| 3938 | # XREF **************************************************************** # |
| 3939 | # None # |
| 3940 | # # |
| 3941 | # INPUT *************************************************************** # |
| 3942 | # None # |
| 3943 | # # |
| 3944 | # OUTPUT ************************************************************** # |
| 3945 | # a0 = return correct effective address # |
| 3946 | # # |
| 3947 | # ALGORITHM *********************************************************** # |
| 3948 | # For opclass 3 extended and packed data operations, the <ea> # |
| 3949 | # stacked for the exception is incorrect for -(an) and (an)+ addressing # |
| 3950 | # modes. Also, while we're at it, the index register itself must get # |
| 3951 | # updated. # |
| 3952 | # So, for -(an), we must subtract 8 off of the stacked <ea> value # |
| 3953 | # and return that value as the correct <ea> and store that value in An. # |
| 3954 | # For (an)+, the stacked <ea> is correct but we must adjust An by +12. # |
| 3955 | # # |
| 3956 | ######################################################################### |
| 3957 | |
| 3958 | # This calc_ea is currently used to retrieve the correct <ea> |
| 3959 | # for fmove outs of type extended and packed. |
| 3960 | global _calc_ea_fout |
| 3961 | _calc_ea_fout: |
| 3962 | mov.b 1+EXC_OPWORD(%a6),%d0 # fetch opcode word |
| 3963 | mov.l %d0,%d1 # make a copy |
| 3964 | |
| 3965 | andi.w &0x38,%d0 # extract mode field |
| 3966 | andi.l &0x7,%d1 # extract reg field |
| 3967 | |
| 3968 | cmpi.b %d0,&0x18 # is mode (An)+ ? |
| 3969 | beq.b ceaf_pi # yes |
| 3970 | |
| 3971 | cmpi.b %d0,&0x20 # is mode -(An) ? |
| 3972 | beq.w ceaf_pd # yes |
| 3973 | |
| 3974 | mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct |
| 3975 | rts |
| 3976 | |
| 3977 | # (An)+ : extended and packed fmove out |
| 3978 | # : stacked <ea> is correct |
| 3979 | # : "An" not updated |
| 3980 | ceaf_pi: |
| 3981 | mov.w (tbl_ceaf_pi.b,%pc,%d1.w*2),%d1 |
| 3982 | mov.l EXC_EA(%a6),%a0 |
| 3983 | jmp (tbl_ceaf_pi.b,%pc,%d1.w*1) |
| 3984 | |
| 3985 | swbeg &0x8 |
| 3986 | tbl_ceaf_pi: |
| 3987 | short ceaf_pi0 - tbl_ceaf_pi |
| 3988 | short ceaf_pi1 - tbl_ceaf_pi |
| 3989 | short ceaf_pi2 - tbl_ceaf_pi |
| 3990 | short ceaf_pi3 - tbl_ceaf_pi |
| 3991 | short ceaf_pi4 - tbl_ceaf_pi |
| 3992 | short ceaf_pi5 - tbl_ceaf_pi |
| 3993 | short ceaf_pi6 - tbl_ceaf_pi |
| 3994 | short ceaf_pi7 - tbl_ceaf_pi |
| 3995 | |
| 3996 | ceaf_pi0: |
| 3997 | addi.l &0xc,EXC_DREGS+0x8(%a6) |
| 3998 | rts |
| 3999 | ceaf_pi1: |
| 4000 | addi.l &0xc,EXC_DREGS+0xc(%a6) |
| 4001 | rts |
| 4002 | ceaf_pi2: |
| 4003 | add.l &0xc,%a2 |
| 4004 | rts |
| 4005 | ceaf_pi3: |
| 4006 | add.l &0xc,%a3 |
| 4007 | rts |
| 4008 | ceaf_pi4: |
| 4009 | add.l &0xc,%a4 |
| 4010 | rts |
| 4011 | ceaf_pi5: |
| 4012 | add.l &0xc,%a5 |
| 4013 | rts |
| 4014 | ceaf_pi6: |
| 4015 | addi.l &0xc,EXC_A6(%a6) |
| 4016 | rts |
| 4017 | ceaf_pi7: |
| 4018 | mov.b &mia7_flg,SPCOND_FLG(%a6) |
| 4019 | addi.l &0xc,EXC_A7(%a6) |
| 4020 | rts |
| 4021 | |
| 4022 | # -(An) : extended and packed fmove out |
| 4023 | # : stacked <ea> = actual <ea> + 8 |
| 4024 | # : "An" not updated |
| 4025 | ceaf_pd: |
| 4026 | mov.w (tbl_ceaf_pd.b,%pc,%d1.w*2),%d1 |
| 4027 | mov.l EXC_EA(%a6),%a0 |
| 4028 | sub.l &0x8,%a0 |
| 4029 | sub.l &0x8,EXC_EA(%a6) |
| 4030 | jmp (tbl_ceaf_pd.b,%pc,%d1.w*1) |
| 4031 | |
| 4032 | swbeg &0x8 |
| 4033 | tbl_ceaf_pd: |
| 4034 | short ceaf_pd0 - tbl_ceaf_pd |
| 4035 | short ceaf_pd1 - tbl_ceaf_pd |
| 4036 | short ceaf_pd2 - tbl_ceaf_pd |
| 4037 | short ceaf_pd3 - tbl_ceaf_pd |
| 4038 | short ceaf_pd4 - tbl_ceaf_pd |
| 4039 | short ceaf_pd5 - tbl_ceaf_pd |
| 4040 | short ceaf_pd6 - tbl_ceaf_pd |
| 4041 | short ceaf_pd7 - tbl_ceaf_pd |
| 4042 | |
| 4043 | ceaf_pd0: |
| 4044 | mov.l %a0,EXC_DREGS+0x8(%a6) |
| 4045 | rts |
| 4046 | ceaf_pd1: |
| 4047 | mov.l %a0,EXC_DREGS+0xc(%a6) |
| 4048 | rts |
| 4049 | ceaf_pd2: |
| 4050 | mov.l %a0,%a2 |
| 4051 | rts |
| 4052 | ceaf_pd3: |
| 4053 | mov.l %a0,%a3 |
| 4054 | rts |
| 4055 | ceaf_pd4: |
| 4056 | mov.l %a0,%a4 |
| 4057 | rts |
| 4058 | ceaf_pd5: |
| 4059 | mov.l %a0,%a5 |
| 4060 | rts |
| 4061 | ceaf_pd6: |
| 4062 | mov.l %a0,EXC_A6(%a6) |
| 4063 | rts |
| 4064 | ceaf_pd7: |
| 4065 | mov.l %a0,EXC_A7(%a6) |
| 4066 | mov.b &mda7_flg,SPCOND_FLG(%a6) |
| 4067 | rts |
| 4068 | |
| 4069 | # |
| 4070 | # This table holds the offsets of the emulation routines for each individual |
| 4071 | # math operation relative to the address of this table. Included are |
| 4072 | # routines like fadd/fmul/fabs. The transcendentals ARE NOT. This is because |
| 4073 | # this table is for the version if the 060FPSP without transcendentals. |
| 4074 | # The location within the table is determined by the extension bits of the |
| 4075 | # operation longword. |
| 4076 | # |
| 4077 | |
| 4078 | swbeg &109 |
| 4079 | tbl_unsupp: |
| 4080 | long fin - tbl_unsupp # 00: fmove |
| 4081 | long fint - tbl_unsupp # 01: fint |
| 4082 | long tbl_unsupp - tbl_unsupp # 02: fsinh |
| 4083 | long fintrz - tbl_unsupp # 03: fintrz |
| 4084 | long fsqrt - tbl_unsupp # 04: fsqrt |
| 4085 | long tbl_unsupp - tbl_unsupp |
| 4086 | long tbl_unsupp - tbl_unsupp # 06: flognp1 |
| 4087 | long tbl_unsupp - tbl_unsupp |
| 4088 | long tbl_unsupp - tbl_unsupp # 08: fetoxm1 |
| 4089 | long tbl_unsupp - tbl_unsupp # 09: ftanh |
| 4090 | long tbl_unsupp - tbl_unsupp # 0a: fatan |
| 4091 | long tbl_unsupp - tbl_unsupp |
| 4092 | long tbl_unsupp - tbl_unsupp # 0c: fasin |
| 4093 | long tbl_unsupp - tbl_unsupp # 0d: fatanh |
| 4094 | long tbl_unsupp - tbl_unsupp # 0e: fsin |
| 4095 | long tbl_unsupp - tbl_unsupp # 0f: ftan |
| 4096 | long tbl_unsupp - tbl_unsupp # 10: fetox |
| 4097 | long tbl_unsupp - tbl_unsupp # 11: ftwotox |
| 4098 | long tbl_unsupp - tbl_unsupp # 12: ftentox |
| 4099 | long tbl_unsupp - tbl_unsupp |
| 4100 | long tbl_unsupp - tbl_unsupp # 14: flogn |
| 4101 | long tbl_unsupp - tbl_unsupp # 15: flog10 |
| 4102 | long tbl_unsupp - tbl_unsupp # 16: flog2 |
| 4103 | long tbl_unsupp - tbl_unsupp |
| 4104 | long fabs - tbl_unsupp # 18: fabs |
| 4105 | long tbl_unsupp - tbl_unsupp # 19: fcosh |
| 4106 | long fneg - tbl_unsupp # 1a: fneg |
| 4107 | long tbl_unsupp - tbl_unsupp |
| 4108 | long tbl_unsupp - tbl_unsupp # 1c: facos |
| 4109 | long tbl_unsupp - tbl_unsupp # 1d: fcos |
| 4110 | long tbl_unsupp - tbl_unsupp # 1e: fgetexp |
| 4111 | long tbl_unsupp - tbl_unsupp # 1f: fgetman |
| 4112 | long fdiv - tbl_unsupp # 20: fdiv |
| 4113 | long tbl_unsupp - tbl_unsupp # 21: fmod |
| 4114 | long fadd - tbl_unsupp # 22: fadd |
| 4115 | long fmul - tbl_unsupp # 23: fmul |
| 4116 | long fsgldiv - tbl_unsupp # 24: fsgldiv |
| 4117 | long tbl_unsupp - tbl_unsupp # 25: frem |
| 4118 | long tbl_unsupp - tbl_unsupp # 26: fscale |
| 4119 | long fsglmul - tbl_unsupp # 27: fsglmul |
| 4120 | long fsub - tbl_unsupp # 28: fsub |
| 4121 | long tbl_unsupp - tbl_unsupp |
| 4122 | long tbl_unsupp - tbl_unsupp |
| 4123 | long tbl_unsupp - tbl_unsupp |
| 4124 | long tbl_unsupp - tbl_unsupp |
| 4125 | long tbl_unsupp - tbl_unsupp |
| 4126 | long tbl_unsupp - tbl_unsupp |
| 4127 | long tbl_unsupp - tbl_unsupp |
| 4128 | long tbl_unsupp - tbl_unsupp # 30: fsincos |
| 4129 | long tbl_unsupp - tbl_unsupp # 31: fsincos |
| 4130 | long tbl_unsupp - tbl_unsupp # 32: fsincos |
| 4131 | long tbl_unsupp - tbl_unsupp # 33: fsincos |
| 4132 | long tbl_unsupp - tbl_unsupp # 34: fsincos |
| 4133 | long tbl_unsupp - tbl_unsupp # 35: fsincos |
| 4134 | long tbl_unsupp - tbl_unsupp # 36: fsincos |
| 4135 | long tbl_unsupp - tbl_unsupp # 37: fsincos |
| 4136 | long fcmp - tbl_unsupp # 38: fcmp |
| 4137 | long tbl_unsupp - tbl_unsupp |
| 4138 | long ftst - tbl_unsupp # 3a: ftst |
| 4139 | long tbl_unsupp - tbl_unsupp |
| 4140 | long tbl_unsupp - tbl_unsupp |
| 4141 | long tbl_unsupp - tbl_unsupp |
| 4142 | long tbl_unsupp - tbl_unsupp |
| 4143 | long tbl_unsupp - tbl_unsupp |
| 4144 | long fsin - tbl_unsupp # 40: fsmove |
| 4145 | long fssqrt - tbl_unsupp # 41: fssqrt |
| 4146 | long tbl_unsupp - tbl_unsupp |
| 4147 | long tbl_unsupp - tbl_unsupp |
| 4148 | long fdin - tbl_unsupp # 44: fdmove |
| 4149 | long fdsqrt - tbl_unsupp # 45: fdsqrt |
| 4150 | long tbl_unsupp - tbl_unsupp |
| 4151 | long tbl_unsupp - tbl_unsupp |
| 4152 | long tbl_unsupp - tbl_unsupp |
| 4153 | long tbl_unsupp - tbl_unsupp |
| 4154 | long tbl_unsupp - tbl_unsupp |
| 4155 | long tbl_unsupp - tbl_unsupp |
| 4156 | long tbl_unsupp - tbl_unsupp |
| 4157 | long tbl_unsupp - tbl_unsupp |
| 4158 | long tbl_unsupp - tbl_unsupp |
| 4159 | long tbl_unsupp - tbl_unsupp |
| 4160 | long tbl_unsupp - tbl_unsupp |
| 4161 | long tbl_unsupp - tbl_unsupp |
| 4162 | long tbl_unsupp - tbl_unsupp |
| 4163 | long tbl_unsupp - tbl_unsupp |
| 4164 | long tbl_unsupp - tbl_unsupp |
| 4165 | long tbl_unsupp - tbl_unsupp |
| 4166 | long tbl_unsupp - tbl_unsupp |
| 4167 | long tbl_unsupp - tbl_unsupp |
| 4168 | long fsabs - tbl_unsupp # 58: fsabs |
| 4169 | long tbl_unsupp - tbl_unsupp |
| 4170 | long fsneg - tbl_unsupp # 5a: fsneg |
| 4171 | long tbl_unsupp - tbl_unsupp |
| 4172 | long fdabs - tbl_unsupp # 5c: fdabs |
| 4173 | long tbl_unsupp - tbl_unsupp |
| 4174 | long fdneg - tbl_unsupp # 5e: fdneg |
| 4175 | long tbl_unsupp - tbl_unsupp |
| 4176 | long fsdiv - tbl_unsupp # 60: fsdiv |
| 4177 | long tbl_unsupp - tbl_unsupp |
| 4178 | long fsadd - tbl_unsupp # 62: fsadd |
| 4179 | long fsmul - tbl_unsupp # 63: fsmul |
| 4180 | long fddiv - tbl_unsupp # 64: fddiv |
| 4181 | long tbl_unsupp - tbl_unsupp |
| 4182 | long fdadd - tbl_unsupp # 66: fdadd |
| 4183 | long fdmul - tbl_unsupp # 67: fdmul |
| 4184 | long fssub - tbl_unsupp # 68: fssub |
| 4185 | long tbl_unsupp - tbl_unsupp |
| 4186 | long tbl_unsupp - tbl_unsupp |
| 4187 | long tbl_unsupp - tbl_unsupp |
| 4188 | long fdsub - tbl_unsupp # 6c: fdsub |
| 4189 | |
| 4190 | ################################################# |
| 4191 | # Add this here so non-fp modules can compile. |
| 4192 | # (smovcr is called from fpsp_inex.) |
| 4193 | global smovcr |
| 4194 | smovcr: |
| 4195 | bra.b smovcr |
| 4196 | |
| 4197 | ######################################################################### |
| 4198 | # XDEF **************************************************************** # |
| 4199 | # fmovm_dynamic(): emulate "fmovm" dynamic instruction # |
| 4200 | # # |
| 4201 | # XREF **************************************************************** # |
| 4202 | # fetch_dreg() - fetch data register # |
| 4203 | # {i,d,}mem_read() - fetch data from memory # |
| 4204 | # _mem_write() - write data to memory # |
| 4205 | # iea_iacc() - instruction memory access error occurred # |
| 4206 | # iea_dacc() - data memory access error occurred # |
| 4207 | # restore() - restore An index regs if access error occurred # |
| 4208 | # # |
| 4209 | # INPUT *************************************************************** # |
| 4210 | # None # |
| 4211 | # # |
| 4212 | # OUTPUT ************************************************************** # |
| 4213 | # If instr is "fmovm Dn,-(A7)" from supervisor mode, # |
| 4214 | # d0 = size of dump # |
| 4215 | # d1 = Dn # |
| 4216 | # Else if instruction access error, # |
| 4217 | # d0 = FSLW # |
| 4218 | # Else if data access error, # |
| 4219 | # d0 = FSLW # |
| 4220 | # a0 = address of fault # |
| 4221 | # Else # |
| 4222 | # none. # |
| 4223 | # # |
| 4224 | # ALGORITHM *********************************************************** # |
| 4225 | # The effective address must be calculated since this is entered # |
| 4226 | # from an "Unimplemented Effective Address" exception handler. So, we # |
| 4227 | # have our own fcalc_ea() routine here. If an access error is flagged # |
| 4228 | # by a _{i,d,}mem_read() call, we must exit through the special # |
| 4229 | # handler. # |
| 4230 | # The data register is determined and its value loaded to get the # |
| 4231 | # string of FP registers affected. This value is used as an index into # |
| 4232 | # a lookup table such that we can determine the number of bytes # |
| 4233 | # involved. # |
| 4234 | # If the instruction is "fmovm.x <ea>,Dn", a _mem_read() is used # |
| 4235 | # to read in all FP values. Again, _mem_read() may fail and require a # |
| 4236 | # special exit. # |
| 4237 | # If the instruction is "fmovm.x DN,<ea>", a _mem_write() is used # |
| 4238 | # to write all FP values. _mem_write() may also fail. # |
| 4239 | # If the instruction is "fmovm.x DN,-(a7)" from supervisor mode, # |
| 4240 | # then we return the size of the dump and the string to the caller # |
| 4241 | # so that the move can occur outside of this routine. This special # |
| 4242 | # case is required so that moves to the system stack are handled # |
| 4243 | # correctly. # |
| 4244 | # # |
| 4245 | # DYNAMIC: # |
| 4246 | # fmovm.x dn, <ea> # |
| 4247 | # fmovm.x <ea>, dn # |
| 4248 | # # |
| 4249 | # <WORD 1> <WORD2> # |
| 4250 | # 1111 0010 00 |<ea>| 11@& 1000 0$$$ 0000 # |
| 4251 | # # |
| 4252 | # & = (0): predecrement addressing mode # |
| 4253 | # (1): postincrement or control addressing mode # |
| 4254 | # @ = (0): move listed regs from memory to the FPU # |
| 4255 | # (1): move listed regs from the FPU to memory # |
| 4256 | # $$$ : index of data register holding reg select mask # |
| 4257 | # # |
| 4258 | # NOTES: # |
| 4259 | # If the data register holds a zero, then the # |
| 4260 | # instruction is a nop. # |
| 4261 | # # |
| 4262 | ######################################################################### |
| 4263 | |
| 4264 | global fmovm_dynamic |
| 4265 | fmovm_dynamic: |
| 4266 | |
| 4267 | # extract the data register in which the bit string resides... |
| 4268 | mov.b 1+EXC_EXTWORD(%a6),%d1 # fetch extword |
| 4269 | andi.w &0x70,%d1 # extract reg bits |
| 4270 | lsr.b &0x4,%d1 # shift into lo bits |
| 4271 | |
| 4272 | # fetch the bit string into d0... |
| 4273 | bsr.l fetch_dreg # fetch reg string |
| 4274 | |
| 4275 | andi.l &0x000000ff,%d0 # keep only lo byte |
| 4276 | |
| 4277 | mov.l %d0,-(%sp) # save strg |
| 4278 | mov.b (tbl_fmovm_size.w,%pc,%d0),%d0 |
| 4279 | mov.l %d0,-(%sp) # save size |
| 4280 | bsr.l fmovm_calc_ea # calculate <ea> |
| 4281 | mov.l (%sp)+,%d0 # restore size |
| 4282 | mov.l (%sp)+,%d1 # restore strg |
| 4283 | |
| 4284 | # if the bit string is a zero, then the operation is a no-op |
| 4285 | # but, make sure that we've calculated ea and advanced the opword pointer |
| 4286 | beq.w fmovm_data_done |
| 4287 | |
| 4288 | # separate move ins from move outs... |
| 4289 | btst &0x5,EXC_EXTWORD(%a6) # is it a move in or out? |
| 4290 | beq.w fmovm_data_in # it's a move out |
| 4291 | |
| 4292 | ############# |
| 4293 | # MOVE OUT: # |
| 4294 | ############# |
| 4295 | fmovm_data_out: |
| 4296 | btst &0x4,EXC_EXTWORD(%a6) # control or predecrement? |
| 4297 | bne.w fmovm_out_ctrl # control |
| 4298 | |
| 4299 | ############################ |
| 4300 | fmovm_out_predec: |
| 4301 | # for predecrement mode, the bit string is the opposite of both control |
| 4302 | # operations and postincrement mode. (bit7 = FP7 ... bit0 = FP0) |
| 4303 | # here, we convert it to be just like the others... |
| 4304 | mov.b (tbl_fmovm_convert.w,%pc,%d1.w*1),%d1 |
| 4305 | |
| 4306 | btst &0x5,EXC_SR(%a6) # user or supervisor mode? |
| 4307 | beq.b fmovm_out_ctrl # user |
| 4308 | |
| 4309 | fmovm_out_predec_s: |
| 4310 | cmpi.b SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)? |
| 4311 | bne.b fmovm_out_ctrl |
| 4312 | |
| 4313 | # the operation was unfortunately an: fmovm.x dn,-(sp) |
| 4314 | # called from supervisor mode. |
| 4315 | # we're also passing "size" and "strg" back to the calling routine |
| 4316 | rts |
| 4317 | |
| 4318 | ############################ |
| 4319 | fmovm_out_ctrl: |
| 4320 | mov.l %a0,%a1 # move <ea> to a1 |
| 4321 | |
| 4322 | sub.l %d0,%sp # subtract size of dump |
| 4323 | lea (%sp),%a0 |
| 4324 | |
| 4325 | tst.b %d1 # should FP0 be moved? |
| 4326 | bpl.b fmovm_out_ctrl_fp1 # no |
| 4327 | |
| 4328 | mov.l 0x0+EXC_FP0(%a6),(%a0)+ # yes |
| 4329 | mov.l 0x4+EXC_FP0(%a6),(%a0)+ |
| 4330 | mov.l 0x8+EXC_FP0(%a6),(%a0)+ |
| 4331 | |
| 4332 | fmovm_out_ctrl_fp1: |
| 4333 | lsl.b &0x1,%d1 # should FP1 be moved? |
| 4334 | bpl.b fmovm_out_ctrl_fp2 # no |
| 4335 | |
| 4336 | mov.l 0x0+EXC_FP1(%a6),(%a0)+ # yes |
| 4337 | mov.l 0x4+EXC_FP1(%a6),(%a0)+ |
| 4338 | mov.l 0x8+EXC_FP1(%a6),(%a0)+ |
| 4339 | |
| 4340 | fmovm_out_ctrl_fp2: |
| 4341 | lsl.b &0x1,%d1 # should FP2 be moved? |
| 4342 | bpl.b fmovm_out_ctrl_fp3 # no |
| 4343 | |
| 4344 | fmovm.x &0x20,(%a0) # yes |
| 4345 | add.l &0xc,%a0 |
| 4346 | |
| 4347 | fmovm_out_ctrl_fp3: |
| 4348 | lsl.b &0x1,%d1 # should FP3 be moved? |
| 4349 | bpl.b fmovm_out_ctrl_fp4 # no |
| 4350 | |
| 4351 | fmovm.x &0x10,(%a0) # yes |
| 4352 | add.l &0xc,%a0 |
| 4353 | |
| 4354 | fmovm_out_ctrl_fp4: |
| 4355 | lsl.b &0x1,%d1 # should FP4 be moved? |
| 4356 | bpl.b fmovm_out_ctrl_fp5 # no |
| 4357 | |
| 4358 | fmovm.x &0x08,(%a0) # yes |
| 4359 | add.l &0xc,%a0 |
| 4360 | |
| 4361 | fmovm_out_ctrl_fp5: |
| 4362 | lsl.b &0x1,%d1 # should FP5 be moved? |
| 4363 | bpl.b fmovm_out_ctrl_fp6 # no |
| 4364 | |
| 4365 | fmovm.x &0x04,(%a0) # yes |
| 4366 | add.l &0xc,%a0 |
| 4367 | |
| 4368 | fmovm_out_ctrl_fp6: |
| 4369 | lsl.b &0x1,%d1 # should FP6 be moved? |
| 4370 | bpl.b fmovm_out_ctrl_fp7 # no |
| 4371 | |
| 4372 | fmovm.x &0x02,(%a0) # yes |
| 4373 | add.l &0xc,%a0 |
| 4374 | |
| 4375 | fmovm_out_ctrl_fp7: |
| 4376 | lsl.b &0x1,%d1 # should FP7 be moved? |
| 4377 | bpl.b fmovm_out_ctrl_done # no |
| 4378 | |
| 4379 | fmovm.x &0x01,(%a0) # yes |
| 4380 | add.l &0xc,%a0 |
| 4381 | |
| 4382 | fmovm_out_ctrl_done: |
| 4383 | mov.l %a1,L_SCR1(%a6) |
| 4384 | |
| 4385 | lea (%sp),%a0 # pass: supervisor src |
| 4386 | mov.l %d0,-(%sp) # save size |
| 4387 | bsr.l _dmem_write # copy data to user mem |
| 4388 | |
| 4389 | mov.l (%sp)+,%d0 |
| 4390 | add.l %d0,%sp # clear fpreg data from stack |
| 4391 | |
| 4392 | tst.l %d1 # did dstore err? |
| 4393 | bne.w fmovm_out_err # yes |
| 4394 | |
| 4395 | rts |
| 4396 | |
| 4397 | ############ |
| 4398 | # MOVE IN: # |
| 4399 | ############ |
| 4400 | fmovm_data_in: |
| 4401 | mov.l %a0,L_SCR1(%a6) |
| 4402 | |
| 4403 | sub.l %d0,%sp # make room for fpregs |
| 4404 | lea (%sp),%a1 |
| 4405 | |
| 4406 | mov.l %d1,-(%sp) # save bit string for later |
| 4407 | mov.l %d0,-(%sp) # save # of bytes |
| 4408 | |
| 4409 | bsr.l _dmem_read # copy data from user mem |
| 4410 | |
| 4411 | mov.l (%sp)+,%d0 # retrieve # of bytes |
| 4412 | |
| 4413 | tst.l %d1 # did dfetch fail? |
| 4414 | bne.w fmovm_in_err # yes |
| 4415 | |
| 4416 | mov.l (%sp)+,%d1 # load bit string |
| 4417 | |
| 4418 | lea (%sp),%a0 # addr of stack |
| 4419 | |
| 4420 | tst.b %d1 # should FP0 be moved? |
| 4421 | bpl.b fmovm_data_in_fp1 # no |
| 4422 | |
| 4423 | mov.l (%a0)+,0x0+EXC_FP0(%a6) # yes |
| 4424 | mov.l (%a0)+,0x4+EXC_FP0(%a6) |
| 4425 | mov.l (%a0)+,0x8+EXC_FP0(%a6) |
| 4426 | |
| 4427 | fmovm_data_in_fp1: |
| 4428 | lsl.b &0x1,%d1 # should FP1 be moved? |
| 4429 | bpl.b fmovm_data_in_fp2 # no |
| 4430 | |
| 4431 | mov.l (%a0)+,0x0+EXC_FP1(%a6) # yes |
| 4432 | mov.l (%a0)+,0x4+EXC_FP1(%a6) |
| 4433 | mov.l (%a0)+,0x8+EXC_FP1(%a6) |
| 4434 | |
| 4435 | fmovm_data_in_fp2: |
| 4436 | lsl.b &0x1,%d1 # should FP2 be moved? |
| 4437 | bpl.b fmovm_data_in_fp3 # no |
| 4438 | |
| 4439 | fmovm.x (%a0)+,&0x20 # yes |
| 4440 | |
| 4441 | fmovm_data_in_fp3: |
| 4442 | lsl.b &0x1,%d1 # should FP3 be moved? |
| 4443 | bpl.b fmovm_data_in_fp4 # no |
| 4444 | |
| 4445 | fmovm.x (%a0)+,&0x10 # yes |
| 4446 | |
| 4447 | fmovm_data_in_fp4: |
| 4448 | lsl.b &0x1,%d1 # should FP4 be moved? |
| 4449 | bpl.b fmovm_data_in_fp5 # no |
| 4450 | |
| 4451 | fmovm.x (%a0)+,&0x08 # yes |
| 4452 | |
| 4453 | fmovm_data_in_fp5: |
| 4454 | lsl.b &0x1,%d1 # should FP5 be moved? |
| 4455 | bpl.b fmovm_data_in_fp6 # no |
| 4456 | |
| 4457 | fmovm.x (%a0)+,&0x04 # yes |
| 4458 | |
| 4459 | fmovm_data_in_fp6: |
| 4460 | lsl.b &0x1,%d1 # should FP6 be moved? |
| 4461 | bpl.b fmovm_data_in_fp7 # no |
| 4462 | |
| 4463 | fmovm.x (%a0)+,&0x02 # yes |
| 4464 | |
| 4465 | fmovm_data_in_fp7: |
| 4466 | lsl.b &0x1,%d1 # should FP7 be moved? |
| 4467 | bpl.b fmovm_data_in_done # no |
| 4468 | |
| 4469 | fmovm.x (%a0)+,&0x01 # yes |
| 4470 | |
| 4471 | fmovm_data_in_done: |
| 4472 | add.l %d0,%sp # remove fpregs from stack |
| 4473 | rts |
| 4474 | |
| 4475 | ##################################### |
| 4476 | |
| 4477 | fmovm_data_done: |
| 4478 | rts |
| 4479 | |
| 4480 | ############################################################################## |
| 4481 | |
| 4482 | # |
| 4483 | # table indexed by the operation's bit string that gives the number |
| 4484 | # of bytes that will be moved. |
| 4485 | # |
| 4486 | # number of bytes = (# of 1's in bit string) * 12(bytes/fpreg) |
| 4487 | # |
| 4488 | tbl_fmovm_size: |
| 4489 | byte 0x00,0x0c,0x0c,0x18,0x0c,0x18,0x18,0x24 |
| 4490 | byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 |
| 4491 | byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 |
| 4492 | byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c |
| 4493 | byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 |
| 4494 | byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c |
| 4495 | byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c |
| 4496 | byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 |
| 4497 | byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 |
| 4498 | byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c |
| 4499 | byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c |
| 4500 | byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 |
| 4501 | byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c |
| 4502 | byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 |
| 4503 | byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 |
| 4504 | byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 |
| 4505 | byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 |
| 4506 | byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c |
| 4507 | byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c |
| 4508 | byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 |
| 4509 | byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c |
| 4510 | byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 |
| 4511 | byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 |
| 4512 | byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 |
| 4513 | byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c |
| 4514 | byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 |
| 4515 | byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 |
| 4516 | byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 |
| 4517 | byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 |
| 4518 | byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 |
| 4519 | byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 |
| 4520 | byte 0x3c,0x48,0x48,0x54,0x48,0x54,0x54,0x60 |
| 4521 | |
| 4522 | # |
| 4523 | # table to convert a pre-decrement bit string into a post-increment |
| 4524 | # or control bit string. |
| 4525 | # ex: 0x00 ==> 0x00 |
| 4526 | # 0x01 ==> 0x80 |
| 4527 | # 0x02 ==> 0x40 |
| 4528 | # . |
| 4529 | # . |
| 4530 | # 0xfd ==> 0xbf |
| 4531 | # 0xfe ==> 0x7f |
| 4532 | # 0xff ==> 0xff |
| 4533 | # |
| 4534 | tbl_fmovm_convert: |
| 4535 | byte 0x00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0 |
| 4536 | byte 0x10,0x90,0x50,0xd0,0x30,0xb0,0x70,0xf0 |
| 4537 | byte 0x08,0x88,0x48,0xc8,0x28,0xa8,0x68,0xe8 |
| 4538 | byte 0x18,0x98,0x58,0xd8,0x38,0xb8,0x78,0xf8 |
| 4539 | byte 0x04,0x84,0x44,0xc4,0x24,0xa4,0x64,0xe4 |
| 4540 | byte 0x14,0x94,0x54,0xd4,0x34,0xb4,0x74,0xf4 |
| 4541 | byte 0x0c,0x8c,0x4c,0xcc,0x2c,0xac,0x6c,0xec |
| 4542 | byte 0x1c,0x9c,0x5c,0xdc,0x3c,0xbc,0x7c,0xfc |
| 4543 | byte 0x02,0x82,0x42,0xc2,0x22,0xa2,0x62,0xe2 |
| 4544 | byte 0x12,0x92,0x52,0xd2,0x32,0xb2,0x72,0xf2 |
| 4545 | byte 0x0a,0x8a,0x4a,0xca,0x2a,0xaa,0x6a,0xea |
| 4546 | byte 0x1a,0x9a,0x5a,0xda,0x3a,0xba,0x7a,0xfa |
| 4547 | byte 0x06,0x86,0x46,0xc6,0x26,0xa6,0x66,0xe6 |
| 4548 | byte 0x16,0x96,0x56,0xd6,0x36,0xb6,0x76,0xf6 |
| 4549 | byte 0x0e,0x8e,0x4e,0xce,0x2e,0xae,0x6e,0xee |
| 4550 | byte 0x1e,0x9e,0x5e,0xde,0x3e,0xbe,0x7e,0xfe |
| 4551 | byte 0x01,0x81,0x41,0xc1,0x21,0xa1,0x61,0xe1 |
| 4552 | byte 0x11,0x91,0x51,0xd1,0x31,0xb1,0x71,0xf1 |
| 4553 | byte 0x09,0x89,0x49,0xc9,0x29,0xa9,0x69,0xe9 |
| 4554 | byte 0x19,0x99,0x59,0xd9,0x39,0xb9,0x79,0xf9 |
| 4555 | byte 0x05,0x85,0x45,0xc5,0x25,0xa5,0x65,0xe5 |
| 4556 | byte 0x15,0x95,0x55,0xd5,0x35,0xb5,0x75,0xf5 |
| 4557 | byte 0x0d,0x8d,0x4d,0xcd,0x2d,0xad,0x6d,0xed |
| 4558 | byte 0x1d,0x9d,0x5d,0xdd,0x3d,0xbd,0x7d,0xfd |
| 4559 | byte 0x03,0x83,0x43,0xc3,0x23,0xa3,0x63,0xe3 |
| 4560 | byte 0x13,0x93,0x53,0xd3,0x33,0xb3,0x73,0xf3 |
| 4561 | byte 0x0b,0x8b,0x4b,0xcb,0x2b,0xab,0x6b,0xeb |
| 4562 | byte 0x1b,0x9b,0x5b,0xdb,0x3b,0xbb,0x7b,0xfb |
| 4563 | byte 0x07,0x87,0x47,0xc7,0x27,0xa7,0x67,0xe7 |
| 4564 | byte 0x17,0x97,0x57,0xd7,0x37,0xb7,0x77,0xf7 |
| 4565 | byte 0x0f,0x8f,0x4f,0xcf,0x2f,0xaf,0x6f,0xef |
| 4566 | byte 0x1f,0x9f,0x5f,0xdf,0x3f,0xbf,0x7f,0xff |
| 4567 | |
| 4568 | global fmovm_calc_ea |
| 4569 | ############################################### |
| 4570 | # _fmovm_calc_ea: calculate effective address # |
| 4571 | ############################################### |
| 4572 | fmovm_calc_ea: |
| 4573 | mov.l %d0,%a0 # move # bytes to a0 |
| 4574 | |
| 4575 | # currently, MODE and REG are taken from the EXC_OPWORD. this could be |
| 4576 | # easily changed if they were inputs passed in registers. |
| 4577 | mov.w EXC_OPWORD(%a6),%d0 # fetch opcode word |
| 4578 | mov.w %d0,%d1 # make a copy |
| 4579 | |
| 4580 | andi.w &0x3f,%d0 # extract mode field |
| 4581 | andi.l &0x7,%d1 # extract reg field |
| 4582 | |
| 4583 | # jump to the corresponding function for each {MODE,REG} pair. |
| 4584 | mov.w (tbl_fea_mode.b,%pc,%d0.w*2),%d0 # fetch jmp distance |
| 4585 | jmp (tbl_fea_mode.b,%pc,%d0.w*1) # jmp to correct ea mode |
| 4586 | |
| 4587 | swbeg &64 |
| 4588 | tbl_fea_mode: |
| 4589 | short tbl_fea_mode - tbl_fea_mode |
| 4590 | short tbl_fea_mode - tbl_fea_mode |
| 4591 | short tbl_fea_mode - tbl_fea_mode |
| 4592 | short tbl_fea_mode - tbl_fea_mode |
| 4593 | short tbl_fea_mode - tbl_fea_mode |
| 4594 | short tbl_fea_mode - tbl_fea_mode |
| 4595 | short tbl_fea_mode - tbl_fea_mode |
| 4596 | short tbl_fea_mode - tbl_fea_mode |
| 4597 | |
| 4598 | short tbl_fea_mode - tbl_fea_mode |
| 4599 | short tbl_fea_mode - tbl_fea_mode |
| 4600 | short tbl_fea_mode - tbl_fea_mode |
| 4601 | short tbl_fea_mode - tbl_fea_mode |
| 4602 | short tbl_fea_mode - tbl_fea_mode |
| 4603 | short tbl_fea_mode - tbl_fea_mode |
| 4604 | short tbl_fea_mode - tbl_fea_mode |
| 4605 | short tbl_fea_mode - tbl_fea_mode |
| 4606 | |
| 4607 | short faddr_ind_a0 - tbl_fea_mode |
| 4608 | short faddr_ind_a1 - tbl_fea_mode |
| 4609 | short faddr_ind_a2 - tbl_fea_mode |
| 4610 | short faddr_ind_a3 - tbl_fea_mode |
| 4611 | short faddr_ind_a4 - tbl_fea_mode |
| 4612 | short faddr_ind_a5 - tbl_fea_mode |
| 4613 | short faddr_ind_a6 - tbl_fea_mode |
| 4614 | short faddr_ind_a7 - tbl_fea_mode |
| 4615 | |
| 4616 | short faddr_ind_p_a0 - tbl_fea_mode |
| 4617 | short faddr_ind_p_a1 - tbl_fea_mode |
| 4618 | short faddr_ind_p_a2 - tbl_fea_mode |
| 4619 | short faddr_ind_p_a3 - tbl_fea_mode |
| 4620 | short faddr_ind_p_a4 - tbl_fea_mode |
| 4621 | short faddr_ind_p_a5 - tbl_fea_mode |
| 4622 | short faddr_ind_p_a6 - tbl_fea_mode |
| 4623 | short faddr_ind_p_a7 - tbl_fea_mode |
| 4624 | |
| 4625 | short faddr_ind_m_a0 - tbl_fea_mode |
| 4626 | short faddr_ind_m_a1 - tbl_fea_mode |
| 4627 | short faddr_ind_m_a2 - tbl_fea_mode |
| 4628 | short faddr_ind_m_a3 - tbl_fea_mode |
| 4629 | short faddr_ind_m_a4 - tbl_fea_mode |
| 4630 | short faddr_ind_m_a5 - tbl_fea_mode |
| 4631 | short faddr_ind_m_a6 - tbl_fea_mode |
| 4632 | short faddr_ind_m_a7 - tbl_fea_mode |
| 4633 | |
| 4634 | short faddr_ind_disp_a0 - tbl_fea_mode |
| 4635 | short faddr_ind_disp_a1 - tbl_fea_mode |
| 4636 | short faddr_ind_disp_a2 - tbl_fea_mode |
| 4637 | short faddr_ind_disp_a3 - tbl_fea_mode |
| 4638 | short faddr_ind_disp_a4 - tbl_fea_mode |
| 4639 | short faddr_ind_disp_a5 - tbl_fea_mode |
| 4640 | short faddr_ind_disp_a6 - tbl_fea_mode |
| 4641 | short faddr_ind_disp_a7 - tbl_fea_mode |
| 4642 | |
| 4643 | short faddr_ind_ext - tbl_fea_mode |
| 4644 | short faddr_ind_ext - tbl_fea_mode |
| 4645 | short faddr_ind_ext - tbl_fea_mode |
| 4646 | short faddr_ind_ext - tbl_fea_mode |
| 4647 | short faddr_ind_ext - tbl_fea_mode |
| 4648 | short faddr_ind_ext - tbl_fea_mode |
| 4649 | short faddr_ind_ext - tbl_fea_mode |
| 4650 | short faddr_ind_ext - tbl_fea_mode |
| 4651 | |
| 4652 | short fabs_short - tbl_fea_mode |
| 4653 | short fabs_long - tbl_fea_mode |
| 4654 | short fpc_ind - tbl_fea_mode |
| 4655 | short fpc_ind_ext - tbl_fea_mode |
| 4656 | short tbl_fea_mode - tbl_fea_mode |
| 4657 | short tbl_fea_mode - tbl_fea_mode |
| 4658 | short tbl_fea_mode - tbl_fea_mode |
| 4659 | short tbl_fea_mode - tbl_fea_mode |
| 4660 | |
| 4661 | ################################### |
| 4662 | # Address register indirect: (An) # |
| 4663 | ################################### |
| 4664 | faddr_ind_a0: |
| 4665 | mov.l EXC_DREGS+0x8(%a6),%a0 # Get current a0 |
| 4666 | rts |
| 4667 | |
| 4668 | faddr_ind_a1: |
| 4669 | mov.l EXC_DREGS+0xc(%a6),%a0 # Get current a1 |
| 4670 | rts |
| 4671 | |
| 4672 | faddr_ind_a2: |
| 4673 | mov.l %a2,%a0 # Get current a2 |
| 4674 | rts |
| 4675 | |
| 4676 | faddr_ind_a3: |
| 4677 | mov.l %a3,%a0 # Get current a3 |
| 4678 | rts |
| 4679 | |
| 4680 | faddr_ind_a4: |
| 4681 | mov.l %a4,%a0 # Get current a4 |
| 4682 | rts |
| 4683 | |
| 4684 | faddr_ind_a5: |
| 4685 | mov.l %a5,%a0 # Get current a5 |
| 4686 | rts |
| 4687 | |
| 4688 | faddr_ind_a6: |
| 4689 | mov.l (%a6),%a0 # Get current a6 |
| 4690 | rts |
| 4691 | |
| 4692 | faddr_ind_a7: |
| 4693 | mov.l EXC_A7(%a6),%a0 # Get current a7 |
| 4694 | rts |
| 4695 | |
| 4696 | ##################################################### |
| 4697 | # Address register indirect w/ postincrement: (An)+ # |
| 4698 | ##################################################### |
| 4699 | faddr_ind_p_a0: |
| 4700 | mov.l EXC_DREGS+0x8(%a6),%d0 # Get current a0 |
| 4701 | mov.l %d0,%d1 |
| 4702 | add.l %a0,%d1 # Increment |
| 4703 | mov.l %d1,EXC_DREGS+0x8(%a6) # Save incr value |
| 4704 | mov.l %d0,%a0 |
| 4705 | rts |
| 4706 | |
| 4707 | faddr_ind_p_a1: |
| 4708 | mov.l EXC_DREGS+0xc(%a6),%d0 # Get current a1 |
| 4709 | mov.l %d0,%d1 |
| 4710 | add.l %a0,%d1 # Increment |
| 4711 | mov.l %d1,EXC_DREGS+0xc(%a6) # Save incr value |
| 4712 | mov.l %d0,%a0 |
| 4713 | rts |
| 4714 | |
| 4715 | faddr_ind_p_a2: |
| 4716 | mov.l %a2,%d0 # Get current a2 |
| 4717 | mov.l %d0,%d1 |
| 4718 | add.l %a0,%d1 # Increment |
| 4719 | mov.l %d1,%a2 # Save incr value |
| 4720 | mov.l %d0,%a0 |
| 4721 | rts |
| 4722 | |
| 4723 | faddr_ind_p_a3: |
| 4724 | mov.l %a3,%d0 # Get current a3 |
| 4725 | mov.l %d0,%d1 |
| 4726 | add.l %a0,%d1 # Increment |
| 4727 | mov.l %d1,%a3 # Save incr value |
| 4728 | mov.l %d0,%a0 |
| 4729 | rts |
| 4730 | |
| 4731 | faddr_ind_p_a4: |
| 4732 | mov.l %a4,%d0 # Get current a4 |
| 4733 | mov.l %d0,%d1 |
| 4734 | add.l %a0,%d1 # Increment |
| 4735 | mov.l %d1,%a4 # Save incr value |
| 4736 | mov.l %d0,%a0 |
| 4737 | rts |
| 4738 | |
| 4739 | faddr_ind_p_a5: |
| 4740 | mov.l %a5,%d0 # Get current a5 |
| 4741 | mov.l %d0,%d1 |
| 4742 | add.l %a0,%d1 # Increment |
| 4743 | mov.l %d1,%a5 # Save incr value |
| 4744 | mov.l %d0,%a0 |
| 4745 | rts |
| 4746 | |
| 4747 | faddr_ind_p_a6: |
| 4748 | mov.l (%a6),%d0 # Get current a6 |
| 4749 | mov.l %d0,%d1 |
| 4750 | add.l %a0,%d1 # Increment |
| 4751 | mov.l %d1,(%a6) # Save incr value |
| 4752 | mov.l %d0,%a0 |
| 4753 | rts |
| 4754 | |
| 4755 | faddr_ind_p_a7: |
| 4756 | mov.b &mia7_flg,SPCOND_FLG(%a6) # set "special case" flag |
| 4757 | |
| 4758 | mov.l EXC_A7(%a6),%d0 # Get current a7 |
| 4759 | mov.l %d0,%d1 |
| 4760 | add.l %a0,%d1 # Increment |
| 4761 | mov.l %d1,EXC_A7(%a6) # Save incr value |
| 4762 | mov.l %d0,%a0 |
| 4763 | rts |
| 4764 | |
| 4765 | #################################################### |
| 4766 | # Address register indirect w/ predecrement: -(An) # |
| 4767 | #################################################### |
| 4768 | faddr_ind_m_a0: |
| 4769 | mov.l EXC_DREGS+0x8(%a6),%d0 # Get current a0 |
| 4770 | sub.l %a0,%d0 # Decrement |
| 4771 | mov.l %d0,EXC_DREGS+0x8(%a6) # Save decr value |
| 4772 | mov.l %d0,%a0 |
| 4773 | rts |
| 4774 | |
| 4775 | faddr_ind_m_a1: |
| 4776 | mov.l EXC_DREGS+0xc(%a6),%d0 # Get current a1 |
| 4777 | sub.l %a0,%d0 # Decrement |
| 4778 | mov.l %d0,EXC_DREGS+0xc(%a6) # Save decr value |
| 4779 | mov.l %d0,%a0 |
| 4780 | rts |
| 4781 | |
| 4782 | faddr_ind_m_a2: |
| 4783 | mov.l %a2,%d0 # Get current a2 |
| 4784 | sub.l %a0,%d0 # Decrement |
| 4785 | mov.l %d0,%a2 # Save decr value |
| 4786 | mov.l %d0,%a0 |
| 4787 | rts |
| 4788 | |
| 4789 | faddr_ind_m_a3: |
| 4790 | mov.l %a3,%d0 # Get current a3 |
| 4791 | sub.l %a0,%d0 # Decrement |
| 4792 | mov.l %d0,%a3 # Save decr value |
| 4793 | mov.l %d0,%a0 |
| 4794 | rts |
| 4795 | |
| 4796 | faddr_ind_m_a4: |
| 4797 | mov.l %a4,%d0 # Get current a4 |
| 4798 | sub.l %a0,%d0 # Decrement |
| 4799 | mov.l %d0,%a4 # Save decr value |
| 4800 | mov.l %d0,%a0 |
| 4801 | rts |
| 4802 | |
| 4803 | faddr_ind_m_a5: |
| 4804 | mov.l %a5,%d0 # Get current a5 |
| 4805 | sub.l %a0,%d0 # Decrement |
| 4806 | mov.l %d0,%a5 # Save decr value |
| 4807 | mov.l %d0,%a0 |
| 4808 | rts |
| 4809 | |
| 4810 | faddr_ind_m_a6: |
| 4811 | mov.l (%a6),%d0 # Get current a6 |
| 4812 | sub.l %a0,%d0 # Decrement |
| 4813 | mov.l %d0,(%a6) # Save decr value |
| 4814 | mov.l %d0,%a0 |
| 4815 | rts |
| 4816 | |
| 4817 | faddr_ind_m_a7: |
| 4818 | mov.b &mda7_flg,SPCOND_FLG(%a6) # set "special case" flag |
| 4819 | |
| 4820 | mov.l EXC_A7(%a6),%d0 # Get current a7 |
| 4821 | sub.l %a0,%d0 # Decrement |
| 4822 | mov.l %d0,EXC_A7(%a6) # Save decr value |
| 4823 | mov.l %d0,%a0 |
| 4824 | rts |
| 4825 | |
| 4826 | ######################################################## |
| 4827 | # Address register indirect w/ displacement: (d16, An) # |
| 4828 | ######################################################## |
| 4829 | faddr_ind_disp_a0: |
| 4830 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 4831 | addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 4832 | bsr.l _imem_read_word |
| 4833 | |
| 4834 | tst.l %d1 # did ifetch fail? |
| 4835 | bne.l iea_iacc # yes |
| 4836 | |
| 4837 | mov.w %d0,%a0 # sign extend displacement |
| 4838 | |
| 4839 | add.l EXC_DREGS+0x8(%a6),%a0 # a0 + d16 |
| 4840 | rts |
| 4841 | |
| 4842 | faddr_ind_disp_a1: |
| 4843 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 4844 | addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 4845 | bsr.l _imem_read_word |
| 4846 | |
| 4847 | tst.l %d1 # did ifetch fail? |
| 4848 | bne.l iea_iacc # yes |
| 4849 | |
| 4850 | mov.w %d0,%a0 # sign extend displacement |
| 4851 | |
| 4852 | add.l EXC_DREGS+0xc(%a6),%a0 # a1 + d16 |
| 4853 | rts |
| 4854 | |
| 4855 | faddr_ind_disp_a2: |
| 4856 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 4857 | addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 4858 | bsr.l _imem_read_word |
| 4859 | |
| 4860 | tst.l %d1 # did ifetch fail? |
| 4861 | bne.l iea_iacc # yes |
| 4862 | |
| 4863 | mov.w %d0,%a0 # sign extend displacement |
| 4864 | |
| 4865 | add.l %a2,%a0 # a2 + d16 |
| 4866 | rts |
| 4867 | |
| 4868 | faddr_ind_disp_a3: |
| 4869 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 4870 | addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 4871 | bsr.l _imem_read_word |
| 4872 | |
| 4873 | tst.l %d1 # did ifetch fail? |
| 4874 | bne.l iea_iacc # yes |
| 4875 | |
| 4876 | mov.w %d0,%a0 # sign extend displacement |
| 4877 | |
| 4878 | add.l %a3,%a0 # a3 + d16 |
| 4879 | rts |
| 4880 | |
| 4881 | faddr_ind_disp_a4: |
| 4882 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 4883 | addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 4884 | bsr.l _imem_read_word |
| 4885 | |
| 4886 | tst.l %d1 # did ifetch fail? |
| 4887 | bne.l iea_iacc # yes |
| 4888 | |
| 4889 | mov.w %d0,%a0 # sign extend displacement |
| 4890 | |
| 4891 | add.l %a4,%a0 # a4 + d16 |
| 4892 | rts |
| 4893 | |
| 4894 | faddr_ind_disp_a5: |
| 4895 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 4896 | addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 4897 | bsr.l _imem_read_word |
| 4898 | |
| 4899 | tst.l %d1 # did ifetch fail? |
| 4900 | bne.l iea_iacc # yes |
| 4901 | |
| 4902 | mov.w %d0,%a0 # sign extend displacement |
| 4903 | |
| 4904 | add.l %a5,%a0 # a5 + d16 |
| 4905 | rts |
| 4906 | |
| 4907 | faddr_ind_disp_a6: |
| 4908 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 4909 | addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 4910 | bsr.l _imem_read_word |
| 4911 | |
| 4912 | tst.l %d1 # did ifetch fail? |
| 4913 | bne.l iea_iacc # yes |
| 4914 | |
| 4915 | mov.w %d0,%a0 # sign extend displacement |
| 4916 | |
| 4917 | add.l (%a6),%a0 # a6 + d16 |
| 4918 | rts |
| 4919 | |
| 4920 | faddr_ind_disp_a7: |
| 4921 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 4922 | addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 4923 | bsr.l _imem_read_word |
| 4924 | |
| 4925 | tst.l %d1 # did ifetch fail? |
| 4926 | bne.l iea_iacc # yes |
| 4927 | |
| 4928 | mov.w %d0,%a0 # sign extend displacement |
| 4929 | |
| 4930 | add.l EXC_A7(%a6),%a0 # a7 + d16 |
| 4931 | rts |
| 4932 | |
| 4933 | ######################################################################## |
| 4934 | # Address register indirect w/ index(8-bit displacement): (d8, An, Xn) # |
| 4935 | # " " " w/ " (base displacement): (bd, An, Xn) # |
| 4936 | # Memory indirect postindexed: ([bd, An], Xn, od) # |
| 4937 | # Memory indirect preindexed: ([bd, An, Xn], od) # |
| 4938 | ######################################################################## |
| 4939 | faddr_ind_ext: |
| 4940 | addq.l &0x8,%d1 |
| 4941 | bsr.l fetch_dreg # fetch base areg |
| 4942 | mov.l %d0,-(%sp) |
| 4943 | |
| 4944 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 4945 | addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 4946 | bsr.l _imem_read_word # fetch extword in d0 |
| 4947 | |
| 4948 | tst.l %d1 # did ifetch fail? |
| 4949 | bne.l iea_iacc # yes |
| 4950 | |
| 4951 | mov.l (%sp)+,%a0 |
| 4952 | |
| 4953 | btst &0x8,%d0 |
| 4954 | bne.w fcalc_mem_ind |
| 4955 | |
| 4956 | mov.l %d0,L_SCR1(%a6) # hold opword |
| 4957 | |
| 4958 | mov.l %d0,%d1 |
| 4959 | rol.w &0x4,%d1 |
| 4960 | andi.w &0xf,%d1 # extract index regno |
| 4961 | |
| 4962 | # count on fetch_dreg() not to alter a0... |
| 4963 | bsr.l fetch_dreg # fetch index |
| 4964 | |
| 4965 | mov.l %d2,-(%sp) # save d2 |
| 4966 | mov.l L_SCR1(%a6),%d2 # fetch opword |
| 4967 | |
| 4968 | btst &0xb,%d2 # is it word or long? |
| 4969 | bne.b faii8_long |
| 4970 | ext.l %d0 # sign extend word index |
| 4971 | faii8_long: |
| 4972 | mov.l %d2,%d1 |
| 4973 | rol.w &0x7,%d1 |
| 4974 | andi.l &0x3,%d1 # extract scale value |
| 4975 | |
| 4976 | lsl.l %d1,%d0 # shift index by scale |
| 4977 | |
| 4978 | extb.l %d2 # sign extend displacement |
| 4979 | add.l %d2,%d0 # index + disp |
| 4980 | add.l %d0,%a0 # An + (index + disp) |
| 4981 | |
| 4982 | mov.l (%sp)+,%d2 # restore old d2 |
| 4983 | rts |
| 4984 | |
| 4985 | ########################### |
| 4986 | # Absolute short: (XXX).W # |
| 4987 | ########################### |
| 4988 | fabs_short: |
| 4989 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 4990 | addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 4991 | bsr.l _imem_read_word # fetch short address |
| 4992 | |
| 4993 | tst.l %d1 # did ifetch fail? |
| 4994 | bne.l iea_iacc # yes |
| 4995 | |
| 4996 | mov.w %d0,%a0 # return <ea> in a0 |
| 4997 | rts |
| 4998 | |
| 4999 | ########################## |
| 5000 | # Absolute long: (XXX).L # |
| 5001 | ########################## |
| 5002 | fabs_long: |
| 5003 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 5004 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 5005 | bsr.l _imem_read_long # fetch long address |
| 5006 | |
| 5007 | tst.l %d1 # did ifetch fail? |
| 5008 | bne.l iea_iacc # yes |
| 5009 | |
| 5010 | mov.l %d0,%a0 # return <ea> in a0 |
| 5011 | rts |
| 5012 | |
| 5013 | ####################################################### |
| 5014 | # Program counter indirect w/ displacement: (d16, PC) # |
| 5015 | ####################################################### |
| 5016 | fpc_ind: |
| 5017 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 5018 | addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 5019 | bsr.l _imem_read_word # fetch word displacement |
| 5020 | |
| 5021 | tst.l %d1 # did ifetch fail? |
| 5022 | bne.l iea_iacc # yes |
| 5023 | |
| 5024 | mov.w %d0,%a0 # sign extend displacement |
| 5025 | |
| 5026 | add.l EXC_EXTWPTR(%a6),%a0 # pc + d16 |
| 5027 | |
| 5028 | # _imem_read_word() increased the extwptr by 2. need to adjust here. |
| 5029 | subq.l &0x2,%a0 # adjust <ea> |
| 5030 | rts |
| 5031 | |
| 5032 | ########################################################## |
| 5033 | # PC indirect w/ index(8-bit displacement): (d8, PC, An) # |
| 5034 | # " " w/ " (base displacement): (bd, PC, An) # |
| 5035 | # PC memory indirect postindexed: ([bd, PC], Xn, od) # |
| 5036 | # PC memory indirect preindexed: ([bd, PC, Xn], od) # |
| 5037 | ########################################################## |
| 5038 | fpc_ind_ext: |
| 5039 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 5040 | addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 5041 | bsr.l _imem_read_word # fetch ext word |
| 5042 | |
| 5043 | tst.l %d1 # did ifetch fail? |
| 5044 | bne.l iea_iacc # yes |
| 5045 | |
| 5046 | mov.l EXC_EXTWPTR(%a6),%a0 # put base in a0 |
| 5047 | subq.l &0x2,%a0 # adjust base |
| 5048 | |
| 5049 | btst &0x8,%d0 # is disp only 8 bits? |
| 5050 | bne.w fcalc_mem_ind # calc memory indirect |
| 5051 | |
| 5052 | mov.l %d0,L_SCR1(%a6) # store opword |
| 5053 | |
| 5054 | mov.l %d0,%d1 # make extword copy |
| 5055 | rol.w &0x4,%d1 # rotate reg num into place |
| 5056 | andi.w &0xf,%d1 # extract register number |
| 5057 | |
| 5058 | # count on fetch_dreg() not to alter a0... |
| 5059 | bsr.l fetch_dreg # fetch index |
| 5060 | |
| 5061 | mov.l %d2,-(%sp) # save d2 |
| 5062 | mov.l L_SCR1(%a6),%d2 # fetch opword |
| 5063 | |
| 5064 | btst &0xb,%d2 # is index word or long? |
| 5065 | bne.b fpii8_long # long |
| 5066 | ext.l %d0 # sign extend word index |
| 5067 | fpii8_long: |
| 5068 | mov.l %d2,%d1 |
| 5069 | rol.w &0x7,%d1 # rotate scale value into place |
| 5070 | andi.l &0x3,%d1 # extract scale value |
| 5071 | |
| 5072 | lsl.l %d1,%d0 # shift index by scale |
| 5073 | |
| 5074 | extb.l %d2 # sign extend displacement |
| 5075 | add.l %d2,%d0 # disp + index |
| 5076 | add.l %d0,%a0 # An + (index + disp) |
| 5077 | |
| 5078 | mov.l (%sp)+,%d2 # restore temp register |
| 5079 | rts |
| 5080 | |
| 5081 | # d2 = index |
| 5082 | # d3 = base |
| 5083 | # d4 = od |
| 5084 | # d5 = extword |
| 5085 | fcalc_mem_ind: |
| 5086 | btst &0x6,%d0 # is the index suppressed? |
| 5087 | beq.b fcalc_index |
| 5088 | |
| 5089 | movm.l &0x3c00,-(%sp) # save d2-d5 |
| 5090 | |
| 5091 | mov.l %d0,%d5 # put extword in d5 |
| 5092 | mov.l %a0,%d3 # put base in d3 |
| 5093 | |
| 5094 | clr.l %d2 # yes, so index = 0 |
| 5095 | bra.b fbase_supp_ck |
| 5096 | |
| 5097 | # index: |
| 5098 | fcalc_index: |
| 5099 | mov.l %d0,L_SCR1(%a6) # save d0 (opword) |
| 5100 | bfextu %d0{&16:&4},%d1 # fetch dreg index |
| 5101 | bsr.l fetch_dreg |
| 5102 | |
| 5103 | movm.l &0x3c00,-(%sp) # save d2-d5 |
| 5104 | mov.l %d0,%d2 # put index in d2 |
| 5105 | mov.l L_SCR1(%a6),%d5 |
| 5106 | mov.l %a0,%d3 |
| 5107 | |
| 5108 | btst &0xb,%d5 # is index word or long? |
| 5109 | bne.b fno_ext |
| 5110 | ext.l %d2 |
| 5111 | |
| 5112 | fno_ext: |
| 5113 | bfextu %d5{&21:&2},%d0 |
| 5114 | lsl.l %d0,%d2 |
| 5115 | |
| 5116 | # base address (passed as parameter in d3): |
| 5117 | # we clear the value here if it should actually be suppressed. |
| 5118 | fbase_supp_ck: |
| 5119 | btst &0x7,%d5 # is the bd suppressed? |
| 5120 | beq.b fno_base_sup |
| 5121 | clr.l %d3 |
| 5122 | |
| 5123 | # base displacement: |
| 5124 | fno_base_sup: |
| 5125 | bfextu %d5{&26:&2},%d0 # get bd size |
| 5126 | # beq.l fmovm_error # if (size == 0) it's reserved |
| 5127 | |
| 5128 | cmpi.b %d0,&0x2 |
| 5129 | blt.b fno_bd |
| 5130 | beq.b fget_word_bd |
| 5131 | |
| 5132 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 5133 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 5134 | bsr.l _imem_read_long |
| 5135 | |
| 5136 | tst.l %d1 # did ifetch fail? |
| 5137 | bne.l fcea_iacc # yes |
| 5138 | |
| 5139 | bra.b fchk_ind |
| 5140 | |
| 5141 | fget_word_bd: |
| 5142 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 5143 | addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 5144 | bsr.l _imem_read_word |
| 5145 | |
| 5146 | tst.l %d1 # did ifetch fail? |
| 5147 | bne.l fcea_iacc # yes |
| 5148 | |
| 5149 | ext.l %d0 # sign extend bd |
| 5150 | |
| 5151 | fchk_ind: |
| 5152 | add.l %d0,%d3 # base += bd |
| 5153 | |
| 5154 | # outer displacement: |
| 5155 | fno_bd: |
| 5156 | bfextu %d5{&30:&2},%d0 # is od suppressed? |
| 5157 | beq.w faii_bd |
| 5158 | |
| 5159 | cmpi.b %d0,&0x2 |
| 5160 | blt.b fnull_od |
| 5161 | beq.b fword_od |
| 5162 | |
| 5163 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 5164 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 5165 | bsr.l _imem_read_long |
| 5166 | |
| 5167 | tst.l %d1 # did ifetch fail? |
| 5168 | bne.l fcea_iacc # yes |
| 5169 | |
| 5170 | bra.b fadd_them |
| 5171 | |
| 5172 | fword_od: |
| 5173 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 5174 | addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 5175 | bsr.l _imem_read_word |
| 5176 | |
| 5177 | tst.l %d1 # did ifetch fail? |
| 5178 | bne.l fcea_iacc # yes |
| 5179 | |
| 5180 | ext.l %d0 # sign extend od |
| 5181 | bra.b fadd_them |
| 5182 | |
| 5183 | fnull_od: |
| 5184 | clr.l %d0 |
| 5185 | |
| 5186 | fadd_them: |
| 5187 | mov.l %d0,%d4 |
| 5188 | |
| 5189 | btst &0x2,%d5 # pre or post indexing? |
| 5190 | beq.b fpre_indexed |
| 5191 | |
| 5192 | mov.l %d3,%a0 |
| 5193 | bsr.l _dmem_read_long |
| 5194 | |
| 5195 | tst.l %d1 # did dfetch fail? |
| 5196 | bne.w fcea_err # yes |
| 5197 | |
| 5198 | add.l %d2,%d0 # <ea> += index |
| 5199 | add.l %d4,%d0 # <ea> += od |
| 5200 | bra.b fdone_ea |
| 5201 | |
| 5202 | fpre_indexed: |
| 5203 | add.l %d2,%d3 # preindexing |
| 5204 | mov.l %d3,%a0 |
| 5205 | bsr.l _dmem_read_long |
| 5206 | |
| 5207 | tst.l %d1 # did dfetch fail? |
| 5208 | bne.w fcea_err # yes |
| 5209 | |
| 5210 | add.l %d4,%d0 # ea += od |
| 5211 | bra.b fdone_ea |
| 5212 | |
| 5213 | faii_bd: |
| 5214 | add.l %d2,%d3 # ea = (base + bd) + index |
| 5215 | mov.l %d3,%d0 |
| 5216 | fdone_ea: |
| 5217 | mov.l %d0,%a0 |
| 5218 | |
| 5219 | movm.l (%sp)+,&0x003c # restore d2-d5 |
| 5220 | rts |
| 5221 | |
| 5222 | ######################################################### |
| 5223 | fcea_err: |
| 5224 | mov.l %d3,%a0 |
| 5225 | |
| 5226 | movm.l (%sp)+,&0x003c # restore d2-d5 |
| 5227 | mov.w &0x0101,%d0 |
| 5228 | bra.l iea_dacc |
| 5229 | |
| 5230 | fcea_iacc: |
| 5231 | movm.l (%sp)+,&0x003c # restore d2-d5 |
| 5232 | bra.l iea_iacc |
| 5233 | |
| 5234 | fmovm_out_err: |
| 5235 | bsr.l restore |
| 5236 | mov.w &0x00e1,%d0 |
| 5237 | bra.b fmovm_err |
| 5238 | |
| 5239 | fmovm_in_err: |
| 5240 | bsr.l restore |
| 5241 | mov.w &0x0161,%d0 |
| 5242 | |
| 5243 | fmovm_err: |
| 5244 | mov.l L_SCR1(%a6),%a0 |
| 5245 | bra.l iea_dacc |
| 5246 | |
| 5247 | ######################################################################### |
| 5248 | # XDEF **************************************************************** # |
| 5249 | # fmovm_ctrl(): emulate fmovm.l of control registers instr # |
| 5250 | # # |
| 5251 | # XREF **************************************************************** # |
| 5252 | # _imem_read_long() - read longword from memory # |
| 5253 | # iea_iacc() - _imem_read_long() failed; error recovery # |
| 5254 | # # |
| 5255 | # INPUT *************************************************************** # |
| 5256 | # None # |
| 5257 | # # |
| 5258 | # OUTPUT ************************************************************** # |
| 5259 | # If _imem_read_long() doesn't fail: # |
| 5260 | # USER_FPCR(a6) = new FPCR value # |
| 5261 | # USER_FPSR(a6) = new FPSR value # |
| 5262 | # USER_FPIAR(a6) = new FPIAR value # |
| 5263 | # # |
| 5264 | # ALGORITHM *********************************************************** # |
| 5265 | # Decode the instruction type by looking at the extension word # |
| 5266 | # in order to see how many control registers to fetch from memory. # |
| 5267 | # Fetch them using _imem_read_long(). If this fetch fails, exit through # |
| 5268 | # the special access error exit handler iea_iacc(). # |
| 5269 | # # |
| 5270 | # Instruction word decoding: # |
| 5271 | # # |
| 5272 | # fmovem.l #<data>, {FPIAR&|FPCR&|FPSR} # |
| 5273 | # # |
| 5274 | # WORD1 WORD2 # |
| 5275 | # 1111 0010 00 111100 100$ $$00 0000 0000 # |
| 5276 | # # |
| 5277 | # $$$ (100): FPCR # |
| 5278 | # (010): FPSR # |
| 5279 | # (001): FPIAR # |
| 5280 | # (000): FPIAR # |
| 5281 | # # |
| 5282 | ######################################################################### |
| 5283 | |
| 5284 | global fmovm_ctrl |
| 5285 | fmovm_ctrl: |
| 5286 | mov.b EXC_EXTWORD(%a6),%d0 # fetch reg select bits |
| 5287 | cmpi.b %d0,&0x9c # fpcr & fpsr & fpiar ? |
| 5288 | beq.w fctrl_in_7 # yes |
| 5289 | cmpi.b %d0,&0x98 # fpcr & fpsr ? |
| 5290 | beq.w fctrl_in_6 # yes |
| 5291 | cmpi.b %d0,&0x94 # fpcr & fpiar ? |
| 5292 | beq.b fctrl_in_5 # yes |
| 5293 | |
| 5294 | # fmovem.l #<data>, fpsr/fpiar |
| 5295 | fctrl_in_3: |
| 5296 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 5297 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 5298 | bsr.l _imem_read_long # fetch FPSR from mem |
| 5299 | |
| 5300 | tst.l %d1 # did ifetch fail? |
| 5301 | bne.l iea_iacc # yes |
| 5302 | |
| 5303 | mov.l %d0,USER_FPSR(%a6) # store new FPSR to stack |
| 5304 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 5305 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 5306 | bsr.l _imem_read_long # fetch FPIAR from mem |
| 5307 | |
| 5308 | tst.l %d1 # did ifetch fail? |
| 5309 | bne.l iea_iacc # yes |
| 5310 | |
| 5311 | mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to stack |
| 5312 | rts |
| 5313 | |
| 5314 | # fmovem.l #<data>, fpcr/fpiar |
| 5315 | fctrl_in_5: |
| 5316 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 5317 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 5318 | bsr.l _imem_read_long # fetch FPCR from mem |
| 5319 | |
| 5320 | tst.l %d1 # did ifetch fail? |
| 5321 | bne.l iea_iacc # yes |
| 5322 | |
| 5323 | mov.l %d0,USER_FPCR(%a6) # store new FPCR to stack |
| 5324 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 5325 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 5326 | bsr.l _imem_read_long # fetch FPIAR from mem |
| 5327 | |
| 5328 | tst.l %d1 # did ifetch fail? |
| 5329 | bne.l iea_iacc # yes |
| 5330 | |
| 5331 | mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to stack |
| 5332 | rts |
| 5333 | |
| 5334 | # fmovem.l #<data>, fpcr/fpsr |
| 5335 | fctrl_in_6: |
| 5336 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 5337 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 5338 | bsr.l _imem_read_long # fetch FPCR from mem |
| 5339 | |
| 5340 | tst.l %d1 # did ifetch fail? |
| 5341 | bne.l iea_iacc # yes |
| 5342 | |
| 5343 | mov.l %d0,USER_FPCR(%a6) # store new FPCR to mem |
| 5344 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 5345 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 5346 | bsr.l _imem_read_long # fetch FPSR from mem |
| 5347 | |
| 5348 | tst.l %d1 # did ifetch fail? |
| 5349 | bne.l iea_iacc # yes |
| 5350 | |
| 5351 | mov.l %d0,USER_FPSR(%a6) # store new FPSR to mem |
| 5352 | rts |
| 5353 | |
| 5354 | # fmovem.l #<data>, fpcr/fpsr/fpiar |
| 5355 | fctrl_in_7: |
| 5356 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 5357 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 5358 | bsr.l _imem_read_long # fetch FPCR from mem |
| 5359 | |
| 5360 | tst.l %d1 # did ifetch fail? |
| 5361 | bne.l iea_iacc # yes |
| 5362 | |
| 5363 | mov.l %d0,USER_FPCR(%a6) # store new FPCR to mem |
| 5364 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 5365 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 5366 | bsr.l _imem_read_long # fetch FPSR from mem |
| 5367 | |
| 5368 | tst.l %d1 # did ifetch fail? |
| 5369 | bne.l iea_iacc # yes |
| 5370 | |
| 5371 | mov.l %d0,USER_FPSR(%a6) # store new FPSR to mem |
| 5372 | mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr |
| 5373 | addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr |
| 5374 | bsr.l _imem_read_long # fetch FPIAR from mem |
| 5375 | |
| 5376 | tst.l %d1 # did ifetch fail? |
| 5377 | bne.l iea_iacc # yes |
| 5378 | |
| 5379 | mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to mem |
| 5380 | rts |
| 5381 | |
| 5382 | ########################################################################## |
| 5383 | |
| 5384 | ######################################################################### |
| 5385 | # XDEF **************************************************************** # |
| 5386 | # addsub_scaler2(): scale inputs to fadd/fsub such that no # |
| 5387 | # OVFL/UNFL exceptions will result # |
| 5388 | # # |
| 5389 | # XREF **************************************************************** # |
| 5390 | # norm() - normalize mantissa after adjusting exponent # |
| 5391 | # # |
| 5392 | # INPUT *************************************************************** # |
| 5393 | # FP_SRC(a6) = fp op1(src) # |
| 5394 | # FP_DST(a6) = fp op2(dst) # |
| 5395 | # # |
| 5396 | # OUTPUT ************************************************************** # |
| 5397 | # FP_SRC(a6) = fp op1 scaled(src) # |
| 5398 | # FP_DST(a6) = fp op2 scaled(dst) # |
| 5399 | # d0 = scale amount # |
| 5400 | # # |
| 5401 | # ALGORITHM *********************************************************** # |
| 5402 | # If the DST exponent is > the SRC exponent, set the DST exponent # |
| 5403 | # equal to 0x3fff and scale the SRC exponent by the value that the # |
| 5404 | # DST exponent was scaled by. If the SRC exponent is greater or equal, # |
| 5405 | # do the opposite. Return this scale factor in d0. # |
| 5406 | # If the two exponents differ by > the number of mantissa bits # |
| 5407 | # plus two, then set the smallest exponent to a very small value as a # |
| 5408 | # quick shortcut. # |
| 5409 | # # |
| 5410 | ######################################################################### |
| 5411 | |
| 5412 | global addsub_scaler2 |
| 5413 | addsub_scaler2: |
| 5414 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| 5415 | mov.l DST_HI(%a1),FP_SCR1_HI(%a6) |
| 5416 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| 5417 | mov.l DST_LO(%a1),FP_SCR1_LO(%a6) |
| 5418 | mov.w SRC_EX(%a0),%d0 |
| 5419 | mov.w DST_EX(%a1),%d1 |
| 5420 | mov.w %d0,FP_SCR0_EX(%a6) |
| 5421 | mov.w %d1,FP_SCR1_EX(%a6) |
| 5422 | |
| 5423 | andi.w &0x7fff,%d0 |
| 5424 | andi.w &0x7fff,%d1 |
| 5425 | mov.w %d0,L_SCR1(%a6) # store src exponent |
| 5426 | mov.w %d1,2+L_SCR1(%a6) # store dst exponent |
| 5427 | |
| 5428 | cmp.w %d0, %d1 # is src exp >= dst exp? |
| 5429 | bge.l src_exp_ge2 |
| 5430 | |
| 5431 | # dst exp is > src exp; scale dst to exp = 0x3fff |
| 5432 | dst_exp_gt2: |
| 5433 | bsr.l scale_to_zero_dst |
| 5434 | mov.l %d0,-(%sp) # save scale factor |
| 5435 | |
| 5436 | cmpi.b STAG(%a6),&DENORM # is dst denormalized? |
| 5437 | bne.b cmpexp12 |
| 5438 | |
| 5439 | lea FP_SCR0(%a6),%a0 |
| 5440 | bsr.l norm # normalize the denorm; result is new exp |
| 5441 | neg.w %d0 # new exp = -(shft val) |
| 5442 | mov.w %d0,L_SCR1(%a6) # inset new exp |
| 5443 | |
| 5444 | cmpexp12: |
| 5445 | mov.w 2+L_SCR1(%a6),%d0 |
| 5446 | subi.w &mantissalen+2,%d0 # subtract mantissalen+2 from larger exp |
| 5447 | |
| 5448 | cmp.w %d0,L_SCR1(%a6) # is difference >= len(mantissa)+2? |
| 5449 | bge.b quick_scale12 |
| 5450 | |
| 5451 | mov.w L_SCR1(%a6),%d0 |
| 5452 | add.w 0x2(%sp),%d0 # scale src exponent by scale factor |
| 5453 | mov.w FP_SCR0_EX(%a6),%d1 |
| 5454 | and.w &0x8000,%d1 |
| 5455 | or.w %d1,%d0 # concat {sgn,new exp} |
| 5456 | mov.w %d0,FP_SCR0_EX(%a6) # insert new dst exponent |
| 5457 | |
| 5458 | mov.l (%sp)+,%d0 # return SCALE factor |
| 5459 | rts |
| 5460 | |
| 5461 | quick_scale12: |
| 5462 | andi.w &0x8000,FP_SCR0_EX(%a6) # zero src exponent |
| 5463 | bset &0x0,1+FP_SCR0_EX(%a6) # set exp = 1 |
| 5464 | |
| 5465 | mov.l (%sp)+,%d0 # return SCALE factor |
| 5466 | rts |
| 5467 | |
| 5468 | # src exp is >= dst exp; scale src to exp = 0x3fff |
| 5469 | src_exp_ge2: |
| 5470 | bsr.l scale_to_zero_src |
| 5471 | mov.l %d0,-(%sp) # save scale factor |
| 5472 | |
| 5473 | cmpi.b DTAG(%a6),&DENORM # is dst denormalized? |
| 5474 | bne.b cmpexp22 |
| 5475 | lea FP_SCR1(%a6),%a0 |
| 5476 | bsr.l norm # normalize the denorm; result is new exp |
| 5477 | neg.w %d0 # new exp = -(shft val) |
| 5478 | mov.w %d0,2+L_SCR1(%a6) # inset new exp |
| 5479 | |
| 5480 | cmpexp22: |
| 5481 | mov.w L_SCR1(%a6),%d0 |
| 5482 | subi.w &mantissalen+2,%d0 # subtract mantissalen+2 from larger exp |
| 5483 | |
| 5484 | cmp.w %d0,2+L_SCR1(%a6) # is difference >= len(mantissa)+2? |
| 5485 | bge.b quick_scale22 |
| 5486 | |
| 5487 | mov.w 2+L_SCR1(%a6),%d0 |
| 5488 | add.w 0x2(%sp),%d0 # scale dst exponent by scale factor |
| 5489 | mov.w FP_SCR1_EX(%a6),%d1 |
| 5490 | andi.w &0x8000,%d1 |
| 5491 | or.w %d1,%d0 # concat {sgn,new exp} |
| 5492 | mov.w %d0,FP_SCR1_EX(%a6) # insert new dst exponent |
| 5493 | |
| 5494 | mov.l (%sp)+,%d0 # return SCALE factor |
| 5495 | rts |
| 5496 | |
| 5497 | quick_scale22: |
| 5498 | andi.w &0x8000,FP_SCR1_EX(%a6) # zero dst exponent |
| 5499 | bset &0x0,1+FP_SCR1_EX(%a6) # set exp = 1 |
| 5500 | |
| 5501 | mov.l (%sp)+,%d0 # return SCALE factor |
| 5502 | rts |
| 5503 | |
| 5504 | ########################################################################## |
| 5505 | |
| 5506 | ######################################################################### |
| 5507 | # XDEF **************************************************************** # |
| 5508 | # scale_to_zero_src(): scale the exponent of extended precision # |
| 5509 | # value at FP_SCR0(a6). # |
| 5510 | # # |
| 5511 | # XREF **************************************************************** # |
| 5512 | # norm() - normalize the mantissa if the operand was a DENORM # |
| 5513 | # # |
| 5514 | # INPUT *************************************************************** # |
| 5515 | # FP_SCR0(a6) = extended precision operand to be scaled # |
| 5516 | # # |
| 5517 | # OUTPUT ************************************************************** # |
| 5518 | # FP_SCR0(a6) = scaled extended precision operand # |
| 5519 | # d0 = scale value # |
| 5520 | # # |
| 5521 | # ALGORITHM *********************************************************** # |
| 5522 | # Set the exponent of the input operand to 0x3fff. Save the value # |
| 5523 | # of the difference between the original and new exponent. Then, # |
| 5524 | # normalize the operand if it was a DENORM. Add this normalization # |
| 5525 | # value to the previous value. Return the result. # |
| 5526 | # # |
| 5527 | ######################################################################### |
| 5528 | |
| 5529 | global scale_to_zero_src |
| 5530 | scale_to_zero_src: |
| 5531 | mov.w FP_SCR0_EX(%a6),%d1 # extract operand's {sgn,exp} |
| 5532 | mov.w %d1,%d0 # make a copy |
| 5533 | |
| 5534 | andi.l &0x7fff,%d1 # extract operand's exponent |
| 5535 | |
| 5536 | andi.w &0x8000,%d0 # extract operand's sgn |
| 5537 | or.w &0x3fff,%d0 # insert new operand's exponent(=0) |
| 5538 | |
| 5539 | mov.w %d0,FP_SCR0_EX(%a6) # insert biased exponent |
| 5540 | |
| 5541 | cmpi.b STAG(%a6),&DENORM # is operand normalized? |
| 5542 | beq.b stzs_denorm # normalize the DENORM |
| 5543 | |
| 5544 | stzs_norm: |
| 5545 | mov.l &0x3fff,%d0 |
| 5546 | sub.l %d1,%d0 # scale = BIAS + (-exp) |
| 5547 | |
| 5548 | rts |
| 5549 | |
| 5550 | stzs_denorm: |
| 5551 | lea FP_SCR0(%a6),%a0 # pass ptr to src op |
| 5552 | bsr.l norm # normalize denorm |
| 5553 | neg.l %d0 # new exponent = -(shft val) |
| 5554 | mov.l %d0,%d1 # prepare for op_norm call |
| 5555 | bra.b stzs_norm # finish scaling |
| 5556 | |
| 5557 | ### |
| 5558 | |
| 5559 | ######################################################################### |
| 5560 | # XDEF **************************************************************** # |
| 5561 | # scale_sqrt(): scale the input operand exponent so a subsequent # |
| 5562 | # fsqrt operation won't take an exception. # |
| 5563 | # # |
| 5564 | # XREF **************************************************************** # |
| 5565 | # norm() - normalize the mantissa if the operand was a DENORM # |
| 5566 | # # |
| 5567 | # INPUT *************************************************************** # |
| 5568 | # FP_SCR0(a6) = extended precision operand to be scaled # |
| 5569 | # # |
| 5570 | # OUTPUT ************************************************************** # |
| 5571 | # FP_SCR0(a6) = scaled extended precision operand # |
| 5572 | # d0 = scale value # |
| 5573 | # # |
| 5574 | # ALGORITHM *********************************************************** # |
| 5575 | # If the input operand is a DENORM, normalize it. # |
| 5576 | # If the exponent of the input operand is even, set the exponent # |
| 5577 | # to 0x3ffe and return a scale factor of "(exp-0x3ffe)/2". If the # |
| 5578 | # exponent of the input operand is off, set the exponent to ox3fff and # |
| 5579 | # return a scale factor of "(exp-0x3fff)/2". # |
| 5580 | # # |
| 5581 | ######################################################################### |
| 5582 | |
| 5583 | global scale_sqrt |
| 5584 | scale_sqrt: |
| 5585 | cmpi.b STAG(%a6),&DENORM # is operand normalized? |
| 5586 | beq.b ss_denorm # normalize the DENORM |
| 5587 | |
| 5588 | mov.w FP_SCR0_EX(%a6),%d1 # extract operand's {sgn,exp} |
| 5589 | andi.l &0x7fff,%d1 # extract operand's exponent |
| 5590 | |
| 5591 | andi.w &0x8000,FP_SCR0_EX(%a6) # extract operand's sgn |
| 5592 | |
| 5593 | btst &0x0,%d1 # is exp even or odd? |
| 5594 | beq.b ss_norm_even |
| 5595 | |
| 5596 | ori.w &0x3fff,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) |
| 5597 | |
| 5598 | mov.l &0x3fff,%d0 |
| 5599 | sub.l %d1,%d0 # scale = BIAS + (-exp) |
| 5600 | asr.l &0x1,%d0 # divide scale factor by 2 |
| 5601 | rts |
| 5602 | |
| 5603 | ss_norm_even: |
| 5604 | ori.w &0x3ffe,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) |
| 5605 | |
| 5606 | mov.l &0x3ffe,%d0 |
| 5607 | sub.l %d1,%d0 # scale = BIAS + (-exp) |
| 5608 | asr.l &0x1,%d0 # divide scale factor by 2 |
| 5609 | rts |
| 5610 | |
| 5611 | ss_denorm: |
| 5612 | lea FP_SCR0(%a6),%a0 # pass ptr to src op |
| 5613 | bsr.l norm # normalize denorm |
| 5614 | |
| 5615 | btst &0x0,%d0 # is exp even or odd? |
| 5616 | beq.b ss_denorm_even |
| 5617 | |
| 5618 | ori.w &0x3fff,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) |
| 5619 | |
| 5620 | add.l &0x3fff,%d0 |
| 5621 | asr.l &0x1,%d0 # divide scale factor by 2 |
| 5622 | rts |
| 5623 | |
| 5624 | ss_denorm_even: |
| 5625 | ori.w &0x3ffe,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) |
| 5626 | |
| 5627 | add.l &0x3ffe,%d0 |
| 5628 | asr.l &0x1,%d0 # divide scale factor by 2 |
| 5629 | rts |
| 5630 | |
| 5631 | ### |
| 5632 | |
| 5633 | ######################################################################### |
| 5634 | # XDEF **************************************************************** # |
| 5635 | # scale_to_zero_dst(): scale the exponent of extended precision # |
| 5636 | # value at FP_SCR1(a6). # |
| 5637 | # # |
| 5638 | # XREF **************************************************************** # |
| 5639 | # norm() - normalize the mantissa if the operand was a DENORM # |
| 5640 | # # |
| 5641 | # INPUT *************************************************************** # |
| 5642 | # FP_SCR1(a6) = extended precision operand to be scaled # |
| 5643 | # # |
| 5644 | # OUTPUT ************************************************************** # |
| 5645 | # FP_SCR1(a6) = scaled extended precision operand # |
| 5646 | # d0 = scale value # |
| 5647 | # # |
| 5648 | # ALGORITHM *********************************************************** # |
| 5649 | # Set the exponent of the input operand to 0x3fff. Save the value # |
| 5650 | # of the difference between the original and new exponent. Then, # |
| 5651 | # normalize the operand if it was a DENORM. Add this normalization # |
| 5652 | # value to the previous value. Return the result. # |
| 5653 | # # |
| 5654 | ######################################################################### |
| 5655 | |
| 5656 | global scale_to_zero_dst |
| 5657 | scale_to_zero_dst: |
| 5658 | mov.w FP_SCR1_EX(%a6),%d1 # extract operand's {sgn,exp} |
| 5659 | mov.w %d1,%d0 # make a copy |
| 5660 | |
| 5661 | andi.l &0x7fff,%d1 # extract operand's exponent |
| 5662 | |
| 5663 | andi.w &0x8000,%d0 # extract operand's sgn |
| 5664 | or.w &0x3fff,%d0 # insert new operand's exponent(=0) |
| 5665 | |
| 5666 | mov.w %d0,FP_SCR1_EX(%a6) # insert biased exponent |
| 5667 | |
| 5668 | cmpi.b DTAG(%a6),&DENORM # is operand normalized? |
| 5669 | beq.b stzd_denorm # normalize the DENORM |
| 5670 | |
| 5671 | stzd_norm: |
| 5672 | mov.l &0x3fff,%d0 |
| 5673 | sub.l %d1,%d0 # scale = BIAS + (-exp) |
| 5674 | rts |
| 5675 | |
| 5676 | stzd_denorm: |
| 5677 | lea FP_SCR1(%a6),%a0 # pass ptr to dst op |
| 5678 | bsr.l norm # normalize denorm |
| 5679 | neg.l %d0 # new exponent = -(shft val) |
| 5680 | mov.l %d0,%d1 # prepare for op_norm call |
| 5681 | bra.b stzd_norm # finish scaling |
| 5682 | |
| 5683 | ########################################################################## |
| 5684 | |
| 5685 | ######################################################################### |
| 5686 | # XDEF **************************************************************** # |
| 5687 | # res_qnan(): return default result w/ QNAN operand for dyadic # |
| 5688 | # res_snan(): return default result w/ SNAN operand for dyadic # |
| 5689 | # res_qnan_1op(): return dflt result w/ QNAN operand for monadic # |
| 5690 | # res_snan_1op(): return dflt result w/ SNAN operand for monadic # |
| 5691 | # # |
| 5692 | # XREF **************************************************************** # |
| 5693 | # None # |
| 5694 | # # |
| 5695 | # INPUT *************************************************************** # |
| 5696 | # FP_SRC(a6) = pointer to extended precision src operand # |
| 5697 | # FP_DST(a6) = pointer to extended precision dst operand # |
| 5698 | # # |
| 5699 | # OUTPUT ************************************************************** # |
| 5700 | # fp0 = default result # |
| 5701 | # # |
| 5702 | # ALGORITHM *********************************************************** # |
| 5703 | # If either operand (but not both operands) of an operation is a # |
| 5704 | # nonsignalling NAN, then that NAN is returned as the result. If both # |
| 5705 | # operands are nonsignalling NANs, then the destination operand # |
| 5706 | # nonsignalling NAN is returned as the result. # |
| 5707 | # If either operand to an operation is a signalling NAN (SNAN), # |
| 5708 | # then, the SNAN bit is set in the FPSR EXC byte. If the SNAN trap # |
| 5709 | # enable bit is set in the FPCR, then the trap is taken and the # |
| 5710 | # destination is not modified. If the SNAN trap enable bit is not set, # |
| 5711 | # then the SNAN is converted to a nonsignalling NAN (by setting the # |
| 5712 | # SNAN bit in the operand to one), and the operation continues as # |
| 5713 | # described in the preceding paragraph, for nonsignalling NANs. # |
| 5714 | # Make sure the appropriate FPSR bits are set before exiting. # |
| 5715 | # # |
| 5716 | ######################################################################### |
| 5717 | |
| 5718 | global res_qnan |
| 5719 | global res_snan |
| 5720 | res_qnan: |
| 5721 | res_snan: |
| 5722 | cmp.b DTAG(%a6), &SNAN # is the dst an SNAN? |
| 5723 | beq.b dst_snan2 |
| 5724 | cmp.b DTAG(%a6), &QNAN # is the dst a QNAN? |
| 5725 | beq.b dst_qnan2 |
| 5726 | src_nan: |
| 5727 | cmp.b STAG(%a6), &QNAN |
| 5728 | beq.b src_qnan2 |
| 5729 | global res_snan_1op |
| 5730 | res_snan_1op: |
| 5731 | src_snan2: |
| 5732 | bset &0x6, FP_SRC_HI(%a6) # set SNAN bit |
| 5733 | or.l &nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6) |
| 5734 | lea FP_SRC(%a6), %a0 |
| 5735 | bra.b nan_comp |
| 5736 | global res_qnan_1op |
| 5737 | res_qnan_1op: |
| 5738 | src_qnan2: |
| 5739 | or.l &nan_mask, USER_FPSR(%a6) |
| 5740 | lea FP_SRC(%a6), %a0 |
| 5741 | bra.b nan_comp |
| 5742 | dst_snan2: |
| 5743 | or.l &nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6) |
| 5744 | bset &0x6, FP_DST_HI(%a6) # set SNAN bit |
| 5745 | lea FP_DST(%a6), %a0 |
| 5746 | bra.b nan_comp |
| 5747 | dst_qnan2: |
| 5748 | lea FP_DST(%a6), %a0 |
| 5749 | cmp.b STAG(%a6), &SNAN |
| 5750 | bne nan_done |
| 5751 | or.l &aiop_mask+snan_mask, USER_FPSR(%a6) |
| 5752 | nan_done: |
| 5753 | or.l &nan_mask, USER_FPSR(%a6) |
| 5754 | nan_comp: |
| 5755 | btst &0x7, FTEMP_EX(%a0) # is NAN neg? |
| 5756 | beq.b nan_not_neg |
| 5757 | or.l &neg_mask, USER_FPSR(%a6) |
| 5758 | nan_not_neg: |
| 5759 | fmovm.x (%a0), &0x80 |
| 5760 | rts |
| 5761 | |
| 5762 | ######################################################################### |
| 5763 | # XDEF **************************************************************** # |
| 5764 | # res_operr(): return default result during operand error # |
| 5765 | # # |
| 5766 | # XREF **************************************************************** # |
| 5767 | # None # |
| 5768 | # # |
| 5769 | # INPUT *************************************************************** # |
| 5770 | # None # |
| 5771 | # # |
| 5772 | # OUTPUT ************************************************************** # |
| 5773 | # fp0 = default operand error result # |
| 5774 | # # |
| 5775 | # ALGORITHM *********************************************************** # |
| 5776 | # An nonsignalling NAN is returned as the default result when # |
| 5777 | # an operand error occurs for the following cases: # |
| 5778 | # # |
| 5779 | # Multiply: (Infinity x Zero) # |
| 5780 | # Divide : (Zero / Zero) || (Infinity / Infinity) # |
| 5781 | # # |
| 5782 | ######################################################################### |
| 5783 | |
| 5784 | global res_operr |
| 5785 | res_operr: |
| 5786 | or.l &nan_mask+operr_mask+aiop_mask, USER_FPSR(%a6) |
| 5787 | fmovm.x nan_return(%pc), &0x80 |
| 5788 | rts |
| 5789 | |
| 5790 | nan_return: |
| 5791 | long 0x7fff0000, 0xffffffff, 0xffffffff |
| 5792 | |
| 5793 | ######################################################################### |
| 5794 | # XDEF **************************************************************** # |
| 5795 | # _denorm(): denormalize an intermediate result # |
| 5796 | # # |
| 5797 | # XREF **************************************************************** # |
| 5798 | # None # |
| 5799 | # # |
| 5800 | # INPUT *************************************************************** # |
| 5801 | # a0 = points to the operand to be denormalized # |
| 5802 | # (in the internal extended format) # |
| 5803 | # # |
| 5804 | # d0 = rounding precision # |
| 5805 | # # |
| 5806 | # OUTPUT ************************************************************** # |
| 5807 | # a0 = pointer to the denormalized result # |
| 5808 | # (in the internal extended format) # |
| 5809 | # # |
| 5810 | # d0 = guard,round,sticky # |
| 5811 | # # |
| 5812 | # ALGORITHM *********************************************************** # |
| 5813 | # According to the exponent underflow threshold for the given # |
| 5814 | # precision, shift the mantissa bits to the right in order raise the # |
| 5815 | # exponent of the operand to the threshold value. While shifting the # |
| 5816 | # mantissa bits right, maintain the value of the guard, round, and # |
| 5817 | # sticky bits. # |
| 5818 | # other notes: # |
| 5819 | # (1) _denorm() is called by the underflow routines # |
| 5820 | # (2) _denorm() does NOT affect the status register # |
| 5821 | # # |
| 5822 | ######################################################################### |
| 5823 | |
| 5824 | # |
| 5825 | # table of exponent threshold values for each precision |
| 5826 | # |
| 5827 | tbl_thresh: |
| 5828 | short 0x0 |
| 5829 | short sgl_thresh |
| 5830 | short dbl_thresh |
| 5831 | |
| 5832 | global _denorm |
| 5833 | _denorm: |
| 5834 | # |
| 5835 | # Load the exponent threshold for the precision selected and check |
| 5836 | # to see if (threshold - exponent) is > 65 in which case we can |
| 5837 | # simply calculate the sticky bit and zero the mantissa. otherwise |
| 5838 | # we have to call the denormalization routine. |
| 5839 | # |
| 5840 | lsr.b &0x2, %d0 # shift prec to lo bits |
| 5841 | mov.w (tbl_thresh.b,%pc,%d0.w*2), %d1 # load prec threshold |
| 5842 | mov.w %d1, %d0 # copy d1 into d0 |
| 5843 | sub.w FTEMP_EX(%a0), %d0 # diff = threshold - exp |
| 5844 | cmpi.w %d0, &66 # is diff > 65? (mant + g,r bits) |
| 5845 | bpl.b denorm_set_stky # yes; just calc sticky |
| 5846 | |
| 5847 | clr.l %d0 # clear g,r,s |
| 5848 | btst &inex2_bit, FPSR_EXCEPT(%a6) # yes; was INEX2 set? |
| 5849 | beq.b denorm_call # no; don't change anything |
| 5850 | bset &29, %d0 # yes; set sticky bit |
| 5851 | |
| 5852 | denorm_call: |
| 5853 | bsr.l dnrm_lp # denormalize the number |
| 5854 | rts |
| 5855 | |
| 5856 | # |
| 5857 | # all bit would have been shifted off during the denorm so simply |
| 5858 | # calculate if the sticky should be set and clear the entire mantissa. |
| 5859 | # |
| 5860 | denorm_set_stky: |
| 5861 | mov.l &0x20000000, %d0 # set sticky bit in return value |
| 5862 | mov.w %d1, FTEMP_EX(%a0) # load exp with threshold |
| 5863 | clr.l FTEMP_HI(%a0) # set d1 = 0 (ms mantissa) |
| 5864 | clr.l FTEMP_LO(%a0) # set d2 = 0 (ms mantissa) |
| 5865 | rts |
| 5866 | |
| 5867 | # # |
| 5868 | # dnrm_lp(): normalize exponent/mantissa to specified threshhold # |
| 5869 | # # |
| 5870 | # INPUT: # |
| 5871 | # %a0 : points to the operand to be denormalized # |
| 5872 | # %d0{31:29} : initial guard,round,sticky # |
| 5873 | # %d1{15:0} : denormalization threshold # |
| 5874 | # OUTPUT: # |
| 5875 | # %a0 : points to the denormalized operand # |
| 5876 | # %d0{31:29} : final guard,round,sticky # |
| 5877 | # # |
| 5878 | |
| 5879 | # *** Local Equates *** # |
| 5880 | set GRS, L_SCR2 # g,r,s temp storage |
| 5881 | set FTEMP_LO2, L_SCR1 # FTEMP_LO copy |
| 5882 | |
| 5883 | global dnrm_lp |
| 5884 | dnrm_lp: |
| 5885 | |
| 5886 | # |
| 5887 | # make a copy of FTEMP_LO and place the g,r,s bits directly after it |
| 5888 | # in memory so as to make the bitfield extraction for denormalization easier. |
| 5889 | # |
| 5890 | mov.l FTEMP_LO(%a0), FTEMP_LO2(%a6) # make FTEMP_LO copy |
| 5891 | mov.l %d0, GRS(%a6) # place g,r,s after it |
| 5892 | |
| 5893 | # |
| 5894 | # check to see how much less than the underflow threshold the operand |
| 5895 | # exponent is. |
| 5896 | # |
| 5897 | mov.l %d1, %d0 # copy the denorm threshold |
| 5898 | sub.w FTEMP_EX(%a0), %d1 # d1 = threshold - uns exponent |
| 5899 | ble.b dnrm_no_lp # d1 <= 0 |
| 5900 | cmpi.w %d1, &0x20 # is ( 0 <= d1 < 32) ? |
| 5901 | blt.b case_1 # yes |
| 5902 | cmpi.w %d1, &0x40 # is (32 <= d1 < 64) ? |
| 5903 | blt.b case_2 # yes |
| 5904 | bra.w case_3 # (d1 >= 64) |
| 5905 | |
| 5906 | # |
| 5907 | # No normalization necessary |
| 5908 | # |
| 5909 | dnrm_no_lp: |
| 5910 | mov.l GRS(%a6), %d0 # restore original g,r,s |
| 5911 | rts |
| 5912 | |
| 5913 | # |
| 5914 | # case (0<d1<32) |
| 5915 | # |
| 5916 | # %d0 = denorm threshold |
| 5917 | # %d1 = "n" = amt to shift |
| 5918 | # |
| 5919 | # --------------------------------------------------------- |
| 5920 | # | FTEMP_HI | FTEMP_LO |grs000.........000| |
| 5921 | # --------------------------------------------------------- |
| 5922 | # <-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)-> |
| 5923 | # \ \ \ \ |
| 5924 | # \ \ \ \ |
| 5925 | # \ \ \ \ |
| 5926 | # \ \ \ \ |
| 5927 | # \ \ \ \ |
| 5928 | # \ \ \ \ |
| 5929 | # \ \ \ \ |
| 5930 | # \ \ \ \ |
| 5931 | # <-(n)-><-(32 - n)-><------(32)-------><------(32)-------> |
| 5932 | # --------------------------------------------------------- |
| 5933 | # |0.....0| NEW_HI | NEW_FTEMP_LO |grs | |
| 5934 | # --------------------------------------------------------- |
| 5935 | # |
| 5936 | case_1: |
| 5937 | mov.l %d2, -(%sp) # create temp storage |
| 5938 | |
| 5939 | mov.w %d0, FTEMP_EX(%a0) # exponent = denorm threshold |
| 5940 | mov.l &32, %d0 |
| 5941 | sub.w %d1, %d0 # %d0 = 32 - %d1 |
| 5942 | |
| 5943 | cmpi.w %d1, &29 # is shft amt >= 29 |
| 5944 | blt.b case1_extract # no; no fix needed |
| 5945 | mov.b GRS(%a6), %d2 |
| 5946 | or.b %d2, 3+FTEMP_LO2(%a6) |
| 5947 | |
| 5948 | case1_extract: |
| 5949 | bfextu FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_HI |
| 5950 | bfextu FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new FTEMP_LO |
| 5951 | bfextu FTEMP_LO2(%a6){%d0:&32}, %d0 # %d0 = new G,R,S |
| 5952 | |
| 5953 | mov.l %d2, FTEMP_HI(%a0) # store new FTEMP_HI |
| 5954 | mov.l %d1, FTEMP_LO(%a0) # store new FTEMP_LO |
| 5955 | |
| 5956 | bftst %d0{&2:&30} # were bits shifted off? |
| 5957 | beq.b case1_sticky_clear # no; go finish |
| 5958 | bset &rnd_stky_bit, %d0 # yes; set sticky bit |
| 5959 | |
| 5960 | case1_sticky_clear: |
| 5961 | and.l &0xe0000000, %d0 # clear all but G,R,S |
| 5962 | mov.l (%sp)+, %d2 # restore temp register |
| 5963 | rts |
| 5964 | |
| 5965 | # |
| 5966 | # case (32<=d1<64) |
| 5967 | # |
| 5968 | # %d0 = denorm threshold |
| 5969 | # %d1 = "n" = amt to shift |
| 5970 | # |
| 5971 | # --------------------------------------------------------- |
| 5972 | # | FTEMP_HI | FTEMP_LO |grs000.........000| |
| 5973 | # --------------------------------------------------------- |
| 5974 | # <-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)-> |
| 5975 | # \ \ \ |
| 5976 | # \ \ \ |
| 5977 | # \ \ ------------------- |
| 5978 | # \ -------------------- \ |
| 5979 | # ------------------- \ \ |
| 5980 | # \ \ \ |
| 5981 | # \ \ \ |
| 5982 | # \ \ \ |
| 5983 | # <-------(32)------><-(n)-><-(32 - n)-><------(32)-------> |
| 5984 | # --------------------------------------------------------- |
| 5985 | # |0...............0|0....0| NEW_LO |grs | |
| 5986 | # --------------------------------------------------------- |
| 5987 | # |
| 5988 | case_2: |
| 5989 | mov.l %d2, -(%sp) # create temp storage |
| 5990 | |
| 5991 | mov.w %d0, FTEMP_EX(%a0) # exponent = denorm threshold |
| 5992 | subi.w &0x20, %d1 # %d1 now between 0 and 32 |
| 5993 | mov.l &0x20, %d0 |
| 5994 | sub.w %d1, %d0 # %d0 = 32 - %d1 |
| 5995 | |
| 5996 | # subtle step here; or in the g,r,s at the bottom of FTEMP_LO to minimize |
| 5997 | # the number of bits to check for the sticky detect. |
| 5998 | # it only plays a role in shift amounts of 61-63. |
| 5999 | mov.b GRS(%a6), %d2 |
| 6000 | or.b %d2, 3+FTEMP_LO2(%a6) |
| 6001 | |
| 6002 | bfextu FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_LO |
| 6003 | bfextu FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new G,R,S |
| 6004 | |
| 6005 | bftst %d1{&2:&30} # were any bits shifted off? |
| 6006 | bne.b case2_set_sticky # yes; set sticky bit |
| 6007 | bftst FTEMP_LO2(%a6){%d0:&31} # were any bits shifted off? |
| 6008 | bne.b case2_set_sticky # yes; set sticky bit |
| 6009 | |
| 6010 | mov.l %d1, %d0 # move new G,R,S to %d0 |
| 6011 | bra.b case2_end |
| 6012 | |
| 6013 | case2_set_sticky: |
| 6014 | mov.l %d1, %d0 # move new G,R,S to %d0 |
| 6015 | bset &rnd_stky_bit, %d0 # set sticky bit |
| 6016 | |
| 6017 | case2_end: |
| 6018 | clr.l FTEMP_HI(%a0) # store FTEMP_HI = 0 |
| 6019 | mov.l %d2, FTEMP_LO(%a0) # store FTEMP_LO |
| 6020 | and.l &0xe0000000, %d0 # clear all but G,R,S |
| 6021 | |
| 6022 | mov.l (%sp)+,%d2 # restore temp register |
| 6023 | rts |
| 6024 | |
| 6025 | # |
| 6026 | # case (d1>=64) |
| 6027 | # |
| 6028 | # %d0 = denorm threshold |
| 6029 | # %d1 = amt to shift |
| 6030 | # |
| 6031 | case_3: |
| 6032 | mov.w %d0, FTEMP_EX(%a0) # insert denorm threshold |
| 6033 | |
| 6034 | cmpi.w %d1, &65 # is shift amt > 65? |
| 6035 | blt.b case3_64 # no; it's == 64 |
| 6036 | beq.b case3_65 # no; it's == 65 |
| 6037 | |
| 6038 | # |
| 6039 | # case (d1>65) |
| 6040 | # |
| 6041 | # Shift value is > 65 and out of range. All bits are shifted off. |
| 6042 | # Return a zero mantissa with the sticky bit set |
| 6043 | # |
| 6044 | clr.l FTEMP_HI(%a0) # clear hi(mantissa) |
| 6045 | clr.l FTEMP_LO(%a0) # clear lo(mantissa) |
| 6046 | mov.l &0x20000000, %d0 # set sticky bit |
| 6047 | rts |
| 6048 | |
| 6049 | # |
| 6050 | # case (d1 == 64) |
| 6051 | # |
| 6052 | # --------------------------------------------------------- |
| 6053 | # | FTEMP_HI | FTEMP_LO |grs000.........000| |
| 6054 | # --------------------------------------------------------- |
| 6055 | # <-------(32)------> |
| 6056 | # \ \ |
| 6057 | # \ \ |
| 6058 | # \ \ |
| 6059 | # \ ------------------------------ |
| 6060 | # ------------------------------- \ |
| 6061 | # \ \ |
| 6062 | # \ \ |
| 6063 | # \ \ |
| 6064 | # <-------(32)------> |
| 6065 | # --------------------------------------------------------- |
| 6066 | # |0...............0|0................0|grs | |
| 6067 | # --------------------------------------------------------- |
| 6068 | # |
| 6069 | case3_64: |
| 6070 | mov.l FTEMP_HI(%a0), %d0 # fetch hi(mantissa) |
| 6071 | mov.l %d0, %d1 # make a copy |
| 6072 | and.l &0xc0000000, %d0 # extract G,R |
| 6073 | and.l &0x3fffffff, %d1 # extract other bits |
| 6074 | |
| 6075 | bra.b case3_complete |
| 6076 | |
| 6077 | # |
| 6078 | # case (d1 == 65) |
| 6079 | # |
| 6080 | # --------------------------------------------------------- |
| 6081 | # | FTEMP_HI | FTEMP_LO |grs000.........000| |
| 6082 | # --------------------------------------------------------- |
| 6083 | # <-------(32)------> |
| 6084 | # \ \ |
| 6085 | # \ \ |
| 6086 | # \ \ |
| 6087 | # \ ------------------------------ |
| 6088 | # -------------------------------- \ |
| 6089 | # \ \ |
| 6090 | # \ \ |
| 6091 | # \ \ |
| 6092 | # <-------(31)-----> |
| 6093 | # --------------------------------------------------------- |
| 6094 | # |0...............0|0................0|0rs | |
| 6095 | # --------------------------------------------------------- |
| 6096 | # |
| 6097 | case3_65: |
| 6098 | mov.l FTEMP_HI(%a0), %d0 # fetch hi(mantissa) |
| 6099 | and.l &0x80000000, %d0 # extract R bit |
| 6100 | lsr.l &0x1, %d0 # shift high bit into R bit |
| 6101 | and.l &0x7fffffff, %d1 # extract other bits |
| 6102 | |
| 6103 | case3_complete: |
| 6104 | # last operation done was an "and" of the bits shifted off so the condition |
| 6105 | # codes are already set so branch accordingly. |
| 6106 | bne.b case3_set_sticky # yes; go set new sticky |
| 6107 | tst.l FTEMP_LO(%a0) # were any bits shifted off? |
| 6108 | bne.b case3_set_sticky # yes; go set new sticky |
| 6109 | tst.b GRS(%a6) # were any bits shifted off? |
| 6110 | bne.b case3_set_sticky # yes; go set new sticky |
| 6111 | |
| 6112 | # |
| 6113 | # no bits were shifted off so don't set the sticky bit. |
| 6114 | # the guard and |
| 6115 | # the entire mantissa is zero. |
| 6116 | # |
| 6117 | clr.l FTEMP_HI(%a0) # clear hi(mantissa) |
| 6118 | clr.l FTEMP_LO(%a0) # clear lo(mantissa) |
| 6119 | rts |
| 6120 | |
| 6121 | # |
| 6122 | # some bits were shifted off so set the sticky bit. |
| 6123 | # the entire mantissa is zero. |
| 6124 | # |
| 6125 | case3_set_sticky: |
| 6126 | bset &rnd_stky_bit,%d0 # set new sticky bit |
| 6127 | clr.l FTEMP_HI(%a0) # clear hi(mantissa) |
| 6128 | clr.l FTEMP_LO(%a0) # clear lo(mantissa) |
| 6129 | rts |
| 6130 | |
| 6131 | ######################################################################### |
| 6132 | # XDEF **************************************************************** # |
| 6133 | # _round(): round result according to precision/mode # |
| 6134 | # # |
| 6135 | # XREF **************************************************************** # |
| 6136 | # None # |
| 6137 | # # |
| 6138 | # INPUT *************************************************************** # |
| 6139 | # a0 = ptr to input operand in internal extended format # |
| 6140 | # d1(hi) = contains rounding precision: # |
| 6141 | # ext = $0000xxxx # |
| 6142 | # sgl = $0004xxxx # |
| 6143 | # dbl = $0008xxxx # |
| 6144 | # d1(lo) = contains rounding mode: # |
| 6145 | # RN = $xxxx0000 # |
| 6146 | # RZ = $xxxx0001 # |
| 6147 | # RM = $xxxx0002 # |
| 6148 | # RP = $xxxx0003 # |
| 6149 | # d0{31:29} = contains the g,r,s bits (extended) # |
| 6150 | # # |
| 6151 | # OUTPUT ************************************************************** # |
| 6152 | # a0 = pointer to rounded result # |
| 6153 | # # |
| 6154 | # ALGORITHM *********************************************************** # |
| 6155 | # On return the value pointed to by a0 is correctly rounded, # |
| 6156 | # a0 is preserved and the g-r-s bits in d0 are cleared. # |
| 6157 | # The result is not typed - the tag field is invalid. The # |
| 6158 | # result is still in the internal extended format. # |
| 6159 | # # |
| 6160 | # The INEX bit of USER_FPSR will be set if the rounded result was # |
| 6161 | # inexact (i.e. if any of the g-r-s bits were set). # |
| 6162 | # # |
| 6163 | ######################################################################### |
| 6164 | |
| 6165 | global _round |
| 6166 | _round: |
| 6167 | # |
| 6168 | # ext_grs() looks at the rounding precision and sets the appropriate |
| 6169 | # G,R,S bits. |
| 6170 | # If (G,R,S == 0) then result is exact and round is done, else set |
| 6171 | # the inex flag in status reg and continue. |
| 6172 | # |
| 6173 | bsr.l ext_grs # extract G,R,S |
| 6174 | |
| 6175 | tst.l %d0 # are G,R,S zero? |
| 6176 | beq.w truncate # yes; round is complete |
| 6177 | |
| 6178 | or.w &inx2a_mask, 2+USER_FPSR(%a6) # set inex2/ainex |
| 6179 | |
| 6180 | # |
| 6181 | # Use rounding mode as an index into a jump table for these modes. |
| 6182 | # All of the following assumes grs != 0. |
| 6183 | # |
| 6184 | mov.w (tbl_mode.b,%pc,%d1.w*2), %a1 # load jump offset |
| 6185 | jmp (tbl_mode.b,%pc,%a1) # jmp to rnd mode handler |
| 6186 | |
| 6187 | tbl_mode: |
| 6188 | short rnd_near - tbl_mode |
| 6189 | short truncate - tbl_mode # RZ always truncates |
| 6190 | short rnd_mnus - tbl_mode |
| 6191 | short rnd_plus - tbl_mode |
| 6192 | |
| 6193 | ################################################################# |
| 6194 | # ROUND PLUS INFINITY # |
| 6195 | # # |
| 6196 | # If sign of fp number = 0 (positive), then add 1 to l. # |
| 6197 | ################################################################# |
| 6198 | rnd_plus: |
| 6199 | tst.b FTEMP_SGN(%a0) # check for sign |
| 6200 | bmi.w truncate # if positive then truncate |
| 6201 | |
| 6202 | mov.l &0xffffffff, %d0 # force g,r,s to be all f's |
| 6203 | swap %d1 # set up d1 for round prec. |
| 6204 | |
| 6205 | cmpi.b %d1, &s_mode # is prec = sgl? |
| 6206 | beq.w add_sgl # yes |
| 6207 | bgt.w add_dbl # no; it's dbl |
| 6208 | bra.w add_ext # no; it's ext |
| 6209 | |
| 6210 | ################################################################# |
| 6211 | # ROUND MINUS INFINITY # |
| 6212 | # # |
| 6213 | # If sign of fp number = 1 (negative), then add 1 to l. # |
| 6214 | ################################################################# |
| 6215 | rnd_mnus: |
| 6216 | tst.b FTEMP_SGN(%a0) # check for sign |
| 6217 | bpl.w truncate # if negative then truncate |
| 6218 | |
| 6219 | mov.l &0xffffffff, %d0 # force g,r,s to be all f's |
| 6220 | swap %d1 # set up d1 for round prec. |
| 6221 | |
| 6222 | cmpi.b %d1, &s_mode # is prec = sgl? |
| 6223 | beq.w add_sgl # yes |
| 6224 | bgt.w add_dbl # no; it's dbl |
| 6225 | bra.w add_ext # no; it's ext |
| 6226 | |
| 6227 | ################################################################# |
| 6228 | # ROUND NEAREST # |
| 6229 | # # |
| 6230 | # If (g=1), then add 1 to l and if (r=s=0), then clear l # |
| 6231 | # Note that this will round to even in case of a tie. # |
| 6232 | ################################################################# |
| 6233 | rnd_near: |
| 6234 | asl.l &0x1, %d0 # shift g-bit to c-bit |
| 6235 | bcc.w truncate # if (g=1) then |
| 6236 | |
| 6237 | swap %d1 # set up d1 for round prec. |
| 6238 | |
| 6239 | cmpi.b %d1, &s_mode # is prec = sgl? |
| 6240 | beq.w add_sgl # yes |
| 6241 | bgt.w add_dbl # no; it's dbl |
| 6242 | bra.w add_ext # no; it's ext |
| 6243 | |
| 6244 | # *** LOCAL EQUATES *** |
| 6245 | set ad_1_sgl, 0x00000100 # constant to add 1 to l-bit in sgl prec |
| 6246 | set ad_1_dbl, 0x00000800 # constant to add 1 to l-bit in dbl prec |
| 6247 | |
| 6248 | ######################### |
| 6249 | # ADD SINGLE # |
| 6250 | ######################### |
| 6251 | add_sgl: |
| 6252 | add.l &ad_1_sgl, FTEMP_HI(%a0) |
| 6253 | bcc.b scc_clr # no mantissa overflow |
| 6254 | roxr.w FTEMP_HI(%a0) # shift v-bit back in |
| 6255 | roxr.w FTEMP_HI+2(%a0) # shift v-bit back in |
| 6256 | add.w &0x1, FTEMP_EX(%a0) # and incr exponent |
| 6257 | scc_clr: |
| 6258 | tst.l %d0 # test for rs = 0 |
| 6259 | bne.b sgl_done |
| 6260 | and.w &0xfe00, FTEMP_HI+2(%a0) # clear the l-bit |
| 6261 | sgl_done: |
| 6262 | and.l &0xffffff00, FTEMP_HI(%a0) # truncate bits beyond sgl limit |
| 6263 | clr.l FTEMP_LO(%a0) # clear d2 |
| 6264 | rts |
| 6265 | |
| 6266 | ######################### |
| 6267 | # ADD EXTENDED # |
| 6268 | ######################### |
| 6269 | add_ext: |
| 6270 | addq.l &1,FTEMP_LO(%a0) # add 1 to l-bit |
| 6271 | bcc.b xcc_clr # test for carry out |
| 6272 | addq.l &1,FTEMP_HI(%a0) # propagate carry |
| 6273 | bcc.b xcc_clr |
| 6274 | roxr.w FTEMP_HI(%a0) # mant is 0 so restore v-bit |
| 6275 | roxr.w FTEMP_HI+2(%a0) # mant is 0 so restore v-bit |
| 6276 | roxr.w FTEMP_LO(%a0) |
| 6277 | roxr.w FTEMP_LO+2(%a0) |
| 6278 | add.w &0x1,FTEMP_EX(%a0) # and inc exp |
| 6279 | xcc_clr: |
| 6280 | tst.l %d0 # test rs = 0 |
| 6281 | bne.b add_ext_done |
| 6282 | and.b &0xfe,FTEMP_LO+3(%a0) # clear the l bit |
| 6283 | add_ext_done: |
| 6284 | rts |
| 6285 | |
| 6286 | ######################### |
| 6287 | # ADD DOUBLE # |
| 6288 | ######################### |
| 6289 | add_dbl: |
| 6290 | add.l &ad_1_dbl, FTEMP_LO(%a0) # add 1 to lsb |
| 6291 | bcc.b dcc_clr # no carry |
| 6292 | addq.l &0x1, FTEMP_HI(%a0) # propagate carry |
| 6293 | bcc.b dcc_clr # no carry |
| 6294 | |
| 6295 | roxr.w FTEMP_HI(%a0) # mant is 0 so restore v-bit |
| 6296 | roxr.w FTEMP_HI+2(%a0) # mant is 0 so restore v-bit |
| 6297 | roxr.w FTEMP_LO(%a0) |
| 6298 | roxr.w FTEMP_LO+2(%a0) |
| 6299 | addq.w &0x1, FTEMP_EX(%a0) # incr exponent |
| 6300 | dcc_clr: |
| 6301 | tst.l %d0 # test for rs = 0 |
| 6302 | bne.b dbl_done |
| 6303 | and.w &0xf000, FTEMP_LO+2(%a0) # clear the l-bit |
| 6304 | |
| 6305 | dbl_done: |
| 6306 | and.l &0xfffff800,FTEMP_LO(%a0) # truncate bits beyond dbl limit |
| 6307 | rts |
| 6308 | |
| 6309 | ########################### |
| 6310 | # Truncate all other bits # |
| 6311 | ########################### |
| 6312 | truncate: |
| 6313 | swap %d1 # select rnd prec |
| 6314 | |
| 6315 | cmpi.b %d1, &s_mode # is prec sgl? |
| 6316 | beq.w sgl_done # yes |
| 6317 | bgt.b dbl_done # no; it's dbl |
| 6318 | rts # no; it's ext |
| 6319 | |
| 6320 | |
| 6321 | # |
| 6322 | # ext_grs(): extract guard, round and sticky bits according to |
| 6323 | # rounding precision. |
| 6324 | # |
| 6325 | # INPUT |
| 6326 | # d0 = extended precision g,r,s (in d0{31:29}) |
| 6327 | # d1 = {PREC,ROUND} |
| 6328 | # OUTPUT |
| 6329 | # d0{31:29} = guard, round, sticky |
| 6330 | # |
| 6331 | # The ext_grs extract the guard/round/sticky bits according to the |
| 6332 | # selected rounding precision. It is called by the round subroutine |
| 6333 | # only. All registers except d0 are kept intact. d0 becomes an |
| 6334 | # updated guard,round,sticky in d0{31:29} |
| 6335 | # |
| 6336 | # Notes: the ext_grs uses the round PREC, and therefore has to swap d1 |
| 6337 | # prior to usage, and needs to restore d1 to original. this |
| 6338 | # routine is tightly tied to the round routine and not meant to |
| 6339 | # uphold standard subroutine calling practices. |
| 6340 | # |
| 6341 | |
| 6342 | ext_grs: |
| 6343 | swap %d1 # have d1.w point to round precision |
| 6344 | tst.b %d1 # is rnd prec = extended? |
| 6345 | bne.b ext_grs_not_ext # no; go handle sgl or dbl |
| 6346 | |
| 6347 | # |
| 6348 | # %d0 actually already hold g,r,s since _round() had it before calling |
| 6349 | # this function. so, as long as we don't disturb it, we are "returning" it. |
| 6350 | # |
| 6351 | ext_grs_ext: |
| 6352 | swap %d1 # yes; return to correct positions |
| 6353 | rts |
| 6354 | |
| 6355 | ext_grs_not_ext: |
| 6356 | movm.l &0x3000, -(%sp) # make some temp registers {d2/d3} |
| 6357 | |
| 6358 | cmpi.b %d1, &s_mode # is rnd prec = sgl? |
| 6359 | bne.b ext_grs_dbl # no; go handle dbl |
| 6360 | |
| 6361 | # |
| 6362 | # sgl: |
| 6363 | # 96 64 40 32 0 |
| 6364 | # ----------------------------------------------------- |
| 6365 | # | EXP |XXXXXXX| |xx | |grs| |
| 6366 | # ----------------------------------------------------- |
| 6367 | # <--(24)--->nn\ / |
| 6368 | # ee --------------------- |
| 6369 | # ww | |
| 6370 | # v |
| 6371 | # gr new sticky |
| 6372 | # |
| 6373 | ext_grs_sgl: |
| 6374 | bfextu FTEMP_HI(%a0){&24:&2}, %d3 # sgl prec. g-r are 2 bits right |
| 6375 | mov.l &30, %d2 # of the sgl prec. limits |
| 6376 | lsl.l %d2, %d3 # shift g-r bits to MSB of d3 |
| 6377 | mov.l FTEMP_HI(%a0), %d2 # get word 2 for s-bit test |
| 6378 | and.l &0x0000003f, %d2 # s bit is the or of all other |
| 6379 | bne.b ext_grs_st_stky # bits to the right of g-r |
| 6380 | tst.l FTEMP_LO(%a0) # test lower mantissa |
| 6381 | bne.b ext_grs_st_stky # if any are set, set sticky |
| 6382 | tst.l %d0 # test original g,r,s |
| 6383 | bne.b ext_grs_st_stky # if any are set, set sticky |
| 6384 | bra.b ext_grs_end_sd # if words 3 and 4 are clr, exit |
| 6385 | |
| 6386 | # |
| 6387 | # dbl: |
| 6388 | # 96 64 32 11 0 |
| 6389 | # ----------------------------------------------------- |
| 6390 | # | EXP |XXXXXXX| | |xx |grs| |
| 6391 | # ----------------------------------------------------- |
| 6392 | # nn\ / |
| 6393 | # ee ------- |
| 6394 | # ww | |
| 6395 | # v |
| 6396 | # gr new sticky |
| 6397 | # |
| 6398 | ext_grs_dbl: |
| 6399 | bfextu FTEMP_LO(%a0){&21:&2}, %d3 # dbl-prec. g-r are 2 bits right |
| 6400 | mov.l &30, %d2 # of the dbl prec. limits |
| 6401 | lsl.l %d2, %d3 # shift g-r bits to the MSB of d3 |
| 6402 | mov.l FTEMP_LO(%a0), %d2 # get lower mantissa for s-bit test |
| 6403 | and.l &0x000001ff, %d2 # s bit is the or-ing of all |
| 6404 | bne.b ext_grs_st_stky # other bits to the right of g-r |
| 6405 | tst.l %d0 # test word original g,r,s |
| 6406 | bne.b ext_grs_st_stky # if any are set, set sticky |
| 6407 | bra.b ext_grs_end_sd # if clear, exit |
| 6408 | |
| 6409 | ext_grs_st_stky: |
| 6410 | bset &rnd_stky_bit, %d3 # set sticky bit |
| 6411 | ext_grs_end_sd: |
| 6412 | mov.l %d3, %d0 # return grs to d0 |
| 6413 | |
| 6414 | movm.l (%sp)+, &0xc # restore scratch registers {d2/d3} |
| 6415 | |
| 6416 | swap %d1 # restore d1 to original |
| 6417 | rts |
| 6418 | |
| 6419 | ######################################################################### |
| 6420 | # norm(): normalize the mantissa of an extended precision input. the # |
| 6421 | # input operand should not be normalized already. # |
| 6422 | # # |
| 6423 | # XDEF **************************************************************** # |
| 6424 | # norm() # |
| 6425 | # # |
| 6426 | # XREF **************************************************************** # |
| 6427 | # none # |
| 6428 | # # |
| 6429 | # INPUT *************************************************************** # |
| 6430 | # a0 = pointer fp extended precision operand to normalize # |
| 6431 | # # |
| 6432 | # OUTPUT ************************************************************** # |
| 6433 | # d0 = number of bit positions the mantissa was shifted # |
| 6434 | # a0 = the input operand's mantissa is normalized; the exponent # |
| 6435 | # is unchanged. # |
| 6436 | # # |
| 6437 | ######################################################################### |
| 6438 | global norm |
| 6439 | norm: |
| 6440 | mov.l %d2, -(%sp) # create some temp regs |
| 6441 | mov.l %d3, -(%sp) |
| 6442 | |
| 6443 | mov.l FTEMP_HI(%a0), %d0 # load hi(mantissa) |
| 6444 | mov.l FTEMP_LO(%a0), %d1 # load lo(mantissa) |
| 6445 | |
| 6446 | bfffo %d0{&0:&32}, %d2 # how many places to shift? |
| 6447 | beq.b norm_lo # hi(man) is all zeroes! |
| 6448 | |
| 6449 | norm_hi: |
| 6450 | lsl.l %d2, %d0 # left shift hi(man) |
| 6451 | bfextu %d1{&0:%d2}, %d3 # extract lo bits |
| 6452 | |
| 6453 | or.l %d3, %d0 # create hi(man) |
| 6454 | lsl.l %d2, %d1 # create lo(man) |
| 6455 | |
| 6456 | mov.l %d0, FTEMP_HI(%a0) # store new hi(man) |
| 6457 | mov.l %d1, FTEMP_LO(%a0) # store new lo(man) |
| 6458 | |
| 6459 | mov.l %d2, %d0 # return shift amount |
| 6460 | |
| 6461 | mov.l (%sp)+, %d3 # restore temp regs |
| 6462 | mov.l (%sp)+, %d2 |
| 6463 | |
| 6464 | rts |
| 6465 | |
| 6466 | norm_lo: |
| 6467 | bfffo %d1{&0:&32}, %d2 # how many places to shift? |
| 6468 | lsl.l %d2, %d1 # shift lo(man) |
| 6469 | add.l &32, %d2 # add 32 to shft amount |
| 6470 | |
| 6471 | mov.l %d1, FTEMP_HI(%a0) # store hi(man) |
| 6472 | clr.l FTEMP_LO(%a0) # lo(man) is now zero |
| 6473 | |
| 6474 | mov.l %d2, %d0 # return shift amount |
| 6475 | |
| 6476 | mov.l (%sp)+, %d3 # restore temp regs |
| 6477 | mov.l (%sp)+, %d2 |
| 6478 | |
| 6479 | rts |
| 6480 | |
| 6481 | ######################################################################### |
| 6482 | # unnorm_fix(): - changes an UNNORM to one of NORM, DENORM, or ZERO # |
| 6483 | # - returns corresponding optype tag # |
| 6484 | # # |
| 6485 | # XDEF **************************************************************** # |
| 6486 | # unnorm_fix() # |
| 6487 | # # |
| 6488 | # XREF **************************************************************** # |
| 6489 | # norm() - normalize the mantissa # |
| 6490 | # # |
| 6491 | # INPUT *************************************************************** # |
| 6492 | # a0 = pointer to unnormalized extended precision number # |
| 6493 | # # |
| 6494 | # OUTPUT ************************************************************** # |
| 6495 | # d0 = optype tag - is corrected to one of NORM, DENORM, or ZERO # |
| 6496 | # a0 = input operand has been converted to a norm, denorm, or # |
| 6497 | # zero; both the exponent and mantissa are changed. # |
| 6498 | # # |
| 6499 | ######################################################################### |
| 6500 | |
| 6501 | global unnorm_fix |
| 6502 | unnorm_fix: |
| 6503 | bfffo FTEMP_HI(%a0){&0:&32}, %d0 # how many shifts are needed? |
| 6504 | bne.b unnorm_shift # hi(man) is not all zeroes |
| 6505 | |
| 6506 | # |
| 6507 | # hi(man) is all zeroes so see if any bits in lo(man) are set |
| 6508 | # |
| 6509 | unnorm_chk_lo: |
| 6510 | bfffo FTEMP_LO(%a0){&0:&32}, %d0 # is operand really a zero? |
| 6511 | beq.w unnorm_zero # yes |
| 6512 | |
| 6513 | add.w &32, %d0 # no; fix shift distance |
| 6514 | |
| 6515 | # |
| 6516 | # d0 = # shifts needed for complete normalization |
| 6517 | # |
| 6518 | unnorm_shift: |
| 6519 | clr.l %d1 # clear top word |
| 6520 | mov.w FTEMP_EX(%a0), %d1 # extract exponent |
| 6521 | and.w &0x7fff, %d1 # strip off sgn |
| 6522 | |
| 6523 | cmp.w %d0, %d1 # will denorm push exp < 0? |
| 6524 | bgt.b unnorm_nrm_zero # yes; denorm only until exp = 0 |
| 6525 | |
| 6526 | # |
| 6527 | # exponent would not go < 0. therefore, number stays normalized |
| 6528 | # |
| 6529 | sub.w %d0, %d1 # shift exponent value |
| 6530 | mov.w FTEMP_EX(%a0), %d0 # load old exponent |
| 6531 | and.w &0x8000, %d0 # save old sign |
| 6532 | or.w %d0, %d1 # {sgn,new exp} |
| 6533 | mov.w %d1, FTEMP_EX(%a0) # insert new exponent |
| 6534 | |
| 6535 | bsr.l norm # normalize UNNORM |
| 6536 | |
| 6537 | mov.b &NORM, %d0 # return new optype tag |
| 6538 | rts |
| 6539 | |
| 6540 | # |
| 6541 | # exponent would go < 0, so only denormalize until exp = 0 |
| 6542 | # |
| 6543 | unnorm_nrm_zero: |
| 6544 | cmp.b %d1, &32 # is exp <= 32? |
| 6545 | bgt.b unnorm_nrm_zero_lrg # no; go handle large exponent |
| 6546 | |
| 6547 | bfextu FTEMP_HI(%a0){%d1:&32}, %d0 # extract new hi(man) |
| 6548 | mov.l %d0, FTEMP_HI(%a0) # save new hi(man) |
| 6549 | |
| 6550 | mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man) |
| 6551 | lsl.l %d1, %d0 # extract new lo(man) |
| 6552 | mov.l %d0, FTEMP_LO(%a0) # save new lo(man) |
| 6553 | |
| 6554 | and.w &0x8000, FTEMP_EX(%a0) # set exp = 0 |
| 6555 | |
| 6556 | mov.b &DENORM, %d0 # return new optype tag |
| 6557 | rts |
| 6558 | |
| 6559 | # |
| 6560 | # only mantissa bits set are in lo(man) |
| 6561 | # |
| 6562 | unnorm_nrm_zero_lrg: |
| 6563 | sub.w &32, %d1 # adjust shft amt by 32 |
| 6564 | |
| 6565 | mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man) |
| 6566 | lsl.l %d1, %d0 # left shift lo(man) |
| 6567 | |
| 6568 | mov.l %d0, FTEMP_HI(%a0) # store new hi(man) |
| 6569 | clr.l FTEMP_LO(%a0) # lo(man) = 0 |
| 6570 | |
| 6571 | and.w &0x8000, FTEMP_EX(%a0) # set exp = 0 |
| 6572 | |
| 6573 | mov.b &DENORM, %d0 # return new optype tag |
| 6574 | rts |
| 6575 | |
| 6576 | # |
| 6577 | # whole mantissa is zero so this UNNORM is actually a zero |
| 6578 | # |
| 6579 | unnorm_zero: |
| 6580 | and.w &0x8000, FTEMP_EX(%a0) # force exponent to zero |
| 6581 | |
| 6582 | mov.b &ZERO, %d0 # fix optype tag |
| 6583 | rts |
| 6584 | |
| 6585 | ######################################################################### |
| 6586 | # XDEF **************************************************************** # |
| 6587 | # set_tag_x(): return the optype of the input ext fp number # |
| 6588 | # # |
| 6589 | # XREF **************************************************************** # |
| 6590 | # None # |
| 6591 | # # |
| 6592 | # INPUT *************************************************************** # |
| 6593 | # a0 = pointer to extended precision operand # |
| 6594 | # # |
| 6595 | # OUTPUT ************************************************************** # |
| 6596 | # d0 = value of type tag # |
| 6597 | # one of: NORM, INF, QNAN, SNAN, DENORM, UNNORM, ZERO # |
| 6598 | # # |
| 6599 | # ALGORITHM *********************************************************** # |
| 6600 | # Simply test the exponent, j-bit, and mantissa values to # |
| 6601 | # determine the type of operand. # |
| 6602 | # If it's an unnormalized zero, alter the operand and force it # |
| 6603 | # to be a normal zero. # |
| 6604 | # # |
| 6605 | ######################################################################### |
| 6606 | |
| 6607 | global set_tag_x |
| 6608 | set_tag_x: |
| 6609 | mov.w FTEMP_EX(%a0), %d0 # extract exponent |
| 6610 | andi.w &0x7fff, %d0 # strip off sign |
| 6611 | cmpi.w %d0, &0x7fff # is (EXP == MAX)? |
| 6612 | beq.b inf_or_nan_x |
| 6613 | not_inf_or_nan_x: |
| 6614 | btst &0x7,FTEMP_HI(%a0) |
| 6615 | beq.b not_norm_x |
| 6616 | is_norm_x: |
| 6617 | mov.b &NORM, %d0 |
| 6618 | rts |
| 6619 | not_norm_x: |
| 6620 | tst.w %d0 # is exponent = 0? |
| 6621 | bne.b is_unnorm_x |
| 6622 | not_unnorm_x: |
| 6623 | tst.l FTEMP_HI(%a0) |
| 6624 | bne.b is_denorm_x |
| 6625 | tst.l FTEMP_LO(%a0) |
| 6626 | bne.b is_denorm_x |
| 6627 | is_zero_x: |
| 6628 | mov.b &ZERO, %d0 |
| 6629 | rts |
| 6630 | is_denorm_x: |
| 6631 | mov.b &DENORM, %d0 |
| 6632 | rts |
| 6633 | # must distinguish now "Unnormalized zeroes" which we |
| 6634 | # must convert to zero. |
| 6635 | is_unnorm_x: |
| 6636 | tst.l FTEMP_HI(%a0) |
| 6637 | bne.b is_unnorm_reg_x |
| 6638 | tst.l FTEMP_LO(%a0) |
| 6639 | bne.b is_unnorm_reg_x |
| 6640 | # it's an "unnormalized zero". let's convert it to an actual zero... |
| 6641 | andi.w &0x8000,FTEMP_EX(%a0) # clear exponent |
| 6642 | mov.b &ZERO, %d0 |
| 6643 | rts |
| 6644 | is_unnorm_reg_x: |
| 6645 | mov.b &UNNORM, %d0 |
| 6646 | rts |
| 6647 | inf_or_nan_x: |
| 6648 | tst.l FTEMP_LO(%a0) |
| 6649 | bne.b is_nan_x |
| 6650 | mov.l FTEMP_HI(%a0), %d0 |
| 6651 | and.l &0x7fffffff, %d0 # msb is a don't care! |
| 6652 | bne.b is_nan_x |
| 6653 | is_inf_x: |
| 6654 | mov.b &INF, %d0 |
| 6655 | rts |
| 6656 | is_nan_x: |
| 6657 | btst &0x6, FTEMP_HI(%a0) |
| 6658 | beq.b is_snan_x |
| 6659 | mov.b &QNAN, %d0 |
| 6660 | rts |
| 6661 | is_snan_x: |
| 6662 | mov.b &SNAN, %d0 |
| 6663 | rts |
| 6664 | |
| 6665 | ######################################################################### |
| 6666 | # XDEF **************************************************************** # |
| 6667 | # set_tag_d(): return the optype of the input dbl fp number # |
| 6668 | # # |
| 6669 | # XREF **************************************************************** # |
| 6670 | # None # |
| 6671 | # # |
| 6672 | # INPUT *************************************************************** # |
| 6673 | # a0 = points to double precision operand # |
| 6674 | # # |
| 6675 | # OUTPUT ************************************************************** # |
| 6676 | # d0 = value of type tag # |
| 6677 | # one of: NORM, INF, QNAN, SNAN, DENORM, ZERO # |
| 6678 | # # |
| 6679 | # ALGORITHM *********************************************************** # |
| 6680 | # Simply test the exponent, j-bit, and mantissa values to # |
| 6681 | # determine the type of operand. # |
| 6682 | # # |
| 6683 | ######################################################################### |
| 6684 | |
| 6685 | global set_tag_d |
| 6686 | set_tag_d: |
| 6687 | mov.l FTEMP(%a0), %d0 |
| 6688 | mov.l %d0, %d1 |
| 6689 | |
| 6690 | andi.l &0x7ff00000, %d0 |
| 6691 | beq.b zero_or_denorm_d |
| 6692 | |
| 6693 | cmpi.l %d0, &0x7ff00000 |
| 6694 | beq.b inf_or_nan_d |
| 6695 | |
| 6696 | is_norm_d: |
| 6697 | mov.b &NORM, %d0 |
| 6698 | rts |
| 6699 | zero_or_denorm_d: |
| 6700 | and.l &0x000fffff, %d1 |
| 6701 | bne is_denorm_d |
| 6702 | tst.l 4+FTEMP(%a0) |
| 6703 | bne is_denorm_d |
| 6704 | is_zero_d: |
| 6705 | mov.b &ZERO, %d0 |
| 6706 | rts |
| 6707 | is_denorm_d: |
| 6708 | mov.b &DENORM, %d0 |
| 6709 | rts |
| 6710 | inf_or_nan_d: |
| 6711 | and.l &0x000fffff, %d1 |
| 6712 | bne is_nan_d |
| 6713 | tst.l 4+FTEMP(%a0) |
| 6714 | bne is_nan_d |
| 6715 | is_inf_d: |
| 6716 | mov.b &INF, %d0 |
| 6717 | rts |
| 6718 | is_nan_d: |
| 6719 | btst &19, %d1 |
| 6720 | bne is_qnan_d |
| 6721 | is_snan_d: |
| 6722 | mov.b &SNAN, %d0 |
| 6723 | rts |
| 6724 | is_qnan_d: |
| 6725 | mov.b &QNAN, %d0 |
| 6726 | rts |
| 6727 | |
| 6728 | ######################################################################### |
| 6729 | # XDEF **************************************************************** # |
| 6730 | # set_tag_s(): return the optype of the input sgl fp number # |
| 6731 | # # |
| 6732 | # XREF **************************************************************** # |
| 6733 | # None # |
| 6734 | # # |
| 6735 | # INPUT *************************************************************** # |
| 6736 | # a0 = pointer to single precision operand # |
| 6737 | # # |
| 6738 | # OUTPUT ************************************************************** # |
| 6739 | # d0 = value of type tag # |
| 6740 | # one of: NORM, INF, QNAN, SNAN, DENORM, ZERO # |
| 6741 | # # |
| 6742 | # ALGORITHM *********************************************************** # |
| 6743 | # Simply test the exponent, j-bit, and mantissa values to # |
| 6744 | # determine the type of operand. # |
| 6745 | # # |
| 6746 | ######################################################################### |
| 6747 | |
| 6748 | global set_tag_s |
| 6749 | set_tag_s: |
| 6750 | mov.l FTEMP(%a0), %d0 |
| 6751 | mov.l %d0, %d1 |
| 6752 | |
| 6753 | andi.l &0x7f800000, %d0 |
| 6754 | beq.b zero_or_denorm_s |
| 6755 | |
| 6756 | cmpi.l %d0, &0x7f800000 |
| 6757 | beq.b inf_or_nan_s |
| 6758 | |
| 6759 | is_norm_s: |
| 6760 | mov.b &NORM, %d0 |
| 6761 | rts |
| 6762 | zero_or_denorm_s: |
| 6763 | and.l &0x007fffff, %d1 |
| 6764 | bne is_denorm_s |
| 6765 | is_zero_s: |
| 6766 | mov.b &ZERO, %d0 |
| 6767 | rts |
| 6768 | is_denorm_s: |
| 6769 | mov.b &DENORM, %d0 |
| 6770 | rts |
| 6771 | inf_or_nan_s: |
| 6772 | and.l &0x007fffff, %d1 |
| 6773 | bne is_nan_s |
| 6774 | is_inf_s: |
| 6775 | mov.b &INF, %d0 |
| 6776 | rts |
| 6777 | is_nan_s: |
| 6778 | btst &22, %d1 |
| 6779 | bne is_qnan_s |
| 6780 | is_snan_s: |
| 6781 | mov.b &SNAN, %d0 |
| 6782 | rts |
| 6783 | is_qnan_s: |
| 6784 | mov.b &QNAN, %d0 |
| 6785 | rts |
| 6786 | |
| 6787 | ######################################################################### |
| 6788 | # XDEF **************************************************************** # |
| 6789 | # unf_res(): routine to produce default underflow result of a # |
| 6790 | # scaled extended precision number; this is used by # |
| 6791 | # fadd/fdiv/fmul/etc. emulation routines. # |
| 6792 | # unf_res4(): same as above but for fsglmul/fsgldiv which use # |
| 6793 | # single round prec and extended prec mode. # |
| 6794 | # # |
| 6795 | # XREF **************************************************************** # |
| 6796 | # _denorm() - denormalize according to scale factor # |
| 6797 | # _round() - round denormalized number according to rnd prec # |
| 6798 | # # |
| 6799 | # INPUT *************************************************************** # |
| 6800 | # a0 = pointer to extended precison operand # |
| 6801 | # d0 = scale factor # |
| 6802 | # d1 = rounding precision/mode # |
| 6803 | # # |
| 6804 | # OUTPUT ************************************************************** # |
| 6805 | # a0 = pointer to default underflow result in extended precision # |
| 6806 | # d0.b = result FPSR_cc which caller may or may not want to save # |
| 6807 | # # |
| 6808 | # ALGORITHM *********************************************************** # |
| 6809 | # Convert the input operand to "internal format" which means the # |
| 6810 | # exponent is extended to 16 bits and the sign is stored in the unused # |
| 6811 | # portion of the extended precison operand. Denormalize the number # |
| 6812 | # according to the scale factor passed in d0. Then, round the # |
| 6813 | # denormalized result. # |
| 6814 | # Set the FPSR_exc bits as appropriate but return the cc bits in # |
| 6815 | # d0 in case the caller doesn't want to save them (as is the case for # |
| 6816 | # fmove out). # |
| 6817 | # unf_res4() for fsglmul/fsgldiv forces the denorm to extended # |
| 6818 | # precision and the rounding mode to single. # |
| 6819 | # # |
| 6820 | ######################################################################### |
| 6821 | global unf_res |
| 6822 | unf_res: |
| 6823 | mov.l %d1, -(%sp) # save rnd prec,mode on stack |
| 6824 | |
| 6825 | btst &0x7, FTEMP_EX(%a0) # make "internal" format |
| 6826 | sne FTEMP_SGN(%a0) |
| 6827 | |
| 6828 | mov.w FTEMP_EX(%a0), %d1 # extract exponent |
| 6829 | and.w &0x7fff, %d1 |
| 6830 | sub.w %d0, %d1 |
| 6831 | mov.w %d1, FTEMP_EX(%a0) # insert 16 bit exponent |
| 6832 | |
| 6833 | mov.l %a0, -(%sp) # save operand ptr during calls |
| 6834 | |
| 6835 | mov.l 0x4(%sp),%d0 # pass rnd prec. |
| 6836 | andi.w &0x00c0,%d0 |
| 6837 | lsr.w &0x4,%d0 |
| 6838 | bsr.l _denorm # denorm result |
| 6839 | |
| 6840 | mov.l (%sp),%a0 |
| 6841 | mov.w 0x6(%sp),%d1 # load prec:mode into %d1 |
| 6842 | andi.w &0xc0,%d1 # extract rnd prec |
| 6843 | lsr.w &0x4,%d1 |
| 6844 | swap %d1 |
| 6845 | mov.w 0x6(%sp),%d1 |
| 6846 | andi.w &0x30,%d1 |
| 6847 | lsr.w &0x4,%d1 |
| 6848 | bsr.l _round # round the denorm |
| 6849 | |
| 6850 | mov.l (%sp)+, %a0 |
| 6851 | |
| 6852 | # result is now rounded properly. convert back to normal format |
| 6853 | bclr &0x7, FTEMP_EX(%a0) # clear sgn first; may have residue |
| 6854 | tst.b FTEMP_SGN(%a0) # is "internal result" sign set? |
| 6855 | beq.b unf_res_chkifzero # no; result is positive |
| 6856 | bset &0x7, FTEMP_EX(%a0) # set result sgn |
| 6857 | clr.b FTEMP_SGN(%a0) # clear temp sign |
| 6858 | |
| 6859 | # the number may have become zero after rounding. set ccodes accordingly. |
| 6860 | unf_res_chkifzero: |
| 6861 | clr.l %d0 |
| 6862 | tst.l FTEMP_HI(%a0) # is value now a zero? |
| 6863 | bne.b unf_res_cont # no |
| 6864 | tst.l FTEMP_LO(%a0) |
| 6865 | bne.b unf_res_cont # no |
| 6866 | # bset &z_bit, FPSR_CC(%a6) # yes; set zero ccode bit |
| 6867 | bset &z_bit, %d0 # yes; set zero ccode bit |
| 6868 | |
| 6869 | unf_res_cont: |
| 6870 | |
| 6871 | # |
| 6872 | # can inex1 also be set along with unfl and inex2??? |
| 6873 | # |
| 6874 | # we know that underflow has occurred. aunfl should be set if INEX2 is also set. |
| 6875 | # |
| 6876 | btst &inex2_bit, FPSR_EXCEPT(%a6) # is INEX2 set? |
| 6877 | beq.b unf_res_end # no |
| 6878 | bset &aunfl_bit, FPSR_AEXCEPT(%a6) # yes; set aunfl |
| 6879 | |
| 6880 | unf_res_end: |
| 6881 | add.l &0x4, %sp # clear stack |
| 6882 | rts |
| 6883 | |
| 6884 | # unf_res() for fsglmul() and fsgldiv(). |
| 6885 | global unf_res4 |
| 6886 | unf_res4: |
| 6887 | mov.l %d1,-(%sp) # save rnd prec,mode on stack |
| 6888 | |
| 6889 | btst &0x7,FTEMP_EX(%a0) # make "internal" format |
| 6890 | sne FTEMP_SGN(%a0) |
| 6891 | |
| 6892 | mov.w FTEMP_EX(%a0),%d1 # extract exponent |
| 6893 | and.w &0x7fff,%d1 |
| 6894 | sub.w %d0,%d1 |
| 6895 | mov.w %d1,FTEMP_EX(%a0) # insert 16 bit exponent |
| 6896 | |
| 6897 | mov.l %a0,-(%sp) # save operand ptr during calls |
| 6898 | |
| 6899 | clr.l %d0 # force rnd prec = ext |
| 6900 | bsr.l _denorm # denorm result |
| 6901 | |
| 6902 | mov.l (%sp),%a0 |
| 6903 | mov.w &s_mode,%d1 # force rnd prec = sgl |
| 6904 | swap %d1 |
| 6905 | mov.w 0x6(%sp),%d1 # load rnd mode |
| 6906 | andi.w &0x30,%d1 # extract rnd prec |
| 6907 | lsr.w &0x4,%d1 |
| 6908 | bsr.l _round # round the denorm |
| 6909 | |
| 6910 | mov.l (%sp)+,%a0 |
| 6911 | |
| 6912 | # result is now rounded properly. convert back to normal format |
| 6913 | bclr &0x7,FTEMP_EX(%a0) # clear sgn first; may have residue |
| 6914 | tst.b FTEMP_SGN(%a0) # is "internal result" sign set? |
| 6915 | beq.b unf_res4_chkifzero # no; result is positive |
| 6916 | bset &0x7,FTEMP_EX(%a0) # set result sgn |
| 6917 | clr.b FTEMP_SGN(%a0) # clear temp sign |
| 6918 | |
| 6919 | # the number may have become zero after rounding. set ccodes accordingly. |
| 6920 | unf_res4_chkifzero: |
| 6921 | clr.l %d0 |
| 6922 | tst.l FTEMP_HI(%a0) # is value now a zero? |
| 6923 | bne.b unf_res4_cont # no |
| 6924 | tst.l FTEMP_LO(%a0) |
| 6925 | bne.b unf_res4_cont # no |
| 6926 | # bset &z_bit,FPSR_CC(%a6) # yes; set zero ccode bit |
| 6927 | bset &z_bit,%d0 # yes; set zero ccode bit |
| 6928 | |
| 6929 | unf_res4_cont: |
| 6930 | |
| 6931 | # |
| 6932 | # can inex1 also be set along with unfl and inex2??? |
| 6933 | # |
| 6934 | # we know that underflow has occurred. aunfl should be set if INEX2 is also set. |
| 6935 | # |
| 6936 | btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? |
| 6937 | beq.b unf_res4_end # no |
| 6938 | bset &aunfl_bit,FPSR_AEXCEPT(%a6) # yes; set aunfl |
| 6939 | |
| 6940 | unf_res4_end: |
| 6941 | add.l &0x4,%sp # clear stack |
| 6942 | rts |
| 6943 | |
| 6944 | ######################################################################### |
| 6945 | # XDEF **************************************************************** # |
| 6946 | # ovf_res(): routine to produce the default overflow result of # |
| 6947 | # an overflowing number. # |
| 6948 | # ovf_res2(): same as above but the rnd mode/prec are passed # |
| 6949 | # differently. # |
| 6950 | # # |
| 6951 | # XREF **************************************************************** # |
| 6952 | # none # |
| 6953 | # # |
| 6954 | # INPUT *************************************************************** # |
| 6955 | # d1.b = '-1' => (-); '0' => (+) # |
| 6956 | # ovf_res(): # |
| 6957 | # d0 = rnd mode/prec # |
| 6958 | # ovf_res2(): # |
| 6959 | # hi(d0) = rnd prec # |
| 6960 | # lo(d0) = rnd mode # |
| 6961 | # # |
| 6962 | # OUTPUT ************************************************************** # |
| 6963 | # a0 = points to extended precision result # |
| 6964 | # d0.b = condition code bits # |
| 6965 | # # |
| 6966 | # ALGORITHM *********************************************************** # |
| 6967 | # The default overflow result can be determined by the sign of # |
| 6968 | # the result and the rounding mode/prec in effect. These bits are # |
| 6969 | # concatenated together to create an index into the default result # |
| 6970 | # table. A pointer to the correct result is returned in a0. The # |
| 6971 | # resulting condition codes are returned in d0 in case the caller # |
| 6972 | # doesn't want FPSR_cc altered (as is the case for fmove out). # |
| 6973 | # # |
| 6974 | ######################################################################### |
| 6975 | |
| 6976 | global ovf_res |
| 6977 | ovf_res: |
| 6978 | andi.w &0x10,%d1 # keep result sign |
| 6979 | lsr.b &0x4,%d0 # shift prec/mode |
| 6980 | or.b %d0,%d1 # concat the two |
| 6981 | mov.w %d1,%d0 # make a copy |
| 6982 | lsl.b &0x1,%d1 # multiply d1 by 2 |
| 6983 | bra.b ovf_res_load |
| 6984 | |
| 6985 | global ovf_res2 |
| 6986 | ovf_res2: |
| 6987 | and.w &0x10, %d1 # keep result sign |
| 6988 | or.b %d0, %d1 # insert rnd mode |
| 6989 | swap %d0 |
| 6990 | or.b %d0, %d1 # insert rnd prec |
| 6991 | mov.w %d1, %d0 # make a copy |
| 6992 | lsl.b &0x1, %d1 # shift left by 1 |
| 6993 | |
| 6994 | # |
| 6995 | # use the rounding mode, precision, and result sign as in index into the |
| 6996 | # two tables below to fetch the default result and the result ccodes. |
| 6997 | # |
| 6998 | ovf_res_load: |
| 6999 | mov.b (tbl_ovfl_cc.b,%pc,%d0.w*1), %d0 # fetch result ccodes |
| 7000 | lea (tbl_ovfl_result.b,%pc,%d1.w*8), %a0 # return result ptr |
| 7001 | |
| 7002 | rts |
| 7003 | |
| 7004 | tbl_ovfl_cc: |
| 7005 | byte 0x2, 0x0, 0x0, 0x2 |
| 7006 | byte 0x2, 0x0, 0x0, 0x2 |
| 7007 | byte 0x2, 0x0, 0x0, 0x2 |
| 7008 | byte 0x0, 0x0, 0x0, 0x0 |
| 7009 | byte 0x2+0x8, 0x8, 0x2+0x8, 0x8 |
| 7010 | byte 0x2+0x8, 0x8, 0x2+0x8, 0x8 |
| 7011 | byte 0x2+0x8, 0x8, 0x2+0x8, 0x8 |
| 7012 | |
| 7013 | tbl_ovfl_result: |
| 7014 | long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN |
| 7015 | long 0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RZ |
| 7016 | long 0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RM |
| 7017 | long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP |
| 7018 | |
| 7019 | long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN |
| 7020 | long 0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RZ |
| 7021 | long 0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RM |
| 7022 | long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP |
| 7023 | |
| 7024 | long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN |
| 7025 | long 0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RZ |
| 7026 | long 0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RM |
| 7027 | long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP |
| 7028 | |
| 7029 | long 0x00000000,0x00000000,0x00000000,0x00000000 |
| 7030 | long 0x00000000,0x00000000,0x00000000,0x00000000 |
| 7031 | long 0x00000000,0x00000000,0x00000000,0x00000000 |
| 7032 | long 0x00000000,0x00000000,0x00000000,0x00000000 |
| 7033 | |
| 7034 | long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN |
| 7035 | long 0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RZ |
| 7036 | long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM |
| 7037 | long 0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RP |
| 7038 | |
| 7039 | long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN |
| 7040 | long 0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RZ |
| 7041 | long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM |
| 7042 | long 0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RP |
| 7043 | |
| 7044 | long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN |
| 7045 | long 0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RZ |
| 7046 | long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM |
| 7047 | long 0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RP |
| 7048 | |
| 7049 | ######################################################################### |
| 7050 | # XDEF **************************************************************** # |
| 7051 | # fout(): move from fp register to memory or data register # |
| 7052 | # # |
| 7053 | # XREF **************************************************************** # |
| 7054 | # _round() - needed to create EXOP for sgl/dbl precision # |
| 7055 | # norm() - needed to create EXOP for extended precision # |
| 7056 | # ovf_res() - create default overflow result for sgl/dbl precision# |
| 7057 | # unf_res() - create default underflow result for sgl/dbl prec. # |
| 7058 | # dst_dbl() - create rounded dbl precision result. # |
| 7059 | # dst_sgl() - create rounded sgl precision result. # |
| 7060 | # fetch_dreg() - fetch dynamic k-factor reg for packed. # |
| 7061 | # bindec() - convert FP binary number to packed number. # |
| 7062 | # _mem_write() - write data to memory. # |
| 7063 | # _mem_write2() - write data to memory unless supv mode -(a7) exc.# |
| 7064 | # _dmem_write_{byte,word,long}() - write data to memory. # |
| 7065 | # store_dreg_{b,w,l}() - store data to data register file. # |
| 7066 | # facc_out_{b,w,l,d,x}() - data access error occurred. # |
| 7067 | # # |
| 7068 | # INPUT *************************************************************** # |
| 7069 | # a0 = pointer to extended precision source operand # |
| 7070 | # d0 = round prec,mode # |
| 7071 | # # |
| 7072 | # OUTPUT ************************************************************** # |
| 7073 | # fp0 : intermediate underflow or overflow result if # |
| 7074 | # OVFL/UNFL occurred for a sgl or dbl operand # |
| 7075 | # # |
| 7076 | # ALGORITHM *********************************************************** # |
| 7077 | # This routine is accessed by many handlers that need to do an # |
| 7078 | # opclass three move of an operand out to memory. # |
| 7079 | # Decode an fmove out (opclass 3) instruction to determine if # |
| 7080 | # it's b,w,l,s,d,x, or p in size. b,w,l can be stored to either a data # |
| 7081 | # register or memory. The algorithm uses a standard "fmove" to create # |
| 7082 | # the rounded result. Also, since exceptions are disabled, this also # |
| 7083 | # create the correct OPERR default result if appropriate. # |
| 7084 | # For sgl or dbl precision, overflow or underflow can occur. If # |
| 7085 | # either occurs and is enabled, the EXOP. # |
| 7086 | # For extended precision, the stacked <ea> must be fixed along # |
| 7087 | # w/ the address index register as appropriate w/ _calc_ea_fout(). If # |
| 7088 | # the source is a denorm and if underflow is enabled, an EXOP must be # |
| 7089 | # created. # |
| 7090 | # For packed, the k-factor must be fetched from the instruction # |
| 7091 | # word or a data register. The <ea> must be fixed as w/ extended # |
| 7092 | # precision. Then, bindec() is called to create the appropriate # |
| 7093 | # packed result. # |
| 7094 | # If at any time an access error is flagged by one of the move- # |
| 7095 | # to-memory routines, then a special exit must be made so that the # |
| 7096 | # access error can be handled properly. # |
| 7097 | # # |
| 7098 | ######################################################################### |
| 7099 | |
| 7100 | global fout |
| 7101 | fout: |
| 7102 | bfextu EXC_CMDREG(%a6){&3:&3},%d1 # extract dst fmt |
| 7103 | mov.w (tbl_fout.b,%pc,%d1.w*2),%a1 # use as index |
| 7104 | jmp (tbl_fout.b,%pc,%a1) # jump to routine |
| 7105 | |
| 7106 | swbeg &0x8 |
| 7107 | tbl_fout: |
| 7108 | short fout_long - tbl_fout |
| 7109 | short fout_sgl - tbl_fout |
| 7110 | short fout_ext - tbl_fout |
| 7111 | short fout_pack - tbl_fout |
| 7112 | short fout_word - tbl_fout |
| 7113 | short fout_dbl - tbl_fout |
| 7114 | short fout_byte - tbl_fout |
| 7115 | short fout_pack - tbl_fout |
| 7116 | |
| 7117 | ################################################################# |
| 7118 | # fmove.b out ################################################### |
| 7119 | ################################################################# |
| 7120 | |
| 7121 | # Only "Unimplemented Data Type" exceptions enter here. The operand |
| 7122 | # is either a DENORM or a NORM. |
| 7123 | fout_byte: |
| 7124 | tst.b STAG(%a6) # is operand normalized? |
| 7125 | bne.b fout_byte_denorm # no |
| 7126 | |
| 7127 | fmovm.x SRC(%a0),&0x80 # load value |
| 7128 | |
| 7129 | fout_byte_norm: |
| 7130 | fmov.l %d0,%fpcr # insert rnd prec,mode |
| 7131 | |
| 7132 | fmov.b %fp0,%d0 # exec move out w/ correct rnd mode |
| 7133 | |
| 7134 | fmov.l &0x0,%fpcr # clear FPCR |
| 7135 | fmov.l %fpsr,%d1 # fetch FPSR |
| 7136 | or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits |
| 7137 | |
| 7138 | mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode |
| 7139 | andi.b &0x38,%d1 # is mode == 0? (Dreg dst) |
| 7140 | beq.b fout_byte_dn # must save to integer regfile |
| 7141 | |
| 7142 | mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct |
| 7143 | bsr.l _dmem_write_byte # write byte |
| 7144 | |
| 7145 | tst.l %d1 # did dstore fail? |
| 7146 | bne.l facc_out_b # yes |
| 7147 | |
| 7148 | rts |
| 7149 | |
| 7150 | fout_byte_dn: |
| 7151 | mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn |
| 7152 | andi.w &0x7,%d1 |
| 7153 | bsr.l store_dreg_b |
| 7154 | rts |
| 7155 | |
| 7156 | fout_byte_denorm: |
| 7157 | mov.l SRC_EX(%a0),%d1 |
| 7158 | andi.l &0x80000000,%d1 # keep DENORM sign |
| 7159 | ori.l &0x00800000,%d1 # make smallest sgl |
| 7160 | fmov.s %d1,%fp0 |
| 7161 | bra.b fout_byte_norm |
| 7162 | |
| 7163 | ################################################################# |
| 7164 | # fmove.w out ################################################### |
| 7165 | ################################################################# |
| 7166 | |
| 7167 | # Only "Unimplemented Data Type" exceptions enter here. The operand |
| 7168 | # is either a DENORM or a NORM. |
| 7169 | fout_word: |
| 7170 | tst.b STAG(%a6) # is operand normalized? |
| 7171 | bne.b fout_word_denorm # no |
| 7172 | |
| 7173 | fmovm.x SRC(%a0),&0x80 # load value |
| 7174 | |
| 7175 | fout_word_norm: |
| 7176 | fmov.l %d0,%fpcr # insert rnd prec:mode |
| 7177 | |
| 7178 | fmov.w %fp0,%d0 # exec move out w/ correct rnd mode |
| 7179 | |
| 7180 | fmov.l &0x0,%fpcr # clear FPCR |
| 7181 | fmov.l %fpsr,%d1 # fetch FPSR |
| 7182 | or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits |
| 7183 | |
| 7184 | mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode |
| 7185 | andi.b &0x38,%d1 # is mode == 0? (Dreg dst) |
| 7186 | beq.b fout_word_dn # must save to integer regfile |
| 7187 | |
| 7188 | mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct |
| 7189 | bsr.l _dmem_write_word # write word |
| 7190 | |
| 7191 | tst.l %d1 # did dstore fail? |
| 7192 | bne.l facc_out_w # yes |
| 7193 | |
| 7194 | rts |
| 7195 | |
| 7196 | fout_word_dn: |
| 7197 | mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn |
| 7198 | andi.w &0x7,%d1 |
| 7199 | bsr.l store_dreg_w |
| 7200 | rts |
| 7201 | |
| 7202 | fout_word_denorm: |
| 7203 | mov.l SRC_EX(%a0),%d1 |
| 7204 | andi.l &0x80000000,%d1 # keep DENORM sign |
| 7205 | ori.l &0x00800000,%d1 # make smallest sgl |
| 7206 | fmov.s %d1,%fp0 |
| 7207 | bra.b fout_word_norm |
| 7208 | |
| 7209 | ################################################################# |
| 7210 | # fmove.l out ################################################### |
| 7211 | ################################################################# |
| 7212 | |
| 7213 | # Only "Unimplemented Data Type" exceptions enter here. The operand |
| 7214 | # is either a DENORM or a NORM. |
| 7215 | fout_long: |
| 7216 | tst.b STAG(%a6) # is operand normalized? |
| 7217 | bne.b fout_long_denorm # no |
| 7218 | |
| 7219 | fmovm.x SRC(%a0),&0x80 # load value |
| 7220 | |
| 7221 | fout_long_norm: |
| 7222 | fmov.l %d0,%fpcr # insert rnd prec:mode |
| 7223 | |
| 7224 | fmov.l %fp0,%d0 # exec move out w/ correct rnd mode |
| 7225 | |
| 7226 | fmov.l &0x0,%fpcr # clear FPCR |
| 7227 | fmov.l %fpsr,%d1 # fetch FPSR |
| 7228 | or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits |
| 7229 | |
| 7230 | fout_long_write: |
| 7231 | mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode |
| 7232 | andi.b &0x38,%d1 # is mode == 0? (Dreg dst) |
| 7233 | beq.b fout_long_dn # must save to integer regfile |
| 7234 | |
| 7235 | mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct |
| 7236 | bsr.l _dmem_write_long # write long |
| 7237 | |
| 7238 | tst.l %d1 # did dstore fail? |
| 7239 | bne.l facc_out_l # yes |
| 7240 | |
| 7241 | rts |
| 7242 | |
| 7243 | fout_long_dn: |
| 7244 | mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn |
| 7245 | andi.w &0x7,%d1 |
| 7246 | bsr.l store_dreg_l |
| 7247 | rts |
| 7248 | |
| 7249 | fout_long_denorm: |
| 7250 | mov.l SRC_EX(%a0),%d1 |
| 7251 | andi.l &0x80000000,%d1 # keep DENORM sign |
| 7252 | ori.l &0x00800000,%d1 # make smallest sgl |
| 7253 | fmov.s %d1,%fp0 |
| 7254 | bra.b fout_long_norm |
| 7255 | |
| 7256 | ################################################################# |
| 7257 | # fmove.x out ################################################### |
| 7258 | ################################################################# |
| 7259 | |
| 7260 | # Only "Unimplemented Data Type" exceptions enter here. The operand |
| 7261 | # is either a DENORM or a NORM. |
| 7262 | # The DENORM causes an Underflow exception. |
| 7263 | fout_ext: |
| 7264 | |
| 7265 | # we copy the extended precision result to FP_SCR0 so that the reserved |
| 7266 | # 16-bit field gets zeroed. we do this since we promise not to disturb |
| 7267 | # what's at SRC(a0). |
| 7268 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| 7269 | clr.w 2+FP_SCR0_EX(%a6) # clear reserved field |
| 7270 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| 7271 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| 7272 | |
| 7273 | fmovm.x SRC(%a0),&0x80 # return result |
| 7274 | |
| 7275 | bsr.l _calc_ea_fout # fix stacked <ea> |
| 7276 | |
| 7277 | mov.l %a0,%a1 # pass: dst addr |
| 7278 | lea FP_SCR0(%a6),%a0 # pass: src addr |
| 7279 | mov.l &0xc,%d0 # pass: opsize is 12 bytes |
| 7280 | |
| 7281 | # we must not yet write the extended precision data to the stack |
| 7282 | # in the pre-decrement case from supervisor mode or else we'll corrupt |
| 7283 | # the stack frame. so, leave it in FP_SRC for now and deal with it later... |
| 7284 | cmpi.b SPCOND_FLG(%a6),&mda7_flg |
| 7285 | beq.b fout_ext_a7 |
| 7286 | |
| 7287 | bsr.l _dmem_write # write ext prec number to memory |
| 7288 | |
| 7289 | tst.l %d1 # did dstore fail? |
| 7290 | bne.w fout_ext_err # yes |
| 7291 | |
| 7292 | tst.b STAG(%a6) # is operand normalized? |
| 7293 | bne.b fout_ext_denorm # no |
| 7294 | rts |
| 7295 | |
| 7296 | # the number is a DENORM. must set the underflow exception bit |
| 7297 | fout_ext_denorm: |
| 7298 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set underflow exc bit |
| 7299 | |
| 7300 | mov.b FPCR_ENABLE(%a6),%d0 |
| 7301 | andi.b &0x0a,%d0 # is UNFL or INEX enabled? |
| 7302 | bne.b fout_ext_exc # yes |
| 7303 | rts |
| 7304 | |
| 7305 | # we don't want to do the write if the exception occurred in supervisor mode |
| 7306 | # so _mem_write2() handles this for us. |
| 7307 | fout_ext_a7: |
| 7308 | bsr.l _mem_write2 # write ext prec number to memory |
| 7309 | |
| 7310 | tst.l %d1 # did dstore fail? |
| 7311 | bne.w fout_ext_err # yes |
| 7312 | |
| 7313 | tst.b STAG(%a6) # is operand normalized? |
| 7314 | bne.b fout_ext_denorm # no |
| 7315 | rts |
| 7316 | |
| 7317 | fout_ext_exc: |
| 7318 | lea FP_SCR0(%a6),%a0 |
| 7319 | bsr.l norm # normalize the mantissa |
| 7320 | neg.w %d0 # new exp = -(shft amt) |
| 7321 | andi.w &0x7fff,%d0 |
| 7322 | andi.w &0x8000,FP_SCR0_EX(%a6) # keep only old sign |
| 7323 | or.w %d0,FP_SCR0_EX(%a6) # insert new exponent |
| 7324 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| 7325 | rts |
| 7326 | |
| 7327 | fout_ext_err: |
| 7328 | mov.l EXC_A6(%a6),(%a6) # fix stacked a6 |
| 7329 | bra.l facc_out_x |
| 7330 | |
| 7331 | ######################################################################### |
| 7332 | # fmove.s out ########################################################### |
| 7333 | ######################################################################### |
| 7334 | fout_sgl: |
| 7335 | andi.b &0x30,%d0 # clear rnd prec |
| 7336 | ori.b &s_mode*0x10,%d0 # insert sgl prec |
| 7337 | mov.l %d0,L_SCR3(%a6) # save rnd prec,mode on stack |
| 7338 | |
| 7339 | # |
| 7340 | # operand is a normalized number. first, we check to see if the move out |
| 7341 | # would cause either an underflow or overflow. these cases are handled |
| 7342 | # separately. otherwise, set the FPCR to the proper rounding mode and |
| 7343 | # execute the move. |
| 7344 | # |
| 7345 | mov.w SRC_EX(%a0),%d0 # extract exponent |
| 7346 | andi.w &0x7fff,%d0 # strip sign |
| 7347 | |
| 7348 | cmpi.w %d0,&SGL_HI # will operand overflow? |
| 7349 | bgt.w fout_sgl_ovfl # yes; go handle OVFL |
| 7350 | beq.w fout_sgl_may_ovfl # maybe; go handle possible OVFL |
| 7351 | cmpi.w %d0,&SGL_LO # will operand underflow? |
| 7352 | blt.w fout_sgl_unfl # yes; go handle underflow |
| 7353 | |
| 7354 | # |
| 7355 | # NORMs(in range) can be stored out by a simple "fmov.s" |
| 7356 | # Unnormalized inputs can come through this point. |
| 7357 | # |
| 7358 | fout_sgl_exg: |
| 7359 | fmovm.x SRC(%a0),&0x80 # fetch fop from stack |
| 7360 | |
| 7361 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 7362 | fmov.l &0x0,%fpsr # clear FPSR |
| 7363 | |
| 7364 | fmov.s %fp0,%d0 # store does convert and round |
| 7365 | |
| 7366 | fmov.l &0x0,%fpcr # clear FPCR |
| 7367 | fmov.l %fpsr,%d1 # save FPSR |
| 7368 | |
| 7369 | or.w %d1,2+USER_FPSR(%a6) # set possible inex2/ainex |
| 7370 | |
| 7371 | fout_sgl_exg_write: |
| 7372 | mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode |
| 7373 | andi.b &0x38,%d1 # is mode == 0? (Dreg dst) |
| 7374 | beq.b fout_sgl_exg_write_dn # must save to integer regfile |
| 7375 | |
| 7376 | mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct |
| 7377 | bsr.l _dmem_write_long # write long |
| 7378 | |
| 7379 | tst.l %d1 # did dstore fail? |
| 7380 | bne.l facc_out_l # yes |
| 7381 | |
| 7382 | rts |
| 7383 | |
| 7384 | fout_sgl_exg_write_dn: |
| 7385 | mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn |
| 7386 | andi.w &0x7,%d1 |
| 7387 | bsr.l store_dreg_l |
| 7388 | rts |
| 7389 | |
| 7390 | # |
| 7391 | # here, we know that the operand would UNFL if moved out to single prec, |
| 7392 | # so, denorm and round and then use generic store single routine to |
| 7393 | # write the value to memory. |
| 7394 | # |
| 7395 | fout_sgl_unfl: |
| 7396 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set UNFL |
| 7397 | |
| 7398 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| 7399 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| 7400 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| 7401 | mov.l %a0,-(%sp) |
| 7402 | |
| 7403 | clr.l %d0 # pass: S.F. = 0 |
| 7404 | |
| 7405 | cmpi.b STAG(%a6),&DENORM # fetch src optype tag |
| 7406 | bne.b fout_sgl_unfl_cont # let DENORMs fall through |
| 7407 | |
| 7408 | lea FP_SCR0(%a6),%a0 |
| 7409 | bsr.l norm # normalize the DENORM |
| 7410 | |
| 7411 | fout_sgl_unfl_cont: |
| 7412 | lea FP_SCR0(%a6),%a0 # pass: ptr to operand |
| 7413 | mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode |
| 7414 | bsr.l unf_res # calc default underflow result |
| 7415 | |
| 7416 | lea FP_SCR0(%a6),%a0 # pass: ptr to fop |
| 7417 | bsr.l dst_sgl # convert to single prec |
| 7418 | |
| 7419 | mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode |
| 7420 | andi.b &0x38,%d1 # is mode == 0? (Dreg dst) |
| 7421 | beq.b fout_sgl_unfl_dn # must save to integer regfile |
| 7422 | |
| 7423 | mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct |
| 7424 | bsr.l _dmem_write_long # write long |
| 7425 | |
| 7426 | tst.l %d1 # did dstore fail? |
| 7427 | bne.l facc_out_l # yes |
| 7428 | |
| 7429 | bra.b fout_sgl_unfl_chkexc |
| 7430 | |
| 7431 | fout_sgl_unfl_dn: |
| 7432 | mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn |
| 7433 | andi.w &0x7,%d1 |
| 7434 | bsr.l store_dreg_l |
| 7435 | |
| 7436 | fout_sgl_unfl_chkexc: |
| 7437 | mov.b FPCR_ENABLE(%a6),%d1 |
| 7438 | andi.b &0x0a,%d1 # is UNFL or INEX enabled? |
| 7439 | bne.w fout_sd_exc_unfl # yes |
| 7440 | addq.l &0x4,%sp |
| 7441 | rts |
| 7442 | |
| 7443 | # |
| 7444 | # it's definitely an overflow so call ovf_res to get the correct answer |
| 7445 | # |
| 7446 | fout_sgl_ovfl: |
| 7447 | tst.b 3+SRC_HI(%a0) # is result inexact? |
| 7448 | bne.b fout_sgl_ovfl_inex2 |
| 7449 | tst.l SRC_LO(%a0) # is result inexact? |
| 7450 | bne.b fout_sgl_ovfl_inex2 |
| 7451 | ori.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex |
| 7452 | bra.b fout_sgl_ovfl_cont |
| 7453 | fout_sgl_ovfl_inex2: |
| 7454 | ori.w &ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2 |
| 7455 | |
| 7456 | fout_sgl_ovfl_cont: |
| 7457 | mov.l %a0,-(%sp) |
| 7458 | |
| 7459 | # call ovf_res() w/ sgl prec and the correct rnd mode to create the default |
| 7460 | # overflow result. DON'T save the returned ccodes from ovf_res() since |
| 7461 | # fmove out doesn't alter them. |
| 7462 | tst.b SRC_EX(%a0) # is operand negative? |
| 7463 | smi %d1 # set if so |
| 7464 | mov.l L_SCR3(%a6),%d0 # pass: sgl prec,rnd mode |
| 7465 | bsr.l ovf_res # calc OVFL result |
| 7466 | fmovm.x (%a0),&0x80 # load default overflow result |
| 7467 | fmov.s %fp0,%d0 # store to single |
| 7468 | |
| 7469 | mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode |
| 7470 | andi.b &0x38,%d1 # is mode == 0? (Dreg dst) |
| 7471 | beq.b fout_sgl_ovfl_dn # must save to integer regfile |
| 7472 | |
| 7473 | mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct |
| 7474 | bsr.l _dmem_write_long # write long |
| 7475 | |
| 7476 | tst.l %d1 # did dstore fail? |
| 7477 | bne.l facc_out_l # yes |
| 7478 | |
| 7479 | bra.b fout_sgl_ovfl_chkexc |
| 7480 | |
| 7481 | fout_sgl_ovfl_dn: |
| 7482 | mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn |
| 7483 | andi.w &0x7,%d1 |
| 7484 | bsr.l store_dreg_l |
| 7485 | |
| 7486 | fout_sgl_ovfl_chkexc: |
| 7487 | mov.b FPCR_ENABLE(%a6),%d1 |
| 7488 | andi.b &0x0a,%d1 # is UNFL or INEX enabled? |
| 7489 | bne.w fout_sd_exc_ovfl # yes |
| 7490 | addq.l &0x4,%sp |
| 7491 | rts |
| 7492 | |
| 7493 | # |
| 7494 | # move out MAY overflow: |
| 7495 | # (1) force the exp to 0x3fff |
| 7496 | # (2) do a move w/ appropriate rnd mode |
| 7497 | # (3) if exp still equals zero, then insert original exponent |
| 7498 | # for the correct result. |
| 7499 | # if exp now equals one, then it overflowed so call ovf_res. |
| 7500 | # |
| 7501 | fout_sgl_may_ovfl: |
| 7502 | mov.w SRC_EX(%a0),%d1 # fetch current sign |
| 7503 | andi.w &0x8000,%d1 # keep it,clear exp |
| 7504 | ori.w &0x3fff,%d1 # insert exp = 0 |
| 7505 | mov.w %d1,FP_SCR0_EX(%a6) # insert scaled exp |
| 7506 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man) |
| 7507 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man) |
| 7508 | |
| 7509 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 7510 | |
| 7511 | fmov.x FP_SCR0(%a6),%fp0 # force fop to be rounded |
| 7512 | fmov.l &0x0,%fpcr # clear FPCR |
| 7513 | |
| 7514 | fabs.x %fp0 # need absolute value |
| 7515 | fcmp.b %fp0,&0x2 # did exponent increase? |
| 7516 | fblt.w fout_sgl_exg # no; go finish NORM |
| 7517 | bra.w fout_sgl_ovfl # yes; go handle overflow |
| 7518 | |
| 7519 | ################ |
| 7520 | |
| 7521 | fout_sd_exc_unfl: |
| 7522 | mov.l (%sp)+,%a0 |
| 7523 | |
| 7524 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| 7525 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| 7526 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| 7527 | |
| 7528 | cmpi.b STAG(%a6),&DENORM # was src a DENORM? |
| 7529 | bne.b fout_sd_exc_cont # no |
| 7530 | |
| 7531 | lea FP_SCR0(%a6),%a0 |
| 7532 | bsr.l norm |
| 7533 | neg.l %d0 |
| 7534 | andi.w &0x7fff,%d0 |
| 7535 | bfins %d0,FP_SCR0_EX(%a6){&1:&15} |
| 7536 | bra.b fout_sd_exc_cont |
| 7537 | |
| 7538 | fout_sd_exc: |
| 7539 | fout_sd_exc_ovfl: |
| 7540 | mov.l (%sp)+,%a0 # restore a0 |
| 7541 | |
| 7542 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| 7543 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| 7544 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| 7545 | |
| 7546 | fout_sd_exc_cont: |
| 7547 | bclr &0x7,FP_SCR0_EX(%a6) # clear sign bit |
| 7548 | sne.b 2+FP_SCR0_EX(%a6) # set internal sign bit |
| 7549 | lea FP_SCR0(%a6),%a0 # pass: ptr to DENORM |
| 7550 | |
| 7551 | mov.b 3+L_SCR3(%a6),%d1 |
| 7552 | lsr.b &0x4,%d1 |
| 7553 | andi.w &0x0c,%d1 |
| 7554 | swap %d1 |
| 7555 | mov.b 3+L_SCR3(%a6),%d1 |
| 7556 | lsr.b &0x4,%d1 |
| 7557 | andi.w &0x03,%d1 |
| 7558 | clr.l %d0 # pass: zero g,r,s |
| 7559 | bsr.l _round # round the DENORM |
| 7560 | |
| 7561 | tst.b 2+FP_SCR0_EX(%a6) # is EXOP negative? |
| 7562 | beq.b fout_sd_exc_done # no |
| 7563 | bset &0x7,FP_SCR0_EX(%a6) # yes |
| 7564 | |
| 7565 | fout_sd_exc_done: |
| 7566 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| 7567 | rts |
| 7568 | |
| 7569 | ################################################################# |
| 7570 | # fmove.d out ################################################### |
| 7571 | ################################################################# |
| 7572 | fout_dbl: |
| 7573 | andi.b &0x30,%d0 # clear rnd prec |
| 7574 | ori.b &d_mode*0x10,%d0 # insert dbl prec |
| 7575 | mov.l %d0,L_SCR3(%a6) # save rnd prec,mode on stack |
| 7576 | |
| 7577 | # |
| 7578 | # operand is a normalized number. first, we check to see if the move out |
| 7579 | # would cause either an underflow or overflow. these cases are handled |
| 7580 | # separately. otherwise, set the FPCR to the proper rounding mode and |
| 7581 | # execute the move. |
| 7582 | # |
| 7583 | mov.w SRC_EX(%a0),%d0 # extract exponent |
| 7584 | andi.w &0x7fff,%d0 # strip sign |
| 7585 | |
| 7586 | cmpi.w %d0,&DBL_HI # will operand overflow? |
| 7587 | bgt.w fout_dbl_ovfl # yes; go handle OVFL |
| 7588 | beq.w fout_dbl_may_ovfl # maybe; go handle possible OVFL |
| 7589 | cmpi.w %d0,&DBL_LO # will operand underflow? |
| 7590 | blt.w fout_dbl_unfl # yes; go handle underflow |
| 7591 | |
| 7592 | # |
| 7593 | # NORMs(in range) can be stored out by a simple "fmov.d" |
| 7594 | # Unnormalized inputs can come through this point. |
| 7595 | # |
| 7596 | fout_dbl_exg: |
| 7597 | fmovm.x SRC(%a0),&0x80 # fetch fop from stack |
| 7598 | |
| 7599 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 7600 | fmov.l &0x0,%fpsr # clear FPSR |
| 7601 | |
| 7602 | fmov.d %fp0,L_SCR1(%a6) # store does convert and round |
| 7603 | |
| 7604 | fmov.l &0x0,%fpcr # clear FPCR |
| 7605 | fmov.l %fpsr,%d0 # save FPSR |
| 7606 | |
| 7607 | or.w %d0,2+USER_FPSR(%a6) # set possible inex2/ainex |
| 7608 | |
| 7609 | mov.l EXC_EA(%a6),%a1 # pass: dst addr |
| 7610 | lea L_SCR1(%a6),%a0 # pass: src addr |
| 7611 | movq.l &0x8,%d0 # pass: opsize is 8 bytes |
| 7612 | bsr.l _dmem_write # store dbl fop to memory |
| 7613 | |
| 7614 | tst.l %d1 # did dstore fail? |
| 7615 | bne.l facc_out_d # yes |
| 7616 | |
| 7617 | rts # no; so we're finished |
| 7618 | |
| 7619 | # |
| 7620 | # here, we know that the operand would UNFL if moved out to double prec, |
| 7621 | # so, denorm and round and then use generic store double routine to |
| 7622 | # write the value to memory. |
| 7623 | # |
| 7624 | fout_dbl_unfl: |
| 7625 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set UNFL |
| 7626 | |
| 7627 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| 7628 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| 7629 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| 7630 | mov.l %a0,-(%sp) |
| 7631 | |
| 7632 | clr.l %d0 # pass: S.F. = 0 |
| 7633 | |
| 7634 | cmpi.b STAG(%a6),&DENORM # fetch src optype tag |
| 7635 | bne.b fout_dbl_unfl_cont # let DENORMs fall through |
| 7636 | |
| 7637 | lea FP_SCR0(%a6),%a0 |
| 7638 | bsr.l norm # normalize the DENORM |
| 7639 | |
| 7640 | fout_dbl_unfl_cont: |
| 7641 | lea FP_SCR0(%a6),%a0 # pass: ptr to operand |
| 7642 | mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode |
| 7643 | bsr.l unf_res # calc default underflow result |
| 7644 | |
| 7645 | lea FP_SCR0(%a6),%a0 # pass: ptr to fop |
| 7646 | bsr.l dst_dbl # convert to single prec |
| 7647 | mov.l %d0,L_SCR1(%a6) |
| 7648 | mov.l %d1,L_SCR2(%a6) |
| 7649 | |
| 7650 | mov.l EXC_EA(%a6),%a1 # pass: dst addr |
| 7651 | lea L_SCR1(%a6),%a0 # pass: src addr |
| 7652 | movq.l &0x8,%d0 # pass: opsize is 8 bytes |
| 7653 | bsr.l _dmem_write # store dbl fop to memory |
| 7654 | |
| 7655 | tst.l %d1 # did dstore fail? |
| 7656 | bne.l facc_out_d # yes |
| 7657 | |
| 7658 | mov.b FPCR_ENABLE(%a6),%d1 |
| 7659 | andi.b &0x0a,%d1 # is UNFL or INEX enabled? |
| 7660 | bne.w fout_sd_exc_unfl # yes |
| 7661 | addq.l &0x4,%sp |
| 7662 | rts |
| 7663 | |
| 7664 | # |
| 7665 | # it's definitely an overflow so call ovf_res to get the correct answer |
| 7666 | # |
| 7667 | fout_dbl_ovfl: |
| 7668 | mov.w 2+SRC_LO(%a0),%d0 |
| 7669 | andi.w &0x7ff,%d0 |
| 7670 | bne.b fout_dbl_ovfl_inex2 |
| 7671 | |
| 7672 | ori.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex |
| 7673 | bra.b fout_dbl_ovfl_cont |
| 7674 | fout_dbl_ovfl_inex2: |
| 7675 | ori.w &ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2 |
| 7676 | |
| 7677 | fout_dbl_ovfl_cont: |
| 7678 | mov.l %a0,-(%sp) |
| 7679 | |
| 7680 | # call ovf_res() w/ dbl prec and the correct rnd mode to create the default |
| 7681 | # overflow result. DON'T save the returned ccodes from ovf_res() since |
| 7682 | # fmove out doesn't alter them. |
| 7683 | tst.b SRC_EX(%a0) # is operand negative? |
| 7684 | smi %d1 # set if so |
| 7685 | mov.l L_SCR3(%a6),%d0 # pass: dbl prec,rnd mode |
| 7686 | bsr.l ovf_res # calc OVFL result |
| 7687 | fmovm.x (%a0),&0x80 # load default overflow result |
| 7688 | fmov.d %fp0,L_SCR1(%a6) # store to double |
| 7689 | |
| 7690 | mov.l EXC_EA(%a6),%a1 # pass: dst addr |
| 7691 | lea L_SCR1(%a6),%a0 # pass: src addr |
| 7692 | movq.l &0x8,%d0 # pass: opsize is 8 bytes |
| 7693 | bsr.l _dmem_write # store dbl fop to memory |
| 7694 | |
| 7695 | tst.l %d1 # did dstore fail? |
| 7696 | bne.l facc_out_d # yes |
| 7697 | |
| 7698 | mov.b FPCR_ENABLE(%a6),%d1 |
| 7699 | andi.b &0x0a,%d1 # is UNFL or INEX enabled? |
| 7700 | bne.w fout_sd_exc_ovfl # yes |
| 7701 | addq.l &0x4,%sp |
| 7702 | rts |
| 7703 | |
| 7704 | # |
| 7705 | # move out MAY overflow: |
| 7706 | # (1) force the exp to 0x3fff |
| 7707 | # (2) do a move w/ appropriate rnd mode |
| 7708 | # (3) if exp still equals zero, then insert original exponent |
| 7709 | # for the correct result. |
| 7710 | # if exp now equals one, then it overflowed so call ovf_res. |
| 7711 | # |
| 7712 | fout_dbl_may_ovfl: |
| 7713 | mov.w SRC_EX(%a0),%d1 # fetch current sign |
| 7714 | andi.w &0x8000,%d1 # keep it,clear exp |
| 7715 | ori.w &0x3fff,%d1 # insert exp = 0 |
| 7716 | mov.w %d1,FP_SCR0_EX(%a6) # insert scaled exp |
| 7717 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man) |
| 7718 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man) |
| 7719 | |
| 7720 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 7721 | |
| 7722 | fmov.x FP_SCR0(%a6),%fp0 # force fop to be rounded |
| 7723 | fmov.l &0x0,%fpcr # clear FPCR |
| 7724 | |
| 7725 | fabs.x %fp0 # need absolute value |
| 7726 | fcmp.b %fp0,&0x2 # did exponent increase? |
| 7727 | fblt.w fout_dbl_exg # no; go finish NORM |
| 7728 | bra.w fout_dbl_ovfl # yes; go handle overflow |
| 7729 | |
| 7730 | ######################################################################### |
| 7731 | # XDEF **************************************************************** # |
| 7732 | # dst_dbl(): create double precision value from extended prec. # |
| 7733 | # # |
| 7734 | # XREF **************************************************************** # |
| 7735 | # None # |
| 7736 | # # |
| 7737 | # INPUT *************************************************************** # |
| 7738 | # a0 = pointer to source operand in extended precision # |
| 7739 | # # |
| 7740 | # OUTPUT ************************************************************** # |
| 7741 | # d0 = hi(double precision result) # |
| 7742 | # d1 = lo(double precision result) # |
| 7743 | # # |
| 7744 | # ALGORITHM *********************************************************** # |
| 7745 | # # |
| 7746 | # Changes extended precision to double precision. # |
| 7747 | # Note: no attempt is made to round the extended value to double. # |
| 7748 | # dbl_sign = ext_sign # |
| 7749 | # dbl_exp = ext_exp - $3fff(ext bias) + $7ff(dbl bias) # |
| 7750 | # get rid of ext integer bit # |
| 7751 | # dbl_mant = ext_mant{62:12} # |
| 7752 | # # |
| 7753 | # --------------- --------------- --------------- # |
| 7754 | # extended -> |s| exp | |1| ms mant | | ls mant | # |
| 7755 | # --------------- --------------- --------------- # |
| 7756 | # 95 64 63 62 32 31 11 0 # |
| 7757 | # | | # |
| 7758 | # | | # |
| 7759 | # | | # |
| 7760 | # v v # |
| 7761 | # --------------- --------------- # |
| 7762 | # double -> |s|exp| mant | | mant | # |
| 7763 | # --------------- --------------- # |
| 7764 | # 63 51 32 31 0 # |
| 7765 | # # |
| 7766 | ######################################################################### |
| 7767 | |
| 7768 | dst_dbl: |
| 7769 | clr.l %d0 # clear d0 |
| 7770 | mov.w FTEMP_EX(%a0),%d0 # get exponent |
| 7771 | subi.w &EXT_BIAS,%d0 # subtract extended precision bias |
| 7772 | addi.w &DBL_BIAS,%d0 # add double precision bias |
| 7773 | tst.b FTEMP_HI(%a0) # is number a denorm? |
| 7774 | bmi.b dst_get_dupper # no |
| 7775 | subq.w &0x1,%d0 # yes; denorm bias = DBL_BIAS - 1 |
| 7776 | dst_get_dupper: |
| 7777 | swap %d0 # d0 now in upper word |
| 7778 | lsl.l &0x4,%d0 # d0 in proper place for dbl prec exp |
| 7779 | tst.b FTEMP_EX(%a0) # test sign |
| 7780 | bpl.b dst_get_dman # if postive, go process mantissa |
| 7781 | bset &0x1f,%d0 # if negative, set sign |
| 7782 | dst_get_dman: |
| 7783 | mov.l FTEMP_HI(%a0),%d1 # get ms mantissa |
| 7784 | bfextu %d1{&1:&20},%d1 # get upper 20 bits of ms |
| 7785 | or.l %d1,%d0 # put these bits in ms word of double |
| 7786 | mov.l %d0,L_SCR1(%a6) # put the new exp back on the stack |
| 7787 | mov.l FTEMP_HI(%a0),%d1 # get ms mantissa |
| 7788 | mov.l &21,%d0 # load shift count |
| 7789 | lsl.l %d0,%d1 # put lower 11 bits in upper bits |
| 7790 | mov.l %d1,L_SCR2(%a6) # build lower lword in memory |
| 7791 | mov.l FTEMP_LO(%a0),%d1 # get ls mantissa |
| 7792 | bfextu %d1{&0:&21},%d0 # get ls 21 bits of double |
| 7793 | mov.l L_SCR2(%a6),%d1 |
| 7794 | or.l %d0,%d1 # put them in double result |
| 7795 | mov.l L_SCR1(%a6),%d0 |
| 7796 | rts |
| 7797 | |
| 7798 | ######################################################################### |
| 7799 | # XDEF **************************************************************** # |
| 7800 | # dst_sgl(): create single precision value from extended prec # |
| 7801 | # # |
| 7802 | # XREF **************************************************************** # |
| 7803 | # # |
| 7804 | # INPUT *************************************************************** # |
| 7805 | # a0 = pointer to source operand in extended precision # |
| 7806 | # # |
| 7807 | # OUTPUT ************************************************************** # |
| 7808 | # d0 = single precision result # |
| 7809 | # # |
| 7810 | # ALGORITHM *********************************************************** # |
| 7811 | # # |
| 7812 | # Changes extended precision to single precision. # |
| 7813 | # sgl_sign = ext_sign # |
| 7814 | # sgl_exp = ext_exp - $3fff(ext bias) + $7f(sgl bias) # |
| 7815 | # get rid of ext integer bit # |
| 7816 | # sgl_mant = ext_mant{62:12} # |
| 7817 | # # |
| 7818 | # --------------- --------------- --------------- # |
| 7819 | # extended -> |s| exp | |1| ms mant | | ls mant | # |
| 7820 | # --------------- --------------- --------------- # |
| 7821 | # 95 64 63 62 40 32 31 12 0 # |
| 7822 | # | | # |
| 7823 | # | | # |
| 7824 | # | | # |
| 7825 | # v v # |
| 7826 | # --------------- # |
| 7827 | # single -> |s|exp| mant | # |
| 7828 | # --------------- # |
| 7829 | # 31 22 0 # |
| 7830 | # # |
| 7831 | ######################################################################### |
| 7832 | |
| 7833 | dst_sgl: |
| 7834 | clr.l %d0 |
| 7835 | mov.w FTEMP_EX(%a0),%d0 # get exponent |
| 7836 | subi.w &EXT_BIAS,%d0 # subtract extended precision bias |
| 7837 | addi.w &SGL_BIAS,%d0 # add single precision bias |
| 7838 | tst.b FTEMP_HI(%a0) # is number a denorm? |
| 7839 | bmi.b dst_get_supper # no |
| 7840 | subq.w &0x1,%d0 # yes; denorm bias = SGL_BIAS - 1 |
| 7841 | dst_get_supper: |
| 7842 | swap %d0 # put exp in upper word of d0 |
| 7843 | lsl.l &0x7,%d0 # shift it into single exp bits |
| 7844 | tst.b FTEMP_EX(%a0) # test sign |
| 7845 | bpl.b dst_get_sman # if positive, continue |
| 7846 | bset &0x1f,%d0 # if negative, put in sign first |
| 7847 | dst_get_sman: |
| 7848 | mov.l FTEMP_HI(%a0),%d1 # get ms mantissa |
| 7849 | andi.l &0x7fffff00,%d1 # get upper 23 bits of ms |
| 7850 | lsr.l &0x8,%d1 # and put them flush right |
| 7851 | or.l %d1,%d0 # put these bits in ms word of single |
| 7852 | rts |
| 7853 | |
| 7854 | ############################################################################## |
| 7855 | fout_pack: |
| 7856 | bsr.l _calc_ea_fout # fetch the <ea> |
| 7857 | mov.l %a0,-(%sp) |
| 7858 | |
| 7859 | mov.b STAG(%a6),%d0 # fetch input type |
| 7860 | bne.w fout_pack_not_norm # input is not NORM |
| 7861 | |
| 7862 | fout_pack_norm: |
| 7863 | btst &0x4,EXC_CMDREG(%a6) # static or dynamic? |
| 7864 | beq.b fout_pack_s # static |
| 7865 | |
| 7866 | fout_pack_d: |
| 7867 | mov.b 1+EXC_CMDREG(%a6),%d1 # fetch dynamic reg |
| 7868 | lsr.b &0x4,%d1 |
| 7869 | andi.w &0x7,%d1 |
| 7870 | |
| 7871 | bsr.l fetch_dreg # fetch Dn w/ k-factor |
| 7872 | |
| 7873 | bra.b fout_pack_type |
| 7874 | fout_pack_s: |
| 7875 | mov.b 1+EXC_CMDREG(%a6),%d0 # fetch static field |
| 7876 | |
| 7877 | fout_pack_type: |
| 7878 | bfexts %d0{&25:&7},%d0 # extract k-factor |
| 7879 | mov.l %d0,-(%sp) |
| 7880 | |
| 7881 | lea FP_SRC(%a6),%a0 # pass: ptr to input |
| 7882 | |
| 7883 | # bindec is currently scrambling FP_SRC for denorm inputs. |
| 7884 | # we'll have to change this, but for now, tough luck!!! |
| 7885 | bsr.l bindec # convert xprec to packed |
| 7886 | |
| 7887 | # andi.l &0xcfff000f,FP_SCR0(%a6) # clear unused fields |
| 7888 | andi.l &0xcffff00f,FP_SCR0(%a6) # clear unused fields |
| 7889 | |
| 7890 | mov.l (%sp)+,%d0 |
| 7891 | |
| 7892 | tst.b 3+FP_SCR0_EX(%a6) |
| 7893 | bne.b fout_pack_set |
| 7894 | tst.l FP_SCR0_HI(%a6) |
| 7895 | bne.b fout_pack_set |
| 7896 | tst.l FP_SCR0_LO(%a6) |
| 7897 | bne.b fout_pack_set |
| 7898 | |
| 7899 | # add the extra condition that only if the k-factor was zero, too, should |
| 7900 | # we zero the exponent |
| 7901 | tst.l %d0 |
| 7902 | bne.b fout_pack_set |
| 7903 | # "mantissa" is all zero which means that the answer is zero. but, the '040 |
| 7904 | # algorithm allows the exponent to be non-zero. the 881/2 do not. therefore, |
| 7905 | # if the mantissa is zero, I will zero the exponent, too. |
| 7906 | # the question now is whether the exponents sign bit is allowed to be non-zero |
| 7907 | # for a zero, also... |
| 7908 | andi.w &0xf000,FP_SCR0(%a6) |
| 7909 | |
| 7910 | fout_pack_set: |
| 7911 | |
| 7912 | lea FP_SCR0(%a6),%a0 # pass: src addr |
| 7913 | |
| 7914 | fout_pack_write: |
| 7915 | mov.l (%sp)+,%a1 # pass: dst addr |
| 7916 | mov.l &0xc,%d0 # pass: opsize is 12 bytes |
| 7917 | |
| 7918 | cmpi.b SPCOND_FLG(%a6),&mda7_flg |
| 7919 | beq.b fout_pack_a7 |
| 7920 | |
| 7921 | bsr.l _dmem_write # write ext prec number to memory |
| 7922 | |
| 7923 | tst.l %d1 # did dstore fail? |
| 7924 | bne.w fout_ext_err # yes |
| 7925 | |
| 7926 | rts |
| 7927 | |
| 7928 | # we don't want to do the write if the exception occurred in supervisor mode |
| 7929 | # so _mem_write2() handles this for us. |
| 7930 | fout_pack_a7: |
| 7931 | bsr.l _mem_write2 # write ext prec number to memory |
| 7932 | |
| 7933 | tst.l %d1 # did dstore fail? |
| 7934 | bne.w fout_ext_err # yes |
| 7935 | |
| 7936 | rts |
| 7937 | |
| 7938 | fout_pack_not_norm: |
| 7939 | cmpi.b %d0,&DENORM # is it a DENORM? |
| 7940 | beq.w fout_pack_norm # yes |
| 7941 | lea FP_SRC(%a6),%a0 |
| 7942 | clr.w 2+FP_SRC_EX(%a6) |
| 7943 | cmpi.b %d0,&SNAN # is it an SNAN? |
| 7944 | beq.b fout_pack_snan # yes |
| 7945 | bra.b fout_pack_write # no |
| 7946 | |
| 7947 | fout_pack_snan: |
| 7948 | ori.w &snaniop2_mask,FPSR_EXCEPT(%a6) # set SNAN/AIOP |
| 7949 | bset &0x6,FP_SRC_HI(%a6) # set snan bit |
| 7950 | bra.b fout_pack_write |
| 7951 | |
| 7952 | ######################################################################### |
| 7953 | # XDEF **************************************************************** # |
| 7954 | # fmul(): emulates the fmul instruction # |
| 7955 | # fsmul(): emulates the fsmul instruction # |
| 7956 | # fdmul(): emulates the fdmul instruction # |
| 7957 | # # |
| 7958 | # XREF **************************************************************** # |
| 7959 | # scale_to_zero_src() - scale src exponent to zero # |
| 7960 | # scale_to_zero_dst() - scale dst exponent to zero # |
| 7961 | # unf_res() - return default underflow result # |
| 7962 | # ovf_res() - return default overflow result # |
| 7963 | # res_qnan() - return QNAN result # |
| 7964 | # res_snan() - return SNAN result # |
| 7965 | # # |
| 7966 | # INPUT *************************************************************** # |
| 7967 | # a0 = pointer to extended precision source operand # |
| 7968 | # a1 = pointer to extended precision destination operand # |
| 7969 | # d0 rnd prec,mode # |
| 7970 | # # |
| 7971 | # OUTPUT ************************************************************** # |
| 7972 | # fp0 = result # |
| 7973 | # fp1 = EXOP (if exception occurred) # |
| 7974 | # # |
| 7975 | # ALGORITHM *********************************************************** # |
| 7976 | # Handle NANs, infinities, and zeroes as special cases. Divide # |
| 7977 | # norms/denorms into ext/sgl/dbl precision. # |
| 7978 | # For norms/denorms, scale the exponents such that a multiply # |
| 7979 | # instruction won't cause an exception. Use the regular fmul to # |
| 7980 | # compute a result. Check if the regular operands would have taken # |
| 7981 | # an exception. If so, return the default overflow/underflow result # |
| 7982 | # and return the EXOP if exceptions are enabled. Else, scale the # |
| 7983 | # result operand to the proper exponent. # |
| 7984 | # # |
| 7985 | ######################################################################### |
| 7986 | |
| 7987 | align 0x10 |
| 7988 | tbl_fmul_ovfl: |
| 7989 | long 0x3fff - 0x7ffe # ext_max |
| 7990 | long 0x3fff - 0x407e # sgl_max |
| 7991 | long 0x3fff - 0x43fe # dbl_max |
| 7992 | tbl_fmul_unfl: |
| 7993 | long 0x3fff + 0x0001 # ext_unfl |
| 7994 | long 0x3fff - 0x3f80 # sgl_unfl |
| 7995 | long 0x3fff - 0x3c00 # dbl_unfl |
| 7996 | |
| 7997 | global fsmul |
| 7998 | fsmul: |
| 7999 | andi.b &0x30,%d0 # clear rnd prec |
| 8000 | ori.b &s_mode*0x10,%d0 # insert sgl prec |
| 8001 | bra.b fmul |
| 8002 | |
| 8003 | global fdmul |
| 8004 | fdmul: |
| 8005 | andi.b &0x30,%d0 |
| 8006 | ori.b &d_mode*0x10,%d0 # insert dbl prec |
| 8007 | |
| 8008 | global fmul |
| 8009 | fmul: |
| 8010 | mov.l %d0,L_SCR3(%a6) # store rnd info |
| 8011 | |
| 8012 | clr.w %d1 |
| 8013 | mov.b DTAG(%a6),%d1 |
| 8014 | lsl.b &0x3,%d1 |
| 8015 | or.b STAG(%a6),%d1 # combine src tags |
| 8016 | bne.w fmul_not_norm # optimize on non-norm input |
| 8017 | |
| 8018 | fmul_norm: |
| 8019 | mov.w DST_EX(%a1),FP_SCR1_EX(%a6) |
| 8020 | mov.l DST_HI(%a1),FP_SCR1_HI(%a6) |
| 8021 | mov.l DST_LO(%a1),FP_SCR1_LO(%a6) |
| 8022 | |
| 8023 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| 8024 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| 8025 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| 8026 | |
| 8027 | bsr.l scale_to_zero_src # scale src exponent |
| 8028 | mov.l %d0,-(%sp) # save scale factor 1 |
| 8029 | |
| 8030 | bsr.l scale_to_zero_dst # scale dst exponent |
| 8031 | |
| 8032 | add.l %d0,(%sp) # SCALE_FACTOR = scale1 + scale2 |
| 8033 | |
| 8034 | mov.w 2+L_SCR3(%a6),%d1 # fetch precision |
| 8035 | lsr.b &0x6,%d1 # shift to lo bits |
| 8036 | mov.l (%sp)+,%d0 # load S.F. |
| 8037 | cmp.l %d0,(tbl_fmul_ovfl.w,%pc,%d1.w*4) # would result ovfl? |
| 8038 | beq.w fmul_may_ovfl # result may rnd to overflow |
| 8039 | blt.w fmul_ovfl # result will overflow |
| 8040 | |
| 8041 | cmp.l %d0,(tbl_fmul_unfl.w,%pc,%d1.w*4) # would result unfl? |
| 8042 | beq.w fmul_may_unfl # result may rnd to no unfl |
| 8043 | bgt.w fmul_unfl # result will underflow |
| 8044 | |
| 8045 | # |
| 8046 | # NORMAL: |
| 8047 | # - the result of the multiply operation will neither overflow nor underflow. |
| 8048 | # - do the multiply to the proper precision and rounding mode. |
| 8049 | # - scale the result exponent using the scale factor. if both operands were |
| 8050 | # normalized then we really don't need to go through this scaling. but for now, |
| 8051 | # this will do. |
| 8052 | # |
| 8053 | fmul_normal: |
| 8054 | fmovm.x FP_SCR1(%a6),&0x80 # load dst operand |
| 8055 | |
| 8056 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 8057 | fmov.l &0x0,%fpsr # clear FPSR |
| 8058 | |
| 8059 | fmul.x FP_SCR0(%a6),%fp0 # execute multiply |
| 8060 | |
| 8061 | fmov.l %fpsr,%d1 # save status |
| 8062 | fmov.l &0x0,%fpcr # clear FPCR |
| 8063 | |
| 8064 | or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| 8065 | |
| 8066 | fmul_normal_exit: |
| 8067 | fmovm.x &0x80,FP_SCR0(%a6) # store out result |
| 8068 | mov.l %d2,-(%sp) # save d2 |
| 8069 | mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} |
| 8070 | mov.l %d1,%d2 # make a copy |
| 8071 | andi.l &0x7fff,%d1 # strip sign |
| 8072 | andi.w &0x8000,%d2 # keep old sign |
| 8073 | sub.l %d0,%d1 # add scale factor |
| 8074 | or.w %d2,%d1 # concat old sign,new exp |
| 8075 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| 8076 | mov.l (%sp)+,%d2 # restore d2 |
| 8077 | fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 |
| 8078 | rts |
| 8079 | |
| 8080 | # |
| 8081 | # OVERFLOW: |
| 8082 | # - the result of the multiply operation is an overflow. |
| 8083 | # - do the multiply to the proper precision and rounding mode in order to |
| 8084 | # set the inexact bits. |
| 8085 | # - calculate the default result and return it in fp0. |
| 8086 | # - if overflow or inexact is enabled, we need a multiply result rounded to |
| 8087 | # extended precision. if the original operation was extended, then we have this |
| 8088 | # result. if the original operation was single or double, we have to do another |
| 8089 | # multiply using extended precision and the correct rounding mode. the result |
| 8090 | # of this operation then has its exponent scaled by -0x6000 to create the |
| 8091 | # exceptional operand. |
| 8092 | # |
| 8093 | fmul_ovfl: |
| 8094 | fmovm.x FP_SCR1(%a6),&0x80 # load dst operand |
| 8095 | |
| 8096 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 8097 | fmov.l &0x0,%fpsr # clear FPSR |
| 8098 | |
| 8099 | fmul.x FP_SCR0(%a6),%fp0 # execute multiply |
| 8100 | |
| 8101 | fmov.l %fpsr,%d1 # save status |
| 8102 | fmov.l &0x0,%fpcr # clear FPCR |
| 8103 | |
| 8104 | or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| 8105 | |
| 8106 | # save setting this until now because this is where fmul_may_ovfl may jump in |
| 8107 | fmul_ovfl_tst: |
| 8108 | or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex |
| 8109 | |
| 8110 | mov.b FPCR_ENABLE(%a6),%d1 |
| 8111 | andi.b &0x13,%d1 # is OVFL or INEX enabled? |
| 8112 | bne.b fmul_ovfl_ena # yes |
| 8113 | |
| 8114 | # calculate the default result |
| 8115 | fmul_ovfl_dis: |
| 8116 | btst &neg_bit,FPSR_CC(%a6) # is result negative? |
| 8117 | sne %d1 # set sign param accordingly |
| 8118 | mov.l L_SCR3(%a6),%d0 # pass rnd prec,mode |
| 8119 | bsr.l ovf_res # calculate default result |
| 8120 | or.b %d0,FPSR_CC(%a6) # set INF,N if applicable |
| 8121 | fmovm.x (%a0),&0x80 # return default result in fp0 |
| 8122 | rts |
| 8123 | |
| 8124 | # |
| 8125 | # OVFL is enabled; Create EXOP: |
| 8126 | # - if precision is extended, then we have the EXOP. simply bias the exponent |
| 8127 | # with an extra -0x6000. if the precision is single or double, we need to |
| 8128 | # calculate a result rounded to extended precision. |
| 8129 | # |
| 8130 | fmul_ovfl_ena: |
| 8131 | mov.l L_SCR3(%a6),%d1 |
| 8132 | andi.b &0xc0,%d1 # test the rnd prec |
| 8133 | bne.b fmul_ovfl_ena_sd # it's sgl or dbl |
| 8134 | |
| 8135 | fmul_ovfl_ena_cont: |
| 8136 | fmovm.x &0x80,FP_SCR0(%a6) # move result to stack |
| 8137 | |
| 8138 | mov.l %d2,-(%sp) # save d2 |
| 8139 | mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} |
| 8140 | mov.w %d1,%d2 # make a copy |
| 8141 | andi.l &0x7fff,%d1 # strip sign |
| 8142 | sub.l %d0,%d1 # add scale factor |
| 8143 | subi.l &0x6000,%d1 # subtract bias |
| 8144 | andi.w &0x7fff,%d1 # clear sign bit |
| 8145 | andi.w &0x8000,%d2 # keep old sign |
| 8146 | or.w %d2,%d1 # concat old sign,new exp |
| 8147 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| 8148 | mov.l (%sp)+,%d2 # restore d2 |
| 8149 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| 8150 | bra.b fmul_ovfl_dis |
| 8151 | |
| 8152 | fmul_ovfl_ena_sd: |
| 8153 | fmovm.x FP_SCR1(%a6),&0x80 # load dst operand |
| 8154 | |
| 8155 | mov.l L_SCR3(%a6),%d1 |
| 8156 | andi.b &0x30,%d1 # keep rnd mode only |
| 8157 | fmov.l %d1,%fpcr # set FPCR |
| 8158 | |
| 8159 | fmul.x FP_SCR0(%a6),%fp0 # execute multiply |
| 8160 | |
| 8161 | fmov.l &0x0,%fpcr # clear FPCR |
| 8162 | bra.b fmul_ovfl_ena_cont |
| 8163 | |
| 8164 | # |
| 8165 | # may OVERFLOW: |
| 8166 | # - the result of the multiply operation MAY overflow. |
| 8167 | # - do the multiply to the proper precision and rounding mode in order to |
| 8168 | # set the inexact bits. |
| 8169 | # - calculate the default result and return it in fp0. |
| 8170 | # |
| 8171 | fmul_may_ovfl: |
| 8172 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| 8173 | |
| 8174 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 8175 | fmov.l &0x0,%fpsr # clear FPSR |
| 8176 | |
| 8177 | fmul.x FP_SCR0(%a6),%fp0 # execute multiply |
| 8178 | |
| 8179 | fmov.l %fpsr,%d1 # save status |
| 8180 | fmov.l &0x0,%fpcr # clear FPCR |
| 8181 | |
| 8182 | or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| 8183 | |
| 8184 | fabs.x %fp0,%fp1 # make a copy of result |
| 8185 | fcmp.b %fp1,&0x2 # is |result| >= 2.b? |
| 8186 | fbge.w fmul_ovfl_tst # yes; overflow has occurred |
| 8187 | |
| 8188 | # no, it didn't overflow; we have correct result |
| 8189 | bra.w fmul_normal_exit |
| 8190 | |
| 8191 | # |
| 8192 | # UNDERFLOW: |
| 8193 | # - the result of the multiply operation is an underflow. |
| 8194 | # - do the multiply to the proper precision and rounding mode in order to |
| 8195 | # set the inexact bits. |
| 8196 | # - calculate the default result and return it in fp0. |
| 8197 | # - if overflow or inexact is enabled, we need a multiply result rounded to |
| 8198 | # extended precision. if the original operation was extended, then we have this |
| 8199 | # result. if the original operation was single or double, we have to do another |
| 8200 | # multiply using extended precision and the correct rounding mode. the result |
| 8201 | # of this operation then has its exponent scaled by -0x6000 to create the |
| 8202 | # exceptional operand. |
| 8203 | # |
| 8204 | fmul_unfl: |
| 8205 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit |
| 8206 | |
| 8207 | # for fun, let's use only extended precision, round to zero. then, let |
| 8208 | # the unf_res() routine figure out all the rest. |
| 8209 | # will we get the correct answer. |
| 8210 | fmovm.x FP_SCR1(%a6),&0x80 # load dst operand |
| 8211 | |
| 8212 | fmov.l &rz_mode*0x10,%fpcr # set FPCR |
| 8213 | fmov.l &0x0,%fpsr # clear FPSR |
| 8214 | |
| 8215 | fmul.x FP_SCR0(%a6),%fp0 # execute multiply |
| 8216 | |
| 8217 | fmov.l %fpsr,%d1 # save status |
| 8218 | fmov.l &0x0,%fpcr # clear FPCR |
| 8219 | |
| 8220 | or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| 8221 | |
| 8222 | mov.b FPCR_ENABLE(%a6),%d1 |
| 8223 | andi.b &0x0b,%d1 # is UNFL or INEX enabled? |
| 8224 | bne.b fmul_unfl_ena # yes |
| 8225 | |
| 8226 | fmul_unfl_dis: |
| 8227 | fmovm.x &0x80,FP_SCR0(%a6) # store out result |
| 8228 | |
| 8229 | lea FP_SCR0(%a6),%a0 # pass: result addr |
| 8230 | mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode |
| 8231 | bsr.l unf_res # calculate default result |
| 8232 | or.b %d0,FPSR_CC(%a6) # unf_res2 may have set 'Z' |
| 8233 | fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 |
| 8234 | rts |
| 8235 | |
| 8236 | # |
| 8237 | # UNFL is enabled. |
| 8238 | # |
| 8239 | fmul_unfl_ena: |
| 8240 | fmovm.x FP_SCR1(%a6),&0x40 # load dst op |
| 8241 | |
| 8242 | mov.l L_SCR3(%a6),%d1 |
| 8243 | andi.b &0xc0,%d1 # is precision extended? |
| 8244 | bne.b fmul_unfl_ena_sd # no, sgl or dbl |
| 8245 | |
| 8246 | # if the rnd mode is anything but RZ, then we have to re-do the above |
| 8247 | # multiplication becuase we used RZ for all. |
| 8248 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 8249 | |
| 8250 | fmul_unfl_ena_cont: |
| 8251 | fmov.l &0x0,%fpsr # clear FPSR |
| 8252 | |
| 8253 | fmul.x FP_SCR0(%a6),%fp1 # execute multiply |
| 8254 | |
| 8255 | fmov.l &0x0,%fpcr # clear FPCR |
| 8256 | |
| 8257 | fmovm.x &0x40,FP_SCR0(%a6) # save result to stack |
| 8258 | mov.l %d2,-(%sp) # save d2 |
| 8259 | mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} |
| 8260 | mov.l %d1,%d2 # make a copy |
| 8261 | andi.l &0x7fff,%d1 # strip sign |
| 8262 | andi.w &0x8000,%d2 # keep old sign |
| 8263 | sub.l %d0,%d1 # add scale factor |
| 8264 | addi.l &0x6000,%d1 # add bias |
| 8265 | andi.w &0x7fff,%d1 |
| 8266 | or.w %d2,%d1 # concat old sign,new exp |
| 8267 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| 8268 | mov.l (%sp)+,%d2 # restore d2 |
| 8269 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| 8270 | bra.w fmul_unfl_dis |
| 8271 | |
| 8272 | fmul_unfl_ena_sd: |
| 8273 | mov.l L_SCR3(%a6),%d1 |
| 8274 | andi.b &0x30,%d1 # use only rnd mode |
| 8275 | fmov.l %d1,%fpcr # set FPCR |
| 8276 | |
| 8277 | bra.b fmul_unfl_ena_cont |
| 8278 | |
| 8279 | # MAY UNDERFLOW: |
| 8280 | # -use the correct rounding mode and precision. this code favors operations |
| 8281 | # that do not underflow. |
| 8282 | fmul_may_unfl: |
| 8283 | fmovm.x FP_SCR1(%a6),&0x80 # load dst operand |
| 8284 | |
| 8285 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 8286 | fmov.l &0x0,%fpsr # clear FPSR |
| 8287 | |
| 8288 | fmul.x FP_SCR0(%a6),%fp0 # execute multiply |
| 8289 | |
| 8290 | fmov.l %fpsr,%d1 # save status |
| 8291 | fmov.l &0x0,%fpcr # clear FPCR |
| 8292 | |
| 8293 | or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| 8294 | |
| 8295 | fabs.x %fp0,%fp1 # make a copy of result |
| 8296 | fcmp.b %fp1,&0x2 # is |result| > 2.b? |
| 8297 | fbgt.w fmul_normal_exit # no; no underflow occurred |
| 8298 | fblt.w fmul_unfl # yes; underflow occurred |
| 8299 | |
| 8300 | # |
| 8301 | # we still don't know if underflow occurred. result is ~ equal to 2. but, |
| 8302 | # we don't know if the result was an underflow that rounded up to a 2 or |
| 8303 | # a normalized number that rounded down to a 2. so, redo the entire operation |
| 8304 | # using RZ as the rounding mode to see what the pre-rounded result is. |
| 8305 | # this case should be relatively rare. |
| 8306 | # |
| 8307 | fmovm.x FP_SCR1(%a6),&0x40 # load dst operand |
| 8308 | |
| 8309 | mov.l L_SCR3(%a6),%d1 |
| 8310 | andi.b &0xc0,%d1 # keep rnd prec |
| 8311 | ori.b &rz_mode*0x10,%d1 # insert RZ |
| 8312 | |
| 8313 | fmov.l %d1,%fpcr # set FPCR |
| 8314 | fmov.l &0x0,%fpsr # clear FPSR |
| 8315 | |
| 8316 | fmul.x FP_SCR0(%a6),%fp1 # execute multiply |
| 8317 | |
| 8318 | fmov.l &0x0,%fpcr # clear FPCR |
| 8319 | fabs.x %fp1 # make absolute value |
| 8320 | fcmp.b %fp1,&0x2 # is |result| < 2.b? |
| 8321 | fbge.w fmul_normal_exit # no; no underflow occurred |
| 8322 | bra.w fmul_unfl # yes, underflow occurred |
| 8323 | |
| 8324 | ################################################################################ |
| 8325 | |
| 8326 | # |
| 8327 | # Multiply: inputs are not both normalized; what are they? |
| 8328 | # |
| 8329 | fmul_not_norm: |
| 8330 | mov.w (tbl_fmul_op.b,%pc,%d1.w*2),%d1 |
| 8331 | jmp (tbl_fmul_op.b,%pc,%d1.w) |
| 8332 | |
| 8333 | swbeg &48 |
| 8334 | tbl_fmul_op: |
| 8335 | short fmul_norm - tbl_fmul_op # NORM x NORM |
| 8336 | short fmul_zero - tbl_fmul_op # NORM x ZERO |
| 8337 | short fmul_inf_src - tbl_fmul_op # NORM x INF |
| 8338 | short fmul_res_qnan - tbl_fmul_op # NORM x QNAN |
| 8339 | short fmul_norm - tbl_fmul_op # NORM x DENORM |
| 8340 | short fmul_res_snan - tbl_fmul_op # NORM x SNAN |
| 8341 | short tbl_fmul_op - tbl_fmul_op # |
| 8342 | short tbl_fmul_op - tbl_fmul_op # |
| 8343 | |
| 8344 | short fmul_zero - tbl_fmul_op # ZERO x NORM |
| 8345 | short fmul_zero - tbl_fmul_op # ZERO x ZERO |
| 8346 | short fmul_res_operr - tbl_fmul_op # ZERO x INF |
| 8347 | short fmul_res_qnan - tbl_fmul_op # ZERO x QNAN |
| 8348 | short fmul_zero - tbl_fmul_op # ZERO x DENORM |
| 8349 | short fmul_res_snan - tbl_fmul_op # ZERO x SNAN |
| 8350 | short tbl_fmul_op - tbl_fmul_op # |
| 8351 | short tbl_fmul_op - tbl_fmul_op # |
| 8352 | |
| 8353 | short fmul_inf_dst - tbl_fmul_op # INF x NORM |
| 8354 | short fmul_res_operr - tbl_fmul_op # INF x ZERO |
| 8355 | short fmul_inf_dst - tbl_fmul_op # INF x INF |
| 8356 | short fmul_res_qnan - tbl_fmul_op # INF x QNAN |
| 8357 | short fmul_inf_dst - tbl_fmul_op # INF x DENORM |
| 8358 | short fmul_res_snan - tbl_fmul_op # INF x SNAN |
| 8359 | short tbl_fmul_op - tbl_fmul_op # |
| 8360 | short tbl_fmul_op - tbl_fmul_op # |
| 8361 | |
| 8362 | short fmul_res_qnan - tbl_fmul_op # QNAN x NORM |
| 8363 | short fmul_res_qnan - tbl_fmul_op # QNAN x ZERO |
| 8364 | short fmul_res_qnan - tbl_fmul_op # QNAN x INF |
| 8365 | short fmul_res_qnan - tbl_fmul_op # QNAN x QNAN |
| 8366 | short fmul_res_qnan - tbl_fmul_op # QNAN x DENORM |
| 8367 | short fmul_res_snan - tbl_fmul_op # QNAN x SNAN |
| 8368 | short tbl_fmul_op - tbl_fmul_op # |
| 8369 | short tbl_fmul_op - tbl_fmul_op # |
| 8370 | |
| 8371 | short fmul_norm - tbl_fmul_op # NORM x NORM |
| 8372 | short fmul_zero - tbl_fmul_op # NORM x ZERO |
| 8373 | short fmul_inf_src - tbl_fmul_op # NORM x INF |
| 8374 | short fmul_res_qnan - tbl_fmul_op # NORM x QNAN |
| 8375 | short fmul_norm - tbl_fmul_op # NORM x DENORM |
| 8376 | short fmul_res_snan - tbl_fmul_op # NORM x SNAN |
| 8377 | short tbl_fmul_op - tbl_fmul_op # |
| 8378 | short tbl_fmul_op - tbl_fmul_op # |
| 8379 | |
| 8380 | short fmul_res_snan - tbl_fmul_op # SNAN x NORM |
| 8381 | short fmul_res_snan - tbl_fmul_op # SNAN x ZERO |
| 8382 | short fmul_res_snan - tbl_fmul_op # SNAN x INF |
| 8383 | short fmul_res_snan - tbl_fmul_op # SNAN x QNAN |
| 8384 | short fmul_res_snan - tbl_fmul_op # SNAN x DENORM |
| 8385 | short fmul_res_snan - tbl_fmul_op # SNAN x SNAN |
| 8386 | short tbl_fmul_op - tbl_fmul_op # |
| 8387 | short tbl_fmul_op - tbl_fmul_op # |
| 8388 | |
| 8389 | fmul_res_operr: |
| 8390 | bra.l res_operr |
| 8391 | fmul_res_snan: |
| 8392 | bra.l res_snan |
| 8393 | fmul_res_qnan: |
| 8394 | bra.l res_qnan |
| 8395 | |
| 8396 | # |
| 8397 | # Multiply: (Zero x Zero) || (Zero x norm) || (Zero x denorm) |
| 8398 | # |
| 8399 | global fmul_zero # global for fsglmul |
| 8400 | fmul_zero: |
| 8401 | mov.b SRC_EX(%a0),%d0 # exclusive or the signs |
| 8402 | mov.b DST_EX(%a1),%d1 |
| 8403 | eor.b %d0,%d1 |
| 8404 | bpl.b fmul_zero_p # result ZERO is pos. |
| 8405 | fmul_zero_n: |
| 8406 | fmov.s &0x80000000,%fp0 # load -ZERO |
| 8407 | mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/N |
| 8408 | rts |
| 8409 | fmul_zero_p: |
| 8410 | fmov.s &0x00000000,%fp0 # load +ZERO |
| 8411 | mov.b &z_bmask,FPSR_CC(%a6) # set Z |
| 8412 | rts |
| 8413 | |
| 8414 | # |
| 8415 | # Multiply: (inf x inf) || (inf x norm) || (inf x denorm) |
| 8416 | # |
| 8417 | # Note: The j-bit for an infinity is a don't-care. However, to be |
| 8418 | # strictly compatible w/ the 68881/882, we make sure to return an |
| 8419 | # INF w/ the j-bit set if the input INF j-bit was set. Destination |
| 8420 | # INFs take priority. |
| 8421 | # |
| 8422 | global fmul_inf_dst # global for fsglmul |
| 8423 | fmul_inf_dst: |
| 8424 | fmovm.x DST(%a1),&0x80 # return INF result in fp0 |
| 8425 | mov.b SRC_EX(%a0),%d0 # exclusive or the signs |
| 8426 | mov.b DST_EX(%a1),%d1 |
| 8427 | eor.b %d0,%d1 |
| 8428 | bpl.b fmul_inf_dst_p # result INF is pos. |
| 8429 | fmul_inf_dst_n: |
| 8430 | fabs.x %fp0 # clear result sign |
| 8431 | fneg.x %fp0 # set result sign |
| 8432 | mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N |
| 8433 | rts |
| 8434 | fmul_inf_dst_p: |
| 8435 | fabs.x %fp0 # clear result sign |
| 8436 | mov.b &inf_bmask,FPSR_CC(%a6) # set INF |
| 8437 | rts |
| 8438 | |
| 8439 | global fmul_inf_src # global for fsglmul |
| 8440 | fmul_inf_src: |
| 8441 | fmovm.x SRC(%a0),&0x80 # return INF result in fp0 |
| 8442 | mov.b SRC_EX(%a0),%d0 # exclusive or the signs |
| 8443 | mov.b DST_EX(%a1),%d1 |
| 8444 | eor.b %d0,%d1 |
| 8445 | bpl.b fmul_inf_dst_p # result INF is pos. |
| 8446 | bra.b fmul_inf_dst_n |
| 8447 | |
| 8448 | ######################################################################### |
| 8449 | # XDEF **************************************************************** # |
| 8450 | # fin(): emulates the fmove instruction # |
| 8451 | # fsin(): emulates the fsmove instruction # |
| 8452 | # fdin(): emulates the fdmove instruction # |
| 8453 | # # |
| 8454 | # XREF **************************************************************** # |
| 8455 | # norm() - normalize mantissa for EXOP on denorm # |
| 8456 | # scale_to_zero_src() - scale src exponent to zero # |
| 8457 | # ovf_res() - return default overflow result # |
| 8458 | # unf_res() - return default underflow result # |
| 8459 | # res_qnan_1op() - return QNAN result # |
| 8460 | # res_snan_1op() - return SNAN result # |
| 8461 | # # |
| 8462 | # INPUT *************************************************************** # |
| 8463 | # a0 = pointer to extended precision source operand # |
| 8464 | # d0 = round prec/mode # |
| 8465 | # # |
| 8466 | # OUTPUT ************************************************************** # |
| 8467 | # fp0 = result # |
| 8468 | # fp1 = EXOP (if exception occurred) # |
| 8469 | # # |
| 8470 | # ALGORITHM *********************************************************** # |
| 8471 | # Handle NANs, infinities, and zeroes as special cases. Divide # |
| 8472 | # norms into extended, single, and double precision. # |
| 8473 | # Norms can be emulated w/ a regular fmove instruction. For # |
| 8474 | # sgl/dbl, must scale exponent and perform an "fmove". Check to see # |
| 8475 | # if the result would have overflowed/underflowed. If so, use unf_res() # |
| 8476 | # or ovf_res() to return the default result. Also return EXOP if # |
| 8477 | # exception is enabled. If no exception, return the default result. # |
| 8478 | # Unnorms don't pass through here. # |
| 8479 | # # |
| 8480 | ######################################################################### |
| 8481 | |
| 8482 | global fsin |
| 8483 | fsin: |
| 8484 | andi.b &0x30,%d0 # clear rnd prec |
| 8485 | ori.b &s_mode*0x10,%d0 # insert sgl precision |
| 8486 | bra.b fin |
| 8487 | |
| 8488 | global fdin |
| 8489 | fdin: |
| 8490 | andi.b &0x30,%d0 # clear rnd prec |
| 8491 | ori.b &d_mode*0x10,%d0 # insert dbl precision |
| 8492 | |
| 8493 | global fin |
| 8494 | fin: |
| 8495 | mov.l %d0,L_SCR3(%a6) # store rnd info |
| 8496 | |
| 8497 | mov.b STAG(%a6),%d1 # fetch src optype tag |
| 8498 | bne.w fin_not_norm # optimize on non-norm input |
| 8499 | |
| 8500 | # |
| 8501 | # FP MOVE IN: NORMs and DENORMs ONLY! |
| 8502 | # |
| 8503 | fin_norm: |
| 8504 | andi.b &0xc0,%d0 # is precision extended? |
| 8505 | bne.w fin_not_ext # no, so go handle dbl or sgl |
| 8506 | |
| 8507 | # |
| 8508 | # precision selected is extended. so...we cannot get an underflow |
| 8509 | # or overflow because of rounding to the correct precision. so... |
| 8510 | # skip the scaling and unscaling... |
| 8511 | # |
| 8512 | tst.b SRC_EX(%a0) # is the operand negative? |
| 8513 | bpl.b fin_norm_done # no |
| 8514 | bset &neg_bit,FPSR_CC(%a6) # yes, so set 'N' ccode bit |
| 8515 | fin_norm_done: |
| 8516 | fmovm.x SRC(%a0),&0x80 # return result in fp0 |
| 8517 | rts |
| 8518 | |
| 8519 | # |
| 8520 | # for an extended precision DENORM, the UNFL exception bit is set |
| 8521 | # the accrued bit is NOT set in this instance(no inexactness!) |
| 8522 | # |
| 8523 | fin_denorm: |
| 8524 | andi.b &0xc0,%d0 # is precision extended? |
| 8525 | bne.w fin_not_ext # no, so go handle dbl or sgl |
| 8526 | |
| 8527 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit |
| 8528 | tst.b SRC_EX(%a0) # is the operand negative? |
| 8529 | bpl.b fin_denorm_done # no |
| 8530 | bset &neg_bit,FPSR_CC(%a6) # yes, so set 'N' ccode bit |
| 8531 | fin_denorm_done: |
| 8532 | fmovm.x SRC(%a0),&0x80 # return result in fp0 |
| 8533 | btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? |
| 8534 | bne.b fin_denorm_unfl_ena # yes |
| 8535 | rts |
| 8536 | |
| 8537 | # |
| 8538 | # the input is an extended DENORM and underflow is enabled in the FPCR. |
| 8539 | # normalize the mantissa and add the bias of 0x6000 to the resulting negative |
| 8540 | # exponent and insert back into the operand. |
| 8541 | # |
| 8542 | fin_denorm_unfl_ena: |
| 8543 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| 8544 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| 8545 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| 8546 | lea FP_SCR0(%a6),%a0 # pass: ptr to operand |
| 8547 | bsr.l norm # normalize result |
| 8548 | neg.w %d0 # new exponent = -(shft val) |
| 8549 | addi.w &0x6000,%d0 # add new bias to exponent |
| 8550 | mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp |
| 8551 | andi.w &0x8000,%d1 # keep old sign |
| 8552 | andi.w &0x7fff,%d0 # clear sign position |
| 8553 | or.w %d1,%d0 # concat new exo,old sign |
| 8554 | mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent |
| 8555 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| 8556 | rts |
| 8557 | |
| 8558 | # |
| 8559 | # operand is to be rounded to single or double precision |
| 8560 | # |
| 8561 | fin_not_ext: |
| 8562 | cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec |
| 8563 | bne.b fin_dbl |
| 8564 | |
| 8565 | # |
| 8566 | # operand is to be rounded to single precision |
| 8567 | # |
| 8568 | fin_sgl: |
| 8569 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| 8570 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| 8571 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| 8572 | bsr.l scale_to_zero_src # calculate scale factor |
| 8573 | |
| 8574 | cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow? |
| 8575 | bge.w fin_sd_unfl # yes; go handle underflow |
| 8576 | cmpi.l %d0,&0x3fff-0x407e # will move in overflow? |
| 8577 | beq.w fin_sd_may_ovfl # maybe; go check |
| 8578 | blt.w fin_sd_ovfl # yes; go handle overflow |
| 8579 | |
| 8580 | # |
| 8581 | # operand will NOT overflow or underflow when moved into the fp reg file |
| 8582 | # |
| 8583 | fin_sd_normal: |
| 8584 | fmov.l &0x0,%fpsr # clear FPSR |
| 8585 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 8586 | |
| 8587 | fmov.x FP_SCR0(%a6),%fp0 # perform move |
| 8588 | |
| 8589 | fmov.l %fpsr,%d1 # save FPSR |
| 8590 | fmov.l &0x0,%fpcr # clear FPCR |
| 8591 | |
| 8592 | or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| 8593 | |
| 8594 | fin_sd_normal_exit: |
| 8595 | mov.l %d2,-(%sp) # save d2 |
| 8596 | fmovm.x &0x80,FP_SCR0(%a6) # store out result |
| 8597 | mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} |
| 8598 | mov.w %d1,%d2 # make a copy |
| 8599 | andi.l &0x7fff,%d1 # strip sign |
| 8600 | sub.l %d0,%d1 # add scale factor |
| 8601 | andi.w &0x8000,%d2 # keep old sign |
| 8602 | or.w %d1,%d2 # concat old sign,new exponent |
| 8603 | mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent |
| 8604 | mov.l (%sp)+,%d2 # restore d2 |
| 8605 | fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 |
| 8606 | rts |
| 8607 | |
| 8608 | # |
| 8609 | # operand is to be rounded to double precision |
| 8610 | # |
| 8611 | fin_dbl: |
| 8612 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| 8613 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| 8614 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| 8615 | bsr.l scale_to_zero_src # calculate scale factor |
| 8616 | |
| 8617 | cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow? |
| 8618 | bge.w fin_sd_unfl # yes; go handle underflow |
| 8619 | cmpi.l %d0,&0x3fff-0x43fe # will move in overflow? |
| 8620 | beq.w fin_sd_may_ovfl # maybe; go check |
| 8621 | blt.w fin_sd_ovfl # yes; go handle overflow |
| 8622 | bra.w fin_sd_normal # no; ho handle normalized op |
| 8623 | |
| 8624 | # |
| 8625 | # operand WILL underflow when moved in to the fp register file |
| 8626 | # |
| 8627 | fin_sd_unfl: |
| 8628 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit |
| 8629 | |
| 8630 | tst.b FP_SCR0_EX(%a6) # is operand negative? |
| 8631 | bpl.b fin_sd_unfl_tst |
| 8632 | bset &neg_bit,FPSR_CC(%a6) # set 'N' ccode bit |
| 8633 | |
| 8634 | # if underflow or inexact is enabled, then go calculate the EXOP first. |
| 8635 | fin_sd_unfl_tst: |
| 8636 | mov.b FPCR_ENABLE(%a6),%d1 |
| 8637 | andi.b &0x0b,%d1 # is UNFL or INEX enabled? |
| 8638 | bne.b fin_sd_unfl_ena # yes |
| 8639 | |
| 8640 | fin_sd_unfl_dis: |
| 8641 | lea FP_SCR0(%a6),%a0 # pass: result addr |
| 8642 | mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode |
| 8643 | bsr.l unf_res # calculate default result |
| 8644 | or.b %d0,FPSR_CC(%a6) # unf_res may have set 'Z' |
| 8645 | fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 |
| 8646 | rts |
| 8647 | |
| 8648 | # |
| 8649 | # operand will underflow AND underflow or inexact is enabled. |
| 8650 | # therefore, we must return the result rounded to extended precision. |
| 8651 | # |
| 8652 | fin_sd_unfl_ena: |
| 8653 | mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) |
| 8654 | mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) |
| 8655 | mov.w FP_SCR0_EX(%a6),%d1 # load current exponent |
| 8656 | |
| 8657 | mov.l %d2,-(%sp) # save d2 |
| 8658 | mov.w %d1,%d2 # make a copy |
| 8659 | andi.l &0x7fff,%d1 # strip sign |
| 8660 | sub.l %d0,%d1 # subtract scale factor |
| 8661 | andi.w &0x8000,%d2 # extract old sign |
| 8662 | addi.l &0x6000,%d1 # add new bias |
| 8663 | andi.w &0x7fff,%d1 |
| 8664 | or.w %d1,%d2 # concat old sign,new exp |
| 8665 | mov.w %d2,FP_SCR1_EX(%a6) # insert new exponent |
| 8666 | fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 |
| 8667 | mov.l (%sp)+,%d2 # restore d2 |
| 8668 | bra.b fin_sd_unfl_dis |
| 8669 | |
| 8670 | # |
| 8671 | # operand WILL overflow. |
| 8672 | # |
| 8673 | fin_sd_ovfl: |
| 8674 | fmov.l &0x0,%fpsr # clear FPSR |
| 8675 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 8676 | |
| 8677 | fmov.x FP_SCR0(%a6),%fp0 # perform move |
| 8678 | |
| 8679 | fmov.l &0x0,%fpcr # clear FPCR |
| 8680 | fmov.l %fpsr,%d1 # save FPSR |
| 8681 | |
| 8682 | or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| 8683 | |
| 8684 | fin_sd_ovfl_tst: |
| 8685 | or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex |
| 8686 | |
| 8687 | mov.b FPCR_ENABLE(%a6),%d1 |
| 8688 | andi.b &0x13,%d1 # is OVFL or INEX enabled? |
| 8689 | bne.b fin_sd_ovfl_ena # yes |
| 8690 | |
| 8691 | # |
| 8692 | # OVFL is not enabled; therefore, we must create the default result by |
| 8693 | # calling ovf_res(). |
| 8694 | # |
| 8695 | fin_sd_ovfl_dis: |
| 8696 | btst &neg_bit,FPSR_CC(%a6) # is result negative? |
| 8697 | sne %d1 # set sign param accordingly |
| 8698 | mov.l L_SCR3(%a6),%d0 # pass: prec,mode |
| 8699 | bsr.l ovf_res # calculate default result |
| 8700 | or.b %d0,FPSR_CC(%a6) # set INF,N if applicable |
| 8701 | fmovm.x (%a0),&0x80 # return default result in fp0 |
| 8702 | rts |
| 8703 | |
| 8704 | # |
| 8705 | # OVFL is enabled. |
| 8706 | # the INEX2 bit has already been updated by the round to the correct precision. |
| 8707 | # now, round to extended(and don't alter the FPSR). |
| 8708 | # |
| 8709 | fin_sd_ovfl_ena: |
| 8710 | mov.l %d2,-(%sp) # save d2 |
| 8711 | mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} |
| 8712 | mov.l %d1,%d2 # make a copy |
| 8713 | andi.l &0x7fff,%d1 # strip sign |
| 8714 | andi.w &0x8000,%d2 # keep old sign |
| 8715 | sub.l %d0,%d1 # add scale factor |
| 8716 | sub.l &0x6000,%d1 # subtract bias |
| 8717 | andi.w &0x7fff,%d1 |
| 8718 | or.w %d2,%d1 |
| 8719 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| 8720 | mov.l (%sp)+,%d2 # restore d2 |
| 8721 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| 8722 | bra.b fin_sd_ovfl_dis |
| 8723 | |
| 8724 | # |
| 8725 | # the move in MAY overflow. so... |
| 8726 | # |
| 8727 | fin_sd_may_ovfl: |
| 8728 | fmov.l &0x0,%fpsr # clear FPSR |
| 8729 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 8730 | |
| 8731 | fmov.x FP_SCR0(%a6),%fp0 # perform the move |
| 8732 | |
| 8733 | fmov.l %fpsr,%d1 # save status |
| 8734 | fmov.l &0x0,%fpcr # clear FPCR |
| 8735 | |
| 8736 | or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| 8737 | |
| 8738 | fabs.x %fp0,%fp1 # make a copy of result |
| 8739 | fcmp.b %fp1,&0x2 # is |result| >= 2.b? |
| 8740 | fbge.w fin_sd_ovfl_tst # yes; overflow has occurred |
| 8741 | |
| 8742 | # no, it didn't overflow; we have correct result |
| 8743 | bra.w fin_sd_normal_exit |
| 8744 | |
| 8745 | ########################################################################## |
| 8746 | |
| 8747 | # |
| 8748 | # operand is not a NORM: check its optype and branch accordingly |
| 8749 | # |
| 8750 | fin_not_norm: |
| 8751 | cmpi.b %d1,&DENORM # weed out DENORM |
| 8752 | beq.w fin_denorm |
| 8753 | cmpi.b %d1,&SNAN # weed out SNANs |
| 8754 | beq.l res_snan_1op |
| 8755 | cmpi.b %d1,&QNAN # weed out QNANs |
| 8756 | beq.l res_qnan_1op |
| 8757 | |
| 8758 | # |
| 8759 | # do the fmove in; at this point, only possible ops are ZERO and INF. |
| 8760 | # use fmov to determine ccodes. |
| 8761 | # prec:mode should be zero at this point but it won't affect answer anyways. |
| 8762 | # |
| 8763 | fmov.x SRC(%a0),%fp0 # do fmove in |
| 8764 | fmov.l %fpsr,%d0 # no exceptions possible |
| 8765 | rol.l &0x8,%d0 # put ccodes in lo byte |
| 8766 | mov.b %d0,FPSR_CC(%a6) # insert correct ccodes |
| 8767 | rts |
| 8768 | |
| 8769 | ######################################################################### |
| 8770 | # XDEF **************************************************************** # |
| 8771 | # fdiv(): emulates the fdiv instruction # |
| 8772 | # fsdiv(): emulates the fsdiv instruction # |
| 8773 | # fddiv(): emulates the fddiv instruction # |
| 8774 | # # |
| 8775 | # XREF **************************************************************** # |
| 8776 | # scale_to_zero_src() - scale src exponent to zero # |
| 8777 | # scale_to_zero_dst() - scale dst exponent to zero # |
| 8778 | # unf_res() - return default underflow result # |
| 8779 | # ovf_res() - return default overflow result # |
| 8780 | # res_qnan() - return QNAN result # |
| 8781 | # res_snan() - return SNAN result # |
| 8782 | # # |
| 8783 | # INPUT *************************************************************** # |
| 8784 | # a0 = pointer to extended precision source operand # |
| 8785 | # a1 = pointer to extended precision destination operand # |
| 8786 | # d0 rnd prec,mode # |
| 8787 | # # |
| 8788 | # OUTPUT ************************************************************** # |
| 8789 | # fp0 = result # |
| 8790 | # fp1 = EXOP (if exception occurred) # |
| 8791 | # # |
| 8792 | # ALGORITHM *********************************************************** # |
| 8793 | # Handle NANs, infinities, and zeroes as special cases. Divide # |
| 8794 | # norms/denorms into ext/sgl/dbl precision. # |
| 8795 | # For norms/denorms, scale the exponents such that a divide # |
| 8796 | # instruction won't cause an exception. Use the regular fdiv to # |
| 8797 | # compute a result. Check if the regular operands would have taken # |
| 8798 | # an exception. If so, return the default overflow/underflow result # |
| 8799 | # and return the EXOP if exceptions are enabled. Else, scale the # |
| 8800 | # result operand to the proper exponent. # |
| 8801 | # # |
| 8802 | ######################################################################### |
| 8803 | |
| 8804 | align 0x10 |
| 8805 | tbl_fdiv_unfl: |
| 8806 | long 0x3fff - 0x0000 # ext_unfl |
| 8807 | long 0x3fff - 0x3f81 # sgl_unfl |
| 8808 | long 0x3fff - 0x3c01 # dbl_unfl |
| 8809 | |
| 8810 | tbl_fdiv_ovfl: |
| 8811 | long 0x3fff - 0x7ffe # ext overflow exponent |
| 8812 | long 0x3fff - 0x407e # sgl overflow exponent |
| 8813 | long 0x3fff - 0x43fe # dbl overflow exponent |
| 8814 | |
| 8815 | global fsdiv |
| 8816 | fsdiv: |
| 8817 | andi.b &0x30,%d0 # clear rnd prec |
| 8818 | ori.b &s_mode*0x10,%d0 # insert sgl prec |
| 8819 | bra.b fdiv |
| 8820 | |
| 8821 | global fddiv |
| 8822 | fddiv: |
| 8823 | andi.b &0x30,%d0 # clear rnd prec |
| 8824 | ori.b &d_mode*0x10,%d0 # insert dbl prec |
| 8825 | |
| 8826 | global fdiv |
| 8827 | fdiv: |
| 8828 | mov.l %d0,L_SCR3(%a6) # store rnd info |
| 8829 | |
| 8830 | clr.w %d1 |
| 8831 | mov.b DTAG(%a6),%d1 |
| 8832 | lsl.b &0x3,%d1 |
| 8833 | or.b STAG(%a6),%d1 # combine src tags |
| 8834 | |
| 8835 | bne.w fdiv_not_norm # optimize on non-norm input |
| 8836 | |
| 8837 | # |
| 8838 | # DIVIDE: NORMs and DENORMs ONLY! |
| 8839 | # |
| 8840 | fdiv_norm: |
| 8841 | mov.w DST_EX(%a1),FP_SCR1_EX(%a6) |
| 8842 | mov.l DST_HI(%a1),FP_SCR1_HI(%a6) |
| 8843 | mov.l DST_LO(%a1),FP_SCR1_LO(%a6) |
| 8844 | |
| 8845 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| 8846 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| 8847 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| 8848 | |
| 8849 | bsr.l scale_to_zero_src # scale src exponent |
| 8850 | mov.l %d0,-(%sp) # save scale factor 1 |
| 8851 | |
| 8852 | bsr.l scale_to_zero_dst # scale dst exponent |
| 8853 | |
| 8854 | neg.l (%sp) # SCALE FACTOR = scale1 - scale2 |
| 8855 | add.l %d0,(%sp) |
| 8856 | |
| 8857 | mov.w 2+L_SCR3(%a6),%d1 # fetch precision |
| 8858 | lsr.b &0x6,%d1 # shift to lo bits |
| 8859 | mov.l (%sp)+,%d0 # load S.F. |
| 8860 | cmp.l %d0,(tbl_fdiv_ovfl.b,%pc,%d1.w*4) # will result overflow? |
| 8861 | ble.w fdiv_may_ovfl # result will overflow |
| 8862 | |
| 8863 | cmp.l %d0,(tbl_fdiv_unfl.w,%pc,%d1.w*4) # will result underflow? |
| 8864 | beq.w fdiv_may_unfl # maybe |
| 8865 | bgt.w fdiv_unfl # yes; go handle underflow |
| 8866 | |
| 8867 | fdiv_normal: |
| 8868 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| 8869 | |
| 8870 | fmov.l L_SCR3(%a6),%fpcr # save FPCR |
| 8871 | fmov.l &0x0,%fpsr # clear FPSR |
| 8872 | |
| 8873 | fdiv.x FP_SCR0(%a6),%fp0 # perform divide |
| 8874 | |
| 8875 | fmov.l %fpsr,%d1 # save FPSR |
| 8876 | fmov.l &0x0,%fpcr # clear FPCR |
| 8877 | |
| 8878 | or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| 8879 | |
| 8880 | fdiv_normal_exit: |
| 8881 | fmovm.x &0x80,FP_SCR0(%a6) # store result on stack |
| 8882 | mov.l %d2,-(%sp) # store d2 |
| 8883 | mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} |
| 8884 | mov.l %d1,%d2 # make a copy |
| 8885 | andi.l &0x7fff,%d1 # strip sign |
| 8886 | andi.w &0x8000,%d2 # keep old sign |
| 8887 | sub.l %d0,%d1 # add scale factor |
| 8888 | or.w %d2,%d1 # concat old sign,new exp |
| 8889 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| 8890 | mov.l (%sp)+,%d2 # restore d2 |
| 8891 | fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 |
| 8892 | rts |
| 8893 | |
| 8894 | tbl_fdiv_ovfl2: |
| 8895 | long 0x7fff |
| 8896 | long 0x407f |
| 8897 | long 0x43ff |
| 8898 | |
| 8899 | fdiv_no_ovfl: |
| 8900 | mov.l (%sp)+,%d0 # restore scale factor |
| 8901 | bra.b fdiv_normal_exit |
| 8902 | |
| 8903 | fdiv_may_ovfl: |
| 8904 | mov.l %d0,-(%sp) # save scale factor |
| 8905 | |
| 8906 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| 8907 | |
| 8908 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 8909 | fmov.l &0x0,%fpsr # set FPSR |
| 8910 | |
| 8911 | fdiv.x FP_SCR0(%a6),%fp0 # execute divide |
| 8912 | |
| 8913 | fmov.l %fpsr,%d0 |
| 8914 | fmov.l &0x0,%fpcr |
| 8915 | |
| 8916 | or.l %d0,USER_FPSR(%a6) # save INEX,N |
| 8917 | |
| 8918 | fmovm.x &0x01,-(%sp) # save result to stack |
| 8919 | mov.w (%sp),%d0 # fetch new exponent |
| 8920 | add.l &0xc,%sp # clear result from stack |
| 8921 | andi.l &0x7fff,%d0 # strip sign |
| 8922 | sub.l (%sp),%d0 # add scale factor |
| 8923 | cmp.l %d0,(tbl_fdiv_ovfl2.b,%pc,%d1.w*4) |
| 8924 | blt.b fdiv_no_ovfl |
| 8925 | mov.l (%sp)+,%d0 |
| 8926 | |
| 8927 | fdiv_ovfl_tst: |
| 8928 | or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex |
| 8929 | |
| 8930 | mov.b FPCR_ENABLE(%a6),%d1 |
| 8931 | andi.b &0x13,%d1 # is OVFL or INEX enabled? |
| 8932 | bne.b fdiv_ovfl_ena # yes |
| 8933 | |
| 8934 | fdiv_ovfl_dis: |
| 8935 | btst &neg_bit,FPSR_CC(%a6) # is result negative? |
| 8936 | sne %d1 # set sign param accordingly |
| 8937 | mov.l L_SCR3(%a6),%d0 # pass prec:rnd |
| 8938 | bsr.l ovf_res # calculate default result |
| 8939 | or.b %d0,FPSR_CC(%a6) # set INF if applicable |
| 8940 | fmovm.x (%a0),&0x80 # return default result in fp0 |
| 8941 | rts |
| 8942 | |
| 8943 | fdiv_ovfl_ena: |
| 8944 | mov.l L_SCR3(%a6),%d1 |
| 8945 | andi.b &0xc0,%d1 # is precision extended? |
| 8946 | bne.b fdiv_ovfl_ena_sd # no, do sgl or dbl |
| 8947 | |
| 8948 | fdiv_ovfl_ena_cont: |
| 8949 | fmovm.x &0x80,FP_SCR0(%a6) # move result to stack |
| 8950 | |
| 8951 | mov.l %d2,-(%sp) # save d2 |
| 8952 | mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} |
| 8953 | mov.w %d1,%d2 # make a copy |
| 8954 | andi.l &0x7fff,%d1 # strip sign |
| 8955 | sub.l %d0,%d1 # add scale factor |
| 8956 | subi.l &0x6000,%d1 # subtract bias |
| 8957 | andi.w &0x7fff,%d1 # clear sign bit |
| 8958 | andi.w &0x8000,%d2 # keep old sign |
| 8959 | or.w %d2,%d1 # concat old sign,new exp |
| 8960 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| 8961 | mov.l (%sp)+,%d2 # restore d2 |
| 8962 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| 8963 | bra.b fdiv_ovfl_dis |
| 8964 | |
| 8965 | fdiv_ovfl_ena_sd: |
| 8966 | fmovm.x FP_SCR1(%a6),&0x80 # load dst operand |
| 8967 | |
| 8968 | mov.l L_SCR3(%a6),%d1 |
| 8969 | andi.b &0x30,%d1 # keep rnd mode |
| 8970 | fmov.l %d1,%fpcr # set FPCR |
| 8971 | |
| 8972 | fdiv.x FP_SCR0(%a6),%fp0 # execute divide |
| 8973 | |
| 8974 | fmov.l &0x0,%fpcr # clear FPCR |
| 8975 | bra.b fdiv_ovfl_ena_cont |
| 8976 | |
| 8977 | fdiv_unfl: |
| 8978 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit |
| 8979 | |
| 8980 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| 8981 | |
| 8982 | fmov.l &rz_mode*0x10,%fpcr # set FPCR |
| 8983 | fmov.l &0x0,%fpsr # clear FPSR |
| 8984 | |
| 8985 | fdiv.x FP_SCR0(%a6),%fp0 # execute divide |
| 8986 | |
| 8987 | fmov.l %fpsr,%d1 # save status |
| 8988 | fmov.l &0x0,%fpcr # clear FPCR |
| 8989 | |
| 8990 | or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| 8991 | |
| 8992 | mov.b FPCR_ENABLE(%a6),%d1 |
| 8993 | andi.b &0x0b,%d1 # is UNFL or INEX enabled? |
| 8994 | bne.b fdiv_unfl_ena # yes |
| 8995 | |
| 8996 | fdiv_unfl_dis: |
| 8997 | fmovm.x &0x80,FP_SCR0(%a6) # store out result |
| 8998 | |
| 8999 | lea FP_SCR0(%a6),%a0 # pass: result addr |
| 9000 | mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode |
| 9001 | bsr.l unf_res # calculate default result |
| 9002 | or.b %d0,FPSR_CC(%a6) # 'Z' may have been set |
| 9003 | fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 |
| 9004 | rts |
| 9005 | |
| 9006 | # |
| 9007 | # UNFL is enabled. |
| 9008 | # |
| 9009 | fdiv_unfl_ena: |
| 9010 | fmovm.x FP_SCR1(%a6),&0x40 # load dst op |
| 9011 | |
| 9012 | mov.l L_SCR3(%a6),%d1 |
| 9013 | andi.b &0xc0,%d1 # is precision extended? |
| 9014 | bne.b fdiv_unfl_ena_sd # no, sgl or dbl |
| 9015 | |
| 9016 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 9017 | |
| 9018 | fdiv_unfl_ena_cont: |
| 9019 | fmov.l &0x0,%fpsr # clear FPSR |
| 9020 | |
| 9021 | fdiv.x FP_SCR0(%a6),%fp1 # execute divide |
| 9022 | |
| 9023 | fmov.l &0x0,%fpcr # clear FPCR |
| 9024 | |
| 9025 | fmovm.x &0x40,FP_SCR0(%a6) # save result to stack |
| 9026 | mov.l %d2,-(%sp) # save d2 |
| 9027 | mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} |
| 9028 | mov.l %d1,%d2 # make a copy |
| 9029 | andi.l &0x7fff,%d1 # strip sign |
| 9030 | andi.w &0x8000,%d2 # keep old sign |
| 9031 | sub.l %d0,%d1 # add scale factoer |
| 9032 | addi.l &0x6000,%d1 # add bias |
| 9033 | andi.w &0x7fff,%d1 |
| 9034 | or.w %d2,%d1 # concat old sign,new exp |
| 9035 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exp |
| 9036 | mov.l (%sp)+,%d2 # restore d2 |
| 9037 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| 9038 | bra.w fdiv_unfl_dis |
| 9039 | |
| 9040 | fdiv_unfl_ena_sd: |
| 9041 | mov.l L_SCR3(%a6),%d1 |
| 9042 | andi.b &0x30,%d1 # use only rnd mode |
| 9043 | fmov.l %d1,%fpcr # set FPCR |
| 9044 | |
| 9045 | bra.b fdiv_unfl_ena_cont |
| 9046 | |
| 9047 | # |
| 9048 | # the divide operation MAY underflow: |
| 9049 | # |
| 9050 | fdiv_may_unfl: |
| 9051 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| 9052 | |
| 9053 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 9054 | fmov.l &0x0,%fpsr # clear FPSR |
| 9055 | |
| 9056 | fdiv.x FP_SCR0(%a6),%fp0 # execute divide |
| 9057 | |
| 9058 | fmov.l %fpsr,%d1 # save status |
| 9059 | fmov.l &0x0,%fpcr # clear FPCR |
| 9060 | |
| 9061 | or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| 9062 | |
| 9063 | fabs.x %fp0,%fp1 # make a copy of result |
| 9064 | fcmp.b %fp1,&0x1 # is |result| > 1.b? |
| 9065 | fbgt.w fdiv_normal_exit # no; no underflow occurred |
| 9066 | fblt.w fdiv_unfl # yes; underflow occurred |
| 9067 | |
| 9068 | # |
| 9069 | # we still don't know if underflow occurred. result is ~ equal to 1. but, |
| 9070 | # we don't know if the result was an underflow that rounded up to a 1 |
| 9071 | # or a normalized number that rounded down to a 1. so, redo the entire |
| 9072 | # operation using RZ as the rounding mode to see what the pre-rounded |
| 9073 | # result is. this case should be relatively rare. |
| 9074 | # |
| 9075 | fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 |
| 9076 | |
| 9077 | mov.l L_SCR3(%a6),%d1 |
| 9078 | andi.b &0xc0,%d1 # keep rnd prec |
| 9079 | ori.b &rz_mode*0x10,%d1 # insert RZ |
| 9080 | |
| 9081 | fmov.l %d1,%fpcr # set FPCR |
| 9082 | fmov.l &0x0,%fpsr # clear FPSR |
| 9083 | |
| 9084 | fdiv.x FP_SCR0(%a6),%fp1 # execute divide |
| 9085 | |
| 9086 | fmov.l &0x0,%fpcr # clear FPCR |
| 9087 | fabs.x %fp1 # make absolute value |
| 9088 | fcmp.b %fp1,&0x1 # is |result| < 1.b? |
| 9089 | fbge.w fdiv_normal_exit # no; no underflow occurred |
| 9090 | bra.w fdiv_unfl # yes; underflow occurred |
| 9091 | |
| 9092 | ############################################################################ |
| 9093 | |
| 9094 | # |
| 9095 | # Divide: inputs are not both normalized; what are they? |
| 9096 | # |
| 9097 | fdiv_not_norm: |
| 9098 | mov.w (tbl_fdiv_op.b,%pc,%d1.w*2),%d1 |
| 9099 | jmp (tbl_fdiv_op.b,%pc,%d1.w*1) |
| 9100 | |
| 9101 | swbeg &48 |
| 9102 | tbl_fdiv_op: |
| 9103 | short fdiv_norm - tbl_fdiv_op # NORM / NORM |
| 9104 | short fdiv_inf_load - tbl_fdiv_op # NORM / ZERO |
| 9105 | short fdiv_zero_load - tbl_fdiv_op # NORM / INF |
| 9106 | short fdiv_res_qnan - tbl_fdiv_op # NORM / QNAN |
| 9107 | short fdiv_norm - tbl_fdiv_op # NORM / DENORM |
| 9108 | short fdiv_res_snan - tbl_fdiv_op # NORM / SNAN |
| 9109 | short tbl_fdiv_op - tbl_fdiv_op # |
| 9110 | short tbl_fdiv_op - tbl_fdiv_op # |
| 9111 | |
| 9112 | short fdiv_zero_load - tbl_fdiv_op # ZERO / NORM |
| 9113 | short fdiv_res_operr - tbl_fdiv_op # ZERO / ZERO |
| 9114 | short fdiv_zero_load - tbl_fdiv_op # ZERO / INF |
| 9115 | short fdiv_res_qnan - tbl_fdiv_op # ZERO / QNAN |
| 9116 | short fdiv_zero_load - tbl_fdiv_op # ZERO / DENORM |
| 9117 | short fdiv_res_snan - tbl_fdiv_op # ZERO / SNAN |
| 9118 | short tbl_fdiv_op - tbl_fdiv_op # |
| 9119 | short tbl_fdiv_op - tbl_fdiv_op # |
| 9120 | |
| 9121 | short fdiv_inf_dst - tbl_fdiv_op # INF / NORM |
| 9122 | short fdiv_inf_dst - tbl_fdiv_op # INF / ZERO |
| 9123 | short fdiv_res_operr - tbl_fdiv_op # INF / INF |
| 9124 | short fdiv_res_qnan - tbl_fdiv_op # INF / QNAN |
| 9125 | short fdiv_inf_dst - tbl_fdiv_op # INF / DENORM |
| 9126 | short fdiv_res_snan - tbl_fdiv_op # INF / SNAN |
| 9127 | short tbl_fdiv_op - tbl_fdiv_op # |
| 9128 | short tbl_fdiv_op - tbl_fdiv_op # |
| 9129 | |
| 9130 | short fdiv_res_qnan - tbl_fdiv_op # QNAN / NORM |
| 9131 | short fdiv_res_qnan - tbl_fdiv_op # QNAN / ZERO |
| 9132 | short fdiv_res_qnan - tbl_fdiv_op # QNAN / INF |
| 9133 | short fdiv_res_qnan - tbl_fdiv_op # QNAN / QNAN |
| 9134 | short fdiv_res_qnan - tbl_fdiv_op # QNAN / DENORM |
| 9135 | short fdiv_res_snan - tbl_fdiv_op # QNAN / SNAN |
| 9136 | short tbl_fdiv_op - tbl_fdiv_op # |
| 9137 | short tbl_fdiv_op - tbl_fdiv_op # |
| 9138 | |
| 9139 | short fdiv_norm - tbl_fdiv_op # DENORM / NORM |
| 9140 | short fdiv_inf_load - tbl_fdiv_op # DENORM / ZERO |
| 9141 | short fdiv_zero_load - tbl_fdiv_op # DENORM / INF |
| 9142 | short fdiv_res_qnan - tbl_fdiv_op # DENORM / QNAN |
| 9143 | short fdiv_norm - tbl_fdiv_op # DENORM / DENORM |
| 9144 | short fdiv_res_snan - tbl_fdiv_op # DENORM / SNAN |
| 9145 | short tbl_fdiv_op - tbl_fdiv_op # |
| 9146 | short tbl_fdiv_op - tbl_fdiv_op # |
| 9147 | |
| 9148 | short fdiv_res_snan - tbl_fdiv_op # SNAN / NORM |
| 9149 | short fdiv_res_snan - tbl_fdiv_op # SNAN / ZERO |
| 9150 | short fdiv_res_snan - tbl_fdiv_op # SNAN / INF |
| 9151 | short fdiv_res_snan - tbl_fdiv_op # SNAN / QNAN |
| 9152 | short fdiv_res_snan - tbl_fdiv_op # SNAN / DENORM |
| 9153 | short fdiv_res_snan - tbl_fdiv_op # SNAN / SNAN |
| 9154 | short tbl_fdiv_op - tbl_fdiv_op # |
| 9155 | short tbl_fdiv_op - tbl_fdiv_op # |
| 9156 | |
| 9157 | fdiv_res_qnan: |
| 9158 | bra.l res_qnan |
| 9159 | fdiv_res_snan: |
| 9160 | bra.l res_snan |
| 9161 | fdiv_res_operr: |
| 9162 | bra.l res_operr |
| 9163 | |
| 9164 | global fdiv_zero_load # global for fsgldiv |
| 9165 | fdiv_zero_load: |
| 9166 | mov.b SRC_EX(%a0),%d0 # result sign is exclusive |
| 9167 | mov.b DST_EX(%a1),%d1 # or of input signs. |
| 9168 | eor.b %d0,%d1 |
| 9169 | bpl.b fdiv_zero_load_p # result is positive |
| 9170 | fmov.s &0x80000000,%fp0 # load a -ZERO |
| 9171 | mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/N |
| 9172 | rts |
| 9173 | fdiv_zero_load_p: |
| 9174 | fmov.s &0x00000000,%fp0 # load a +ZERO |
| 9175 | mov.b &z_bmask,FPSR_CC(%a6) # set Z |
| 9176 | rts |
| 9177 | |
| 9178 | # |
| 9179 | # The destination was In Range and the source was a ZERO. The result, |
| 9180 | # therefore, is an INF w/ the proper sign. |
| 9181 | # So, determine the sign and return a new INF (w/ the j-bit cleared). |
| 9182 | # |
| 9183 | global fdiv_inf_load # global for fsgldiv |
| 9184 | fdiv_inf_load: |
| 9185 | ori.w &dz_mask+adz_mask,2+USER_FPSR(%a6) # no; set DZ/ADZ |
| 9186 | mov.b SRC_EX(%a0),%d0 # load both signs |
| 9187 | mov.b DST_EX(%a1),%d1 |
| 9188 | eor.b %d0,%d1 |
| 9189 | bpl.b fdiv_inf_load_p # result is positive |
| 9190 | fmov.s &0xff800000,%fp0 # make result -INF |
| 9191 | mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N |
| 9192 | rts |
| 9193 | fdiv_inf_load_p: |
| 9194 | fmov.s &0x7f800000,%fp0 # make result +INF |
| 9195 | mov.b &inf_bmask,FPSR_CC(%a6) # set INF |
| 9196 | rts |
| 9197 | |
| 9198 | # |
| 9199 | # The destination was an INF w/ an In Range or ZERO source, the result is |
| 9200 | # an INF w/ the proper sign. |
| 9201 | # The 68881/882 returns the destination INF w/ the new sign(if the j-bit of the |
| 9202 | # dst INF is set, then then j-bit of the result INF is also set). |
| 9203 | # |
| 9204 | global fdiv_inf_dst # global for fsgldiv |
| 9205 | fdiv_inf_dst: |
| 9206 | mov.b DST_EX(%a1),%d0 # load both signs |
| 9207 | mov.b SRC_EX(%a0),%d1 |
| 9208 | eor.b %d0,%d1 |
| 9209 | bpl.b fdiv_inf_dst_p # result is positive |
| 9210 | |
| 9211 | fmovm.x DST(%a1),&0x80 # return result in fp0 |
| 9212 | fabs.x %fp0 # clear sign bit |
| 9213 | fneg.x %fp0 # set sign bit |
| 9214 | mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/NEG |
| 9215 | rts |
| 9216 | |
| 9217 | fdiv_inf_dst_p: |
| 9218 | fmovm.x DST(%a1),&0x80 # return result in fp0 |
| 9219 | fabs.x %fp0 # return positive INF |
| 9220 | mov.b &inf_bmask,FPSR_CC(%a6) # set INF |
| 9221 | rts |
| 9222 | |
| 9223 | ######################################################################### |
| 9224 | # XDEF **************************************************************** # |
| 9225 | # fneg(): emulates the fneg instruction # |
| 9226 | # fsneg(): emulates the fsneg instruction # |
| 9227 | # fdneg(): emulates the fdneg instruction # |
| 9228 | # # |
| 9229 | # XREF **************************************************************** # |
| 9230 | # norm() - normalize a denorm to provide EXOP # |
| 9231 | # scale_to_zero_src() - scale sgl/dbl source exponent # |
| 9232 | # ovf_res() - return default overflow result # |
| 9233 | # unf_res() - return default underflow result # |
| 9234 | # res_qnan_1op() - return QNAN result # |
| 9235 | # res_snan_1op() - return SNAN result # |
| 9236 | # # |
| 9237 | # INPUT *************************************************************** # |
| 9238 | # a0 = pointer to extended precision source operand # |
| 9239 | # d0 = rnd prec,mode # |
| 9240 | # # |
| 9241 | # OUTPUT ************************************************************** # |
| 9242 | # fp0 = result # |
| 9243 | # fp1 = EXOP (if exception occurred) # |
| 9244 | # # |
| 9245 | # ALGORITHM *********************************************************** # |
| 9246 | # Handle NANs, zeroes, and infinities as special cases. Separate # |
| 9247 | # norms/denorms into ext/sgl/dbl precisions. Extended precision can be # |
| 9248 | # emulated by simply setting sign bit. Sgl/dbl operands must be scaled # |
| 9249 | # and an actual fneg performed to see if overflow/underflow would have # |
| 9250 | # occurred. If so, return default underflow/overflow result. Else, # |
| 9251 | # scale the result exponent and return result. FPSR gets set based on # |
| 9252 | # the result value. # |
| 9253 | # # |
| 9254 | ######################################################################### |
| 9255 | |
| 9256 | global fsneg |
| 9257 | fsneg: |
| 9258 | andi.b &0x30,%d0 # clear rnd prec |
| 9259 | ori.b &s_mode*0x10,%d0 # insert sgl precision |
| 9260 | bra.b fneg |
| 9261 | |
| 9262 | global fdneg |
| 9263 | fdneg: |
| 9264 | andi.b &0x30,%d0 # clear rnd prec |
| 9265 | ori.b &d_mode*0x10,%d0 # insert dbl prec |
| 9266 | |
| 9267 | global fneg |
| 9268 | fneg: |
| 9269 | mov.l %d0,L_SCR3(%a6) # store rnd info |
| 9270 | mov.b STAG(%a6),%d1 |
| 9271 | bne.w fneg_not_norm # optimize on non-norm input |
| 9272 | |
| 9273 | # |
| 9274 | # NEGATE SIGN : norms and denorms ONLY! |
| 9275 | # |
| 9276 | fneg_norm: |
| 9277 | andi.b &0xc0,%d0 # is precision extended? |
| 9278 | bne.w fneg_not_ext # no; go handle sgl or dbl |
| 9279 | |
| 9280 | # |
| 9281 | # precision selected is extended. so...we can not get an underflow |
| 9282 | # or overflow because of rounding to the correct precision. so... |
| 9283 | # skip the scaling and unscaling... |
| 9284 | # |
| 9285 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| 9286 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| 9287 | mov.w SRC_EX(%a0),%d0 |
| 9288 | eori.w &0x8000,%d0 # negate sign |
| 9289 | bpl.b fneg_norm_load # sign is positive |
| 9290 | mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit |
| 9291 | fneg_norm_load: |
| 9292 | mov.w %d0,FP_SCR0_EX(%a6) |
| 9293 | fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 |
| 9294 | rts |
| 9295 | |
| 9296 | # |
| 9297 | # for an extended precision DENORM, the UNFL exception bit is set |
| 9298 | # the accrued bit is NOT set in this instance(no inexactness!) |
| 9299 | # |
| 9300 | fneg_denorm: |
| 9301 | andi.b &0xc0,%d0 # is precision extended? |
| 9302 | bne.b fneg_not_ext # no; go handle sgl or dbl |
| 9303 | |
| 9304 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit |
| 9305 | |
| 9306 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| 9307 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| 9308 | mov.w SRC_EX(%a0),%d0 |
| 9309 | eori.w &0x8000,%d0 # negate sign |
| 9310 | bpl.b fneg_denorm_done # no |
| 9311 | mov.b &neg_bmask,FPSR_CC(%a6) # yes, set 'N' ccode bit |
| 9312 | fneg_denorm_done: |
| 9313 | mov.w %d0,FP_SCR0_EX(%a6) |
| 9314 | fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 |
| 9315 | |
| 9316 | btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? |
| 9317 | bne.b fneg_ext_unfl_ena # yes |
| 9318 | rts |
| 9319 | |
| 9320 | # |
| 9321 | # the input is an extended DENORM and underflow is enabled in the FPCR. |
| 9322 | # normalize the mantissa and add the bias of 0x6000 to the resulting negative |
| 9323 | # exponent and insert back into the operand. |
| 9324 | # |
| 9325 | fneg_ext_unfl_ena: |
| 9326 | lea FP_SCR0(%a6),%a0 # pass: ptr to operand |
| 9327 | bsr.l norm # normalize result |
| 9328 | neg.w %d0 # new exponent = -(shft val) |
| 9329 | addi.w &0x6000,%d0 # add new bias to exponent |
| 9330 | mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp |
| 9331 | andi.w &0x8000,%d1 # keep old sign |
| 9332 | andi.w &0x7fff,%d0 # clear sign position |
| 9333 | or.w %d1,%d0 # concat old sign, new exponent |
| 9334 | mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent |
| 9335 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| 9336 | rts |
| 9337 | |
| 9338 | # |
| 9339 | # operand is either single or double |
| 9340 | # |
| 9341 | fneg_not_ext: |
| 9342 | cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec |
| 9343 | bne.b fneg_dbl |
| 9344 | |
| 9345 | # |
| 9346 | # operand is to be rounded to single precision |
| 9347 | # |
| 9348 | fneg_sgl: |
| 9349 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| 9350 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| 9351 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| 9352 | bsr.l scale_to_zero_src # calculate scale factor |
| 9353 | |
| 9354 | cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow? |
| 9355 | bge.w fneg_sd_unfl # yes; go handle underflow |
| 9356 | cmpi.l %d0,&0x3fff-0x407e # will move in overflow? |
| 9357 | beq.w fneg_sd_may_ovfl # maybe; go check |
| 9358 | blt.w fneg_sd_ovfl # yes; go handle overflow |
| 9359 | |
| 9360 | # |
| 9361 | # operand will NOT overflow or underflow when moved in to the fp reg file |
| 9362 | # |
| 9363 | fneg_sd_normal: |
| 9364 | fmov.l &0x0,%fpsr # clear FPSR |
| 9365 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 9366 | |
| 9367 | fneg.x FP_SCR0(%a6),%fp0 # perform negation |
| 9368 | |
| 9369 | fmov.l %fpsr,%d1 # save FPSR |
| 9370 | fmov.l &0x0,%fpcr # clear FPCR |
| 9371 | |
| 9372 | or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| 9373 | |
| 9374 | fneg_sd_normal_exit: |
| 9375 | mov.l %d2,-(%sp) # save d2 |
| 9376 | fmovm.x &0x80,FP_SCR0(%a6) # store out result |
| 9377 | mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp |
| 9378 | mov.w %d1,%d2 # make a copy |
| 9379 | andi.l &0x7fff,%d1 # strip sign |
| 9380 | sub.l %d0,%d1 # add scale factor |
| 9381 | andi.w &0x8000,%d2 # keep old sign |
| 9382 | or.w %d1,%d2 # concat old sign,new exp |
| 9383 | mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent |
| 9384 | mov.l (%sp)+,%d2 # restore d2 |
| 9385 | fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 |
| 9386 | rts |
| 9387 | |
| 9388 | # |
| 9389 | # operand is to be rounded to double precision |
| 9390 | # |
| 9391 | fneg_dbl: |
| 9392 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| 9393 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| 9394 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| 9395 | bsr.l scale_to_zero_src # calculate scale factor |
| 9396 | |
| 9397 | cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow? |
| 9398 | bge.b fneg_sd_unfl # yes; go handle underflow |
| 9399 | cmpi.l %d0,&0x3fff-0x43fe # will move in overflow? |
| 9400 | beq.w fneg_sd_may_ovfl # maybe; go check |
| 9401 | blt.w fneg_sd_ovfl # yes; go handle overflow |
| 9402 | bra.w fneg_sd_normal # no; ho handle normalized op |
| 9403 | |
| 9404 | # |
| 9405 | # operand WILL underflow when moved in to the fp register file |
| 9406 | # |
| 9407 | fneg_sd_unfl: |
| 9408 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit |
| 9409 | |
| 9410 | eori.b &0x80,FP_SCR0_EX(%a6) # negate sign |
| 9411 | bpl.b fneg_sd_unfl_tst |
| 9412 | bset &neg_bit,FPSR_CC(%a6) # set 'N' ccode bit |
| 9413 | |
| 9414 | # if underflow or inexact is enabled, go calculate EXOP first. |
| 9415 | fneg_sd_unfl_tst: |
| 9416 | mov.b FPCR_ENABLE(%a6),%d1 |
| 9417 | andi.b &0x0b,%d1 # is UNFL or INEX enabled? |
| 9418 | bne.b fneg_sd_unfl_ena # yes |
| 9419 | |
| 9420 | fneg_sd_unfl_dis: |
| 9421 | lea FP_SCR0(%a6),%a0 # pass: result addr |
| 9422 | mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode |
| 9423 | bsr.l unf_res # calculate default result |
| 9424 | or.b %d0,FPSR_CC(%a6) # unf_res may have set 'Z' |
| 9425 | fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 |
| 9426 | rts |
| 9427 | |
| 9428 | # |
| 9429 | # operand will underflow AND underflow is enabled. |
| 9430 | # therefore, we must return the result rounded to extended precision. |
| 9431 | # |
| 9432 | fneg_sd_unfl_ena: |
| 9433 | mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) |
| 9434 | mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) |
| 9435 | mov.w FP_SCR0_EX(%a6),%d1 # load current exponent |
| 9436 | |
| 9437 | mov.l %d2,-(%sp) # save d2 |
| 9438 | mov.l %d1,%d2 # make a copy |
| 9439 | andi.l &0x7fff,%d1 # strip sign |
| 9440 | andi.w &0x8000,%d2 # keep old sign |
| 9441 | sub.l %d0,%d1 # subtract scale factor |
| 9442 | addi.l &0x6000,%d1 # add new bias |
| 9443 | andi.w &0x7fff,%d1 |
| 9444 | or.w %d2,%d1 # concat new sign,new exp |
| 9445 | mov.w %d1,FP_SCR1_EX(%a6) # insert new exp |
| 9446 | fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 |
| 9447 | mov.l (%sp)+,%d2 # restore d2 |
| 9448 | bra.b fneg_sd_unfl_dis |
| 9449 | |
| 9450 | # |
| 9451 | # operand WILL overflow. |
| 9452 | # |
| 9453 | fneg_sd_ovfl: |
| 9454 | fmov.l &0x0,%fpsr # clear FPSR |
| 9455 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 9456 | |
| 9457 | fneg.x FP_SCR0(%a6),%fp0 # perform negation |
| 9458 | |
| 9459 | fmov.l &0x0,%fpcr # clear FPCR |
| 9460 | fmov.l %fpsr,%d1 # save FPSR |
| 9461 | |
| 9462 | or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| 9463 | |
| 9464 | fneg_sd_ovfl_tst: |
| 9465 | or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex |
| 9466 | |
| 9467 | mov.b FPCR_ENABLE(%a6),%d1 |
| 9468 | andi.b &0x13,%d1 # is OVFL or INEX enabled? |
| 9469 | bne.b fneg_sd_ovfl_ena # yes |
| 9470 | |
| 9471 | # |
| 9472 | # OVFL is not enabled; therefore, we must create the default result by |
| 9473 | # calling ovf_res(). |
| 9474 | # |
| 9475 | fneg_sd_ovfl_dis: |
| 9476 | btst &neg_bit,FPSR_CC(%a6) # is result negative? |
| 9477 | sne %d1 # set sign param accordingly |
| 9478 | mov.l L_SCR3(%a6),%d0 # pass: prec,mode |
| 9479 | bsr.l ovf_res # calculate default result |
| 9480 | or.b %d0,FPSR_CC(%a6) # set INF,N if applicable |
| 9481 | fmovm.x (%a0),&0x80 # return default result in fp0 |
| 9482 | rts |
| 9483 | |
| 9484 | # |
| 9485 | # OVFL is enabled. |
| 9486 | # the INEX2 bit has already been updated by the round to the correct precision. |
| 9487 | # now, round to extended(and don't alter the FPSR). |
| 9488 | # |
| 9489 | fneg_sd_ovfl_ena: |
| 9490 | mov.l %d2,-(%sp) # save d2 |
| 9491 | mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} |
| 9492 | mov.l %d1,%d2 # make a copy |
| 9493 | andi.l &0x7fff,%d1 # strip sign |
| 9494 | andi.w &0x8000,%d2 # keep old sign |
| 9495 | sub.l %d0,%d1 # add scale factor |
| 9496 | subi.l &0x6000,%d1 # subtract bias |
| 9497 | andi.w &0x7fff,%d1 |
| 9498 | or.w %d2,%d1 # concat sign,exp |
| 9499 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| 9500 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| 9501 | mov.l (%sp)+,%d2 # restore d2 |
| 9502 | bra.b fneg_sd_ovfl_dis |
| 9503 | |
| 9504 | # |
| 9505 | # the move in MAY underflow. so... |
| 9506 | # |
| 9507 | fneg_sd_may_ovfl: |
| 9508 | fmov.l &0x0,%fpsr # clear FPSR |
| 9509 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 9510 | |
| 9511 | fneg.x FP_SCR0(%a6),%fp0 # perform negation |
| 9512 | |
| 9513 | fmov.l %fpsr,%d1 # save status |
| 9514 | fmov.l &0x0,%fpcr # clear FPCR |
| 9515 | |
| 9516 | or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| 9517 | |
| 9518 | fabs.x %fp0,%fp1 # make a copy of result |
| 9519 | fcmp.b %fp1,&0x2 # is |result| >= 2.b? |
| 9520 | fbge.w fneg_sd_ovfl_tst # yes; overflow has occurred |
| 9521 | |
| 9522 | # no, it didn't overflow; we have correct result |
| 9523 | bra.w fneg_sd_normal_exit |
| 9524 | |
| 9525 | ########################################################################## |
| 9526 | |
| 9527 | # |
| 9528 | # input is not normalized; what is it? |
| 9529 | # |
| 9530 | fneg_not_norm: |
| 9531 | cmpi.b %d1,&DENORM # weed out DENORM |
| 9532 | beq.w fneg_denorm |
| 9533 | cmpi.b %d1,&SNAN # weed out SNAN |
| 9534 | beq.l res_snan_1op |
| 9535 | cmpi.b %d1,&QNAN # weed out QNAN |
| 9536 | beq.l res_qnan_1op |
| 9537 | |
| 9538 | # |
| 9539 | # do the fneg; at this point, only possible ops are ZERO and INF. |
| 9540 | # use fneg to determine ccodes. |
| 9541 | # prec:mode should be zero at this point but it won't affect answer anyways. |
| 9542 | # |
| 9543 | fneg.x SRC_EX(%a0),%fp0 # do fneg |
| 9544 | fmov.l %fpsr,%d0 |
| 9545 | rol.l &0x8,%d0 # put ccodes in lo byte |
| 9546 | mov.b %d0,FPSR_CC(%a6) # insert correct ccodes |
| 9547 | rts |
| 9548 | |
| 9549 | ######################################################################### |
| 9550 | # XDEF **************************************************************** # |
| 9551 | # ftst(): emulates the ftest instruction # |
| 9552 | # # |
| 9553 | # XREF **************************************************************** # |
| 9554 | # res{s,q}nan_1op() - set NAN result for monadic instruction # |
| 9555 | # # |
| 9556 | # INPUT *************************************************************** # |
| 9557 | # a0 = pointer to extended precision source operand # |
| 9558 | # # |
| 9559 | # OUTPUT ************************************************************** # |
| 9560 | # none # |
| 9561 | # # |
| 9562 | # ALGORITHM *********************************************************** # |
| 9563 | # Check the source operand tag (STAG) and set the FPCR according # |
| 9564 | # to the operand type and sign. # |
| 9565 | # # |
| 9566 | ######################################################################### |
| 9567 | |
| 9568 | global ftst |
| 9569 | ftst: |
| 9570 | mov.b STAG(%a6),%d1 |
| 9571 | bne.b ftst_not_norm # optimize on non-norm input |
| 9572 | |
| 9573 | # |
| 9574 | # Norm: |
| 9575 | # |
| 9576 | ftst_norm: |
| 9577 | tst.b SRC_EX(%a0) # is operand negative? |
| 9578 | bmi.b ftst_norm_m # yes |
| 9579 | rts |
| 9580 | ftst_norm_m: |
| 9581 | mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit |
| 9582 | rts |
| 9583 | |
| 9584 | # |
| 9585 | # input is not normalized; what is it? |
| 9586 | # |
| 9587 | ftst_not_norm: |
| 9588 | cmpi.b %d1,&ZERO # weed out ZERO |
| 9589 | beq.b ftst_zero |
| 9590 | cmpi.b %d1,&INF # weed out INF |
| 9591 | beq.b ftst_inf |
| 9592 | cmpi.b %d1,&SNAN # weed out SNAN |
| 9593 | beq.l res_snan_1op |
| 9594 | cmpi.b %d1,&QNAN # weed out QNAN |
| 9595 | beq.l res_qnan_1op |
| 9596 | |
| 9597 | # |
| 9598 | # Denorm: |
| 9599 | # |
| 9600 | ftst_denorm: |
| 9601 | tst.b SRC_EX(%a0) # is operand negative? |
| 9602 | bmi.b ftst_denorm_m # yes |
| 9603 | rts |
| 9604 | ftst_denorm_m: |
| 9605 | mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit |
| 9606 | rts |
| 9607 | |
| 9608 | # |
| 9609 | # Infinity: |
| 9610 | # |
| 9611 | ftst_inf: |
| 9612 | tst.b SRC_EX(%a0) # is operand negative? |
| 9613 | bmi.b ftst_inf_m # yes |
| 9614 | ftst_inf_p: |
| 9615 | mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit |
| 9616 | rts |
| 9617 | ftst_inf_m: |
| 9618 | mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'I','N' ccode bits |
| 9619 | rts |
| 9620 | |
| 9621 | # |
| 9622 | # Zero: |
| 9623 | # |
| 9624 | ftst_zero: |
| 9625 | tst.b SRC_EX(%a0) # is operand negative? |
| 9626 | bmi.b ftst_zero_m # yes |
| 9627 | ftst_zero_p: |
| 9628 | mov.b &z_bmask,FPSR_CC(%a6) # set 'N' ccode bit |
| 9629 | rts |
| 9630 | ftst_zero_m: |
| 9631 | mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits |
| 9632 | rts |
| 9633 | |
| 9634 | ######################################################################### |
| 9635 | # XDEF **************************************************************** # |
| 9636 | # fint(): emulates the fint instruction # |
| 9637 | # # |
| 9638 | # XREF **************************************************************** # |
| 9639 | # res_{s,q}nan_1op() - set NAN result for monadic operation # |
| 9640 | # # |
| 9641 | # INPUT *************************************************************** # |
| 9642 | # a0 = pointer to extended precision source operand # |
| 9643 | # d0 = round precision/mode # |
| 9644 | # # |
| 9645 | # OUTPUT ************************************************************** # |
| 9646 | # fp0 = result # |
| 9647 | # # |
| 9648 | # ALGORITHM *********************************************************** # |
| 9649 | # Separate according to operand type. Unnorms don't pass through # |
| 9650 | # here. For norms, load the rounding mode/prec, execute a "fint", then # |
| 9651 | # store the resulting FPSR bits. # |
| 9652 | # For denorms, force the j-bit to a one and do the same as for # |
| 9653 | # norms. Denorms are so low that the answer will either be a zero or a # |
| 9654 | # one. # |
| 9655 | # For zeroes/infs/NANs, return the same while setting the FPSR # |
| 9656 | # as appropriate. # |
| 9657 | # # |
| 9658 | ######################################################################### |
| 9659 | |
| 9660 | global fint |
| 9661 | fint: |
| 9662 | mov.b STAG(%a6),%d1 |
| 9663 | bne.b fint_not_norm # optimize on non-norm input |
| 9664 | |
| 9665 | # |
| 9666 | # Norm: |
| 9667 | # |
| 9668 | fint_norm: |
| 9669 | andi.b &0x30,%d0 # set prec = ext |
| 9670 | |
| 9671 | fmov.l %d0,%fpcr # set FPCR |
| 9672 | fmov.l &0x0,%fpsr # clear FPSR |
| 9673 | |
| 9674 | fint.x SRC(%a0),%fp0 # execute fint |
| 9675 | |
| 9676 | fmov.l &0x0,%fpcr # clear FPCR |
| 9677 | fmov.l %fpsr,%d0 # save FPSR |
| 9678 | or.l %d0,USER_FPSR(%a6) # set exception bits |
| 9679 | |
| 9680 | rts |
| 9681 | |
| 9682 | # |
| 9683 | # input is not normalized; what is it? |
| 9684 | # |
| 9685 | fint_not_norm: |
| 9686 | cmpi.b %d1,&ZERO # weed out ZERO |
| 9687 | beq.b fint_zero |
| 9688 | cmpi.b %d1,&INF # weed out INF |
| 9689 | beq.b fint_inf |
| 9690 | cmpi.b %d1,&DENORM # weed out DENORM |
| 9691 | beq.b fint_denorm |
| 9692 | cmpi.b %d1,&SNAN # weed out SNAN |
| 9693 | beq.l res_snan_1op |
| 9694 | bra.l res_qnan_1op # weed out QNAN |
| 9695 | |
| 9696 | # |
| 9697 | # Denorm: |
| 9698 | # |
| 9699 | # for DENORMs, the result will be either (+/-)ZERO or (+/-)1. |
| 9700 | # also, the INEX2 and AINEX exception bits will be set. |
| 9701 | # so, we could either set these manually or force the DENORM |
| 9702 | # to a very small NORM and ship it to the NORM routine. |
| 9703 | # I do the latter. |
| 9704 | # |
| 9705 | fint_denorm: |
| 9706 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp |
| 9707 | mov.b &0x80,FP_SCR0_HI(%a6) # force DENORM ==> small NORM |
| 9708 | lea FP_SCR0(%a6),%a0 |
| 9709 | bra.b fint_norm |
| 9710 | |
| 9711 | # |
| 9712 | # Zero: |
| 9713 | # |
| 9714 | fint_zero: |
| 9715 | tst.b SRC_EX(%a0) # is ZERO negative? |
| 9716 | bmi.b fint_zero_m # yes |
| 9717 | fint_zero_p: |
| 9718 | fmov.s &0x00000000,%fp0 # return +ZERO in fp0 |
| 9719 | mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit |
| 9720 | rts |
| 9721 | fint_zero_m: |
| 9722 | fmov.s &0x80000000,%fp0 # return -ZERO in fp0 |
| 9723 | mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits |
| 9724 | rts |
| 9725 | |
| 9726 | # |
| 9727 | # Infinity: |
| 9728 | # |
| 9729 | fint_inf: |
| 9730 | fmovm.x SRC(%a0),&0x80 # return result in fp0 |
| 9731 | tst.b SRC_EX(%a0) # is INF negative? |
| 9732 | bmi.b fint_inf_m # yes |
| 9733 | fint_inf_p: |
| 9734 | mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit |
| 9735 | rts |
| 9736 | fint_inf_m: |
| 9737 | mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits |
| 9738 | rts |
| 9739 | |
| 9740 | ######################################################################### |
| 9741 | # XDEF **************************************************************** # |
| 9742 | # fintrz(): emulates the fintrz instruction # |
| 9743 | # # |
| 9744 | # XREF **************************************************************** # |
| 9745 | # res_{s,q}nan_1op() - set NAN result for monadic operation # |
| 9746 | # # |
| 9747 | # INPUT *************************************************************** # |
| 9748 | # a0 = pointer to extended precision source operand # |
| 9749 | # d0 = round precision/mode # |
| 9750 | # # |
| 9751 | # OUTPUT ************************************************************** # |
| 9752 | # fp0 = result # |
| 9753 | # # |
| 9754 | # ALGORITHM *********************************************************** # |
| 9755 | # Separate according to operand type. Unnorms don't pass through # |
| 9756 | # here. For norms, load the rounding mode/prec, execute a "fintrz", # |
| 9757 | # then store the resulting FPSR bits. # |
| 9758 | # For denorms, force the j-bit to a one and do the same as for # |
| 9759 | # norms. Denorms are so low that the answer will either be a zero or a # |
| 9760 | # one. # |
| 9761 | # For zeroes/infs/NANs, return the same while setting the FPSR # |
| 9762 | # as appropriate. # |
| 9763 | # # |
| 9764 | ######################################################################### |
| 9765 | |
| 9766 | global fintrz |
| 9767 | fintrz: |
| 9768 | mov.b STAG(%a6),%d1 |
| 9769 | bne.b fintrz_not_norm # optimize on non-norm input |
| 9770 | |
| 9771 | # |
| 9772 | # Norm: |
| 9773 | # |
| 9774 | fintrz_norm: |
| 9775 | fmov.l &0x0,%fpsr # clear FPSR |
| 9776 | |
| 9777 | fintrz.x SRC(%a0),%fp0 # execute fintrz |
| 9778 | |
| 9779 | fmov.l %fpsr,%d0 # save FPSR |
| 9780 | or.l %d0,USER_FPSR(%a6) # set exception bits |
| 9781 | |
| 9782 | rts |
| 9783 | |
| 9784 | # |
| 9785 | # input is not normalized; what is it? |
| 9786 | # |
| 9787 | fintrz_not_norm: |
| 9788 | cmpi.b %d1,&ZERO # weed out ZERO |
| 9789 | beq.b fintrz_zero |
| 9790 | cmpi.b %d1,&INF # weed out INF |
| 9791 | beq.b fintrz_inf |
| 9792 | cmpi.b %d1,&DENORM # weed out DENORM |
| 9793 | beq.b fintrz_denorm |
| 9794 | cmpi.b %d1,&SNAN # weed out SNAN |
| 9795 | beq.l res_snan_1op |
| 9796 | bra.l res_qnan_1op # weed out QNAN |
| 9797 | |
| 9798 | # |
| 9799 | # Denorm: |
| 9800 | # |
| 9801 | # for DENORMs, the result will be (+/-)ZERO. |
| 9802 | # also, the INEX2 and AINEX exception bits will be set. |
| 9803 | # so, we could either set these manually or force the DENORM |
| 9804 | # to a very small NORM and ship it to the NORM routine. |
| 9805 | # I do the latter. |
| 9806 | # |
| 9807 | fintrz_denorm: |
| 9808 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp |
| 9809 | mov.b &0x80,FP_SCR0_HI(%a6) # force DENORM ==> small NORM |
| 9810 | lea FP_SCR0(%a6),%a0 |
| 9811 | bra.b fintrz_norm |
| 9812 | |
| 9813 | # |
| 9814 | # Zero: |
| 9815 | # |
| 9816 | fintrz_zero: |
| 9817 | tst.b SRC_EX(%a0) # is ZERO negative? |
| 9818 | bmi.b fintrz_zero_m # yes |
| 9819 | fintrz_zero_p: |
| 9820 | fmov.s &0x00000000,%fp0 # return +ZERO in fp0 |
| 9821 | mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit |
| 9822 | rts |
| 9823 | fintrz_zero_m: |
| 9824 | fmov.s &0x80000000,%fp0 # return -ZERO in fp0 |
| 9825 | mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits |
| 9826 | rts |
| 9827 | |
| 9828 | # |
| 9829 | # Infinity: |
| 9830 | # |
| 9831 | fintrz_inf: |
| 9832 | fmovm.x SRC(%a0),&0x80 # return result in fp0 |
| 9833 | tst.b SRC_EX(%a0) # is INF negative? |
| 9834 | bmi.b fintrz_inf_m # yes |
| 9835 | fintrz_inf_p: |
| 9836 | mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit |
| 9837 | rts |
| 9838 | fintrz_inf_m: |
| 9839 | mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits |
| 9840 | rts |
| 9841 | |
| 9842 | ######################################################################### |
| 9843 | # XDEF **************************************************************** # |
| 9844 | # fabs(): emulates the fabs instruction # |
| 9845 | # fsabs(): emulates the fsabs instruction # |
| 9846 | # fdabs(): emulates the fdabs instruction # |
| 9847 | # # |
| 9848 | # XREF **************************************************************** # |
| 9849 | # norm() - normalize denorm mantissa to provide EXOP # |
| 9850 | # scale_to_zero_src() - make exponent. = 0; get scale factor # |
| 9851 | # unf_res() - calculate underflow result # |
| 9852 | # ovf_res() - calculate overflow result # |
| 9853 | # res_{s,q}nan_1op() - set NAN result for monadic operation # |
| 9854 | # # |
| 9855 | # INPUT *************************************************************** # |
| 9856 | # a0 = pointer to extended precision source operand # |
| 9857 | # d0 = rnd precision/mode # |
| 9858 | # # |
| 9859 | # OUTPUT ************************************************************** # |
| 9860 | # fp0 = result # |
| 9861 | # fp1 = EXOP (if exception occurred) # |
| 9862 | # # |
| 9863 | # ALGORITHM *********************************************************** # |
| 9864 | # Handle NANs, infinities, and zeroes as special cases. Divide # |
| 9865 | # norms into extended, single, and double precision. # |
| 9866 | # Simply clear sign for extended precision norm. Ext prec denorm # |
| 9867 | # gets an EXOP created for it since it's an underflow. # |
| 9868 | # Double and single precision can overflow and underflow. First, # |
| 9869 | # scale the operand such that the exponent is zero. Perform an "fabs" # |
| 9870 | # using the correct rnd mode/prec. Check to see if the original # |
| 9871 | # exponent would take an exception. If so, use unf_res() or ovf_res() # |
| 9872 | # to calculate the default result. Also, create the EXOP for the # |
| 9873 | # exceptional case. If no exception should occur, insert the correct # |
| 9874 | # result exponent and return. # |
| 9875 | # Unnorms don't pass through here. # |
| 9876 | # # |
| 9877 | ######################################################################### |
| 9878 | |
| 9879 | global fsabs |
| 9880 | fsabs: |
| 9881 | andi.b &0x30,%d0 # clear rnd prec |
| 9882 | ori.b &s_mode*0x10,%d0 # insert sgl precision |
| 9883 | bra.b fabs |
| 9884 | |
| 9885 | global fdabs |
| 9886 | fdabs: |
| 9887 | andi.b &0x30,%d0 # clear rnd prec |
| 9888 | ori.b &d_mode*0x10,%d0 # insert dbl precision |
| 9889 | |
| 9890 | global fabs |
| 9891 | fabs: |
| 9892 | mov.l %d0,L_SCR3(%a6) # store rnd info |
| 9893 | mov.b STAG(%a6),%d1 |
| 9894 | bne.w fabs_not_norm # optimize on non-norm input |
| 9895 | |
| 9896 | # |
| 9897 | # ABSOLUTE VALUE: norms and denorms ONLY! |
| 9898 | # |
| 9899 | fabs_norm: |
| 9900 | andi.b &0xc0,%d0 # is precision extended? |
| 9901 | bne.b fabs_not_ext # no; go handle sgl or dbl |
| 9902 | |
| 9903 | # |
| 9904 | # precision selected is extended. so...we can not get an underflow |
| 9905 | # or overflow because of rounding to the correct precision. so... |
| 9906 | # skip the scaling and unscaling... |
| 9907 | # |
| 9908 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| 9909 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| 9910 | mov.w SRC_EX(%a0),%d1 |
| 9911 | bclr &15,%d1 # force absolute value |
| 9912 | mov.w %d1,FP_SCR0_EX(%a6) # insert exponent |
| 9913 | fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 |
| 9914 | rts |
| 9915 | |
| 9916 | # |
| 9917 | # for an extended precision DENORM, the UNFL exception bit is set |
| 9918 | # the accrued bit is NOT set in this instance(no inexactness!) |
| 9919 | # |
| 9920 | fabs_denorm: |
| 9921 | andi.b &0xc0,%d0 # is precision extended? |
| 9922 | bne.b fabs_not_ext # no |
| 9923 | |
| 9924 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit |
| 9925 | |
| 9926 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| 9927 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| 9928 | mov.w SRC_EX(%a0),%d0 |
| 9929 | bclr &15,%d0 # clear sign |
| 9930 | mov.w %d0,FP_SCR0_EX(%a6) # insert exponent |
| 9931 | |
| 9932 | fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 |
| 9933 | |
| 9934 | btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? |
| 9935 | bne.b fabs_ext_unfl_ena |
| 9936 | rts |
| 9937 | |
| 9938 | # |
| 9939 | # the input is an extended DENORM and underflow is enabled in the FPCR. |
| 9940 | # normalize the mantissa and add the bias of 0x6000 to the resulting negative |
| 9941 | # exponent and insert back into the operand. |
| 9942 | # |
| 9943 | fabs_ext_unfl_ena: |
| 9944 | lea FP_SCR0(%a6),%a0 # pass: ptr to operand |
| 9945 | bsr.l norm # normalize result |
| 9946 | neg.w %d0 # new exponent = -(shft val) |
| 9947 | addi.w &0x6000,%d0 # add new bias to exponent |
| 9948 | mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp |
| 9949 | andi.w &0x8000,%d1 # keep old sign |
| 9950 | andi.w &0x7fff,%d0 # clear sign position |
| 9951 | or.w %d1,%d0 # concat old sign, new exponent |
| 9952 | mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent |
| 9953 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| 9954 | rts |
| 9955 | |
| 9956 | # |
| 9957 | # operand is either single or double |
| 9958 | # |
| 9959 | fabs_not_ext: |
| 9960 | cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec |
| 9961 | bne.b fabs_dbl |
| 9962 | |
| 9963 | # |
| 9964 | # operand is to be rounded to single precision |
| 9965 | # |
| 9966 | fabs_sgl: |
| 9967 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| 9968 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| 9969 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| 9970 | bsr.l scale_to_zero_src # calculate scale factor |
| 9971 | |
| 9972 | cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow? |
| 9973 | bge.w fabs_sd_unfl # yes; go handle underflow |
| 9974 | cmpi.l %d0,&0x3fff-0x407e # will move in overflow? |
| 9975 | beq.w fabs_sd_may_ovfl # maybe; go check |
| 9976 | blt.w fabs_sd_ovfl # yes; go handle overflow |
| 9977 | |
| 9978 | # |
| 9979 | # operand will NOT overflow or underflow when moved in to the fp reg file |
| 9980 | # |
| 9981 | fabs_sd_normal: |
| 9982 | fmov.l &0x0,%fpsr # clear FPSR |
| 9983 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 9984 | |
| 9985 | fabs.x FP_SCR0(%a6),%fp0 # perform absolute |
| 9986 | |
| 9987 | fmov.l %fpsr,%d1 # save FPSR |
| 9988 | fmov.l &0x0,%fpcr # clear FPCR |
| 9989 | |
| 9990 | or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| 9991 | |
| 9992 | fabs_sd_normal_exit: |
| 9993 | mov.l %d2,-(%sp) # save d2 |
| 9994 | fmovm.x &0x80,FP_SCR0(%a6) # store out result |
| 9995 | mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp |
| 9996 | mov.l %d1,%d2 # make a copy |
| 9997 | andi.l &0x7fff,%d1 # strip sign |
| 9998 | sub.l %d0,%d1 # add scale factor |
| 9999 | andi.w &0x8000,%d2 # keep old sign |
| 10000 | or.w %d1,%d2 # concat old sign,new exp |
| 10001 | mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent |
| 10002 | mov.l (%sp)+,%d2 # restore d2 |
| 10003 | fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 |
| 10004 | rts |
| 10005 | |
| 10006 | # |
| 10007 | # operand is to be rounded to double precision |
| 10008 | # |
| 10009 | fabs_dbl: |
| 10010 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| 10011 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| 10012 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| 10013 | bsr.l scale_to_zero_src # calculate scale factor |
| 10014 | |
| 10015 | cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow? |
| 10016 | bge.b fabs_sd_unfl # yes; go handle underflow |
| 10017 | cmpi.l %d0,&0x3fff-0x43fe # will move in overflow? |
| 10018 | beq.w fabs_sd_may_ovfl # maybe; go check |
| 10019 | blt.w fabs_sd_ovfl # yes; go handle overflow |
| 10020 | bra.w fabs_sd_normal # no; ho handle normalized op |
| 10021 | |
| 10022 | # |
| 10023 | # operand WILL underflow when moved in to the fp register file |
| 10024 | # |
| 10025 | fabs_sd_unfl: |
| 10026 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit |
| 10027 | |
| 10028 | bclr &0x7,FP_SCR0_EX(%a6) # force absolute value |
| 10029 | |
| 10030 | # if underflow or inexact is enabled, go calculate EXOP first. |
| 10031 | mov.b FPCR_ENABLE(%a6),%d1 |
| 10032 | andi.b &0x0b,%d1 # is UNFL or INEX enabled? |
| 10033 | bne.b fabs_sd_unfl_ena # yes |
| 10034 | |
| 10035 | fabs_sd_unfl_dis: |
| 10036 | lea FP_SCR0(%a6),%a0 # pass: result addr |
| 10037 | mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode |
| 10038 | bsr.l unf_res # calculate default result |
| 10039 | or.b %d0,FPSR_CC(%a6) # set possible 'Z' ccode |
| 10040 | fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 |
| 10041 | rts |
| 10042 | |
| 10043 | # |
| 10044 | # operand will underflow AND underflow is enabled. |
| 10045 | # therefore, we must return the result rounded to extended precision. |
| 10046 | # |
| 10047 | fabs_sd_unfl_ena: |
| 10048 | mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) |
| 10049 | mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) |
| 10050 | mov.w FP_SCR0_EX(%a6),%d1 # load current exponent |
| 10051 | |
| 10052 | mov.l %d2,-(%sp) # save d2 |
| 10053 | mov.l %d1,%d2 # make a copy |
| 10054 | andi.l &0x7fff,%d1 # strip sign |
| 10055 | andi.w &0x8000,%d2 # keep old sign |
| 10056 | sub.l %d0,%d1 # subtract scale factor |
| 10057 | addi.l &0x6000,%d1 # add new bias |
| 10058 | andi.w &0x7fff,%d1 |
| 10059 | or.w %d2,%d1 # concat new sign,new exp |
| 10060 | mov.w %d1,FP_SCR1_EX(%a6) # insert new exp |
| 10061 | fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 |
| 10062 | mov.l (%sp)+,%d2 # restore d2 |
| 10063 | bra.b fabs_sd_unfl_dis |
| 10064 | |
| 10065 | # |
| 10066 | # operand WILL overflow. |
| 10067 | # |
| 10068 | fabs_sd_ovfl: |
| 10069 | fmov.l &0x0,%fpsr # clear FPSR |
| 10070 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 10071 | |
| 10072 | fabs.x FP_SCR0(%a6),%fp0 # perform absolute |
| 10073 | |
| 10074 | fmov.l &0x0,%fpcr # clear FPCR |
| 10075 | fmov.l %fpsr,%d1 # save FPSR |
| 10076 | |
| 10077 | or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| 10078 | |
| 10079 | fabs_sd_ovfl_tst: |
| 10080 | or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex |
| 10081 | |
| 10082 | mov.b FPCR_ENABLE(%a6),%d1 |
| 10083 | andi.b &0x13,%d1 # is OVFL or INEX enabled? |
| 10084 | bne.b fabs_sd_ovfl_ena # yes |
| 10085 | |
| 10086 | # |
| 10087 | # OVFL is not enabled; therefore, we must create the default result by |
| 10088 | # calling ovf_res(). |
| 10089 | # |
| 10090 | fabs_sd_ovfl_dis: |
| 10091 | btst &neg_bit,FPSR_CC(%a6) # is result negative? |
| 10092 | sne %d1 # set sign param accordingly |
| 10093 | mov.l L_SCR3(%a6),%d0 # pass: prec,mode |
| 10094 | bsr.l ovf_res # calculate default result |
| 10095 | or.b %d0,FPSR_CC(%a6) # set INF,N if applicable |
| 10096 | fmovm.x (%a0),&0x80 # return default result in fp0 |
| 10097 | rts |
| 10098 | |
| 10099 | # |
| 10100 | # OVFL is enabled. |
| 10101 | # the INEX2 bit has already been updated by the round to the correct precision. |
| 10102 | # now, round to extended(and don't alter the FPSR). |
| 10103 | # |
| 10104 | fabs_sd_ovfl_ena: |
| 10105 | mov.l %d2,-(%sp) # save d2 |
| 10106 | mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} |
| 10107 | mov.l %d1,%d2 # make a copy |
| 10108 | andi.l &0x7fff,%d1 # strip sign |
| 10109 | andi.w &0x8000,%d2 # keep old sign |
| 10110 | sub.l %d0,%d1 # add scale factor |
| 10111 | subi.l &0x6000,%d1 # subtract bias |
| 10112 | andi.w &0x7fff,%d1 |
| 10113 | or.w %d2,%d1 # concat sign,exp |
| 10114 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| 10115 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| 10116 | mov.l (%sp)+,%d2 # restore d2 |
| 10117 | bra.b fabs_sd_ovfl_dis |
| 10118 | |
| 10119 | # |
| 10120 | # the move in MAY underflow. so... |
| 10121 | # |
| 10122 | fabs_sd_may_ovfl: |
| 10123 | fmov.l &0x0,%fpsr # clear FPSR |
| 10124 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 10125 | |
| 10126 | fabs.x FP_SCR0(%a6),%fp0 # perform absolute |
| 10127 | |
| 10128 | fmov.l %fpsr,%d1 # save status |
| 10129 | fmov.l &0x0,%fpcr # clear FPCR |
| 10130 | |
| 10131 | or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| 10132 | |
| 10133 | fabs.x %fp0,%fp1 # make a copy of result |
| 10134 | fcmp.b %fp1,&0x2 # is |result| >= 2.b? |
| 10135 | fbge.w fabs_sd_ovfl_tst # yes; overflow has occurred |
| 10136 | |
| 10137 | # no, it didn't overflow; we have correct result |
| 10138 | bra.w fabs_sd_normal_exit |
| 10139 | |
| 10140 | ########################################################################## |
| 10141 | |
| 10142 | # |
| 10143 | # input is not normalized; what is it? |
| 10144 | # |
| 10145 | fabs_not_norm: |
| 10146 | cmpi.b %d1,&DENORM # weed out DENORM |
| 10147 | beq.w fabs_denorm |
| 10148 | cmpi.b %d1,&SNAN # weed out SNAN |
| 10149 | beq.l res_snan_1op |
| 10150 | cmpi.b %d1,&QNAN # weed out QNAN |
| 10151 | beq.l res_qnan_1op |
| 10152 | |
| 10153 | fabs.x SRC(%a0),%fp0 # force absolute value |
| 10154 | |
| 10155 | cmpi.b %d1,&INF # weed out INF |
| 10156 | beq.b fabs_inf |
| 10157 | fabs_zero: |
| 10158 | mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit |
| 10159 | rts |
| 10160 | fabs_inf: |
| 10161 | mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit |
| 10162 | rts |
| 10163 | |
| 10164 | ######################################################################### |
| 10165 | # XDEF **************************************************************** # |
| 10166 | # fcmp(): fp compare op routine # |
| 10167 | # # |
| 10168 | # XREF **************************************************************** # |
| 10169 | # res_qnan() - return QNAN result # |
| 10170 | # res_snan() - return SNAN result # |
| 10171 | # # |
| 10172 | # INPUT *************************************************************** # |
| 10173 | # a0 = pointer to extended precision source operand # |
| 10174 | # a1 = pointer to extended precision destination operand # |
| 10175 | # d0 = round prec/mode # |
| 10176 | # # |
| 10177 | # OUTPUT ************************************************************** # |
| 10178 | # None # |
| 10179 | # # |
| 10180 | # ALGORITHM *********************************************************** # |
| 10181 | # Handle NANs and denorms as special cases. For everything else, # |
| 10182 | # just use the actual fcmp instruction to produce the correct condition # |
| 10183 | # codes. # |
| 10184 | # # |
| 10185 | ######################################################################### |
| 10186 | |
| 10187 | global fcmp |
| 10188 | fcmp: |
| 10189 | clr.w %d1 |
| 10190 | mov.b DTAG(%a6),%d1 |
| 10191 | lsl.b &0x3,%d1 |
| 10192 | or.b STAG(%a6),%d1 |
| 10193 | bne.b fcmp_not_norm # optimize on non-norm input |
| 10194 | |
| 10195 | # |
| 10196 | # COMPARE FP OPs : NORMs, ZEROs, INFs, and "corrected" DENORMs |
| 10197 | # |
| 10198 | fcmp_norm: |
| 10199 | fmovm.x DST(%a1),&0x80 # load dst op |
| 10200 | |
| 10201 | fcmp.x %fp0,SRC(%a0) # do compare |
| 10202 | |
| 10203 | fmov.l %fpsr,%d0 # save FPSR |
| 10204 | rol.l &0x8,%d0 # extract ccode bits |
| 10205 | mov.b %d0,FPSR_CC(%a6) # set ccode bits(no exc bits are set) |
| 10206 | |
| 10207 | rts |
| 10208 | |
| 10209 | # |
| 10210 | # fcmp: inputs are not both normalized; what are they? |
| 10211 | # |
| 10212 | fcmp_not_norm: |
| 10213 | mov.w (tbl_fcmp_op.b,%pc,%d1.w*2),%d1 |
| 10214 | jmp (tbl_fcmp_op.b,%pc,%d1.w*1) |
| 10215 | |
| 10216 | swbeg &48 |
| 10217 | tbl_fcmp_op: |
| 10218 | short fcmp_norm - tbl_fcmp_op # NORM - NORM |
| 10219 | short fcmp_norm - tbl_fcmp_op # NORM - ZERO |
| 10220 | short fcmp_norm - tbl_fcmp_op # NORM - INF |
| 10221 | short fcmp_res_qnan - tbl_fcmp_op # NORM - QNAN |
| 10222 | short fcmp_nrm_dnrm - tbl_fcmp_op # NORM - DENORM |
| 10223 | short fcmp_res_snan - tbl_fcmp_op # NORM - SNAN |
| 10224 | short tbl_fcmp_op - tbl_fcmp_op # |
| 10225 | short tbl_fcmp_op - tbl_fcmp_op # |
| 10226 | |
| 10227 | short fcmp_norm - tbl_fcmp_op # ZERO - NORM |
| 10228 | short fcmp_norm - tbl_fcmp_op # ZERO - ZERO |
| 10229 | short fcmp_norm - tbl_fcmp_op # ZERO - INF |
| 10230 | short fcmp_res_qnan - tbl_fcmp_op # ZERO - QNAN |
| 10231 | short fcmp_dnrm_s - tbl_fcmp_op # ZERO - DENORM |
| 10232 | short fcmp_res_snan - tbl_fcmp_op # ZERO - SNAN |
| 10233 | short tbl_fcmp_op - tbl_fcmp_op # |
| 10234 | short tbl_fcmp_op - tbl_fcmp_op # |
| 10235 | |
| 10236 | short fcmp_norm - tbl_fcmp_op # INF - NORM |
| 10237 | short fcmp_norm - tbl_fcmp_op # INF - ZERO |
| 10238 | short fcmp_norm - tbl_fcmp_op # INF - INF |
| 10239 | short fcmp_res_qnan - tbl_fcmp_op # INF - QNAN |
| 10240 | short fcmp_dnrm_s - tbl_fcmp_op # INF - DENORM |
| 10241 | short fcmp_res_snan - tbl_fcmp_op # INF - SNAN |
| 10242 | short tbl_fcmp_op - tbl_fcmp_op # |
| 10243 | short tbl_fcmp_op - tbl_fcmp_op # |
| 10244 | |
| 10245 | short fcmp_res_qnan - tbl_fcmp_op # QNAN - NORM |
| 10246 | short fcmp_res_qnan - tbl_fcmp_op # QNAN - ZERO |
| 10247 | short fcmp_res_qnan - tbl_fcmp_op # QNAN - INF |
| 10248 | short fcmp_res_qnan - tbl_fcmp_op # QNAN - QNAN |
| 10249 | short fcmp_res_qnan - tbl_fcmp_op # QNAN - DENORM |
| 10250 | short fcmp_res_snan - tbl_fcmp_op # QNAN - SNAN |
| 10251 | short tbl_fcmp_op - tbl_fcmp_op # |
| 10252 | short tbl_fcmp_op - tbl_fcmp_op # |
| 10253 | |
| 10254 | short fcmp_dnrm_nrm - tbl_fcmp_op # DENORM - NORM |
| 10255 | short fcmp_dnrm_d - tbl_fcmp_op # DENORM - ZERO |
| 10256 | short fcmp_dnrm_d - tbl_fcmp_op # DENORM - INF |
| 10257 | short fcmp_res_qnan - tbl_fcmp_op # DENORM - QNAN |
| 10258 | short fcmp_dnrm_sd - tbl_fcmp_op # DENORM - DENORM |
| 10259 | short fcmp_res_snan - tbl_fcmp_op # DENORM - SNAN |
| 10260 | short tbl_fcmp_op - tbl_fcmp_op # |
| 10261 | short tbl_fcmp_op - tbl_fcmp_op # |
| 10262 | |
| 10263 | short fcmp_res_snan - tbl_fcmp_op # SNAN - NORM |
| 10264 | short fcmp_res_snan - tbl_fcmp_op # SNAN - ZERO |
| 10265 | short fcmp_res_snan - tbl_fcmp_op # SNAN - INF |
| 10266 | short fcmp_res_snan - tbl_fcmp_op # SNAN - QNAN |
| 10267 | short fcmp_res_snan - tbl_fcmp_op # SNAN - DENORM |
| 10268 | short fcmp_res_snan - tbl_fcmp_op # SNAN - SNAN |
| 10269 | short tbl_fcmp_op - tbl_fcmp_op # |
| 10270 | short tbl_fcmp_op - tbl_fcmp_op # |
| 10271 | |
| 10272 | # unlike all other functions for QNAN and SNAN, fcmp does NOT set the |
| 10273 | # 'N' bit for a negative QNAN or SNAN input so we must squelch it here. |
| 10274 | fcmp_res_qnan: |
| 10275 | bsr.l res_qnan |
| 10276 | andi.b &0xf7,FPSR_CC(%a6) |
| 10277 | rts |
| 10278 | fcmp_res_snan: |
| 10279 | bsr.l res_snan |
| 10280 | andi.b &0xf7,FPSR_CC(%a6) |
| 10281 | rts |
| 10282 | |
| 10283 | # |
| 10284 | # DENORMs are a little more difficult. |
| 10285 | # If you have a 2 DENORMs, then you can just force the j-bit to a one |
| 10286 | # and use the fcmp_norm routine. |
| 10287 | # If you have a DENORM and an INF or ZERO, just force the DENORM's j-bit to a one |
| 10288 | # and use the fcmp_norm routine. |
| 10289 | # If you have a DENORM and a NORM with opposite signs, then use fcmp_norm, also. |
| 10290 | # But with a DENORM and a NORM of the same sign, the neg bit is set if the |
| 10291 | # (1) signs are (+) and the DENORM is the dst or |
| 10292 | # (2) signs are (-) and the DENORM is the src |
| 10293 | # |
| 10294 | |
| 10295 | fcmp_dnrm_s: |
| 10296 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| 10297 | mov.l SRC_HI(%a0),%d0 |
| 10298 | bset &31,%d0 # DENORM src; make into small norm |
| 10299 | mov.l %d0,FP_SCR0_HI(%a6) |
| 10300 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| 10301 | lea FP_SCR0(%a6),%a0 |
| 10302 | bra.w fcmp_norm |
| 10303 | |
| 10304 | fcmp_dnrm_d: |
| 10305 | mov.l DST_EX(%a1),FP_SCR0_EX(%a6) |
| 10306 | mov.l DST_HI(%a1),%d0 |
| 10307 | bset &31,%d0 # DENORM src; make into small norm |
| 10308 | mov.l %d0,FP_SCR0_HI(%a6) |
| 10309 | mov.l DST_LO(%a1),FP_SCR0_LO(%a6) |
| 10310 | lea FP_SCR0(%a6),%a1 |
| 10311 | bra.w fcmp_norm |
| 10312 | |
| 10313 | fcmp_dnrm_sd: |
| 10314 | mov.w DST_EX(%a1),FP_SCR1_EX(%a6) |
| 10315 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| 10316 | mov.l DST_HI(%a1),%d0 |
| 10317 | bset &31,%d0 # DENORM dst; make into small norm |
| 10318 | mov.l %d0,FP_SCR1_HI(%a6) |
| 10319 | mov.l SRC_HI(%a0),%d0 |
| 10320 | bset &31,%d0 # DENORM dst; make into small norm |
| 10321 | mov.l %d0,FP_SCR0_HI(%a6) |
| 10322 | mov.l DST_LO(%a1),FP_SCR1_LO(%a6) |
| 10323 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| 10324 | lea FP_SCR1(%a6),%a1 |
| 10325 | lea FP_SCR0(%a6),%a0 |
| 10326 | bra.w fcmp_norm |
| 10327 | |
| 10328 | fcmp_nrm_dnrm: |
| 10329 | mov.b SRC_EX(%a0),%d0 # determine if like signs |
| 10330 | mov.b DST_EX(%a1),%d1 |
| 10331 | eor.b %d0,%d1 |
| 10332 | bmi.w fcmp_dnrm_s |
| 10333 | |
| 10334 | # signs are the same, so must determine the answer ourselves. |
| 10335 | tst.b %d0 # is src op negative? |
| 10336 | bmi.b fcmp_nrm_dnrm_m # yes |
| 10337 | rts |
| 10338 | fcmp_nrm_dnrm_m: |
| 10339 | mov.b &neg_bmask,FPSR_CC(%a6) # set 'Z' ccode bit |
| 10340 | rts |
| 10341 | |
| 10342 | fcmp_dnrm_nrm: |
| 10343 | mov.b SRC_EX(%a0),%d0 # determine if like signs |
| 10344 | mov.b DST_EX(%a1),%d1 |
| 10345 | eor.b %d0,%d1 |
| 10346 | bmi.w fcmp_dnrm_d |
| 10347 | |
| 10348 | # signs are the same, so must determine the answer ourselves. |
| 10349 | tst.b %d0 # is src op negative? |
| 10350 | bpl.b fcmp_dnrm_nrm_m # no |
| 10351 | rts |
| 10352 | fcmp_dnrm_nrm_m: |
| 10353 | mov.b &neg_bmask,FPSR_CC(%a6) # set 'Z' ccode bit |
| 10354 | rts |
| 10355 | |
| 10356 | ######################################################################### |
| 10357 | # XDEF **************************************************************** # |
| 10358 | # fsglmul(): emulates the fsglmul instruction # |
| 10359 | # # |
| 10360 | # XREF **************************************************************** # |
| 10361 | # scale_to_zero_src() - scale src exponent to zero # |
| 10362 | # scale_to_zero_dst() - scale dst exponent to zero # |
| 10363 | # unf_res4() - return default underflow result for sglop # |
| 10364 | # ovf_res() - return default overflow result # |
| 10365 | # res_qnan() - return QNAN result # |
| 10366 | # res_snan() - return SNAN result # |
| 10367 | # # |
| 10368 | # INPUT *************************************************************** # |
| 10369 | # a0 = pointer to extended precision source operand # |
| 10370 | # a1 = pointer to extended precision destination operand # |
| 10371 | # d0 rnd prec,mode # |
| 10372 | # # |
| 10373 | # OUTPUT ************************************************************** # |
| 10374 | # fp0 = result # |
| 10375 | # fp1 = EXOP (if exception occurred) # |
| 10376 | # # |
| 10377 | # ALGORITHM *********************************************************** # |
| 10378 | # Handle NANs, infinities, and zeroes as special cases. Divide # |
| 10379 | # norms/denorms into ext/sgl/dbl precision. # |
| 10380 | # For norms/denorms, scale the exponents such that a multiply # |
| 10381 | # instruction won't cause an exception. Use the regular fsglmul to # |
| 10382 | # compute a result. Check if the regular operands would have taken # |
| 10383 | # an exception. If so, return the default overflow/underflow result # |
| 10384 | # and return the EXOP if exceptions are enabled. Else, scale the # |
| 10385 | # result operand to the proper exponent. # |
| 10386 | # # |
| 10387 | ######################################################################### |
| 10388 | |
| 10389 | global fsglmul |
| 10390 | fsglmul: |
| 10391 | mov.l %d0,L_SCR3(%a6) # store rnd info |
| 10392 | |
| 10393 | clr.w %d1 |
| 10394 | mov.b DTAG(%a6),%d1 |
| 10395 | lsl.b &0x3,%d1 |
| 10396 | or.b STAG(%a6),%d1 |
| 10397 | |
| 10398 | bne.w fsglmul_not_norm # optimize on non-norm input |
| 10399 | |
| 10400 | fsglmul_norm: |
| 10401 | mov.w DST_EX(%a1),FP_SCR1_EX(%a6) |
| 10402 | mov.l DST_HI(%a1),FP_SCR1_HI(%a6) |
| 10403 | mov.l DST_LO(%a1),FP_SCR1_LO(%a6) |
| 10404 | |
| 10405 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| 10406 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| 10407 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| 10408 | |
| 10409 | bsr.l scale_to_zero_src # scale exponent |
| 10410 | mov.l %d0,-(%sp) # save scale factor 1 |
| 10411 | |
| 10412 | bsr.l scale_to_zero_dst # scale dst exponent |
| 10413 | |
| 10414 | add.l (%sp)+,%d0 # SCALE_FACTOR = scale1 + scale2 |
| 10415 | |
| 10416 | cmpi.l %d0,&0x3fff-0x7ffe # would result ovfl? |
| 10417 | beq.w fsglmul_may_ovfl # result may rnd to overflow |
| 10418 | blt.w fsglmul_ovfl # result will overflow |
| 10419 | |
| 10420 | cmpi.l %d0,&0x3fff+0x0001 # would result unfl? |
| 10421 | beq.w fsglmul_may_unfl # result may rnd to no unfl |
| 10422 | bgt.w fsglmul_unfl # result will underflow |
| 10423 | |
| 10424 | fsglmul_normal: |
| 10425 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| 10426 | |
| 10427 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 10428 | fmov.l &0x0,%fpsr # clear FPSR |
| 10429 | |
| 10430 | fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply |
| 10431 | |
| 10432 | fmov.l %fpsr,%d1 # save status |
| 10433 | fmov.l &0x0,%fpcr # clear FPCR |
| 10434 | |
| 10435 | or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| 10436 | |
| 10437 | fsglmul_normal_exit: |
| 10438 | fmovm.x &0x80,FP_SCR0(%a6) # store out result |
| 10439 | mov.l %d2,-(%sp) # save d2 |
| 10440 | mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} |
| 10441 | mov.l %d1,%d2 # make a copy |
| 10442 | andi.l &0x7fff,%d1 # strip sign |
| 10443 | andi.w &0x8000,%d2 # keep old sign |
| 10444 | sub.l %d0,%d1 # add scale factor |
| 10445 | or.w %d2,%d1 # concat old sign,new exp |
| 10446 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| 10447 | mov.l (%sp)+,%d2 # restore d2 |
| 10448 | fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 |
| 10449 | rts |
| 10450 | |
| 10451 | fsglmul_ovfl: |
| 10452 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| 10453 | |
| 10454 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 10455 | fmov.l &0x0,%fpsr # clear FPSR |
| 10456 | |
| 10457 | fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply |
| 10458 | |
| 10459 | fmov.l %fpsr,%d1 # save status |
| 10460 | fmov.l &0x0,%fpcr # clear FPCR |
| 10461 | |
| 10462 | or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| 10463 | |
| 10464 | fsglmul_ovfl_tst: |
| 10465 | |
| 10466 | # save setting this until now because this is where fsglmul_may_ovfl may jump in |
| 10467 | or.l &ovfl_inx_mask, USER_FPSR(%a6) # set ovfl/aovfl/ainex |
| 10468 | |
| 10469 | mov.b FPCR_ENABLE(%a6),%d1 |
| 10470 | andi.b &0x13,%d1 # is OVFL or INEX enabled? |
| 10471 | bne.b fsglmul_ovfl_ena # yes |
| 10472 | |
| 10473 | fsglmul_ovfl_dis: |
| 10474 | btst &neg_bit,FPSR_CC(%a6) # is result negative? |
| 10475 | sne %d1 # set sign param accordingly |
| 10476 | mov.l L_SCR3(%a6),%d0 # pass prec:rnd |
| 10477 | andi.b &0x30,%d0 # force prec = ext |
| 10478 | bsr.l ovf_res # calculate default result |
| 10479 | or.b %d0,FPSR_CC(%a6) # set INF,N if applicable |
| 10480 | fmovm.x (%a0),&0x80 # return default result in fp0 |
| 10481 | rts |
| 10482 | |
| 10483 | fsglmul_ovfl_ena: |
| 10484 | fmovm.x &0x80,FP_SCR0(%a6) # move result to stack |
| 10485 | |
| 10486 | mov.l %d2,-(%sp) # save d2 |
| 10487 | mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} |
| 10488 | mov.l %d1,%d2 # make a copy |
| 10489 | andi.l &0x7fff,%d1 # strip sign |
| 10490 | sub.l %d0,%d1 # add scale factor |
| 10491 | subi.l &0x6000,%d1 # subtract bias |
| 10492 | andi.w &0x7fff,%d1 |
| 10493 | andi.w &0x8000,%d2 # keep old sign |
| 10494 | or.w %d2,%d1 # concat old sign,new exp |
| 10495 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| 10496 | mov.l (%sp)+,%d2 # restore d2 |
| 10497 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| 10498 | bra.b fsglmul_ovfl_dis |
| 10499 | |
| 10500 | fsglmul_may_ovfl: |
| 10501 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| 10502 | |
| 10503 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 10504 | fmov.l &0x0,%fpsr # clear FPSR |
| 10505 | |
| 10506 | fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply |
| 10507 | |
| 10508 | fmov.l %fpsr,%d1 # save status |
| 10509 | fmov.l &0x0,%fpcr # clear FPCR |
| 10510 | |
| 10511 | or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| 10512 | |
| 10513 | fabs.x %fp0,%fp1 # make a copy of result |
| 10514 | fcmp.b %fp1,&0x2 # is |result| >= 2.b? |
| 10515 | fbge.w fsglmul_ovfl_tst # yes; overflow has occurred |
| 10516 | |
| 10517 | # no, it didn't overflow; we have correct result |
| 10518 | bra.w fsglmul_normal_exit |
| 10519 | |
| 10520 | fsglmul_unfl: |
| 10521 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit |
| 10522 | |
| 10523 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| 10524 | |
| 10525 | fmov.l &rz_mode*0x10,%fpcr # set FPCR |
| 10526 | fmov.l &0x0,%fpsr # clear FPSR |
| 10527 | |
| 10528 | fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply |
| 10529 | |
| 10530 | fmov.l %fpsr,%d1 # save status |
| 10531 | fmov.l &0x0,%fpcr # clear FPCR |
| 10532 | |
| 10533 | or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| 10534 | |
| 10535 | mov.b FPCR_ENABLE(%a6),%d1 |
| 10536 | andi.b &0x0b,%d1 # is UNFL or INEX enabled? |
| 10537 | bne.b fsglmul_unfl_ena # yes |
| 10538 | |
| 10539 | fsglmul_unfl_dis: |
| 10540 | fmovm.x &0x80,FP_SCR0(%a6) # store out result |
| 10541 | |
| 10542 | lea FP_SCR0(%a6),%a0 # pass: result addr |
| 10543 | mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode |
| 10544 | bsr.l unf_res4 # calculate default result |
| 10545 | or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set |
| 10546 | fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 |
| 10547 | rts |
| 10548 | |
| 10549 | # |
| 10550 | # UNFL is enabled. |
| 10551 | # |
| 10552 | fsglmul_unfl_ena: |
| 10553 | fmovm.x FP_SCR1(%a6),&0x40 # load dst op |
| 10554 | |
| 10555 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 10556 | fmov.l &0x0,%fpsr # clear FPSR |
| 10557 | |
| 10558 | fsglmul.x FP_SCR0(%a6),%fp1 # execute sgl multiply |
| 10559 | |
| 10560 | fmov.l &0x0,%fpcr # clear FPCR |
| 10561 | |
| 10562 | fmovm.x &0x40,FP_SCR0(%a6) # save result to stack |
| 10563 | mov.l %d2,-(%sp) # save d2 |
| 10564 | mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} |
| 10565 | mov.l %d1,%d2 # make a copy |
| 10566 | andi.l &0x7fff,%d1 # strip sign |
| 10567 | andi.w &0x8000,%d2 # keep old sign |
| 10568 | sub.l %d0,%d1 # add scale factor |
| 10569 | addi.l &0x6000,%d1 # add bias |
| 10570 | andi.w &0x7fff,%d1 |
| 10571 | or.w %d2,%d1 # concat old sign,new exp |
| 10572 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| 10573 | mov.l (%sp)+,%d2 # restore d2 |
| 10574 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| 10575 | bra.w fsglmul_unfl_dis |
| 10576 | |
| 10577 | fsglmul_may_unfl: |
| 10578 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| 10579 | |
| 10580 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 10581 | fmov.l &0x0,%fpsr # clear FPSR |
| 10582 | |
| 10583 | fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply |
| 10584 | |
| 10585 | fmov.l %fpsr,%d1 # save status |
| 10586 | fmov.l &0x0,%fpcr # clear FPCR |
| 10587 | |
| 10588 | or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| 10589 | |
| 10590 | fabs.x %fp0,%fp1 # make a copy of result |
| 10591 | fcmp.b %fp1,&0x2 # is |result| > 2.b? |
| 10592 | fbgt.w fsglmul_normal_exit # no; no underflow occurred |
| 10593 | fblt.w fsglmul_unfl # yes; underflow occurred |
| 10594 | |
| 10595 | # |
| 10596 | # we still don't know if underflow occurred. result is ~ equal to 2. but, |
| 10597 | # we don't know if the result was an underflow that rounded up to a 2 or |
| 10598 | # a normalized number that rounded down to a 2. so, redo the entire operation |
| 10599 | # using RZ as the rounding mode to see what the pre-rounded result is. |
| 10600 | # this case should be relatively rare. |
| 10601 | # |
| 10602 | fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 |
| 10603 | |
| 10604 | mov.l L_SCR3(%a6),%d1 |
| 10605 | andi.b &0xc0,%d1 # keep rnd prec |
| 10606 | ori.b &rz_mode*0x10,%d1 # insert RZ |
| 10607 | |
| 10608 | fmov.l %d1,%fpcr # set FPCR |
| 10609 | fmov.l &0x0,%fpsr # clear FPSR |
| 10610 | |
| 10611 | fsglmul.x FP_SCR0(%a6),%fp1 # execute sgl multiply |
| 10612 | |
| 10613 | fmov.l &0x0,%fpcr # clear FPCR |
| 10614 | fabs.x %fp1 # make absolute value |
| 10615 | fcmp.b %fp1,&0x2 # is |result| < 2.b? |
| 10616 | fbge.w fsglmul_normal_exit # no; no underflow occurred |
| 10617 | bra.w fsglmul_unfl # yes, underflow occurred |
| 10618 | |
| 10619 | ############################################################################## |
| 10620 | |
| 10621 | # |
| 10622 | # Single Precision Multiply: inputs are not both normalized; what are they? |
| 10623 | # |
| 10624 | fsglmul_not_norm: |
| 10625 | mov.w (tbl_fsglmul_op.b,%pc,%d1.w*2),%d1 |
| 10626 | jmp (tbl_fsglmul_op.b,%pc,%d1.w*1) |
| 10627 | |
| 10628 | swbeg &48 |
| 10629 | tbl_fsglmul_op: |
| 10630 | short fsglmul_norm - tbl_fsglmul_op # NORM x NORM |
| 10631 | short fsglmul_zero - tbl_fsglmul_op # NORM x ZERO |
| 10632 | short fsglmul_inf_src - tbl_fsglmul_op # NORM x INF |
| 10633 | short fsglmul_res_qnan - tbl_fsglmul_op # NORM x QNAN |
| 10634 | short fsglmul_norm - tbl_fsglmul_op # NORM x DENORM |
| 10635 | short fsglmul_res_snan - tbl_fsglmul_op # NORM x SNAN |
| 10636 | short tbl_fsglmul_op - tbl_fsglmul_op # |
| 10637 | short tbl_fsglmul_op - tbl_fsglmul_op # |
| 10638 | |
| 10639 | short fsglmul_zero - tbl_fsglmul_op # ZERO x NORM |
| 10640 | short fsglmul_zero - tbl_fsglmul_op # ZERO x ZERO |
| 10641 | short fsglmul_res_operr - tbl_fsglmul_op # ZERO x INF |
| 10642 | short fsglmul_res_qnan - tbl_fsglmul_op # ZERO x QNAN |
| 10643 | short fsglmul_zero - tbl_fsglmul_op # ZERO x DENORM |
| 10644 | short fsglmul_res_snan - tbl_fsglmul_op # ZERO x SNAN |
| 10645 | short tbl_fsglmul_op - tbl_fsglmul_op # |
| 10646 | short tbl_fsglmul_op - tbl_fsglmul_op # |
| 10647 | |
| 10648 | short fsglmul_inf_dst - tbl_fsglmul_op # INF x NORM |
| 10649 | short fsglmul_res_operr - tbl_fsglmul_op # INF x ZERO |
| 10650 | short fsglmul_inf_dst - tbl_fsglmul_op # INF x INF |
| 10651 | short fsglmul_res_qnan - tbl_fsglmul_op # INF x QNAN |
| 10652 | short fsglmul_inf_dst - tbl_fsglmul_op # INF x DENORM |
| 10653 | short fsglmul_res_snan - tbl_fsglmul_op # INF x SNAN |
| 10654 | short tbl_fsglmul_op - tbl_fsglmul_op # |
| 10655 | short tbl_fsglmul_op - tbl_fsglmul_op # |
| 10656 | |
| 10657 | short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x NORM |
| 10658 | short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x ZERO |
| 10659 | short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x INF |
| 10660 | short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x QNAN |
| 10661 | short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x DENORM |
| 10662 | short fsglmul_res_snan - tbl_fsglmul_op # QNAN x SNAN |
| 10663 | short tbl_fsglmul_op - tbl_fsglmul_op # |
| 10664 | short tbl_fsglmul_op - tbl_fsglmul_op # |
| 10665 | |
| 10666 | short fsglmul_norm - tbl_fsglmul_op # NORM x NORM |
| 10667 | short fsglmul_zero - tbl_fsglmul_op # NORM x ZERO |
| 10668 | short fsglmul_inf_src - tbl_fsglmul_op # NORM x INF |
| 10669 | short fsglmul_res_qnan - tbl_fsglmul_op # NORM x QNAN |
| 10670 | short fsglmul_norm - tbl_fsglmul_op # NORM x DENORM |
| 10671 | short fsglmul_res_snan - tbl_fsglmul_op # NORM x SNAN |
| 10672 | short tbl_fsglmul_op - tbl_fsglmul_op # |
| 10673 | short tbl_fsglmul_op - tbl_fsglmul_op # |
| 10674 | |
| 10675 | short fsglmul_res_snan - tbl_fsglmul_op # SNAN x NORM |
| 10676 | short fsglmul_res_snan - tbl_fsglmul_op # SNAN x ZERO |
| 10677 | short fsglmul_res_snan - tbl_fsglmul_op # SNAN x INF |
| 10678 | short fsglmul_res_snan - tbl_fsglmul_op # SNAN x QNAN |
| 10679 | short fsglmul_res_snan - tbl_fsglmul_op # SNAN x DENORM |
| 10680 | short fsglmul_res_snan - tbl_fsglmul_op # SNAN x SNAN |
| 10681 | short tbl_fsglmul_op - tbl_fsglmul_op # |
| 10682 | short tbl_fsglmul_op - tbl_fsglmul_op # |
| 10683 | |
| 10684 | fsglmul_res_operr: |
| 10685 | bra.l res_operr |
| 10686 | fsglmul_res_snan: |
| 10687 | bra.l res_snan |
| 10688 | fsglmul_res_qnan: |
| 10689 | bra.l res_qnan |
| 10690 | fsglmul_zero: |
| 10691 | bra.l fmul_zero |
| 10692 | fsglmul_inf_src: |
| 10693 | bra.l fmul_inf_src |
| 10694 | fsglmul_inf_dst: |
| 10695 | bra.l fmul_inf_dst |
| 10696 | |
| 10697 | ######################################################################### |
| 10698 | # XDEF **************************************************************** # |
| 10699 | # fsgldiv(): emulates the fsgldiv instruction # |
| 10700 | # # |
| 10701 | # XREF **************************************************************** # |
| 10702 | # scale_to_zero_src() - scale src exponent to zero # |
| 10703 | # scale_to_zero_dst() - scale dst exponent to zero # |
| 10704 | # unf_res4() - return default underflow result for sglop # |
| 10705 | # ovf_res() - return default overflow result # |
| 10706 | # res_qnan() - return QNAN result # |
| 10707 | # res_snan() - return SNAN result # |
| 10708 | # # |
| 10709 | # INPUT *************************************************************** # |
| 10710 | # a0 = pointer to extended precision source operand # |
| 10711 | # a1 = pointer to extended precision destination operand # |
| 10712 | # d0 rnd prec,mode # |
| 10713 | # # |
| 10714 | # OUTPUT ************************************************************** # |
| 10715 | # fp0 = result # |
| 10716 | # fp1 = EXOP (if exception occurred) # |
| 10717 | # # |
| 10718 | # ALGORITHM *********************************************************** # |
| 10719 | # Handle NANs, infinities, and zeroes as special cases. Divide # |
| 10720 | # norms/denorms into ext/sgl/dbl precision. # |
| 10721 | # For norms/denorms, scale the exponents such that a divide # |
| 10722 | # instruction won't cause an exception. Use the regular fsgldiv to # |
| 10723 | # compute a result. Check if the regular operands would have taken # |
| 10724 | # an exception. If so, return the default overflow/underflow result # |
| 10725 | # and return the EXOP if exceptions are enabled. Else, scale the # |
| 10726 | # result operand to the proper exponent. # |
| 10727 | # # |
| 10728 | ######################################################################### |
| 10729 | |
| 10730 | global fsgldiv |
| 10731 | fsgldiv: |
| 10732 | mov.l %d0,L_SCR3(%a6) # store rnd info |
| 10733 | |
| 10734 | clr.w %d1 |
| 10735 | mov.b DTAG(%a6),%d1 |
| 10736 | lsl.b &0x3,%d1 |
| 10737 | or.b STAG(%a6),%d1 # combine src tags |
| 10738 | |
| 10739 | bne.w fsgldiv_not_norm # optimize on non-norm input |
| 10740 | |
| 10741 | # |
| 10742 | # DIVIDE: NORMs and DENORMs ONLY! |
| 10743 | # |
| 10744 | fsgldiv_norm: |
| 10745 | mov.w DST_EX(%a1),FP_SCR1_EX(%a6) |
| 10746 | mov.l DST_HI(%a1),FP_SCR1_HI(%a6) |
| 10747 | mov.l DST_LO(%a1),FP_SCR1_LO(%a6) |
| 10748 | |
| 10749 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| 10750 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| 10751 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| 10752 | |
| 10753 | bsr.l scale_to_zero_src # calculate scale factor 1 |
| 10754 | mov.l %d0,-(%sp) # save scale factor 1 |
| 10755 | |
| 10756 | bsr.l scale_to_zero_dst # calculate scale factor 2 |
| 10757 | |
| 10758 | neg.l (%sp) # S.F. = scale1 - scale2 |
| 10759 | add.l %d0,(%sp) |
| 10760 | |
| 10761 | mov.w 2+L_SCR3(%a6),%d1 # fetch precision,mode |
| 10762 | lsr.b &0x6,%d1 |
| 10763 | mov.l (%sp)+,%d0 |
| 10764 | cmpi.l %d0,&0x3fff-0x7ffe |
| 10765 | ble.w fsgldiv_may_ovfl |
| 10766 | |
| 10767 | cmpi.l %d0,&0x3fff-0x0000 # will result underflow? |
| 10768 | beq.w fsgldiv_may_unfl # maybe |
| 10769 | bgt.w fsgldiv_unfl # yes; go handle underflow |
| 10770 | |
| 10771 | fsgldiv_normal: |
| 10772 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| 10773 | |
| 10774 | fmov.l L_SCR3(%a6),%fpcr # save FPCR |
| 10775 | fmov.l &0x0,%fpsr # clear FPSR |
| 10776 | |
| 10777 | fsgldiv.x FP_SCR0(%a6),%fp0 # perform sgl divide |
| 10778 | |
| 10779 | fmov.l %fpsr,%d1 # save FPSR |
| 10780 | fmov.l &0x0,%fpcr # clear FPCR |
| 10781 | |
| 10782 | or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| 10783 | |
| 10784 | fsgldiv_normal_exit: |
| 10785 | fmovm.x &0x80,FP_SCR0(%a6) # store result on stack |
| 10786 | mov.l %d2,-(%sp) # save d2 |
| 10787 | mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} |
| 10788 | mov.l %d1,%d2 # make a copy |
| 10789 | andi.l &0x7fff,%d1 # strip sign |
| 10790 | andi.w &0x8000,%d2 # keep old sign |
| 10791 | sub.l %d0,%d1 # add scale factor |
| 10792 | or.w %d2,%d1 # concat old sign,new exp |
| 10793 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| 10794 | mov.l (%sp)+,%d2 # restore d2 |
| 10795 | fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 |
| 10796 | rts |
| 10797 | |
| 10798 | fsgldiv_may_ovfl: |
| 10799 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| 10800 | |
| 10801 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 10802 | fmov.l &0x0,%fpsr # set FPSR |
| 10803 | |
| 10804 | fsgldiv.x FP_SCR0(%a6),%fp0 # execute divide |
| 10805 | |
| 10806 | fmov.l %fpsr,%d1 |
| 10807 | fmov.l &0x0,%fpcr |
| 10808 | |
| 10809 | or.l %d1,USER_FPSR(%a6) # save INEX,N |
| 10810 | |
| 10811 | fmovm.x &0x01,-(%sp) # save result to stack |
| 10812 | mov.w (%sp),%d1 # fetch new exponent |
| 10813 | add.l &0xc,%sp # clear result |
| 10814 | andi.l &0x7fff,%d1 # strip sign |
| 10815 | sub.l %d0,%d1 # add scale factor |
| 10816 | cmp.l %d1,&0x7fff # did divide overflow? |
| 10817 | blt.b fsgldiv_normal_exit |
| 10818 | |
| 10819 | fsgldiv_ovfl_tst: |
| 10820 | or.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex |
| 10821 | |
| 10822 | mov.b FPCR_ENABLE(%a6),%d1 |
| 10823 | andi.b &0x13,%d1 # is OVFL or INEX enabled? |
| 10824 | bne.b fsgldiv_ovfl_ena # yes |
| 10825 | |
| 10826 | fsgldiv_ovfl_dis: |
| 10827 | btst &neg_bit,FPSR_CC(%a6) # is result negative |
| 10828 | sne %d1 # set sign param accordingly |
| 10829 | mov.l L_SCR3(%a6),%d0 # pass prec:rnd |
| 10830 | andi.b &0x30,%d0 # kill precision |
| 10831 | bsr.l ovf_res # calculate default result |
| 10832 | or.b %d0,FPSR_CC(%a6) # set INF if applicable |
| 10833 | fmovm.x (%a0),&0x80 # return default result in fp0 |
| 10834 | rts |
| 10835 | |
| 10836 | fsgldiv_ovfl_ena: |
| 10837 | fmovm.x &0x80,FP_SCR0(%a6) # move result to stack |
| 10838 | |
| 10839 | mov.l %d2,-(%sp) # save d2 |
| 10840 | mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} |
| 10841 | mov.l %d1,%d2 # make a copy |
| 10842 | andi.l &0x7fff,%d1 # strip sign |
| 10843 | andi.w &0x8000,%d2 # keep old sign |
| 10844 | sub.l %d0,%d1 # add scale factor |
| 10845 | subi.l &0x6000,%d1 # subtract new bias |
| 10846 | andi.w &0x7fff,%d1 # clear ms bit |
| 10847 | or.w %d2,%d1 # concat old sign,new exp |
| 10848 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| 10849 | mov.l (%sp)+,%d2 # restore d2 |
| 10850 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| 10851 | bra.b fsgldiv_ovfl_dis |
| 10852 | |
| 10853 | fsgldiv_unfl: |
| 10854 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit |
| 10855 | |
| 10856 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| 10857 | |
| 10858 | fmov.l &rz_mode*0x10,%fpcr # set FPCR |
| 10859 | fmov.l &0x0,%fpsr # clear FPSR |
| 10860 | |
| 10861 | fsgldiv.x FP_SCR0(%a6),%fp0 # execute sgl divide |
| 10862 | |
| 10863 | fmov.l %fpsr,%d1 # save status |
| 10864 | fmov.l &0x0,%fpcr # clear FPCR |
| 10865 | |
| 10866 | or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| 10867 | |
| 10868 | mov.b FPCR_ENABLE(%a6),%d1 |
| 10869 | andi.b &0x0b,%d1 # is UNFL or INEX enabled? |
| 10870 | bne.b fsgldiv_unfl_ena # yes |
| 10871 | |
| 10872 | fsgldiv_unfl_dis: |
| 10873 | fmovm.x &0x80,FP_SCR0(%a6) # store out result |
| 10874 | |
| 10875 | lea FP_SCR0(%a6),%a0 # pass: result addr |
| 10876 | mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode |
| 10877 | bsr.l unf_res4 # calculate default result |
| 10878 | or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set |
| 10879 | fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 |
| 10880 | rts |
| 10881 | |
| 10882 | # |
| 10883 | # UNFL is enabled. |
| 10884 | # |
| 10885 | fsgldiv_unfl_ena: |
| 10886 | fmovm.x FP_SCR1(%a6),&0x40 # load dst op |
| 10887 | |
| 10888 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 10889 | fmov.l &0x0,%fpsr # clear FPSR |
| 10890 | |
| 10891 | fsgldiv.x FP_SCR0(%a6),%fp1 # execute sgl divide |
| 10892 | |
| 10893 | fmov.l &0x0,%fpcr # clear FPCR |
| 10894 | |
| 10895 | fmovm.x &0x40,FP_SCR0(%a6) # save result to stack |
| 10896 | mov.l %d2,-(%sp) # save d2 |
| 10897 | mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} |
| 10898 | mov.l %d1,%d2 # make a copy |
| 10899 | andi.l &0x7fff,%d1 # strip sign |
| 10900 | andi.w &0x8000,%d2 # keep old sign |
| 10901 | sub.l %d0,%d1 # add scale factor |
| 10902 | addi.l &0x6000,%d1 # add bias |
| 10903 | andi.w &0x7fff,%d1 # clear top bit |
| 10904 | or.w %d2,%d1 # concat old sign, new exp |
| 10905 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| 10906 | mov.l (%sp)+,%d2 # restore d2 |
| 10907 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| 10908 | bra.b fsgldiv_unfl_dis |
| 10909 | |
| 10910 | # |
| 10911 | # the divide operation MAY underflow: |
| 10912 | # |
| 10913 | fsgldiv_may_unfl: |
| 10914 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| 10915 | |
| 10916 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 10917 | fmov.l &0x0,%fpsr # clear FPSR |
| 10918 | |
| 10919 | fsgldiv.x FP_SCR0(%a6),%fp0 # execute sgl divide |
| 10920 | |
| 10921 | fmov.l %fpsr,%d1 # save status |
| 10922 | fmov.l &0x0,%fpcr # clear FPCR |
| 10923 | |
| 10924 | or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| 10925 | |
| 10926 | fabs.x %fp0,%fp1 # make a copy of result |
| 10927 | fcmp.b %fp1,&0x1 # is |result| > 1.b? |
| 10928 | fbgt.w fsgldiv_normal_exit # no; no underflow occurred |
| 10929 | fblt.w fsgldiv_unfl # yes; underflow occurred |
| 10930 | |
| 10931 | # |
| 10932 | # we still don't know if underflow occurred. result is ~ equal to 1. but, |
| 10933 | # we don't know if the result was an underflow that rounded up to a 1 |
| 10934 | # or a normalized number that rounded down to a 1. so, redo the entire |
| 10935 | # operation using RZ as the rounding mode to see what the pre-rounded |
| 10936 | # result is. this case should be relatively rare. |
| 10937 | # |
| 10938 | fmovm.x FP_SCR1(%a6),&0x40 # load dst op into %fp1 |
| 10939 | |
| 10940 | clr.l %d1 # clear scratch register |
| 10941 | ori.b &rz_mode*0x10,%d1 # force RZ rnd mode |
| 10942 | |
| 10943 | fmov.l %d1,%fpcr # set FPCR |
| 10944 | fmov.l &0x0,%fpsr # clear FPSR |
| 10945 | |
| 10946 | fsgldiv.x FP_SCR0(%a6),%fp1 # execute sgl divide |
| 10947 | |
| 10948 | fmov.l &0x0,%fpcr # clear FPCR |
| 10949 | fabs.x %fp1 # make absolute value |
| 10950 | fcmp.b %fp1,&0x1 # is |result| < 1.b? |
| 10951 | fbge.w fsgldiv_normal_exit # no; no underflow occurred |
| 10952 | bra.w fsgldiv_unfl # yes; underflow occurred |
| 10953 | |
| 10954 | ############################################################################ |
| 10955 | |
| 10956 | # |
| 10957 | # Divide: inputs are not both normalized; what are they? |
| 10958 | # |
| 10959 | fsgldiv_not_norm: |
| 10960 | mov.w (tbl_fsgldiv_op.b,%pc,%d1.w*2),%d1 |
| 10961 | jmp (tbl_fsgldiv_op.b,%pc,%d1.w*1) |
| 10962 | |
| 10963 | swbeg &48 |
| 10964 | tbl_fsgldiv_op: |
| 10965 | short fsgldiv_norm - tbl_fsgldiv_op # NORM / NORM |
| 10966 | short fsgldiv_inf_load - tbl_fsgldiv_op # NORM / ZERO |
| 10967 | short fsgldiv_zero_load - tbl_fsgldiv_op # NORM / INF |
| 10968 | short fsgldiv_res_qnan - tbl_fsgldiv_op # NORM / QNAN |
| 10969 | short fsgldiv_norm - tbl_fsgldiv_op # NORM / DENORM |
| 10970 | short fsgldiv_res_snan - tbl_fsgldiv_op # NORM / SNAN |
| 10971 | short tbl_fsgldiv_op - tbl_fsgldiv_op # |
| 10972 | short tbl_fsgldiv_op - tbl_fsgldiv_op # |
| 10973 | |
| 10974 | short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / NORM |
| 10975 | short fsgldiv_res_operr - tbl_fsgldiv_op # ZERO / ZERO |
| 10976 | short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / INF |
| 10977 | short fsgldiv_res_qnan - tbl_fsgldiv_op # ZERO / QNAN |
| 10978 | short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / DENORM |
| 10979 | short fsgldiv_res_snan - tbl_fsgldiv_op # ZERO / SNAN |
| 10980 | short tbl_fsgldiv_op - tbl_fsgldiv_op # |
| 10981 | short tbl_fsgldiv_op - tbl_fsgldiv_op # |
| 10982 | |
| 10983 | short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / NORM |
| 10984 | short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / ZERO |
| 10985 | short fsgldiv_res_operr - tbl_fsgldiv_op # INF / INF |
| 10986 | short fsgldiv_res_qnan - tbl_fsgldiv_op # INF / QNAN |
| 10987 | short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / DENORM |
| 10988 | short fsgldiv_res_snan - tbl_fsgldiv_op # INF / SNAN |
| 10989 | short tbl_fsgldiv_op - tbl_fsgldiv_op # |
| 10990 | short tbl_fsgldiv_op - tbl_fsgldiv_op # |
| 10991 | |
| 10992 | short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / NORM |
| 10993 | short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / ZERO |
| 10994 | short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / INF |
| 10995 | short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / QNAN |
| 10996 | short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / DENORM |
| 10997 | short fsgldiv_res_snan - tbl_fsgldiv_op # QNAN / SNAN |
| 10998 | short tbl_fsgldiv_op - tbl_fsgldiv_op # |
| 10999 | short tbl_fsgldiv_op - tbl_fsgldiv_op # |
| 11000 | |
| 11001 | short fsgldiv_norm - tbl_fsgldiv_op # DENORM / NORM |
| 11002 | short fsgldiv_inf_load - tbl_fsgldiv_op # DENORM / ZERO |
| 11003 | short fsgldiv_zero_load - tbl_fsgldiv_op # DENORM / INF |
| 11004 | short fsgldiv_res_qnan - tbl_fsgldiv_op # DENORM / QNAN |
| 11005 | short fsgldiv_norm - tbl_fsgldiv_op # DENORM / DENORM |
| 11006 | short fsgldiv_res_snan - tbl_fsgldiv_op # DENORM / SNAN |
| 11007 | short tbl_fsgldiv_op - tbl_fsgldiv_op # |
| 11008 | short tbl_fsgldiv_op - tbl_fsgldiv_op # |
| 11009 | |
| 11010 | short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / NORM |
| 11011 | short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / ZERO |
| 11012 | short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / INF |
| 11013 | short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / QNAN |
| 11014 | short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / DENORM |
| 11015 | short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / SNAN |
| 11016 | short tbl_fsgldiv_op - tbl_fsgldiv_op # |
| 11017 | short tbl_fsgldiv_op - tbl_fsgldiv_op # |
| 11018 | |
| 11019 | fsgldiv_res_qnan: |
| 11020 | bra.l res_qnan |
| 11021 | fsgldiv_res_snan: |
| 11022 | bra.l res_snan |
| 11023 | fsgldiv_res_operr: |
| 11024 | bra.l res_operr |
| 11025 | fsgldiv_inf_load: |
| 11026 | bra.l fdiv_inf_load |
| 11027 | fsgldiv_zero_load: |
| 11028 | bra.l fdiv_zero_load |
| 11029 | fsgldiv_inf_dst: |
| 11030 | bra.l fdiv_inf_dst |
| 11031 | |
| 11032 | ######################################################################### |
| 11033 | # XDEF **************************************************************** # |
| 11034 | # fadd(): emulates the fadd instruction # |
| 11035 | # fsadd(): emulates the fadd instruction # |
| 11036 | # fdadd(): emulates the fdadd instruction # |
| 11037 | # # |
| 11038 | # XREF **************************************************************** # |
| 11039 | # addsub_scaler2() - scale the operands so they won't take exc # |
| 11040 | # ovf_res() - return default overflow result # |
| 11041 | # unf_res() - return default underflow result # |
| 11042 | # res_qnan() - set QNAN result # |
| 11043 | # res_snan() - set SNAN result # |
| 11044 | # res_operr() - set OPERR result # |
| 11045 | # scale_to_zero_src() - set src operand exponent equal to zero # |
| 11046 | # scale_to_zero_dst() - set dst operand exponent equal to zero # |
| 11047 | # # |
| 11048 | # INPUT *************************************************************** # |
| 11049 | # a0 = pointer to extended precision source operand # |
| 11050 | # a1 = pointer to extended precision destination operand # |
| 11051 | # # |
| 11052 | # OUTPUT ************************************************************** # |
| 11053 | # fp0 = result # |
| 11054 | # fp1 = EXOP (if exception occurred) # |
| 11055 | # # |
| 11056 | # ALGORITHM *********************************************************** # |
| 11057 | # Handle NANs, infinities, and zeroes as special cases. Divide # |
| 11058 | # norms into extended, single, and double precision. # |
| 11059 | # Do addition after scaling exponents such that exception won't # |
| 11060 | # occur. Then, check result exponent to see if exception would have # |
| 11061 | # occurred. If so, return default result and maybe EXOP. Else, insert # |
| 11062 | # the correct result exponent and return. Set FPSR bits as appropriate. # |
| 11063 | # # |
| 11064 | ######################################################################### |
| 11065 | |
| 11066 | global fsadd |
| 11067 | fsadd: |
| 11068 | andi.b &0x30,%d0 # clear rnd prec |
| 11069 | ori.b &s_mode*0x10,%d0 # insert sgl prec |
| 11070 | bra.b fadd |
| 11071 | |
| 11072 | global fdadd |
| 11073 | fdadd: |
| 11074 | andi.b &0x30,%d0 # clear rnd prec |
| 11075 | ori.b &d_mode*0x10,%d0 # insert dbl prec |
| 11076 | |
| 11077 | global fadd |
| 11078 | fadd: |
| 11079 | mov.l %d0,L_SCR3(%a6) # store rnd info |
| 11080 | |
| 11081 | clr.w %d1 |
| 11082 | mov.b DTAG(%a6),%d1 |
| 11083 | lsl.b &0x3,%d1 |
| 11084 | or.b STAG(%a6),%d1 # combine src tags |
| 11085 | |
| 11086 | bne.w fadd_not_norm # optimize on non-norm input |
| 11087 | |
| 11088 | # |
| 11089 | # ADD: norms and denorms |
| 11090 | # |
| 11091 | fadd_norm: |
| 11092 | bsr.l addsub_scaler2 # scale exponents |
| 11093 | |
| 11094 | fadd_zero_entry: |
| 11095 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| 11096 | |
| 11097 | fmov.l &0x0,%fpsr # clear FPSR |
| 11098 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 11099 | |
| 11100 | fadd.x FP_SCR0(%a6),%fp0 # execute add |
| 11101 | |
| 11102 | fmov.l &0x0,%fpcr # clear FPCR |
| 11103 | fmov.l %fpsr,%d1 # fetch INEX2,N,Z |
| 11104 | |
| 11105 | or.l %d1,USER_FPSR(%a6) # save exc and ccode bits |
| 11106 | |
| 11107 | fbeq.w fadd_zero_exit # if result is zero, end now |
| 11108 | |
| 11109 | mov.l %d2,-(%sp) # save d2 |
| 11110 | |
| 11111 | fmovm.x &0x01,-(%sp) # save result to stack |
| 11112 | |
| 11113 | mov.w 2+L_SCR3(%a6),%d1 |
| 11114 | lsr.b &0x6,%d1 |
| 11115 | |
| 11116 | mov.w (%sp),%d2 # fetch new sign, exp |
| 11117 | andi.l &0x7fff,%d2 # strip sign |
| 11118 | sub.l %d0,%d2 # add scale factor |
| 11119 | |
| 11120 | cmp.l %d2,(tbl_fadd_ovfl.b,%pc,%d1.w*4) # is it an overflow? |
| 11121 | bge.b fadd_ovfl # yes |
| 11122 | |
| 11123 | cmp.l %d2,(tbl_fadd_unfl.b,%pc,%d1.w*4) # is it an underflow? |
| 11124 | blt.w fadd_unfl # yes |
| 11125 | beq.w fadd_may_unfl # maybe; go find out |
| 11126 | |
| 11127 | fadd_normal: |
| 11128 | mov.w (%sp),%d1 |
| 11129 | andi.w &0x8000,%d1 # keep sign |
| 11130 | or.w %d2,%d1 # concat sign,new exp |
| 11131 | mov.w %d1,(%sp) # insert new exponent |
| 11132 | |
| 11133 | fmovm.x (%sp)+,&0x80 # return result in fp0 |
| 11134 | |
| 11135 | mov.l (%sp)+,%d2 # restore d2 |
| 11136 | rts |
| 11137 | |
| 11138 | fadd_zero_exit: |
| 11139 | # fmov.s &0x00000000,%fp0 # return zero in fp0 |
| 11140 | rts |
| 11141 | |
| 11142 | tbl_fadd_ovfl: |
| 11143 | long 0x7fff # ext ovfl |
| 11144 | long 0x407f # sgl ovfl |
| 11145 | long 0x43ff # dbl ovfl |
| 11146 | |
| 11147 | tbl_fadd_unfl: |
| 11148 | long 0x0000 # ext unfl |
| 11149 | long 0x3f81 # sgl unfl |
| 11150 | long 0x3c01 # dbl unfl |
| 11151 | |
| 11152 | fadd_ovfl: |
| 11153 | or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex |
| 11154 | |
| 11155 | mov.b FPCR_ENABLE(%a6),%d1 |
| 11156 | andi.b &0x13,%d1 # is OVFL or INEX enabled? |
| 11157 | bne.b fadd_ovfl_ena # yes |
| 11158 | |
| 11159 | add.l &0xc,%sp |
| 11160 | fadd_ovfl_dis: |
| 11161 | btst &neg_bit,FPSR_CC(%a6) # is result negative? |
| 11162 | sne %d1 # set sign param accordingly |
| 11163 | mov.l L_SCR3(%a6),%d0 # pass prec:rnd |
| 11164 | bsr.l ovf_res # calculate default result |
| 11165 | or.b %d0,FPSR_CC(%a6) # set INF,N if applicable |
| 11166 | fmovm.x (%a0),&0x80 # return default result in fp0 |
| 11167 | mov.l (%sp)+,%d2 # restore d2 |
| 11168 | rts |
| 11169 | |
| 11170 | fadd_ovfl_ena: |
| 11171 | mov.b L_SCR3(%a6),%d1 |
| 11172 | andi.b &0xc0,%d1 # is precision extended? |
| 11173 | bne.b fadd_ovfl_ena_sd # no; prec = sgl or dbl |
| 11174 | |
| 11175 | fadd_ovfl_ena_cont: |
| 11176 | mov.w (%sp),%d1 |
| 11177 | andi.w &0x8000,%d1 # keep sign |
| 11178 | subi.l &0x6000,%d2 # add extra bias |
| 11179 | andi.w &0x7fff,%d2 |
| 11180 | or.w %d2,%d1 # concat sign,new exp |
| 11181 | mov.w %d1,(%sp) # insert new exponent |
| 11182 | |
| 11183 | fmovm.x (%sp)+,&0x40 # return EXOP in fp1 |
| 11184 | bra.b fadd_ovfl_dis |
| 11185 | |
| 11186 | fadd_ovfl_ena_sd: |
| 11187 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| 11188 | |
| 11189 | mov.l L_SCR3(%a6),%d1 |
| 11190 | andi.b &0x30,%d1 # keep rnd mode |
| 11191 | fmov.l %d1,%fpcr # set FPCR |
| 11192 | |
| 11193 | fadd.x FP_SCR0(%a6),%fp0 # execute add |
| 11194 | |
| 11195 | fmov.l &0x0,%fpcr # clear FPCR |
| 11196 | |
| 11197 | add.l &0xc,%sp |
| 11198 | fmovm.x &0x01,-(%sp) |
| 11199 | bra.b fadd_ovfl_ena_cont |
| 11200 | |
| 11201 | fadd_unfl: |
| 11202 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit |
| 11203 | |
| 11204 | add.l &0xc,%sp |
| 11205 | |
| 11206 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| 11207 | |
| 11208 | fmov.l &rz_mode*0x10,%fpcr # set FPCR |
| 11209 | fmov.l &0x0,%fpsr # clear FPSR |
| 11210 | |
| 11211 | fadd.x FP_SCR0(%a6),%fp0 # execute add |
| 11212 | |
| 11213 | fmov.l &0x0,%fpcr # clear FPCR |
| 11214 | fmov.l %fpsr,%d1 # save status |
| 11215 | |
| 11216 | or.l %d1,USER_FPSR(%a6) # save INEX,N |
| 11217 | |
| 11218 | mov.b FPCR_ENABLE(%a6),%d1 |
| 11219 | andi.b &0x0b,%d1 # is UNFL or INEX enabled? |
| 11220 | bne.b fadd_unfl_ena # yes |
| 11221 | |
| 11222 | fadd_unfl_dis: |
| 11223 | fmovm.x &0x80,FP_SCR0(%a6) # store out result |
| 11224 | |
| 11225 | lea FP_SCR0(%a6),%a0 # pass: result addr |
| 11226 | mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode |
| 11227 | bsr.l unf_res # calculate default result |
| 11228 | or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set |
| 11229 | fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 |
| 11230 | mov.l (%sp)+,%d2 # restore d2 |
| 11231 | rts |
| 11232 | |
| 11233 | fadd_unfl_ena: |
| 11234 | fmovm.x FP_SCR1(%a6),&0x40 # load dst op |
| 11235 | |
| 11236 | mov.l L_SCR3(%a6),%d1 |
| 11237 | andi.b &0xc0,%d1 # is precision extended? |
| 11238 | bne.b fadd_unfl_ena_sd # no; sgl or dbl |
| 11239 | |
| 11240 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 11241 | |
| 11242 | fadd_unfl_ena_cont: |
| 11243 | fmov.l &0x0,%fpsr # clear FPSR |
| 11244 | |
| 11245 | fadd.x FP_SCR0(%a6),%fp1 # execute multiply |
| 11246 | |
| 11247 | fmov.l &0x0,%fpcr # clear FPCR |
| 11248 | |
| 11249 | fmovm.x &0x40,FP_SCR0(%a6) # save result to stack |
| 11250 | mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} |
| 11251 | mov.l %d1,%d2 # make a copy |
| 11252 | andi.l &0x7fff,%d1 # strip sign |
| 11253 | andi.w &0x8000,%d2 # keep old sign |
| 11254 | sub.l %d0,%d1 # add scale factor |
| 11255 | addi.l &0x6000,%d1 # add new bias |
| 11256 | andi.w &0x7fff,%d1 # clear top bit |
| 11257 | or.w %d2,%d1 # concat sign,new exp |
| 11258 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| 11259 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| 11260 | bra.w fadd_unfl_dis |
| 11261 | |
| 11262 | fadd_unfl_ena_sd: |
| 11263 | mov.l L_SCR3(%a6),%d1 |
| 11264 | andi.b &0x30,%d1 # use only rnd mode |
| 11265 | fmov.l %d1,%fpcr # set FPCR |
| 11266 | |
| 11267 | bra.b fadd_unfl_ena_cont |
| 11268 | |
| 11269 | # |
| 11270 | # result is equal to the smallest normalized number in the selected precision |
| 11271 | # if the precision is extended, this result could not have come from an |
| 11272 | # underflow that rounded up. |
| 11273 | # |
| 11274 | fadd_may_unfl: |
| 11275 | mov.l L_SCR3(%a6),%d1 |
| 11276 | andi.b &0xc0,%d1 |
| 11277 | beq.w fadd_normal # yes; no underflow occurred |
| 11278 | |
| 11279 | mov.l 0x4(%sp),%d1 # extract hi(man) |
| 11280 | cmpi.l %d1,&0x80000000 # is hi(man) = 0x80000000? |
| 11281 | bne.w fadd_normal # no; no underflow occurred |
| 11282 | |
| 11283 | tst.l 0x8(%sp) # is lo(man) = 0x0? |
| 11284 | bne.w fadd_normal # no; no underflow occurred |
| 11285 | |
| 11286 | btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? |
| 11287 | beq.w fadd_normal # no; no underflow occurred |
| 11288 | |
| 11289 | # |
| 11290 | # ok, so now the result has a exponent equal to the smallest normalized |
| 11291 | # exponent for the selected precision. also, the mantissa is equal to |
| 11292 | # 0x8000000000000000 and this mantissa is the result of rounding non-zero |
| 11293 | # g,r,s. |
| 11294 | # now, we must determine whether the pre-rounded result was an underflow |
| 11295 | # rounded "up" or a normalized number rounded "down". |
| 11296 | # so, we do this be re-executing the add using RZ as the rounding mode and |
| 11297 | # seeing if the new result is smaller or equal to the current result. |
| 11298 | # |
| 11299 | fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 |
| 11300 | |
| 11301 | mov.l L_SCR3(%a6),%d1 |
| 11302 | andi.b &0xc0,%d1 # keep rnd prec |
| 11303 | ori.b &rz_mode*0x10,%d1 # insert rnd mode |
| 11304 | fmov.l %d1,%fpcr # set FPCR |
| 11305 | fmov.l &0x0,%fpsr # clear FPSR |
| 11306 | |
| 11307 | fadd.x FP_SCR0(%a6),%fp1 # execute add |
| 11308 | |
| 11309 | fmov.l &0x0,%fpcr # clear FPCR |
| 11310 | |
| 11311 | fabs.x %fp0 # compare absolute values |
| 11312 | fabs.x %fp1 |
| 11313 | fcmp.x %fp0,%fp1 # is first result > second? |
| 11314 | |
| 11315 | fbgt.w fadd_unfl # yes; it's an underflow |
| 11316 | bra.w fadd_normal # no; it's not an underflow |
| 11317 | |
| 11318 | ########################################################################## |
| 11319 | |
| 11320 | # |
| 11321 | # Add: inputs are not both normalized; what are they? |
| 11322 | # |
| 11323 | fadd_not_norm: |
| 11324 | mov.w (tbl_fadd_op.b,%pc,%d1.w*2),%d1 |
| 11325 | jmp (tbl_fadd_op.b,%pc,%d1.w*1) |
| 11326 | |
| 11327 | swbeg &48 |
| 11328 | tbl_fadd_op: |
| 11329 | short fadd_norm - tbl_fadd_op # NORM + NORM |
| 11330 | short fadd_zero_src - tbl_fadd_op # NORM + ZERO |
| 11331 | short fadd_inf_src - tbl_fadd_op # NORM + INF |
| 11332 | short fadd_res_qnan - tbl_fadd_op # NORM + QNAN |
| 11333 | short fadd_norm - tbl_fadd_op # NORM + DENORM |
| 11334 | short fadd_res_snan - tbl_fadd_op # NORM + SNAN |
| 11335 | short tbl_fadd_op - tbl_fadd_op # |
| 11336 | short tbl_fadd_op - tbl_fadd_op # |
| 11337 | |
| 11338 | short fadd_zero_dst - tbl_fadd_op # ZERO + NORM |
| 11339 | short fadd_zero_2 - tbl_fadd_op # ZERO + ZERO |
| 11340 | short fadd_inf_src - tbl_fadd_op # ZERO + INF |
| 11341 | short fadd_res_qnan - tbl_fadd_op # NORM + QNAN |
| 11342 | short fadd_zero_dst - tbl_fadd_op # ZERO + DENORM |
| 11343 | short fadd_res_snan - tbl_fadd_op # NORM + SNAN |
| 11344 | short tbl_fadd_op - tbl_fadd_op # |
| 11345 | short tbl_fadd_op - tbl_fadd_op # |
| 11346 | |
| 11347 | short fadd_inf_dst - tbl_fadd_op # INF + NORM |
| 11348 | short fadd_inf_dst - tbl_fadd_op # INF + ZERO |
| 11349 | short fadd_inf_2 - tbl_fadd_op # INF + INF |
| 11350 | short fadd_res_qnan - tbl_fadd_op # NORM + QNAN |
| 11351 | short fadd_inf_dst - tbl_fadd_op # INF + DENORM |
| 11352 | short fadd_res_snan - tbl_fadd_op # NORM + SNAN |
| 11353 | short tbl_fadd_op - tbl_fadd_op # |
| 11354 | short tbl_fadd_op - tbl_fadd_op # |
| 11355 | |
| 11356 | short fadd_res_qnan - tbl_fadd_op # QNAN + NORM |
| 11357 | short fadd_res_qnan - tbl_fadd_op # QNAN + ZERO |
| 11358 | short fadd_res_qnan - tbl_fadd_op # QNAN + INF |
| 11359 | short fadd_res_qnan - tbl_fadd_op # QNAN + QNAN |
| 11360 | short fadd_res_qnan - tbl_fadd_op # QNAN + DENORM |
| 11361 | short fadd_res_snan - tbl_fadd_op # QNAN + SNAN |
| 11362 | short tbl_fadd_op - tbl_fadd_op # |
| 11363 | short tbl_fadd_op - tbl_fadd_op # |
| 11364 | |
| 11365 | short fadd_norm - tbl_fadd_op # DENORM + NORM |
| 11366 | short fadd_zero_src - tbl_fadd_op # DENORM + ZERO |
| 11367 | short fadd_inf_src - tbl_fadd_op # DENORM + INF |
| 11368 | short fadd_res_qnan - tbl_fadd_op # NORM + QNAN |
| 11369 | short fadd_norm - tbl_fadd_op # DENORM + DENORM |
| 11370 | short fadd_res_snan - tbl_fadd_op # NORM + SNAN |
| 11371 | short tbl_fadd_op - tbl_fadd_op # |
| 11372 | short tbl_fadd_op - tbl_fadd_op # |
| 11373 | |
| 11374 | short fadd_res_snan - tbl_fadd_op # SNAN + NORM |
| 11375 | short fadd_res_snan - tbl_fadd_op # SNAN + ZERO |
| 11376 | short fadd_res_snan - tbl_fadd_op # SNAN + INF |
| 11377 | short fadd_res_snan - tbl_fadd_op # SNAN + QNAN |
| 11378 | short fadd_res_snan - tbl_fadd_op # SNAN + DENORM |
| 11379 | short fadd_res_snan - tbl_fadd_op # SNAN + SNAN |
| 11380 | short tbl_fadd_op - tbl_fadd_op # |
| 11381 | short tbl_fadd_op - tbl_fadd_op # |
| 11382 | |
| 11383 | fadd_res_qnan: |
| 11384 | bra.l res_qnan |
| 11385 | fadd_res_snan: |
| 11386 | bra.l res_snan |
| 11387 | |
| 11388 | # |
| 11389 | # both operands are ZEROes |
| 11390 | # |
| 11391 | fadd_zero_2: |
| 11392 | mov.b SRC_EX(%a0),%d0 # are the signs opposite |
| 11393 | mov.b DST_EX(%a1),%d1 |
| 11394 | eor.b %d0,%d1 |
| 11395 | bmi.w fadd_zero_2_chk_rm # weed out (-ZERO)+(+ZERO) |
| 11396 | |
| 11397 | # the signs are the same. so determine whether they are positive or negative |
| 11398 | # and return the appropriately signed zero. |
| 11399 | tst.b %d0 # are ZEROes positive or negative? |
| 11400 | bmi.b fadd_zero_rm # negative |
| 11401 | fmov.s &0x00000000,%fp0 # return +ZERO |
| 11402 | mov.b &z_bmask,FPSR_CC(%a6) # set Z |
| 11403 | rts |
| 11404 | |
| 11405 | # |
| 11406 | # the ZEROes have opposite signs: |
| 11407 | # - therefore, we return +ZERO if the rounding modes are RN,RZ, or RP. |
| 11408 | # - -ZERO is returned in the case of RM. |
| 11409 | # |
| 11410 | fadd_zero_2_chk_rm: |
| 11411 | mov.b 3+L_SCR3(%a6),%d1 |
| 11412 | andi.b &0x30,%d1 # extract rnd mode |
| 11413 | cmpi.b %d1,&rm_mode*0x10 # is rnd mode == RM? |
| 11414 | beq.b fadd_zero_rm # yes |
| 11415 | fmov.s &0x00000000,%fp0 # return +ZERO |
| 11416 | mov.b &z_bmask,FPSR_CC(%a6) # set Z |
| 11417 | rts |
| 11418 | |
| 11419 | fadd_zero_rm: |
| 11420 | fmov.s &0x80000000,%fp0 # return -ZERO |
| 11421 | mov.b &neg_bmask+z_bmask,FPSR_CC(%a6) # set NEG/Z |
| 11422 | rts |
| 11423 | |
| 11424 | # |
| 11425 | # one operand is a ZERO and the other is a DENORM or NORM. scale |
| 11426 | # the DENORM or NORM and jump to the regular fadd routine. |
| 11427 | # |
| 11428 | fadd_zero_dst: |
| 11429 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| 11430 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| 11431 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| 11432 | bsr.l scale_to_zero_src # scale the operand |
| 11433 | clr.w FP_SCR1_EX(%a6) |
| 11434 | clr.l FP_SCR1_HI(%a6) |
| 11435 | clr.l FP_SCR1_LO(%a6) |
| 11436 | bra.w fadd_zero_entry # go execute fadd |
| 11437 | |
| 11438 | fadd_zero_src: |
| 11439 | mov.w DST_EX(%a1),FP_SCR1_EX(%a6) |
| 11440 | mov.l DST_HI(%a1),FP_SCR1_HI(%a6) |
| 11441 | mov.l DST_LO(%a1),FP_SCR1_LO(%a6) |
| 11442 | bsr.l scale_to_zero_dst # scale the operand |
| 11443 | clr.w FP_SCR0_EX(%a6) |
| 11444 | clr.l FP_SCR0_HI(%a6) |
| 11445 | clr.l FP_SCR0_LO(%a6) |
| 11446 | bra.w fadd_zero_entry # go execute fadd |
| 11447 | |
| 11448 | # |
| 11449 | # both operands are INFs. an OPERR will result if the INFs have |
| 11450 | # different signs. else, an INF of the same sign is returned |
| 11451 | # |
| 11452 | fadd_inf_2: |
| 11453 | mov.b SRC_EX(%a0),%d0 # exclusive or the signs |
| 11454 | mov.b DST_EX(%a1),%d1 |
| 11455 | eor.b %d1,%d0 |
| 11456 | bmi.l res_operr # weed out (-INF)+(+INF) |
| 11457 | |
| 11458 | # ok, so it's not an OPERR. but, we do have to remember to return the |
| 11459 | # src INF since that's where the 881/882 gets the j-bit from... |
| 11460 | |
| 11461 | # |
| 11462 | # operands are INF and one of {ZERO, INF, DENORM, NORM} |
| 11463 | # |
| 11464 | fadd_inf_src: |
| 11465 | fmovm.x SRC(%a0),&0x80 # return src INF |
| 11466 | tst.b SRC_EX(%a0) # is INF positive? |
| 11467 | bpl.b fadd_inf_done # yes; we're done |
| 11468 | mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG |
| 11469 | rts |
| 11470 | |
| 11471 | # |
| 11472 | # operands are INF and one of {ZERO, INF, DENORM, NORM} |
| 11473 | # |
| 11474 | fadd_inf_dst: |
| 11475 | fmovm.x DST(%a1),&0x80 # return dst INF |
| 11476 | tst.b DST_EX(%a1) # is INF positive? |
| 11477 | bpl.b fadd_inf_done # yes; we're done |
| 11478 | mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG |
| 11479 | rts |
| 11480 | |
| 11481 | fadd_inf_done: |
| 11482 | mov.b &inf_bmask,FPSR_CC(%a6) # set INF |
| 11483 | rts |
| 11484 | |
| 11485 | ######################################################################### |
| 11486 | # XDEF **************************************************************** # |
| 11487 | # fsub(): emulates the fsub instruction # |
| 11488 | # fssub(): emulates the fssub instruction # |
| 11489 | # fdsub(): emulates the fdsub instruction # |
| 11490 | # # |
| 11491 | # XREF **************************************************************** # |
| 11492 | # addsub_scaler2() - scale the operands so they won't take exc # |
| 11493 | # ovf_res() - return default overflow result # |
| 11494 | # unf_res() - return default underflow result # |
| 11495 | # res_qnan() - set QNAN result # |
| 11496 | # res_snan() - set SNAN result # |
| 11497 | # res_operr() - set OPERR result # |
| 11498 | # scale_to_zero_src() - set src operand exponent equal to zero # |
| 11499 | # scale_to_zero_dst() - set dst operand exponent equal to zero # |
| 11500 | # # |
| 11501 | # INPUT *************************************************************** # |
| 11502 | # a0 = pointer to extended precision source operand # |
| 11503 | # a1 = pointer to extended precision destination operand # |
| 11504 | # # |
| 11505 | # OUTPUT ************************************************************** # |
| 11506 | # fp0 = result # |
| 11507 | # fp1 = EXOP (if exception occurred) # |
| 11508 | # # |
| 11509 | # ALGORITHM *********************************************************** # |
| 11510 | # Handle NANs, infinities, and zeroes as special cases. Divide # |
| 11511 | # norms into extended, single, and double precision. # |
| 11512 | # Do subtraction after scaling exponents such that exception won't# |
| 11513 | # occur. Then, check result exponent to see if exception would have # |
| 11514 | # occurred. If so, return default result and maybe EXOP. Else, insert # |
| 11515 | # the correct result exponent and return. Set FPSR bits as appropriate. # |
| 11516 | # # |
| 11517 | ######################################################################### |
| 11518 | |
| 11519 | global fssub |
| 11520 | fssub: |
| 11521 | andi.b &0x30,%d0 # clear rnd prec |
| 11522 | ori.b &s_mode*0x10,%d0 # insert sgl prec |
| 11523 | bra.b fsub |
| 11524 | |
| 11525 | global fdsub |
| 11526 | fdsub: |
| 11527 | andi.b &0x30,%d0 # clear rnd prec |
| 11528 | ori.b &d_mode*0x10,%d0 # insert dbl prec |
| 11529 | |
| 11530 | global fsub |
| 11531 | fsub: |
| 11532 | mov.l %d0,L_SCR3(%a6) # store rnd info |
| 11533 | |
| 11534 | clr.w %d1 |
| 11535 | mov.b DTAG(%a6),%d1 |
| 11536 | lsl.b &0x3,%d1 |
| 11537 | or.b STAG(%a6),%d1 # combine src tags |
| 11538 | |
| 11539 | bne.w fsub_not_norm # optimize on non-norm input |
| 11540 | |
| 11541 | # |
| 11542 | # SUB: norms and denorms |
| 11543 | # |
| 11544 | fsub_norm: |
| 11545 | bsr.l addsub_scaler2 # scale exponents |
| 11546 | |
| 11547 | fsub_zero_entry: |
| 11548 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| 11549 | |
| 11550 | fmov.l &0x0,%fpsr # clear FPSR |
| 11551 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 11552 | |
| 11553 | fsub.x FP_SCR0(%a6),%fp0 # execute subtract |
| 11554 | |
| 11555 | fmov.l &0x0,%fpcr # clear FPCR |
| 11556 | fmov.l %fpsr,%d1 # fetch INEX2, N, Z |
| 11557 | |
| 11558 | or.l %d1,USER_FPSR(%a6) # save exc and ccode bits |
| 11559 | |
| 11560 | fbeq.w fsub_zero_exit # if result zero, end now |
| 11561 | |
| 11562 | mov.l %d2,-(%sp) # save d2 |
| 11563 | |
| 11564 | fmovm.x &0x01,-(%sp) # save result to stack |
| 11565 | |
| 11566 | mov.w 2+L_SCR3(%a6),%d1 |
| 11567 | lsr.b &0x6,%d1 |
| 11568 | |
| 11569 | mov.w (%sp),%d2 # fetch new exponent |
| 11570 | andi.l &0x7fff,%d2 # strip sign |
| 11571 | sub.l %d0,%d2 # add scale factor |
| 11572 | |
| 11573 | cmp.l %d2,(tbl_fsub_ovfl.b,%pc,%d1.w*4) # is it an overflow? |
| 11574 | bge.b fsub_ovfl # yes |
| 11575 | |
| 11576 | cmp.l %d2,(tbl_fsub_unfl.b,%pc,%d1.w*4) # is it an underflow? |
| 11577 | blt.w fsub_unfl # yes |
| 11578 | beq.w fsub_may_unfl # maybe; go find out |
| 11579 | |
| 11580 | fsub_normal: |
| 11581 | mov.w (%sp),%d1 |
| 11582 | andi.w &0x8000,%d1 # keep sign |
| 11583 | or.w %d2,%d1 # insert new exponent |
| 11584 | mov.w %d1,(%sp) # insert new exponent |
| 11585 | |
| 11586 | fmovm.x (%sp)+,&0x80 # return result in fp0 |
| 11587 | |
| 11588 | mov.l (%sp)+,%d2 # restore d2 |
| 11589 | rts |
| 11590 | |
| 11591 | fsub_zero_exit: |
| 11592 | # fmov.s &0x00000000,%fp0 # return zero in fp0 |
| 11593 | rts |
| 11594 | |
| 11595 | tbl_fsub_ovfl: |
| 11596 | long 0x7fff # ext ovfl |
| 11597 | long 0x407f # sgl ovfl |
| 11598 | long 0x43ff # dbl ovfl |
| 11599 | |
| 11600 | tbl_fsub_unfl: |
| 11601 | long 0x0000 # ext unfl |
| 11602 | long 0x3f81 # sgl unfl |
| 11603 | long 0x3c01 # dbl unfl |
| 11604 | |
| 11605 | fsub_ovfl: |
| 11606 | or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex |
| 11607 | |
| 11608 | mov.b FPCR_ENABLE(%a6),%d1 |
| 11609 | andi.b &0x13,%d1 # is OVFL or INEX enabled? |
| 11610 | bne.b fsub_ovfl_ena # yes |
| 11611 | |
| 11612 | add.l &0xc,%sp |
| 11613 | fsub_ovfl_dis: |
| 11614 | btst &neg_bit,FPSR_CC(%a6) # is result negative? |
| 11615 | sne %d1 # set sign param accordingly |
| 11616 | mov.l L_SCR3(%a6),%d0 # pass prec:rnd |
| 11617 | bsr.l ovf_res # calculate default result |
| 11618 | or.b %d0,FPSR_CC(%a6) # set INF,N if applicable |
| 11619 | fmovm.x (%a0),&0x80 # return default result in fp0 |
| 11620 | mov.l (%sp)+,%d2 # restore d2 |
| 11621 | rts |
| 11622 | |
| 11623 | fsub_ovfl_ena: |
| 11624 | mov.b L_SCR3(%a6),%d1 |
| 11625 | andi.b &0xc0,%d1 # is precision extended? |
| 11626 | bne.b fsub_ovfl_ena_sd # no |
| 11627 | |
| 11628 | fsub_ovfl_ena_cont: |
| 11629 | mov.w (%sp),%d1 # fetch {sgn,exp} |
| 11630 | andi.w &0x8000,%d1 # keep sign |
| 11631 | subi.l &0x6000,%d2 # subtract new bias |
| 11632 | andi.w &0x7fff,%d2 # clear top bit |
| 11633 | or.w %d2,%d1 # concat sign,exp |
| 11634 | mov.w %d1,(%sp) # insert new exponent |
| 11635 | |
| 11636 | fmovm.x (%sp)+,&0x40 # return EXOP in fp1 |
| 11637 | bra.b fsub_ovfl_dis |
| 11638 | |
| 11639 | fsub_ovfl_ena_sd: |
| 11640 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| 11641 | |
| 11642 | mov.l L_SCR3(%a6),%d1 |
| 11643 | andi.b &0x30,%d1 # clear rnd prec |
| 11644 | fmov.l %d1,%fpcr # set FPCR |
| 11645 | |
| 11646 | fsub.x FP_SCR0(%a6),%fp0 # execute subtract |
| 11647 | |
| 11648 | fmov.l &0x0,%fpcr # clear FPCR |
| 11649 | |
| 11650 | add.l &0xc,%sp |
| 11651 | fmovm.x &0x01,-(%sp) |
| 11652 | bra.b fsub_ovfl_ena_cont |
| 11653 | |
| 11654 | fsub_unfl: |
| 11655 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit |
| 11656 | |
| 11657 | add.l &0xc,%sp |
| 11658 | |
| 11659 | fmovm.x FP_SCR1(%a6),&0x80 # load dst op |
| 11660 | |
| 11661 | fmov.l &rz_mode*0x10,%fpcr # set FPCR |
| 11662 | fmov.l &0x0,%fpsr # clear FPSR |
| 11663 | |
| 11664 | fsub.x FP_SCR0(%a6),%fp0 # execute subtract |
| 11665 | |
| 11666 | fmov.l &0x0,%fpcr # clear FPCR |
| 11667 | fmov.l %fpsr,%d1 # save status |
| 11668 | |
| 11669 | or.l %d1,USER_FPSR(%a6) |
| 11670 | |
| 11671 | mov.b FPCR_ENABLE(%a6),%d1 |
| 11672 | andi.b &0x0b,%d1 # is UNFL or INEX enabled? |
| 11673 | bne.b fsub_unfl_ena # yes |
| 11674 | |
| 11675 | fsub_unfl_dis: |
| 11676 | fmovm.x &0x80,FP_SCR0(%a6) # store out result |
| 11677 | |
| 11678 | lea FP_SCR0(%a6),%a0 # pass: result addr |
| 11679 | mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode |
| 11680 | bsr.l unf_res # calculate default result |
| 11681 | or.b %d0,FPSR_CC(%a6) # 'Z' may have been set |
| 11682 | fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 |
| 11683 | mov.l (%sp)+,%d2 # restore d2 |
| 11684 | rts |
| 11685 | |
| 11686 | fsub_unfl_ena: |
| 11687 | fmovm.x FP_SCR1(%a6),&0x40 |
| 11688 | |
| 11689 | mov.l L_SCR3(%a6),%d1 |
| 11690 | andi.b &0xc0,%d1 # is precision extended? |
| 11691 | bne.b fsub_unfl_ena_sd # no |
| 11692 | |
| 11693 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 11694 | |
| 11695 | fsub_unfl_ena_cont: |
| 11696 | fmov.l &0x0,%fpsr # clear FPSR |
| 11697 | |
| 11698 | fsub.x FP_SCR0(%a6),%fp1 # execute subtract |
| 11699 | |
| 11700 | fmov.l &0x0,%fpcr # clear FPCR |
| 11701 | |
| 11702 | fmovm.x &0x40,FP_SCR0(%a6) # store result to stack |
| 11703 | mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} |
| 11704 | mov.l %d1,%d2 # make a copy |
| 11705 | andi.l &0x7fff,%d1 # strip sign |
| 11706 | andi.w &0x8000,%d2 # keep old sign |
| 11707 | sub.l %d0,%d1 # add scale factor |
| 11708 | addi.l &0x6000,%d1 # subtract new bias |
| 11709 | andi.w &0x7fff,%d1 # clear top bit |
| 11710 | or.w %d2,%d1 # concat sgn,exp |
| 11711 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| 11712 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| 11713 | bra.w fsub_unfl_dis |
| 11714 | |
| 11715 | fsub_unfl_ena_sd: |
| 11716 | mov.l L_SCR3(%a6),%d1 |
| 11717 | andi.b &0x30,%d1 # clear rnd prec |
| 11718 | fmov.l %d1,%fpcr # set FPCR |
| 11719 | |
| 11720 | bra.b fsub_unfl_ena_cont |
| 11721 | |
| 11722 | # |
| 11723 | # result is equal to the smallest normalized number in the selected precision |
| 11724 | # if the precision is extended, this result could not have come from an |
| 11725 | # underflow that rounded up. |
| 11726 | # |
| 11727 | fsub_may_unfl: |
| 11728 | mov.l L_SCR3(%a6),%d1 |
| 11729 | andi.b &0xc0,%d1 # fetch rnd prec |
| 11730 | beq.w fsub_normal # yes; no underflow occurred |
| 11731 | |
| 11732 | mov.l 0x4(%sp),%d1 |
| 11733 | cmpi.l %d1,&0x80000000 # is hi(man) = 0x80000000? |
| 11734 | bne.w fsub_normal # no; no underflow occurred |
| 11735 | |
| 11736 | tst.l 0x8(%sp) # is lo(man) = 0x0? |
| 11737 | bne.w fsub_normal # no; no underflow occurred |
| 11738 | |
| 11739 | btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? |
| 11740 | beq.w fsub_normal # no; no underflow occurred |
| 11741 | |
| 11742 | # |
| 11743 | # ok, so now the result has a exponent equal to the smallest normalized |
| 11744 | # exponent for the selected precision. also, the mantissa is equal to |
| 11745 | # 0x8000000000000000 and this mantissa is the result of rounding non-zero |
| 11746 | # g,r,s. |
| 11747 | # now, we must determine whether the pre-rounded result was an underflow |
| 11748 | # rounded "up" or a normalized number rounded "down". |
| 11749 | # so, we do this be re-executing the add using RZ as the rounding mode and |
| 11750 | # seeing if the new result is smaller or equal to the current result. |
| 11751 | # |
| 11752 | fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 |
| 11753 | |
| 11754 | mov.l L_SCR3(%a6),%d1 |
| 11755 | andi.b &0xc0,%d1 # keep rnd prec |
| 11756 | ori.b &rz_mode*0x10,%d1 # insert rnd mode |
| 11757 | fmov.l %d1,%fpcr # set FPCR |
| 11758 | fmov.l &0x0,%fpsr # clear FPSR |
| 11759 | |
| 11760 | fsub.x FP_SCR0(%a6),%fp1 # execute subtract |
| 11761 | |
| 11762 | fmov.l &0x0,%fpcr # clear FPCR |
| 11763 | |
| 11764 | fabs.x %fp0 # compare absolute values |
| 11765 | fabs.x %fp1 |
| 11766 | fcmp.x %fp0,%fp1 # is first result > second? |
| 11767 | |
| 11768 | fbgt.w fsub_unfl # yes; it's an underflow |
| 11769 | bra.w fsub_normal # no; it's not an underflow |
| 11770 | |
| 11771 | ########################################################################## |
| 11772 | |
| 11773 | # |
| 11774 | # Sub: inputs are not both normalized; what are they? |
| 11775 | # |
| 11776 | fsub_not_norm: |
| 11777 | mov.w (tbl_fsub_op.b,%pc,%d1.w*2),%d1 |
| 11778 | jmp (tbl_fsub_op.b,%pc,%d1.w*1) |
| 11779 | |
| 11780 | swbeg &48 |
| 11781 | tbl_fsub_op: |
| 11782 | short fsub_norm - tbl_fsub_op # NORM - NORM |
| 11783 | short fsub_zero_src - tbl_fsub_op # NORM - ZERO |
| 11784 | short fsub_inf_src - tbl_fsub_op # NORM - INF |
| 11785 | short fsub_res_qnan - tbl_fsub_op # NORM - QNAN |
| 11786 | short fsub_norm - tbl_fsub_op # NORM - DENORM |
| 11787 | short fsub_res_snan - tbl_fsub_op # NORM - SNAN |
| 11788 | short tbl_fsub_op - tbl_fsub_op # |
| 11789 | short tbl_fsub_op - tbl_fsub_op # |
| 11790 | |
| 11791 | short fsub_zero_dst - tbl_fsub_op # ZERO - NORM |
| 11792 | short fsub_zero_2 - tbl_fsub_op # ZERO - ZERO |
| 11793 | short fsub_inf_src - tbl_fsub_op # ZERO - INF |
| 11794 | short fsub_res_qnan - tbl_fsub_op # NORM - QNAN |
| 11795 | short fsub_zero_dst - tbl_fsub_op # ZERO - DENORM |
| 11796 | short fsub_res_snan - tbl_fsub_op # NORM - SNAN |
| 11797 | short tbl_fsub_op - tbl_fsub_op # |
| 11798 | short tbl_fsub_op - tbl_fsub_op # |
| 11799 | |
| 11800 | short fsub_inf_dst - tbl_fsub_op # INF - NORM |
| 11801 | short fsub_inf_dst - tbl_fsub_op # INF - ZERO |
| 11802 | short fsub_inf_2 - tbl_fsub_op # INF - INF |
| 11803 | short fsub_res_qnan - tbl_fsub_op # NORM - QNAN |
| 11804 | short fsub_inf_dst - tbl_fsub_op # INF - DENORM |
| 11805 | short fsub_res_snan - tbl_fsub_op # NORM - SNAN |
| 11806 | short tbl_fsub_op - tbl_fsub_op # |
| 11807 | short tbl_fsub_op - tbl_fsub_op # |
| 11808 | |
| 11809 | short fsub_res_qnan - tbl_fsub_op # QNAN - NORM |
| 11810 | short fsub_res_qnan - tbl_fsub_op # QNAN - ZERO |
| 11811 | short fsub_res_qnan - tbl_fsub_op # QNAN - INF |
| 11812 | short fsub_res_qnan - tbl_fsub_op # QNAN - QNAN |
| 11813 | short fsub_res_qnan - tbl_fsub_op # QNAN - DENORM |
| 11814 | short fsub_res_snan - tbl_fsub_op # QNAN - SNAN |
| 11815 | short tbl_fsub_op - tbl_fsub_op # |
| 11816 | short tbl_fsub_op - tbl_fsub_op # |
| 11817 | |
| 11818 | short fsub_norm - tbl_fsub_op # DENORM - NORM |
| 11819 | short fsub_zero_src - tbl_fsub_op # DENORM - ZERO |
| 11820 | short fsub_inf_src - tbl_fsub_op # DENORM - INF |
| 11821 | short fsub_res_qnan - tbl_fsub_op # NORM - QNAN |
| 11822 | short fsub_norm - tbl_fsub_op # DENORM - DENORM |
| 11823 | short fsub_res_snan - tbl_fsub_op # NORM - SNAN |
| 11824 | short tbl_fsub_op - tbl_fsub_op # |
| 11825 | short tbl_fsub_op - tbl_fsub_op # |
| 11826 | |
| 11827 | short fsub_res_snan - tbl_fsub_op # SNAN - NORM |
| 11828 | short fsub_res_snan - tbl_fsub_op # SNAN - ZERO |
| 11829 | short fsub_res_snan - tbl_fsub_op # SNAN - INF |
| 11830 | short fsub_res_snan - tbl_fsub_op # SNAN - QNAN |
| 11831 | short fsub_res_snan - tbl_fsub_op # SNAN - DENORM |
| 11832 | short fsub_res_snan - tbl_fsub_op # SNAN - SNAN |
| 11833 | short tbl_fsub_op - tbl_fsub_op # |
| 11834 | short tbl_fsub_op - tbl_fsub_op # |
| 11835 | |
| 11836 | fsub_res_qnan: |
| 11837 | bra.l res_qnan |
| 11838 | fsub_res_snan: |
| 11839 | bra.l res_snan |
| 11840 | |
| 11841 | # |
| 11842 | # both operands are ZEROes |
| 11843 | # |
| 11844 | fsub_zero_2: |
| 11845 | mov.b SRC_EX(%a0),%d0 |
| 11846 | mov.b DST_EX(%a1),%d1 |
| 11847 | eor.b %d1,%d0 |
| 11848 | bpl.b fsub_zero_2_chk_rm |
| 11849 | |
| 11850 | # the signs are opposite, so, return a ZERO w/ the sign of the dst ZERO |
| 11851 | tst.b %d0 # is dst negative? |
| 11852 | bmi.b fsub_zero_2_rm # yes |
| 11853 | fmov.s &0x00000000,%fp0 # no; return +ZERO |
| 11854 | mov.b &z_bmask,FPSR_CC(%a6) # set Z |
| 11855 | rts |
| 11856 | |
| 11857 | # |
| 11858 | # the ZEROes have the same signs: |
| 11859 | # - therefore, we return +ZERO if the rounding mode is RN,RZ, or RP |
| 11860 | # - -ZERO is returned in the case of RM. |
| 11861 | # |
| 11862 | fsub_zero_2_chk_rm: |
| 11863 | mov.b 3+L_SCR3(%a6),%d1 |
| 11864 | andi.b &0x30,%d1 # extract rnd mode |
| 11865 | cmpi.b %d1,&rm_mode*0x10 # is rnd mode = RM? |
| 11866 | beq.b fsub_zero_2_rm # yes |
| 11867 | fmov.s &0x00000000,%fp0 # no; return +ZERO |
| 11868 | mov.b &z_bmask,FPSR_CC(%a6) # set Z |
| 11869 | rts |
| 11870 | |
| 11871 | fsub_zero_2_rm: |
| 11872 | fmov.s &0x80000000,%fp0 # return -ZERO |
| 11873 | mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/NEG |
| 11874 | rts |
| 11875 | |
| 11876 | # |
| 11877 | # one operand is a ZERO and the other is a DENORM or a NORM. |
| 11878 | # scale the DENORM or NORM and jump to the regular fsub routine. |
| 11879 | # |
| 11880 | fsub_zero_dst: |
| 11881 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| 11882 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| 11883 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| 11884 | bsr.l scale_to_zero_src # scale the operand |
| 11885 | clr.w FP_SCR1_EX(%a6) |
| 11886 | clr.l FP_SCR1_HI(%a6) |
| 11887 | clr.l FP_SCR1_LO(%a6) |
| 11888 | bra.w fsub_zero_entry # go execute fsub |
| 11889 | |
| 11890 | fsub_zero_src: |
| 11891 | mov.w DST_EX(%a1),FP_SCR1_EX(%a6) |
| 11892 | mov.l DST_HI(%a1),FP_SCR1_HI(%a6) |
| 11893 | mov.l DST_LO(%a1),FP_SCR1_LO(%a6) |
| 11894 | bsr.l scale_to_zero_dst # scale the operand |
| 11895 | clr.w FP_SCR0_EX(%a6) |
| 11896 | clr.l FP_SCR0_HI(%a6) |
| 11897 | clr.l FP_SCR0_LO(%a6) |
| 11898 | bra.w fsub_zero_entry # go execute fsub |
| 11899 | |
| 11900 | # |
| 11901 | # both operands are INFs. an OPERR will result if the INFs have the |
| 11902 | # same signs. else, |
| 11903 | # |
| 11904 | fsub_inf_2: |
| 11905 | mov.b SRC_EX(%a0),%d0 # exclusive or the signs |
| 11906 | mov.b DST_EX(%a1),%d1 |
| 11907 | eor.b %d1,%d0 |
| 11908 | bpl.l res_operr # weed out (-INF)+(+INF) |
| 11909 | |
| 11910 | # ok, so it's not an OPERR. but we do have to remember to return |
| 11911 | # the src INF since that's where the 881/882 gets the j-bit. |
| 11912 | |
| 11913 | fsub_inf_src: |
| 11914 | fmovm.x SRC(%a0),&0x80 # return src INF |
| 11915 | fneg.x %fp0 # invert sign |
| 11916 | fbge.w fsub_inf_done # sign is now positive |
| 11917 | mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG |
| 11918 | rts |
| 11919 | |
| 11920 | fsub_inf_dst: |
| 11921 | fmovm.x DST(%a1),&0x80 # return dst INF |
| 11922 | tst.b DST_EX(%a1) # is INF negative? |
| 11923 | bpl.b fsub_inf_done # no |
| 11924 | mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG |
| 11925 | rts |
| 11926 | |
| 11927 | fsub_inf_done: |
| 11928 | mov.b &inf_bmask,FPSR_CC(%a6) # set INF |
| 11929 | rts |
| 11930 | |
| 11931 | ######################################################################### |
| 11932 | # XDEF **************************************************************** # |
| 11933 | # fsqrt(): emulates the fsqrt instruction # |
| 11934 | # fssqrt(): emulates the fssqrt instruction # |
| 11935 | # fdsqrt(): emulates the fdsqrt instruction # |
| 11936 | # # |
| 11937 | # XREF **************************************************************** # |
| 11938 | # scale_sqrt() - scale the source operand # |
| 11939 | # unf_res() - return default underflow result # |
| 11940 | # ovf_res() - return default overflow result # |
| 11941 | # res_qnan_1op() - return QNAN result # |
| 11942 | # res_snan_1op() - return SNAN result # |
| 11943 | # # |
| 11944 | # INPUT *************************************************************** # |
| 11945 | # a0 = pointer to extended precision source operand # |
| 11946 | # d0 rnd prec,mode # |
| 11947 | # # |
| 11948 | # OUTPUT ************************************************************** # |
| 11949 | # fp0 = result # |
| 11950 | # fp1 = EXOP (if exception occurred) # |
| 11951 | # # |
| 11952 | # ALGORITHM *********************************************************** # |
| 11953 | # Handle NANs, infinities, and zeroes as special cases. Divide # |
| 11954 | # norms/denorms into ext/sgl/dbl precision. # |
| 11955 | # For norms/denorms, scale the exponents such that a sqrt # |
| 11956 | # instruction won't cause an exception. Use the regular fsqrt to # |
| 11957 | # compute a result. Check if the regular operands would have taken # |
| 11958 | # an exception. If so, return the default overflow/underflow result # |
| 11959 | # and return the EXOP if exceptions are enabled. Else, scale the # |
| 11960 | # result operand to the proper exponent. # |
| 11961 | # # |
| 11962 | ######################################################################### |
| 11963 | |
| 11964 | global fssqrt |
| 11965 | fssqrt: |
| 11966 | andi.b &0x30,%d0 # clear rnd prec |
| 11967 | ori.b &s_mode*0x10,%d0 # insert sgl precision |
| 11968 | bra.b fsqrt |
| 11969 | |
| 11970 | global fdsqrt |
| 11971 | fdsqrt: |
| 11972 | andi.b &0x30,%d0 # clear rnd prec |
| 11973 | ori.b &d_mode*0x10,%d0 # insert dbl precision |
| 11974 | |
| 11975 | global fsqrt |
| 11976 | fsqrt: |
| 11977 | mov.l %d0,L_SCR3(%a6) # store rnd info |
| 11978 | clr.w %d1 |
| 11979 | mov.b STAG(%a6),%d1 |
| 11980 | bne.w fsqrt_not_norm # optimize on non-norm input |
| 11981 | |
| 11982 | # |
| 11983 | # SQUARE ROOT: norms and denorms ONLY! |
| 11984 | # |
| 11985 | fsqrt_norm: |
| 11986 | tst.b SRC_EX(%a0) # is operand negative? |
| 11987 | bmi.l res_operr # yes |
| 11988 | |
| 11989 | andi.b &0xc0,%d0 # is precision extended? |
| 11990 | bne.b fsqrt_not_ext # no; go handle sgl or dbl |
| 11991 | |
| 11992 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 11993 | fmov.l &0x0,%fpsr # clear FPSR |
| 11994 | |
| 11995 | fsqrt.x (%a0),%fp0 # execute square root |
| 11996 | |
| 11997 | fmov.l %fpsr,%d1 |
| 11998 | or.l %d1,USER_FPSR(%a6) # set N,INEX |
| 11999 | |
| 12000 | rts |
| 12001 | |
| 12002 | fsqrt_denorm: |
| 12003 | tst.b SRC_EX(%a0) # is operand negative? |
| 12004 | bmi.l res_operr # yes |
| 12005 | |
| 12006 | andi.b &0xc0,%d0 # is precision extended? |
| 12007 | bne.b fsqrt_not_ext # no; go handle sgl or dbl |
| 12008 | |
| 12009 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| 12010 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| 12011 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| 12012 | |
| 12013 | bsr.l scale_sqrt # calculate scale factor |
| 12014 | |
| 12015 | bra.w fsqrt_sd_normal |
| 12016 | |
| 12017 | # |
| 12018 | # operand is either single or double |
| 12019 | # |
| 12020 | fsqrt_not_ext: |
| 12021 | cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec |
| 12022 | bne.w fsqrt_dbl |
| 12023 | |
| 12024 | # |
| 12025 | # operand is to be rounded to single precision |
| 12026 | # |
| 12027 | fsqrt_sgl: |
| 12028 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| 12029 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| 12030 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| 12031 | |
| 12032 | bsr.l scale_sqrt # calculate scale factor |
| 12033 | |
| 12034 | cmpi.l %d0,&0x3fff-0x3f81 # will move in underflow? |
| 12035 | beq.w fsqrt_sd_may_unfl |
| 12036 | bgt.w fsqrt_sd_unfl # yes; go handle underflow |
| 12037 | cmpi.l %d0,&0x3fff-0x407f # will move in overflow? |
| 12038 | beq.w fsqrt_sd_may_ovfl # maybe; go check |
| 12039 | blt.w fsqrt_sd_ovfl # yes; go handle overflow |
| 12040 | |
| 12041 | # |
| 12042 | # operand will NOT overflow or underflow when moved in to the fp reg file |
| 12043 | # |
| 12044 | fsqrt_sd_normal: |
| 12045 | fmov.l &0x0,%fpsr # clear FPSR |
| 12046 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 12047 | |
| 12048 | fsqrt.x FP_SCR0(%a6),%fp0 # perform absolute |
| 12049 | |
| 12050 | fmov.l %fpsr,%d1 # save FPSR |
| 12051 | fmov.l &0x0,%fpcr # clear FPCR |
| 12052 | |
| 12053 | or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| 12054 | |
| 12055 | fsqrt_sd_normal_exit: |
| 12056 | mov.l %d2,-(%sp) # save d2 |
| 12057 | fmovm.x &0x80,FP_SCR0(%a6) # store out result |
| 12058 | mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp |
| 12059 | mov.l %d1,%d2 # make a copy |
| 12060 | andi.l &0x7fff,%d1 # strip sign |
| 12061 | sub.l %d0,%d1 # add scale factor |
| 12062 | andi.w &0x8000,%d2 # keep old sign |
| 12063 | or.w %d1,%d2 # concat old sign,new exp |
| 12064 | mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent |
| 12065 | mov.l (%sp)+,%d2 # restore d2 |
| 12066 | fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 |
| 12067 | rts |
| 12068 | |
| 12069 | # |
| 12070 | # operand is to be rounded to double precision |
| 12071 | # |
| 12072 | fsqrt_dbl: |
| 12073 | mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) |
| 12074 | mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) |
| 12075 | mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) |
| 12076 | |
| 12077 | bsr.l scale_sqrt # calculate scale factor |
| 12078 | |
| 12079 | cmpi.l %d0,&0x3fff-0x3c01 # will move in underflow? |
| 12080 | beq.w fsqrt_sd_may_unfl |
| 12081 | bgt.b fsqrt_sd_unfl # yes; go handle underflow |
| 12082 | cmpi.l %d0,&0x3fff-0x43ff # will move in overflow? |
| 12083 | beq.w fsqrt_sd_may_ovfl # maybe; go check |
| 12084 | blt.w fsqrt_sd_ovfl # yes; go handle overflow |
| 12085 | bra.w fsqrt_sd_normal # no; ho handle normalized op |
| 12086 | |
| 12087 | # we're on the line here and the distinguising characteristic is whether |
| 12088 | # the exponent is 3fff or 3ffe. if it's 3ffe, then it's a safe number |
| 12089 | # elsewise fall through to underflow. |
| 12090 | fsqrt_sd_may_unfl: |
| 12091 | btst &0x0,1+FP_SCR0_EX(%a6) # is exponent 0x3fff? |
| 12092 | bne.w fsqrt_sd_normal # yes, so no underflow |
| 12093 | |
| 12094 | # |
| 12095 | # operand WILL underflow when moved in to the fp register file |
| 12096 | # |
| 12097 | fsqrt_sd_unfl: |
| 12098 | bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit |
| 12099 | |
| 12100 | fmov.l &rz_mode*0x10,%fpcr # set FPCR |
| 12101 | fmov.l &0x0,%fpsr # clear FPSR |
| 12102 | |
| 12103 | fsqrt.x FP_SCR0(%a6),%fp0 # execute square root |
| 12104 | |
| 12105 | fmov.l %fpsr,%d1 # save status |
| 12106 | fmov.l &0x0,%fpcr # clear FPCR |
| 12107 | |
| 12108 | or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| 12109 | |
| 12110 | # if underflow or inexact is enabled, go calculate EXOP first. |
| 12111 | mov.b FPCR_ENABLE(%a6),%d1 |
| 12112 | andi.b &0x0b,%d1 # is UNFL or INEX enabled? |
| 12113 | bne.b fsqrt_sd_unfl_ena # yes |
| 12114 | |
| 12115 | fsqrt_sd_unfl_dis: |
| 12116 | fmovm.x &0x80,FP_SCR0(%a6) # store out result |
| 12117 | |
| 12118 | lea FP_SCR0(%a6),%a0 # pass: result addr |
| 12119 | mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode |
| 12120 | bsr.l unf_res # calculate default result |
| 12121 | or.b %d0,FPSR_CC(%a6) # set possible 'Z' ccode |
| 12122 | fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 |
| 12123 | rts |
| 12124 | |
| 12125 | # |
| 12126 | # operand will underflow AND underflow is enabled. |
| 12127 | # therefore, we must return the result rounded to extended precision. |
| 12128 | # |
| 12129 | fsqrt_sd_unfl_ena: |
| 12130 | mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) |
| 12131 | mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) |
| 12132 | mov.w FP_SCR0_EX(%a6),%d1 # load current exponent |
| 12133 | |
| 12134 | mov.l %d2,-(%sp) # save d2 |
| 12135 | mov.l %d1,%d2 # make a copy |
| 12136 | andi.l &0x7fff,%d1 # strip sign |
| 12137 | andi.w &0x8000,%d2 # keep old sign |
| 12138 | sub.l %d0,%d1 # subtract scale factor |
| 12139 | addi.l &0x6000,%d1 # add new bias |
| 12140 | andi.w &0x7fff,%d1 |
| 12141 | or.w %d2,%d1 # concat new sign,new exp |
| 12142 | mov.w %d1,FP_SCR1_EX(%a6) # insert new exp |
| 12143 | fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 |
| 12144 | mov.l (%sp)+,%d2 # restore d2 |
| 12145 | bra.b fsqrt_sd_unfl_dis |
| 12146 | |
| 12147 | # |
| 12148 | # operand WILL overflow. |
| 12149 | # |
| 12150 | fsqrt_sd_ovfl: |
| 12151 | fmov.l &0x0,%fpsr # clear FPSR |
| 12152 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 12153 | |
| 12154 | fsqrt.x FP_SCR0(%a6),%fp0 # perform square root |
| 12155 | |
| 12156 | fmov.l &0x0,%fpcr # clear FPCR |
| 12157 | fmov.l %fpsr,%d1 # save FPSR |
| 12158 | |
| 12159 | or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| 12160 | |
| 12161 | fsqrt_sd_ovfl_tst: |
| 12162 | or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex |
| 12163 | |
| 12164 | mov.b FPCR_ENABLE(%a6),%d1 |
| 12165 | andi.b &0x13,%d1 # is OVFL or INEX enabled? |
| 12166 | bne.b fsqrt_sd_ovfl_ena # yes |
| 12167 | |
| 12168 | # |
| 12169 | # OVFL is not enabled; therefore, we must create the default result by |
| 12170 | # calling ovf_res(). |
| 12171 | # |
| 12172 | fsqrt_sd_ovfl_dis: |
| 12173 | btst &neg_bit,FPSR_CC(%a6) # is result negative? |
| 12174 | sne %d1 # set sign param accordingly |
| 12175 | mov.l L_SCR3(%a6),%d0 # pass: prec,mode |
| 12176 | bsr.l ovf_res # calculate default result |
| 12177 | or.b %d0,FPSR_CC(%a6) # set INF,N if applicable |
| 12178 | fmovm.x (%a0),&0x80 # return default result in fp0 |
| 12179 | rts |
| 12180 | |
| 12181 | # |
| 12182 | # OVFL is enabled. |
| 12183 | # the INEX2 bit has already been updated by the round to the correct precision. |
| 12184 | # now, round to extended(and don't alter the FPSR). |
| 12185 | # |
| 12186 | fsqrt_sd_ovfl_ena: |
| 12187 | mov.l %d2,-(%sp) # save d2 |
| 12188 | mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} |
| 12189 | mov.l %d1,%d2 # make a copy |
| 12190 | andi.l &0x7fff,%d1 # strip sign |
| 12191 | andi.w &0x8000,%d2 # keep old sign |
| 12192 | sub.l %d0,%d1 # add scale factor |
| 12193 | subi.l &0x6000,%d1 # subtract bias |
| 12194 | andi.w &0x7fff,%d1 |
| 12195 | or.w %d2,%d1 # concat sign,exp |
| 12196 | mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent |
| 12197 | fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 |
| 12198 | mov.l (%sp)+,%d2 # restore d2 |
| 12199 | bra.b fsqrt_sd_ovfl_dis |
| 12200 | |
| 12201 | # |
| 12202 | # the move in MAY underflow. so... |
| 12203 | # |
| 12204 | fsqrt_sd_may_ovfl: |
| 12205 | btst &0x0,1+FP_SCR0_EX(%a6) # is exponent 0x3fff? |
| 12206 | bne.w fsqrt_sd_ovfl # yes, so overflow |
| 12207 | |
| 12208 | fmov.l &0x0,%fpsr # clear FPSR |
| 12209 | fmov.l L_SCR3(%a6),%fpcr # set FPCR |
| 12210 | |
| 12211 | fsqrt.x FP_SCR0(%a6),%fp0 # perform absolute |
| 12212 | |
| 12213 | fmov.l %fpsr,%d1 # save status |
| 12214 | fmov.l &0x0,%fpcr # clear FPCR |
| 12215 | |
| 12216 | or.l %d1,USER_FPSR(%a6) # save INEX2,N |
| 12217 | |
| 12218 | fmov.x %fp0,%fp1 # make a copy of result |
| 12219 | fcmp.b %fp1,&0x1 # is |result| >= 1.b? |
| 12220 | fbge.w fsqrt_sd_ovfl_tst # yes; overflow has occurred |
| 12221 | |
| 12222 | # no, it didn't overflow; we have correct result |
| 12223 | bra.w fsqrt_sd_normal_exit |
| 12224 | |
| 12225 | ########################################################################## |
| 12226 | |
| 12227 | # |
| 12228 | # input is not normalized; what is it? |
| 12229 | # |
| 12230 | fsqrt_not_norm: |
| 12231 | cmpi.b %d1,&DENORM # weed out DENORM |
| 12232 | beq.w fsqrt_denorm |
| 12233 | cmpi.b %d1,&ZERO # weed out ZERO |
| 12234 | beq.b fsqrt_zero |
| 12235 | cmpi.b %d1,&INF # weed out INF |
| 12236 | beq.b fsqrt_inf |
| 12237 | cmpi.b %d1,&SNAN # weed out SNAN |
| 12238 | beq.l res_snan_1op |
| 12239 | bra.l res_qnan_1op |
| 12240 | |
| 12241 | # |
| 12242 | # fsqrt(+0) = +0 |
| 12243 | # fsqrt(-0) = -0 |
| 12244 | # fsqrt(+INF) = +INF |
| 12245 | # fsqrt(-INF) = OPERR |
| 12246 | # |
| 12247 | fsqrt_zero: |
| 12248 | tst.b SRC_EX(%a0) # is ZERO positive or negative? |
| 12249 | bmi.b fsqrt_zero_m # negative |
| 12250 | fsqrt_zero_p: |
| 12251 | fmov.s &0x00000000,%fp0 # return +ZERO |
| 12252 | mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit |
| 12253 | rts |
| 12254 | fsqrt_zero_m: |
| 12255 | fmov.s &0x80000000,%fp0 # return -ZERO |
| 12256 | mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits |
| 12257 | rts |
| 12258 | |
| 12259 | fsqrt_inf: |
| 12260 | tst.b SRC_EX(%a0) # is INF positive or negative? |
| 12261 | bmi.l res_operr # negative |
| 12262 | fsqrt_inf_p: |
| 12263 | fmovm.x SRC(%a0),&0x80 # return +INF in fp0 |
| 12264 | mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit |
| 12265 | rts |
| 12266 | |
| 12267 | ######################################################################### |
| 12268 | # XDEF **************************************************************** # |
| 12269 | # fetch_dreg(): fetch register according to index in d1 # |
| 12270 | # # |
| 12271 | # XREF **************************************************************** # |
| 12272 | # None # |
| 12273 | # # |
| 12274 | # INPUT *************************************************************** # |
| 12275 | # d1 = index of register to fetch from # |
| 12276 | # # |
| 12277 | # OUTPUT ************************************************************** # |
| 12278 | # d0 = value of register fetched # |
| 12279 | # # |
| 12280 | # ALGORITHM *********************************************************** # |
| 12281 | # According to the index value in d1 which can range from zero # |
| 12282 | # to fifteen, load the corresponding register file value (where # |
| 12283 | # address register indexes start at 8). D0/D1/A0/A1/A6/A7 are on the # |
| 12284 | # stack. The rest should still be in their original places. # |
| 12285 | # # |
| 12286 | ######################################################################### |
| 12287 | |
| 12288 | # this routine leaves d1 intact for subsequent store_dreg calls. |
| 12289 | global fetch_dreg |
| 12290 | fetch_dreg: |
| 12291 | mov.w (tbl_fdreg.b,%pc,%d1.w*2),%d0 |
| 12292 | jmp (tbl_fdreg.b,%pc,%d0.w*1) |
| 12293 | |
| 12294 | tbl_fdreg: |
| 12295 | short fdreg0 - tbl_fdreg |
| 12296 | short fdreg1 - tbl_fdreg |
| 12297 | short fdreg2 - tbl_fdreg |
| 12298 | short fdreg3 - tbl_fdreg |
| 12299 | short fdreg4 - tbl_fdreg |
| 12300 | short fdreg5 - tbl_fdreg |
| 12301 | short fdreg6 - tbl_fdreg |
| 12302 | short fdreg7 - tbl_fdreg |
| 12303 | short fdreg8 - tbl_fdreg |
| 12304 | short fdreg9 - tbl_fdreg |
| 12305 | short fdrega - tbl_fdreg |
| 12306 | short fdregb - tbl_fdreg |
| 12307 | short fdregc - tbl_fdreg |
| 12308 | short fdregd - tbl_fdreg |
| 12309 | short fdrege - tbl_fdreg |
| 12310 | short fdregf - tbl_fdreg |
| 12311 | |
| 12312 | fdreg0: |
| 12313 | mov.l EXC_DREGS+0x0(%a6),%d0 |
| 12314 | rts |
| 12315 | fdreg1: |
| 12316 | mov.l EXC_DREGS+0x4(%a6),%d0 |
| 12317 | rts |
| 12318 | fdreg2: |
| 12319 | mov.l %d2,%d0 |
| 12320 | rts |
| 12321 | fdreg3: |
| 12322 | mov.l %d3,%d0 |
| 12323 | rts |
| 12324 | fdreg4: |
| 12325 | mov.l %d4,%d0 |
| 12326 | rts |
| 12327 | fdreg5: |
| 12328 | mov.l %d5,%d0 |
| 12329 | rts |
| 12330 | fdreg6: |
| 12331 | mov.l %d6,%d0 |
| 12332 | rts |
| 12333 | fdreg7: |
| 12334 | mov.l %d7,%d0 |
| 12335 | rts |
| 12336 | fdreg8: |
| 12337 | mov.l EXC_DREGS+0x8(%a6),%d0 |
| 12338 | rts |
| 12339 | fdreg9: |
| 12340 | mov.l EXC_DREGS+0xc(%a6),%d0 |
| 12341 | rts |
| 12342 | fdrega: |
| 12343 | mov.l %a2,%d0 |
| 12344 | rts |
| 12345 | fdregb: |
| 12346 | mov.l %a3,%d0 |
| 12347 | rts |
| 12348 | fdregc: |
| 12349 | mov.l %a4,%d0 |
| 12350 | rts |
| 12351 | fdregd: |
| 12352 | mov.l %a5,%d0 |
| 12353 | rts |
| 12354 | fdrege: |
| 12355 | mov.l (%a6),%d0 |
| 12356 | rts |
| 12357 | fdregf: |
| 12358 | mov.l EXC_A7(%a6),%d0 |
| 12359 | rts |
| 12360 | |
| 12361 | ######################################################################### |
| 12362 | # XDEF **************************************************************** # |
| 12363 | # store_dreg_l(): store longword to data register specified by d1 # |
| 12364 | # # |
| 12365 | # XREF **************************************************************** # |
| 12366 | # None # |
| 12367 | # # |
| 12368 | # INPUT *************************************************************** # |
| 12369 | # d0 = longowrd value to store # |
| 12370 | # d1 = index of register to fetch from # |
| 12371 | # # |
| 12372 | # OUTPUT ************************************************************** # |
| 12373 | # (data register is updated) # |
| 12374 | # # |
| 12375 | # ALGORITHM *********************************************************** # |
| 12376 | # According to the index value in d1, store the longword value # |
| 12377 | # in d0 to the corresponding data register. D0/D1 are on the stack # |
| 12378 | # while the rest are in their initial places. # |
| 12379 | # # |
| 12380 | ######################################################################### |
| 12381 | |
| 12382 | global store_dreg_l |
| 12383 | store_dreg_l: |
| 12384 | mov.w (tbl_sdregl.b,%pc,%d1.w*2),%d1 |
| 12385 | jmp (tbl_sdregl.b,%pc,%d1.w*1) |
| 12386 | |
| 12387 | tbl_sdregl: |
| 12388 | short sdregl0 - tbl_sdregl |
| 12389 | short sdregl1 - tbl_sdregl |
| 12390 | short sdregl2 - tbl_sdregl |
| 12391 | short sdregl3 - tbl_sdregl |
| 12392 | short sdregl4 - tbl_sdregl |
| 12393 | short sdregl5 - tbl_sdregl |
| 12394 | short sdregl6 - tbl_sdregl |
| 12395 | short sdregl7 - tbl_sdregl |
| 12396 | |
| 12397 | sdregl0: |
| 12398 | mov.l %d0,EXC_DREGS+0x0(%a6) |
| 12399 | rts |
| 12400 | sdregl1: |
| 12401 | mov.l %d0,EXC_DREGS+0x4(%a6) |
| 12402 | rts |
| 12403 | sdregl2: |
| 12404 | mov.l %d0,%d2 |
| 12405 | rts |
| 12406 | sdregl3: |
| 12407 | mov.l %d0,%d3 |
| 12408 | rts |
| 12409 | sdregl4: |
| 12410 | mov.l %d0,%d4 |
| 12411 | rts |
| 12412 | sdregl5: |
| 12413 | mov.l %d0,%d5 |
| 12414 | rts |
| 12415 | sdregl6: |
| 12416 | mov.l %d0,%d6 |
| 12417 | rts |
| 12418 | sdregl7: |
| 12419 | mov.l %d0,%d7 |
| 12420 | rts |
| 12421 | |
| 12422 | ######################################################################### |
| 12423 | # XDEF **************************************************************** # |
| 12424 | # store_dreg_w(): store word to data register specified by d1 # |
| 12425 | # # |
| 12426 | # XREF **************************************************************** # |
| 12427 | # None # |
| 12428 | # # |
| 12429 | # INPUT *************************************************************** # |
| 12430 | # d0 = word value to store # |
| 12431 | # d1 = index of register to fetch from # |
| 12432 | # # |
| 12433 | # OUTPUT ************************************************************** # |
| 12434 | # (data register is updated) # |
| 12435 | # # |
| 12436 | # ALGORITHM *********************************************************** # |
| 12437 | # According to the index value in d1, store the word value # |
| 12438 | # in d0 to the corresponding data register. D0/D1 are on the stack # |
| 12439 | # while the rest are in their initial places. # |
| 12440 | # # |
| 12441 | ######################################################################### |
| 12442 | |
| 12443 | global store_dreg_w |
| 12444 | store_dreg_w: |
| 12445 | mov.w (tbl_sdregw.b,%pc,%d1.w*2),%d1 |
| 12446 | jmp (tbl_sdregw.b,%pc,%d1.w*1) |
| 12447 | |
| 12448 | tbl_sdregw: |
| 12449 | short sdregw0 - tbl_sdregw |
| 12450 | short sdregw1 - tbl_sdregw |
| 12451 | short sdregw2 - tbl_sdregw |
| 12452 | short sdregw3 - tbl_sdregw |
| 12453 | short sdregw4 - tbl_sdregw |
| 12454 | short sdregw5 - tbl_sdregw |
| 12455 | short sdregw6 - tbl_sdregw |
| 12456 | short sdregw7 - tbl_sdregw |
| 12457 | |
| 12458 | sdregw0: |
| 12459 | mov.w %d0,2+EXC_DREGS+0x0(%a6) |
| 12460 | rts |
| 12461 | sdregw1: |
| 12462 | mov.w %d0,2+EXC_DREGS+0x4(%a6) |
| 12463 | rts |
| 12464 | sdregw2: |
| 12465 | mov.w %d0,%d2 |
| 12466 | rts |
| 12467 | sdregw3: |
| 12468 | mov.w %d0,%d3 |
| 12469 | rts |
| 12470 | sdregw4: |
| 12471 | mov.w %d0,%d4 |
| 12472 | rts |
| 12473 | sdregw5: |
| 12474 | mov.w %d0,%d5 |
| 12475 | rts |
| 12476 | sdregw6: |
| 12477 | mov.w %d0,%d6 |
| 12478 | rts |
| 12479 | sdregw7: |
| 12480 | mov.w %d0,%d7 |
| 12481 | rts |
| 12482 | |
| 12483 | ######################################################################### |
| 12484 | # XDEF **************************************************************** # |
| 12485 | # store_dreg_b(): store byte to data register specified by d1 # |
| 12486 | # # |
| 12487 | # XREF **************************************************************** # |
| 12488 | # None # |
| 12489 | # # |
| 12490 | # INPUT *************************************************************** # |
| 12491 | # d0 = byte value to store # |
| 12492 | # d1 = index of register to fetch from # |
| 12493 | # # |
| 12494 | # OUTPUT ************************************************************** # |
| 12495 | # (data register is updated) # |
| 12496 | # # |
| 12497 | # ALGORITHM *********************************************************** # |
| 12498 | # According to the index value in d1, store the byte value # |
| 12499 | # in d0 to the corresponding data register. D0/D1 are on the stack # |
| 12500 | # while the rest are in their initial places. # |
| 12501 | # # |
| 12502 | ######################################################################### |
| 12503 | |
| 12504 | global store_dreg_b |
| 12505 | store_dreg_b: |
| 12506 | mov.w (tbl_sdregb.b,%pc,%d1.w*2),%d1 |
| 12507 | jmp (tbl_sdregb.b,%pc,%d1.w*1) |
| 12508 | |
| 12509 | tbl_sdregb: |
| 12510 | short sdregb0 - tbl_sdregb |
| 12511 | short sdregb1 - tbl_sdregb |
| 12512 | short sdregb2 - tbl_sdregb |
| 12513 | short sdregb3 - tbl_sdregb |
| 12514 | short sdregb4 - tbl_sdregb |
| 12515 | short sdregb5 - tbl_sdregb |
| 12516 | short sdregb6 - tbl_sdregb |
| 12517 | short sdregb7 - tbl_sdregb |
| 12518 | |
| 12519 | sdregb0: |
| 12520 | mov.b %d0,3+EXC_DREGS+0x0(%a6) |
| 12521 | rts |
| 12522 | sdregb1: |
| 12523 | mov.b %d0,3+EXC_DREGS+0x4(%a6) |
| 12524 | rts |
| 12525 | sdregb2: |
| 12526 | mov.b %d0,%d2 |
| 12527 | rts |
| 12528 | sdregb3: |
| 12529 | mov.b %d0,%d3 |
| 12530 | rts |
| 12531 | sdregb4: |
| 12532 | mov.b %d0,%d4 |
| 12533 | rts |
| 12534 | sdregb5: |
| 12535 | mov.b %d0,%d5 |
| 12536 | rts |
| 12537 | sdregb6: |
| 12538 | mov.b %d0,%d6 |
| 12539 | rts |
| 12540 | sdregb7: |
| 12541 | mov.b %d0,%d7 |
| 12542 | rts |
| 12543 | |
| 12544 | ######################################################################### |
| 12545 | # XDEF **************************************************************** # |
| 12546 | # inc_areg(): increment an address register by the value in d0 # |
| 12547 | # # |
| 12548 | # XREF **************************************************************** # |
| 12549 | # None # |
| 12550 | # # |
| 12551 | # INPUT *************************************************************** # |
| 12552 | # d0 = amount to increment by # |
| 12553 | # d1 = index of address register to increment # |
| 12554 | # # |
| 12555 | # OUTPUT ************************************************************** # |
| 12556 | # (address register is updated) # |
| 12557 | # # |
| 12558 | # ALGORITHM *********************************************************** # |
| 12559 | # Typically used for an instruction w/ a post-increment <ea>, # |
| 12560 | # this routine adds the increment value in d0 to the address register # |
| 12561 | # specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside # |
| 12562 | # in their original places. # |
| 12563 | # For a7, if the increment amount is one, then we have to # |
| 12564 | # increment by two. For any a7 update, set the mia7_flag so that if # |
| 12565 | # an access error exception occurs later in emulation, this address # |
| 12566 | # register update can be undone. # |
| 12567 | # # |
| 12568 | ######################################################################### |
| 12569 | |
| 12570 | global inc_areg |
| 12571 | inc_areg: |
| 12572 | mov.w (tbl_iareg.b,%pc,%d1.w*2),%d1 |
| 12573 | jmp (tbl_iareg.b,%pc,%d1.w*1) |
| 12574 | |
| 12575 | tbl_iareg: |
| 12576 | short iareg0 - tbl_iareg |
| 12577 | short iareg1 - tbl_iareg |
| 12578 | short iareg2 - tbl_iareg |
| 12579 | short iareg3 - tbl_iareg |
| 12580 | short iareg4 - tbl_iareg |
| 12581 | short iareg5 - tbl_iareg |
| 12582 | short iareg6 - tbl_iareg |
| 12583 | short iareg7 - tbl_iareg |
| 12584 | |
| 12585 | iareg0: add.l %d0,EXC_DREGS+0x8(%a6) |
| 12586 | rts |
| 12587 | iareg1: add.l %d0,EXC_DREGS+0xc(%a6) |
| 12588 | rts |
| 12589 | iareg2: add.l %d0,%a2 |
| 12590 | rts |
| 12591 | iareg3: add.l %d0,%a3 |
| 12592 | rts |
| 12593 | iareg4: add.l %d0,%a4 |
| 12594 | rts |
| 12595 | iareg5: add.l %d0,%a5 |
| 12596 | rts |
| 12597 | iareg6: add.l %d0,(%a6) |
| 12598 | rts |
| 12599 | iareg7: mov.b &mia7_flg,SPCOND_FLG(%a6) |
| 12600 | cmpi.b %d0,&0x1 |
| 12601 | beq.b iareg7b |
| 12602 | add.l %d0,EXC_A7(%a6) |
| 12603 | rts |
| 12604 | iareg7b: |
| 12605 | addq.l &0x2,EXC_A7(%a6) |
| 12606 | rts |
| 12607 | |
| 12608 | ######################################################################### |
| 12609 | # XDEF **************************************************************** # |
| 12610 | # dec_areg(): decrement an address register by the value in d0 # |
| 12611 | # # |
| 12612 | # XREF **************************************************************** # |
| 12613 | # None # |
| 12614 | # # |
| 12615 | # INPUT *************************************************************** # |
| 12616 | # d0 = amount to decrement by # |
| 12617 | # d1 = index of address register to decrement # |
| 12618 | # # |
| 12619 | # OUTPUT ************************************************************** # |
| 12620 | # (address register is updated) # |
| 12621 | # # |
| 12622 | # ALGORITHM *********************************************************** # |
| 12623 | # Typically used for an instruction w/ a pre-decrement <ea>, # |
| 12624 | # this routine adds the decrement value in d0 to the address register # |
| 12625 | # specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside # |
| 12626 | # in their original places. # |
| 12627 | # For a7, if the decrement amount is one, then we have to # |
| 12628 | # decrement by two. For any a7 update, set the mda7_flag so that if # |
| 12629 | # an access error exception occurs later in emulation, this address # |
| 12630 | # register update can be undone. # |
| 12631 | # # |
| 12632 | ######################################################################### |
| 12633 | |
| 12634 | global dec_areg |
| 12635 | dec_areg: |
| 12636 | mov.w (tbl_dareg.b,%pc,%d1.w*2),%d1 |
| 12637 | jmp (tbl_dareg.b,%pc,%d1.w*1) |
| 12638 | |
| 12639 | tbl_dareg: |
| 12640 | short dareg0 - tbl_dareg |
| 12641 | short dareg1 - tbl_dareg |
| 12642 | short dareg2 - tbl_dareg |
| 12643 | short dareg3 - tbl_dareg |
| 12644 | short dareg4 - tbl_dareg |
| 12645 | short dareg5 - tbl_dareg |
| 12646 | short dareg6 - tbl_dareg |
| 12647 | short dareg7 - tbl_dareg |
| 12648 | |
| 12649 | dareg0: sub.l %d0,EXC_DREGS+0x8(%a6) |
| 12650 | rts |
| 12651 | dareg1: sub.l %d0,EXC_DREGS+0xc(%a6) |
| 12652 | rts |
| 12653 | dareg2: sub.l %d0,%a2 |
| 12654 | rts |
| 12655 | dareg3: sub.l %d0,%a3 |
| 12656 | rts |
| 12657 | dareg4: sub.l %d0,%a4 |
| 12658 | rts |
| 12659 | dareg5: sub.l %d0,%a5 |
| 12660 | rts |
| 12661 | dareg6: sub.l %d0,(%a6) |
| 12662 | rts |
| 12663 | dareg7: mov.b &mda7_flg,SPCOND_FLG(%a6) |
| 12664 | cmpi.b %d0,&0x1 |
| 12665 | beq.b dareg7b |
| 12666 | sub.l %d0,EXC_A7(%a6) |
| 12667 | rts |
| 12668 | dareg7b: |
| 12669 | subq.l &0x2,EXC_A7(%a6) |
| 12670 | rts |
| 12671 | |
| 12672 | ############################################################################## |
| 12673 | |
| 12674 | ######################################################################### |
| 12675 | # XDEF **************************************************************** # |
| 12676 | # load_fpn1(): load FP register value into FP_SRC(a6). # |
| 12677 | # # |
| 12678 | # XREF **************************************************************** # |
| 12679 | # None # |
| 12680 | # # |
| 12681 | # INPUT *************************************************************** # |
| 12682 | # d0 = index of FP register to load # |
| 12683 | # # |
| 12684 | # OUTPUT ************************************************************** # |
| 12685 | # FP_SRC(a6) = value loaded from FP register file # |
| 12686 | # # |
| 12687 | # ALGORITHM *********************************************************** # |
| 12688 | # Using the index in d0, load FP_SRC(a6) with a number from the # |
| 12689 | # FP register file. # |
| 12690 | # # |
| 12691 | ######################################################################### |
| 12692 | |
| 12693 | global load_fpn1 |
| 12694 | load_fpn1: |
| 12695 | mov.w (tbl_load_fpn1.b,%pc,%d0.w*2), %d0 |
| 12696 | jmp (tbl_load_fpn1.b,%pc,%d0.w*1) |
| 12697 | |
| 12698 | tbl_load_fpn1: |
| 12699 | short load_fpn1_0 - tbl_load_fpn1 |
| 12700 | short load_fpn1_1 - tbl_load_fpn1 |
| 12701 | short load_fpn1_2 - tbl_load_fpn1 |
| 12702 | short load_fpn1_3 - tbl_load_fpn1 |
| 12703 | short load_fpn1_4 - tbl_load_fpn1 |
| 12704 | short load_fpn1_5 - tbl_load_fpn1 |
| 12705 | short load_fpn1_6 - tbl_load_fpn1 |
| 12706 | short load_fpn1_7 - tbl_load_fpn1 |
| 12707 | |
| 12708 | load_fpn1_0: |
| 12709 | mov.l 0+EXC_FP0(%a6), 0+FP_SRC(%a6) |
| 12710 | mov.l 4+EXC_FP0(%a6), 4+FP_SRC(%a6) |
| 12711 | mov.l 8+EXC_FP0(%a6), 8+FP_SRC(%a6) |
| 12712 | lea FP_SRC(%a6), %a0 |
| 12713 | rts |
| 12714 | load_fpn1_1: |
| 12715 | mov.l 0+EXC_FP1(%a6), 0+FP_SRC(%a6) |
| 12716 | mov.l 4+EXC_FP1(%a6), 4+FP_SRC(%a6) |
| 12717 | mov.l 8+EXC_FP1(%a6), 8+FP_SRC(%a6) |
| 12718 | lea FP_SRC(%a6), %a0 |
| 12719 | rts |
| 12720 | load_fpn1_2: |
| 12721 | fmovm.x &0x20, FP_SRC(%a6) |
| 12722 | lea FP_SRC(%a6), %a0 |
| 12723 | rts |
| 12724 | load_fpn1_3: |
| 12725 | fmovm.x &0x10, FP_SRC(%a6) |
| 12726 | lea FP_SRC(%a6), %a0 |
| 12727 | rts |
| 12728 | load_fpn1_4: |
| 12729 | fmovm.x &0x08, FP_SRC(%a6) |
| 12730 | lea FP_SRC(%a6), %a0 |
| 12731 | rts |
| 12732 | load_fpn1_5: |
| 12733 | fmovm.x &0x04, FP_SRC(%a6) |
| 12734 | lea FP_SRC(%a6), %a0 |
| 12735 | rts |
| 12736 | load_fpn1_6: |
| 12737 | fmovm.x &0x02, FP_SRC(%a6) |
| 12738 | lea FP_SRC(%a6), %a0 |
| 12739 | rts |
| 12740 | load_fpn1_7: |
| 12741 | fmovm.x &0x01, FP_SRC(%a6) |
| 12742 | lea FP_SRC(%a6), %a0 |
| 12743 | rts |
| 12744 | |
| 12745 | ############################################################################# |
| 12746 | |
| 12747 | ######################################################################### |
| 12748 | # XDEF **************************************************************** # |
| 12749 | # load_fpn2(): load FP register value into FP_DST(a6). # |
| 12750 | # # |
| 12751 | # XREF **************************************************************** # |
| 12752 | # None # |
| 12753 | # # |
| 12754 | # INPUT *************************************************************** # |
| 12755 | # d0 = index of FP register to load # |
| 12756 | # # |
| 12757 | # OUTPUT ************************************************************** # |
| 12758 | # FP_DST(a6) = value loaded from FP register file # |
| 12759 | # # |
| 12760 | # ALGORITHM *********************************************************** # |
| 12761 | # Using the index in d0, load FP_DST(a6) with a number from the # |
| 12762 | # FP register file. # |
| 12763 | # # |
| 12764 | ######################################################################### |
| 12765 | |
| 12766 | global load_fpn2 |
| 12767 | load_fpn2: |
| 12768 | mov.w (tbl_load_fpn2.b,%pc,%d0.w*2), %d0 |
| 12769 | jmp (tbl_load_fpn2.b,%pc,%d0.w*1) |
| 12770 | |
| 12771 | tbl_load_fpn2: |
| 12772 | short load_fpn2_0 - tbl_load_fpn2 |
| 12773 | short load_fpn2_1 - tbl_load_fpn2 |
| 12774 | short load_fpn2_2 - tbl_load_fpn2 |
| 12775 | short load_fpn2_3 - tbl_load_fpn2 |
| 12776 | short load_fpn2_4 - tbl_load_fpn2 |
| 12777 | short load_fpn2_5 - tbl_load_fpn2 |
| 12778 | short load_fpn2_6 - tbl_load_fpn2 |
| 12779 | short load_fpn2_7 - tbl_load_fpn2 |
| 12780 | |
| 12781 | load_fpn2_0: |
| 12782 | mov.l 0+EXC_FP0(%a6), 0+FP_DST(%a6) |
| 12783 | mov.l 4+EXC_FP0(%a6), 4+FP_DST(%a6) |
| 12784 | mov.l 8+EXC_FP0(%a6), 8+FP_DST(%a6) |
| 12785 | lea FP_DST(%a6), %a0 |
| 12786 | rts |
| 12787 | load_fpn2_1: |
| 12788 | mov.l 0+EXC_FP1(%a6), 0+FP_DST(%a6) |
| 12789 | mov.l 4+EXC_FP1(%a6), 4+FP_DST(%a6) |
| 12790 | mov.l 8+EXC_FP1(%a6), 8+FP_DST(%a6) |
| 12791 | lea FP_DST(%a6), %a0 |
| 12792 | rts |
| 12793 | load_fpn2_2: |
| 12794 | fmovm.x &0x20, FP_DST(%a6) |
| 12795 | lea FP_DST(%a6), %a0 |
| 12796 | rts |
| 12797 | load_fpn2_3: |
| 12798 | fmovm.x &0x10, FP_DST(%a6) |
| 12799 | lea FP_DST(%a6), %a0 |
| 12800 | rts |
| 12801 | load_fpn2_4: |
| 12802 | fmovm.x &0x08, FP_DST(%a6) |
| 12803 | lea FP_DST(%a6), %a0 |
| 12804 | rts |
| 12805 | load_fpn2_5: |
| 12806 | fmovm.x &0x04, FP_DST(%a6) |
| 12807 | lea FP_DST(%a6), %a0 |
| 12808 | rts |
| 12809 | load_fpn2_6: |
| 12810 | fmovm.x &0x02, FP_DST(%a6) |
| 12811 | lea FP_DST(%a6), %a0 |
| 12812 | rts |
| 12813 | load_fpn2_7: |
| 12814 | fmovm.x &0x01, FP_DST(%a6) |
| 12815 | lea FP_DST(%a6), %a0 |
| 12816 | rts |
| 12817 | |
| 12818 | ############################################################################# |
| 12819 | |
| 12820 | ######################################################################### |
| 12821 | # XDEF **************************************************************** # |
| 12822 | # store_fpreg(): store an fp value to the fpreg designated d0. # |
| 12823 | # # |
| 12824 | # XREF **************************************************************** # |
| 12825 | # None # |
| 12826 | # # |
| 12827 | # INPUT *************************************************************** # |
| 12828 | # fp0 = extended precision value to store # |
| 12829 | # d0 = index of floating-point register # |
| 12830 | # # |
| 12831 | # OUTPUT ************************************************************** # |
| 12832 | # None # |
| 12833 | # # |
| 12834 | # ALGORITHM *********************************************************** # |
| 12835 | # Store the value in fp0 to the FP register designated by the # |
| 12836 | # value in d0. The FP number can be DENORM or SNAN so we have to be # |
| 12837 | # careful that we don't take an exception here. # |
| 12838 | # # |
| 12839 | ######################################################################### |
| 12840 | |
| 12841 | global store_fpreg |
| 12842 | store_fpreg: |
| 12843 | mov.w (tbl_store_fpreg.b,%pc,%d0.w*2), %d0 |
| 12844 | jmp (tbl_store_fpreg.b,%pc,%d0.w*1) |
| 12845 | |
| 12846 | tbl_store_fpreg: |
| 12847 | short store_fpreg_0 - tbl_store_fpreg |
| 12848 | short store_fpreg_1 - tbl_store_fpreg |
| 12849 | short store_fpreg_2 - tbl_store_fpreg |
| 12850 | short store_fpreg_3 - tbl_store_fpreg |
| 12851 | short store_fpreg_4 - tbl_store_fpreg |
| 12852 | short store_fpreg_5 - tbl_store_fpreg |
| 12853 | short store_fpreg_6 - tbl_store_fpreg |
| 12854 | short store_fpreg_7 - tbl_store_fpreg |
| 12855 | |
| 12856 | store_fpreg_0: |
| 12857 | fmovm.x &0x80, EXC_FP0(%a6) |
| 12858 | rts |
| 12859 | store_fpreg_1: |
| 12860 | fmovm.x &0x80, EXC_FP1(%a6) |
| 12861 | rts |
| 12862 | store_fpreg_2: |
| 12863 | fmovm.x &0x01, -(%sp) |
| 12864 | fmovm.x (%sp)+, &0x20 |
| 12865 | rts |
| 12866 | store_fpreg_3: |
| 12867 | fmovm.x &0x01, -(%sp) |
| 12868 | fmovm.x (%sp)+, &0x10 |
| 12869 | rts |
| 12870 | store_fpreg_4: |
| 12871 | fmovm.x &0x01, -(%sp) |
| 12872 | fmovm.x (%sp)+, &0x08 |
| 12873 | rts |
| 12874 | store_fpreg_5: |
| 12875 | fmovm.x &0x01, -(%sp) |
| 12876 | fmovm.x (%sp)+, &0x04 |
| 12877 | rts |
| 12878 | store_fpreg_6: |
| 12879 | fmovm.x &0x01, -(%sp) |
| 12880 | fmovm.x (%sp)+, &0x02 |
| 12881 | rts |
| 12882 | store_fpreg_7: |
| 12883 | fmovm.x &0x01, -(%sp) |
| 12884 | fmovm.x (%sp)+, &0x01 |
| 12885 | rts |
| 12886 | |
| 12887 | ######################################################################### |
| 12888 | # XDEF **************************************************************** # |
| 12889 | # get_packed(): fetch a packed operand from memory and then # |
| 12890 | # convert it to a floating-point binary number. # |
| 12891 | # # |
| 12892 | # XREF **************************************************************** # |
| 12893 | # _dcalc_ea() - calculate the correct <ea> # |
| 12894 | # _mem_read() - fetch the packed operand from memory # |
| 12895 | # facc_in_x() - the fetch failed so jump to special exit code # |
| 12896 | # decbin() - convert packed to binary extended precision # |
| 12897 | # # |
| 12898 | # INPUT *************************************************************** # |
| 12899 | # None # |
| 12900 | # # |
| 12901 | # OUTPUT ************************************************************** # |
| 12902 | # If no failure on _mem_read(): # |
| 12903 | # FP_SRC(a6) = packed operand now as a binary FP number # |
| 12904 | # # |
| 12905 | # ALGORITHM *********************************************************** # |
| 12906 | # Get the correct <ea> whihc is the value on the exception stack # |
| 12907 | # frame w/ maybe a correction factor if the <ea> is -(an) or (an)+. # |
| 12908 | # Then, fetch the operand from memory. If the fetch fails, exit # |
| 12909 | # through facc_in_x(). # |
| 12910 | # If the packed operand is a ZERO,NAN, or INF, convert it to # |
| 12911 | # its binary representation here. Else, call decbin() which will # |
| 12912 | # convert the packed value to an extended precision binary value. # |
| 12913 | # # |
| 12914 | ######################################################################### |
| 12915 | |
| 12916 | # the stacked <ea> for packed is correct except for -(An). |
| 12917 | # the base reg must be updated for both -(An) and (An)+. |
| 12918 | global get_packed |
| 12919 | get_packed: |
| 12920 | mov.l &0xc,%d0 # packed is 12 bytes |
| 12921 | bsr.l _dcalc_ea # fetch <ea>; correct An |
| 12922 | |
| 12923 | lea FP_SRC(%a6),%a1 # pass: ptr to super dst |
| 12924 | mov.l &0xc,%d0 # pass: 12 bytes |
| 12925 | bsr.l _dmem_read # read packed operand |
| 12926 | |
| 12927 | tst.l %d1 # did dfetch fail? |
| 12928 | bne.l facc_in_x # yes |
| 12929 | |
| 12930 | # The packed operand is an INF or a NAN if the exponent field is all ones. |
| 12931 | bfextu FP_SRC(%a6){&1:&15},%d0 # get exp |
| 12932 | cmpi.w %d0,&0x7fff # INF or NAN? |
| 12933 | bne.b gp_try_zero # no |
| 12934 | rts # operand is an INF or NAN |
| 12935 | |
| 12936 | # The packed operand is a zero if the mantissa is all zero, else it's |
| 12937 | # a normal packed op. |
| 12938 | gp_try_zero: |
| 12939 | mov.b 3+FP_SRC(%a6),%d0 # get byte 4 |
| 12940 | andi.b &0x0f,%d0 # clear all but last nybble |
| 12941 | bne.b gp_not_spec # not a zero |
| 12942 | tst.l FP_SRC_HI(%a6) # is lw 2 zero? |
| 12943 | bne.b gp_not_spec # not a zero |
| 12944 | tst.l FP_SRC_LO(%a6) # is lw 3 zero? |
| 12945 | bne.b gp_not_spec # not a zero |
| 12946 | rts # operand is a ZERO |
| 12947 | gp_not_spec: |
| 12948 | lea FP_SRC(%a6),%a0 # pass: ptr to packed op |
| 12949 | bsr.l decbin # convert to extended |
| 12950 | fmovm.x &0x80,FP_SRC(%a6) # make this the srcop |
| 12951 | rts |
| 12952 | |
| 12953 | ######################################################################### |
| 12954 | # decbin(): Converts normalized packed bcd value pointed to by register # |
| 12955 | # a0 to extended-precision value in fp0. # |
| 12956 | # # |
| 12957 | # INPUT *************************************************************** # |
| 12958 | # a0 = pointer to normalized packed bcd value # |
| 12959 | # # |
| 12960 | # OUTPUT ************************************************************** # |
| 12961 | # fp0 = exact fp representation of the packed bcd value. # |
| 12962 | # # |
| 12963 | # ALGORITHM *********************************************************** # |
| 12964 | # Expected is a normal bcd (i.e. non-exceptional; all inf, zero, # |
| 12965 | # and NaN operands are dispatched without entering this routine) # |
| 12966 | # value in 68881/882 format at location (a0). # |
| 12967 | # # |
| 12968 | # A1. Convert the bcd exponent to binary by successive adds and # |
| 12969 | # muls. Set the sign according to SE. Subtract 16 to compensate # |
| 12970 | # for the mantissa which is to be interpreted as 17 integer # |
| 12971 | # digits, rather than 1 integer and 16 fraction digits. # |
| 12972 | # Note: this operation can never overflow. # |
| 12973 | # # |
| 12974 | # A2. Convert the bcd mantissa to binary by successive # |
| 12975 | # adds and muls in FP0. Set the sign according to SM. # |
| 12976 | # The mantissa digits will be converted with the decimal point # |
| 12977 | # assumed following the least-significant digit. # |
| 12978 | # Note: this operation can never overflow. # |
| 12979 | # # |
| 12980 | # A3. Count the number of leading/trailing zeros in the # |
| 12981 | # bcd string. If SE is positive, count the leading zeros; # |
| 12982 | # if negative, count the trailing zeros. Set the adjusted # |
| 12983 | # exponent equal to the exponent from A1 and the zero count # |
| 12984 | # added if SM = 1 and subtracted if SM = 0. Scale the # |
| 12985 | # mantissa the equivalent of forcing in the bcd value: # |
| 12986 | # # |
| 12987 | # SM = 0 a non-zero digit in the integer position # |
| 12988 | # SM = 1 a non-zero digit in Mant0, lsd of the fraction # |
| 12989 | # # |
| 12990 | # this will insure that any value, regardless of its # |
| 12991 | # representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted # |
| 12992 | # consistently. # |
| 12993 | # # |
| 12994 | # A4. Calculate the factor 10^exp in FP1 using a table of # |
| 12995 | # 10^(2^n) values. To reduce the error in forming factors # |
| 12996 | # greater than 10^27, a directed rounding scheme is used with # |
| 12997 | # tables rounded to RN, RM, and RP, according to the table # |
| 12998 | # in the comments of the pwrten section. # |
| 12999 | # # |
| 13000 | # A5. Form the final binary number by scaling the mantissa by # |
| 13001 | # the exponent factor. This is done by multiplying the # |
| 13002 | # mantissa in FP0 by the factor in FP1 if the adjusted # |
| 13003 | # exponent sign is positive, and dividing FP0 by FP1 if # |
| 13004 | # it is negative. # |
| 13005 | # # |
| 13006 | # Clean up and return. Check if the final mul or div was inexact. # |
| 13007 | # If so, set INEX1 in USER_FPSR. # |
| 13008 | # # |
| 13009 | ######################################################################### |
| 13010 | |
| 13011 | # |
| 13012 | # PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded |
| 13013 | # to nearest, minus, and plus, respectively. The tables include |
| 13014 | # 10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}. No rounding |
| 13015 | # is required until the power is greater than 27, however, all |
| 13016 | # tables include the first 5 for ease of indexing. |
| 13017 | # |
| 13018 | RTABLE: |
| 13019 | byte 0,0,0,0 |
| 13020 | byte 2,3,2,3 |
| 13021 | byte 2,3,3,2 |
| 13022 | byte 3,2,2,3 |
| 13023 | |
| 13024 | set FNIBS,7 |
| 13025 | set FSTRT,0 |
| 13026 | |
| 13027 | set ESTRT,4 |
| 13028 | set EDIGITS,2 |
| 13029 | |
| 13030 | global decbin |
| 13031 | decbin: |
| 13032 | mov.l 0x0(%a0),FP_SCR0_EX(%a6) # make a copy of input |
| 13033 | mov.l 0x4(%a0),FP_SCR0_HI(%a6) # so we don't alter it |
| 13034 | mov.l 0x8(%a0),FP_SCR0_LO(%a6) |
| 13035 | |
| 13036 | lea FP_SCR0(%a6),%a0 |
| 13037 | |
| 13038 | movm.l &0x3c00,-(%sp) # save d2-d5 |
| 13039 | fmovm.x &0x1,-(%sp) # save fp1 |
| 13040 | # |
| 13041 | # Calculate exponent: |
| 13042 | # 1. Copy bcd value in memory for use as a working copy. |
| 13043 | # 2. Calculate absolute value of exponent in d1 by mul and add. |
| 13044 | # 3. Correct for exponent sign. |
| 13045 | # 4. Subtract 16 to compensate for interpreting the mant as all integer digits. |
| 13046 | # (i.e., all digits assumed left of the decimal point.) |
| 13047 | # |
| 13048 | # Register usage: |
| 13049 | # |
| 13050 | # calc_e: |
| 13051 | # (*) d0: temp digit storage |
| 13052 | # (*) d1: accumulator for binary exponent |
| 13053 | # (*) d2: digit count |
| 13054 | # (*) d3: offset pointer |
| 13055 | # ( ) d4: first word of bcd |
| 13056 | # ( ) a0: pointer to working bcd value |
| 13057 | # ( ) a6: pointer to original bcd value |
| 13058 | # (*) FP_SCR1: working copy of original bcd value |
| 13059 | # (*) L_SCR1: copy of original exponent word |
| 13060 | # |
| 13061 | calc_e: |
| 13062 | mov.l &EDIGITS,%d2 # # of nibbles (digits) in fraction part |
| 13063 | mov.l &ESTRT,%d3 # counter to pick up digits |
| 13064 | mov.l (%a0),%d4 # get first word of bcd |
| 13065 | clr.l %d1 # zero d1 for accumulator |
| 13066 | e_gd: |
| 13067 | mulu.l &0xa,%d1 # mul partial product by one digit place |
| 13068 | bfextu %d4{%d3:&4},%d0 # get the digit and zero extend into d0 |
| 13069 | add.l %d0,%d1 # d1 = d1 + d0 |
| 13070 | addq.b &4,%d3 # advance d3 to the next digit |
| 13071 | dbf.w %d2,e_gd # if we have used all 3 digits, exit loop |
| 13072 | btst &30,%d4 # get SE |
| 13073 | beq.b e_pos # don't negate if pos |
| 13074 | neg.l %d1 # negate before subtracting |
| 13075 | e_pos: |
| 13076 | sub.l &16,%d1 # sub to compensate for shift of mant |
| 13077 | bge.b e_save # if still pos, do not neg |
| 13078 | neg.l %d1 # now negative, make pos and set SE |
| 13079 | or.l &0x40000000,%d4 # set SE in d4, |
| 13080 | or.l &0x40000000,(%a0) # and in working bcd |
| 13081 | e_save: |
| 13082 | mov.l %d1,-(%sp) # save exp on stack |
| 13083 | # |
| 13084 | # |
| 13085 | # Calculate mantissa: |
| 13086 | # 1. Calculate absolute value of mantissa in fp0 by mul and add. |
| 13087 | # 2. Correct for mantissa sign. |
| 13088 | # (i.e., all digits assumed left of the decimal point.) |
| 13089 | # |
| 13090 | # Register usage: |
| 13091 | # |
| 13092 | # calc_m: |
| 13093 | # (*) d0: temp digit storage |
| 13094 | # (*) d1: lword counter |
| 13095 | # (*) d2: digit count |
| 13096 | # (*) d3: offset pointer |
| 13097 | # ( ) d4: words 2 and 3 of bcd |
| 13098 | # ( ) a0: pointer to working bcd value |
| 13099 | # ( ) a6: pointer to original bcd value |
| 13100 | # (*) fp0: mantissa accumulator |
| 13101 | # ( ) FP_SCR1: working copy of original bcd value |
| 13102 | # ( ) L_SCR1: copy of original exponent word |
| 13103 | # |
| 13104 | calc_m: |
| 13105 | mov.l &1,%d1 # word counter, init to 1 |
| 13106 | fmov.s &0x00000000,%fp0 # accumulator |
| 13107 | # |
| 13108 | # |
| 13109 | # Since the packed number has a long word between the first & second parts, |
| 13110 | # get the integer digit then skip down & get the rest of the |
| 13111 | # mantissa. We will unroll the loop once. |
| 13112 | # |
| 13113 | bfextu (%a0){&28:&4},%d0 # integer part is ls digit in long word |
| 13114 | fadd.b %d0,%fp0 # add digit to sum in fp0 |
| 13115 | # |
| 13116 | # |
| 13117 | # Get the rest of the mantissa. |
| 13118 | # |
| 13119 | loadlw: |
| 13120 | mov.l (%a0,%d1.L*4),%d4 # load mantissa lonqword into d4 |
| 13121 | mov.l &FSTRT,%d3 # counter to pick up digits |
| 13122 | mov.l &FNIBS,%d2 # reset number of digits per a0 ptr |
| 13123 | md2b: |
| 13124 | fmul.s &0x41200000,%fp0 # fp0 = fp0 * 10 |
| 13125 | bfextu %d4{%d3:&4},%d0 # get the digit and zero extend |
| 13126 | fadd.b %d0,%fp0 # fp0 = fp0 + digit |
| 13127 | # |
| 13128 | # |
| 13129 | # If all the digits (8) in that long word have been converted (d2=0), |
| 13130 | # then inc d1 (=2) to point to the next long word and reset d3 to 0 |
| 13131 | # to initialize the digit offset, and set d2 to 7 for the digit count; |
| 13132 | # else continue with this long word. |
| 13133 | # |
| 13134 | addq.b &4,%d3 # advance d3 to the next digit |
| 13135 | dbf.w %d2,md2b # check for last digit in this lw |
| 13136 | nextlw: |
| 13137 | addq.l &1,%d1 # inc lw pointer in mantissa |
| 13138 | cmp.l %d1,&2 # test for last lw |
| 13139 | ble.b loadlw # if not, get last one |
| 13140 | # |
| 13141 | # Check the sign of the mant and make the value in fp0 the same sign. |
| 13142 | # |
| 13143 | m_sign: |
| 13144 | btst &31,(%a0) # test sign of the mantissa |
| 13145 | beq.b ap_st_z # if clear, go to append/strip zeros |
| 13146 | fneg.x %fp0 # if set, negate fp0 |
| 13147 | # |
| 13148 | # Append/strip zeros: |
| 13149 | # |
| 13150 | # For adjusted exponents which have an absolute value greater than 27*, |
| 13151 | # this routine calculates the amount needed to normalize the mantissa |
| 13152 | # for the adjusted exponent. That number is subtracted from the exp |
| 13153 | # if the exp was positive, and added if it was negative. The purpose |
| 13154 | # of this is to reduce the value of the exponent and the possibility |
| 13155 | # of error in calculation of pwrten. |
| 13156 | # |
| 13157 | # 1. Branch on the sign of the adjusted exponent. |
| 13158 | # 2p.(positive exp) |
| 13159 | # 2. Check M16 and the digits in lwords 2 and 3 in decending order. |
| 13160 | # 3. Add one for each zero encountered until a non-zero digit. |
| 13161 | # 4. Subtract the count from the exp. |
| 13162 | # 5. Check if the exp has crossed zero in #3 above; make the exp abs |
| 13163 | # and set SE. |
| 13164 | # 6. Multiply the mantissa by 10**count. |
| 13165 | # 2n.(negative exp) |
| 13166 | # 2. Check the digits in lwords 3 and 2 in decending order. |
| 13167 | # 3. Add one for each zero encountered until a non-zero digit. |
| 13168 | # 4. Add the count to the exp. |
| 13169 | # 5. Check if the exp has crossed zero in #3 above; clear SE. |
| 13170 | # 6. Divide the mantissa by 10**count. |
| 13171 | # |
| 13172 | # *Why 27? If the adjusted exponent is within -28 < expA < 28, than |
| 13173 | # any adjustment due to append/strip zeros will drive the resultane |
| 13174 | # exponent towards zero. Since all pwrten constants with a power |
| 13175 | # of 27 or less are exact, there is no need to use this routine to |
| 13176 | # attempt to lessen the resultant exponent. |
| 13177 | # |
| 13178 | # Register usage: |
| 13179 | # |
| 13180 | # ap_st_z: |
| 13181 | # (*) d0: temp digit storage |
| 13182 | # (*) d1: zero count |
| 13183 | # (*) d2: digit count |
| 13184 | # (*) d3: offset pointer |
| 13185 | # ( ) d4: first word of bcd |
| 13186 | # (*) d5: lword counter |
| 13187 | # ( ) a0: pointer to working bcd value |
| 13188 | # ( ) FP_SCR1: working copy of original bcd value |
| 13189 | # ( ) L_SCR1: copy of original exponent word |
| 13190 | # |
| 13191 | # |
| 13192 | # First check the absolute value of the exponent to see if this |
| 13193 | # routine is necessary. If so, then check the sign of the exponent |
| 13194 | # and do append (+) or strip (-) zeros accordingly. |
| 13195 | # This section handles a positive adjusted exponent. |
| 13196 | # |
| 13197 | ap_st_z: |
| 13198 | mov.l (%sp),%d1 # load expA for range test |
| 13199 | cmp.l %d1,&27 # test is with 27 |
| 13200 | ble.w pwrten # if abs(expA) <28, skip ap/st zeros |
| 13201 | btst &30,(%a0) # check sign of exp |
| 13202 | bne.b ap_st_n # if neg, go to neg side |
| 13203 | clr.l %d1 # zero count reg |
| 13204 | mov.l (%a0),%d4 # load lword 1 to d4 |
| 13205 | bfextu %d4{&28:&4},%d0 # get M16 in d0 |
| 13206 | bne.b ap_p_fx # if M16 is non-zero, go fix exp |
| 13207 | addq.l &1,%d1 # inc zero count |
| 13208 | mov.l &1,%d5 # init lword counter |
| 13209 | mov.l (%a0,%d5.L*4),%d4 # get lword 2 to d4 |
| 13210 | bne.b ap_p_cl # if lw 2 is zero, skip it |
| 13211 | addq.l &8,%d1 # and inc count by 8 |
| 13212 | addq.l &1,%d5 # inc lword counter |
| 13213 | mov.l (%a0,%d5.L*4),%d4 # get lword 3 to d4 |
| 13214 | ap_p_cl: |
| 13215 | clr.l %d3 # init offset reg |
| 13216 | mov.l &7,%d2 # init digit counter |
| 13217 | ap_p_gd: |
| 13218 | bfextu %d4{%d3:&4},%d0 # get digit |
| 13219 | bne.b ap_p_fx # if non-zero, go to fix exp |
| 13220 | addq.l &4,%d3 # point to next digit |
| 13221 | addq.l &1,%d1 # inc digit counter |
| 13222 | dbf.w %d2,ap_p_gd # get next digit |
| 13223 | ap_p_fx: |
| 13224 | mov.l %d1,%d0 # copy counter to d2 |
| 13225 | mov.l (%sp),%d1 # get adjusted exp from memory |
| 13226 | sub.l %d0,%d1 # subtract count from exp |
| 13227 | bge.b ap_p_fm # if still pos, go to pwrten |
| 13228 | neg.l %d1 # now its neg; get abs |
| 13229 | mov.l (%a0),%d4 # load lword 1 to d4 |
| 13230 | or.l &0x40000000,%d4 # and set SE in d4 |
| 13231 | or.l &0x40000000,(%a0) # and in memory |
| 13232 | # |
| 13233 | # Calculate the mantissa multiplier to compensate for the striping of |
| 13234 | # zeros from the mantissa. |
| 13235 | # |
| 13236 | ap_p_fm: |
| 13237 | lea.l PTENRN(%pc),%a1 # get address of power-of-ten table |
| 13238 | clr.l %d3 # init table index |
| 13239 | fmov.s &0x3f800000,%fp1 # init fp1 to 1 |
| 13240 | mov.l &3,%d2 # init d2 to count bits in counter |
| 13241 | ap_p_el: |
| 13242 | asr.l &1,%d0 # shift lsb into carry |
| 13243 | bcc.b ap_p_en # if 1, mul fp1 by pwrten factor |
| 13244 | fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no) |
| 13245 | ap_p_en: |
| 13246 | add.l &12,%d3 # inc d3 to next rtable entry |
| 13247 | tst.l %d0 # check if d0 is zero |
| 13248 | bne.b ap_p_el # if not, get next bit |
| 13249 | fmul.x %fp1,%fp0 # mul mantissa by 10**(no_bits_shifted) |
| 13250 | bra.b pwrten # go calc pwrten |
| 13251 | # |
| 13252 | # This section handles a negative adjusted exponent. |
| 13253 | # |
| 13254 | ap_st_n: |
| 13255 | clr.l %d1 # clr counter |
| 13256 | mov.l &2,%d5 # set up d5 to point to lword 3 |
| 13257 | mov.l (%a0,%d5.L*4),%d4 # get lword 3 |
| 13258 | bne.b ap_n_cl # if not zero, check digits |
| 13259 | sub.l &1,%d5 # dec d5 to point to lword 2 |
| 13260 | addq.l &8,%d1 # inc counter by 8 |
| 13261 | mov.l (%a0,%d5.L*4),%d4 # get lword 2 |
| 13262 | ap_n_cl: |
| 13263 | mov.l &28,%d3 # point to last digit |
| 13264 | mov.l &7,%d2 # init digit counter |
| 13265 | ap_n_gd: |
| 13266 | bfextu %d4{%d3:&4},%d0 # get digit |
| 13267 | bne.b ap_n_fx # if non-zero, go to exp fix |
| 13268 | subq.l &4,%d3 # point to previous digit |
| 13269 | addq.l &1,%d1 # inc digit counter |
| 13270 | dbf.w %d2,ap_n_gd # get next digit |
| 13271 | ap_n_fx: |
| 13272 | mov.l %d1,%d0 # copy counter to d0 |
| 13273 | mov.l (%sp),%d1 # get adjusted exp from memory |
| 13274 | sub.l %d0,%d1 # subtract count from exp |
| 13275 | bgt.b ap_n_fm # if still pos, go fix mantissa |
| 13276 | neg.l %d1 # take abs of exp and clr SE |
| 13277 | mov.l (%a0),%d4 # load lword 1 to d4 |
| 13278 | and.l &0xbfffffff,%d4 # and clr SE in d4 |
| 13279 | and.l &0xbfffffff,(%a0) # and in memory |
| 13280 | # |
| 13281 | # Calculate the mantissa multiplier to compensate for the appending of |
| 13282 | # zeros to the mantissa. |
| 13283 | # |
| 13284 | ap_n_fm: |
| 13285 | lea.l PTENRN(%pc),%a1 # get address of power-of-ten table |
| 13286 | clr.l %d3 # init table index |
| 13287 | fmov.s &0x3f800000,%fp1 # init fp1 to 1 |
| 13288 | mov.l &3,%d2 # init d2 to count bits in counter |
| 13289 | ap_n_el: |
| 13290 | asr.l &1,%d0 # shift lsb into carry |
| 13291 | bcc.b ap_n_en # if 1, mul fp1 by pwrten factor |
| 13292 | fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no) |
| 13293 | ap_n_en: |
| 13294 | add.l &12,%d3 # inc d3 to next rtable entry |
| 13295 | tst.l %d0 # check if d0 is zero |
| 13296 | bne.b ap_n_el # if not, get next bit |
| 13297 | fdiv.x %fp1,%fp0 # div mantissa by 10**(no_bits_shifted) |
| 13298 | # |
| 13299 | # |
| 13300 | # Calculate power-of-ten factor from adjusted and shifted exponent. |
| 13301 | # |
| 13302 | # Register usage: |
| 13303 | # |
| 13304 | # pwrten: |
| 13305 | # (*) d0: temp |
| 13306 | # ( ) d1: exponent |
| 13307 | # (*) d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp |
| 13308 | # (*) d3: FPCR work copy |
| 13309 | # ( ) d4: first word of bcd |
| 13310 | # (*) a1: RTABLE pointer |
| 13311 | # calc_p: |
| 13312 | # (*) d0: temp |
| 13313 | # ( ) d1: exponent |
| 13314 | # (*) d3: PWRTxx table index |
| 13315 | # ( ) a0: pointer to working copy of bcd |
| 13316 | # (*) a1: PWRTxx pointer |
| 13317 | # (*) fp1: power-of-ten accumulator |
| 13318 | # |
| 13319 | # Pwrten calculates the exponent factor in the selected rounding mode |
| 13320 | # according to the following table: |
| 13321 | # |
| 13322 | # Sign of Mant Sign of Exp Rounding Mode PWRTEN Rounding Mode |
| 13323 | # |
| 13324 | # ANY ANY RN RN |
| 13325 | # |
| 13326 | # + + RP RP |
| 13327 | # - + RP RM |
| 13328 | # + - RP RM |
| 13329 | # - - RP RP |
| 13330 | # |
| 13331 | # + + RM RM |
| 13332 | # - + RM RP |
| 13333 | # + - RM RP |
| 13334 | # - - RM RM |
| 13335 | # |
| 13336 | # + + RZ RM |
| 13337 | # - + RZ RM |
| 13338 | # + - RZ RP |
| 13339 | # - - RZ RP |
| 13340 | # |
| 13341 | # |
| 13342 | pwrten: |
| 13343 | mov.l USER_FPCR(%a6),%d3 # get user's FPCR |
| 13344 | bfextu %d3{&26:&2},%d2 # isolate rounding mode bits |
| 13345 | mov.l (%a0),%d4 # reload 1st bcd word to d4 |
| 13346 | asl.l &2,%d2 # format d2 to be |
| 13347 | bfextu %d4{&0:&2},%d0 # {FPCR[6],FPCR[5],SM,SE} |
| 13348 | add.l %d0,%d2 # in d2 as index into RTABLE |
| 13349 | lea.l RTABLE(%pc),%a1 # load rtable base |
| 13350 | mov.b (%a1,%d2),%d0 # load new rounding bits from table |
| 13351 | clr.l %d3 # clear d3 to force no exc and extended |
| 13352 | bfins %d0,%d3{&26:&2} # stuff new rounding bits in FPCR |
| 13353 | fmov.l %d3,%fpcr # write new FPCR |
| 13354 | asr.l &1,%d0 # write correct PTENxx table |
| 13355 | bcc.b not_rp # to a1 |
| 13356 | lea.l PTENRP(%pc),%a1 # it is RP |
| 13357 | bra.b calc_p # go to init section |
| 13358 | not_rp: |
| 13359 | asr.l &1,%d0 # keep checking |
| 13360 | bcc.b not_rm |
| 13361 | lea.l PTENRM(%pc),%a1 # it is RM |
| 13362 | bra.b calc_p # go to init section |
| 13363 | not_rm: |
| 13364 | lea.l PTENRN(%pc),%a1 # it is RN |
| 13365 | calc_p: |
| 13366 | mov.l %d1,%d0 # copy exp to d0;use d0 |
| 13367 | bpl.b no_neg # if exp is negative, |
| 13368 | neg.l %d0 # invert it |
| 13369 | or.l &0x40000000,(%a0) # and set SE bit |
| 13370 | no_neg: |
| 13371 | clr.l %d3 # table index |
| 13372 | fmov.s &0x3f800000,%fp1 # init fp1 to 1 |
| 13373 | e_loop: |
| 13374 | asr.l &1,%d0 # shift next bit into carry |
| 13375 | bcc.b e_next # if zero, skip the mul |
| 13376 | fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no) |
| 13377 | e_next: |
| 13378 | add.l &12,%d3 # inc d3 to next rtable entry |
| 13379 | tst.l %d0 # check if d0 is zero |
| 13380 | bne.b e_loop # not zero, continue shifting |
| 13381 | # |
| 13382 | # |
| 13383 | # Check the sign of the adjusted exp and make the value in fp0 the |
| 13384 | # same sign. If the exp was pos then multiply fp1*fp0; |
| 13385 | # else divide fp0/fp1. |
| 13386 | # |
| 13387 | # Register Usage: |
| 13388 | # norm: |
| 13389 | # ( ) a0: pointer to working bcd value |
| 13390 | # (*) fp0: mantissa accumulator |
| 13391 | # ( ) fp1: scaling factor - 10**(abs(exp)) |
| 13392 | # |
| 13393 | pnorm: |
| 13394 | btst &30,(%a0) # test the sign of the exponent |
| 13395 | beq.b mul # if clear, go to multiply |
| 13396 | div: |
| 13397 | fdiv.x %fp1,%fp0 # exp is negative, so divide mant by exp |
| 13398 | bra.b end_dec |
| 13399 | mul: |
| 13400 | fmul.x %fp1,%fp0 # exp is positive, so multiply by exp |
| 13401 | # |
| 13402 | # |
| 13403 | # Clean up and return with result in fp0. |
| 13404 | # |
| 13405 | # If the final mul/div in decbin incurred an inex exception, |
| 13406 | # it will be inex2, but will be reported as inex1 by get_op. |
| 13407 | # |
| 13408 | end_dec: |
| 13409 | fmov.l %fpsr,%d0 # get status register |
| 13410 | bclr &inex2_bit+8,%d0 # test for inex2 and clear it |
| 13411 | beq.b no_exc # skip this if no exc |
| 13412 | ori.w &inx1a_mask,2+USER_FPSR(%a6) # set INEX1/AINEX |
| 13413 | no_exc: |
| 13414 | add.l &0x4,%sp # clear 1 lw param |
| 13415 | fmovm.x (%sp)+,&0x40 # restore fp1 |
| 13416 | movm.l (%sp)+,&0x3c # restore d2-d5 |
| 13417 | fmov.l &0x0,%fpcr |
| 13418 | fmov.l &0x0,%fpsr |
| 13419 | rts |
| 13420 | |
| 13421 | ######################################################################### |
| 13422 | # bindec(): Converts an input in extended precision format to bcd format# |
| 13423 | # # |
| 13424 | # INPUT *************************************************************** # |
| 13425 | # a0 = pointer to the input extended precision value in memory. # |
| 13426 | # the input may be either normalized, unnormalized, or # |
| 13427 | # denormalized. # |
| 13428 | # d0 = contains the k-factor sign-extended to 32-bits. # |
| 13429 | # # |
| 13430 | # OUTPUT ************************************************************** # |
| 13431 | # FP_SCR0(a6) = bcd format result on the stack. # |
| 13432 | # # |
| 13433 | # ALGORITHM *********************************************************** # |
| 13434 | # # |
| 13435 | # A1. Set RM and size ext; Set SIGMA = sign of input. # |
| 13436 | # The k-factor is saved for use in d7. Clear the # |
| 13437 | # BINDEC_FLG for separating normalized/denormalized # |
| 13438 | # input. If input is unnormalized or denormalized, # |
| 13439 | # normalize it. # |
| 13440 | # # |
| 13441 | # A2. Set X = abs(input). # |
| 13442 | # # |
| 13443 | # A3. Compute ILOG. # |
| 13444 | # ILOG is the log base 10 of the input value. It is # |
| 13445 | # approximated by adding e + 0.f when the original # |
| 13446 | # value is viewed as 2^^e * 1.f in extended precision. # |
| 13447 | # This value is stored in d6. # |
| 13448 | # # |
| 13449 | # A4. Clr INEX bit. # |
| 13450 | # The operation in A3 above may have set INEX2. # |
| 13451 | # # |
| 13452 | # A5. Set ICTR = 0; # |
| 13453 | # ICTR is a flag used in A13. It must be set before the # |
| 13454 | # loop entry A6. # |
| 13455 | # # |
| 13456 | # A6. Calculate LEN. # |
| 13457 | # LEN is the number of digits to be displayed. The # |
| 13458 | # k-factor can dictate either the total number of digits, # |
| 13459 | # if it is a positive number, or the number of digits # |
| 13460 | # after the decimal point which are to be included as # |
| 13461 | # significant. See the 68882 manual for examples. # |
| 13462 | # If LEN is computed to be greater than 17, set OPERR in # |
| 13463 | # USER_FPSR. LEN is stored in d4. # |
| 13464 | # # |
| 13465 | # A7. Calculate SCALE. # |
| 13466 | # SCALE is equal to 10^ISCALE, where ISCALE is the number # |
| 13467 | # of decimal places needed to insure LEN integer digits # |
| 13468 | # in the output before conversion to bcd. LAMBDA is the # |
| 13469 | # sign of ISCALE, used in A9. Fp1 contains # |
| 13470 | # 10^^(abs(ISCALE)) using a rounding mode which is a # |
| 13471 | # function of the original rounding mode and the signs # |
| 13472 | # of ISCALE and X. A table is given in the code. # |
| 13473 | # # |
| 13474 | # A8. Clr INEX; Force RZ. # |
| 13475 | # The operation in A3 above may have set INEX2. # |
| 13476 | # RZ mode is forced for the scaling operation to insure # |
| 13477 | # only one rounding error. The grs bits are collected in # |
| 13478 | # the INEX flag for use in A10. # |
| 13479 | # # |
| 13480 | # A9. Scale X -> Y. # |
| 13481 | # The mantissa is scaled to the desired number of # |
| 13482 | # significant digits. The excess digits are collected # |
| 13483 | # in INEX2. # |
| 13484 | # # |
| 13485 | # A10. Or in INEX. # |
| 13486 | # If INEX is set, round error occurred. This is # |
| 13487 | # compensated for by 'or-ing' in the INEX2 flag to # |
| 13488 | # the lsb of Y. # |
| 13489 | # # |
| 13490 | # A11. Restore original FPCR; set size ext. # |
| 13491 | # Perform FINT operation in the user's rounding mode. # |
| 13492 | # Keep the size to extended. # |
| 13493 | # # |
| 13494 | # A12. Calculate YINT = FINT(Y) according to user's rounding # |
| 13495 | # mode. The FPSP routine sintd0 is used. The output # |
| 13496 | # is in fp0. # |
| 13497 | # # |
| 13498 | # A13. Check for LEN digits. # |
| 13499 | # If the int operation results in more than LEN digits, # |
| 13500 | # or less than LEN -1 digits, adjust ILOG and repeat from # |
| 13501 | # A6. This test occurs only on the first pass. If the # |
| 13502 | # result is exactly 10^LEN, decrement ILOG and divide # |
| 13503 | # the mantissa by 10. # |
| 13504 | # # |
| 13505 | # A14. Convert the mantissa to bcd. # |
| 13506 | # The binstr routine is used to convert the LEN digit # |
| 13507 | # mantissa to bcd in memory. The input to binstr is # |
| 13508 | # to be a fraction; i.e. (mantissa)/10^LEN and adjusted # |
| 13509 | # such that the decimal point is to the left of bit 63. # |
| 13510 | # The bcd digits are stored in the correct position in # |
| 13511 | # the final string area in memory. # |
| 13512 | # # |
| 13513 | # A15. Convert the exponent to bcd. # |
| 13514 | # As in A14 above, the exp is converted to bcd and the # |
| 13515 | # digits are stored in the final string. # |
| 13516 | # Test the length of the final exponent string. If the # |
| 13517 | # length is 4, set operr. # |
| 13518 | # # |
| 13519 | # A16. Write sign bits to final string. # |
| 13520 | # # |
| 13521 | ######################################################################### |
| 13522 | |
| 13523 | set BINDEC_FLG, EXC_TEMP # DENORM flag |
| 13524 | |
| 13525 | # Constants in extended precision |
| 13526 | PLOG2: |
| 13527 | long 0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000 |
| 13528 | PLOG2UP1: |
| 13529 | long 0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000 |
| 13530 | |
| 13531 | # Constants in single precision |
| 13532 | FONE: |
| 13533 | long 0x3F800000,0x00000000,0x00000000,0x00000000 |
| 13534 | FTWO: |
| 13535 | long 0x40000000,0x00000000,0x00000000,0x00000000 |
| 13536 | FTEN: |
| 13537 | long 0x41200000,0x00000000,0x00000000,0x00000000 |
| 13538 | F4933: |
| 13539 | long 0x459A2800,0x00000000,0x00000000,0x00000000 |
| 13540 | |
| 13541 | RBDTBL: |
| 13542 | byte 0,0,0,0 |
| 13543 | byte 3,3,2,2 |
| 13544 | byte 3,2,2,3 |
| 13545 | byte 2,3,3,2 |
| 13546 | |
| 13547 | # Implementation Notes: |
| 13548 | # |
| 13549 | # The registers are used as follows: |
| 13550 | # |
| 13551 | # d0: scratch; LEN input to binstr |
| 13552 | # d1: scratch |
| 13553 | # d2: upper 32-bits of mantissa for binstr |
| 13554 | # d3: scratch;lower 32-bits of mantissa for binstr |
| 13555 | # d4: LEN |
| 13556 | # d5: LAMBDA/ICTR |
| 13557 | # d6: ILOG |
| 13558 | # d7: k-factor |
| 13559 | # a0: ptr for original operand/final result |
| 13560 | # a1: scratch pointer |
| 13561 | # a2: pointer to FP_X; abs(original value) in ext |
| 13562 | # fp0: scratch |
| 13563 | # fp1: scratch |
| 13564 | # fp2: scratch |
| 13565 | # F_SCR1: |
| 13566 | # F_SCR2: |
| 13567 | # L_SCR1: |
| 13568 | # L_SCR2: |
| 13569 | |
| 13570 | global bindec |
| 13571 | bindec: |
| 13572 | movm.l &0x3f20,-(%sp) # {%d2-%d7/%a2} |
| 13573 | fmovm.x &0x7,-(%sp) # {%fp0-%fp2} |
| 13574 | |
| 13575 | # A1. Set RM and size ext. Set SIGMA = sign input; |
| 13576 | # The k-factor is saved for use in d7. Clear BINDEC_FLG for |
| 13577 | # separating normalized/denormalized input. If the input |
| 13578 | # is a denormalized number, set the BINDEC_FLG memory word |
| 13579 | # to signal denorm. If the input is unnormalized, normalize |
| 13580 | # the input and test for denormalized result. |
| 13581 | # |
| 13582 | fmov.l &rm_mode*0x10,%fpcr # set RM and ext |
| 13583 | mov.l (%a0),L_SCR2(%a6) # save exponent for sign check |
| 13584 | mov.l %d0,%d7 # move k-factor to d7 |
| 13585 | |
| 13586 | clr.b BINDEC_FLG(%a6) # clr norm/denorm flag |
| 13587 | cmpi.b STAG(%a6),&DENORM # is input a DENORM? |
| 13588 | bne.w A2_str # no; input is a NORM |
| 13589 | |
| 13590 | # |
| 13591 | # Normalize the denorm |
| 13592 | # |
| 13593 | un_de_norm: |
| 13594 | mov.w (%a0),%d0 |
| 13595 | and.w &0x7fff,%d0 # strip sign of normalized exp |
| 13596 | mov.l 4(%a0),%d1 |
| 13597 | mov.l 8(%a0),%d2 |
| 13598 | norm_loop: |
| 13599 | sub.w &1,%d0 |
| 13600 | lsl.l &1,%d2 |
| 13601 | roxl.l &1,%d1 |
| 13602 | tst.l %d1 |
| 13603 | bge.b norm_loop |
| 13604 | # |
| 13605 | # Test if the normalized input is denormalized |
| 13606 | # |
| 13607 | tst.w %d0 |
| 13608 | bgt.b pos_exp # if greater than zero, it is a norm |
| 13609 | st BINDEC_FLG(%a6) # set flag for denorm |
| 13610 | pos_exp: |
| 13611 | and.w &0x7fff,%d0 # strip sign of normalized exp |
| 13612 | mov.w %d0,(%a0) |
| 13613 | mov.l %d1,4(%a0) |
| 13614 | mov.l %d2,8(%a0) |
| 13615 | |
| 13616 | # A2. Set X = abs(input). |
| 13617 | # |
| 13618 | A2_str: |
| 13619 | mov.l (%a0),FP_SCR1(%a6) # move input to work space |
| 13620 | mov.l 4(%a0),FP_SCR1+4(%a6) # move input to work space |
| 13621 | mov.l 8(%a0),FP_SCR1+8(%a6) # move input to work space |
| 13622 | and.l &0x7fffffff,FP_SCR1(%a6) # create abs(X) |
| 13623 | |
| 13624 | # A3. Compute ILOG. |
| 13625 | # ILOG is the log base 10 of the input value. It is approx- |
| 13626 | # imated by adding e + 0.f when the original value is viewed |
| 13627 | # as 2^^e * 1.f in extended precision. This value is stored |
| 13628 | # in d6. |
| 13629 | # |
| 13630 | # Register usage: |
| 13631 | # Input/Output |
| 13632 | # d0: k-factor/exponent |
| 13633 | # d2: x/x |
| 13634 | # d3: x/x |
| 13635 | # d4: x/x |
| 13636 | # d5: x/x |
| 13637 | # d6: x/ILOG |
| 13638 | # d7: k-factor/Unchanged |
| 13639 | # a0: ptr for original operand/final result |
| 13640 | # a1: x/x |
| 13641 | # a2: x/x |
| 13642 | # fp0: x/float(ILOG) |
| 13643 | # fp1: x/x |
| 13644 | # fp2: x/x |
| 13645 | # F_SCR1:x/x |
| 13646 | # F_SCR2:Abs(X)/Abs(X) with $3fff exponent |
| 13647 | # L_SCR1:x/x |
| 13648 | # L_SCR2:first word of X packed/Unchanged |
| 13649 | |
| 13650 | tst.b BINDEC_FLG(%a6) # check for denorm |
| 13651 | beq.b A3_cont # if clr, continue with norm |
| 13652 | mov.l &-4933,%d6 # force ILOG = -4933 |
| 13653 | bra.b A4_str |
| 13654 | A3_cont: |
| 13655 | mov.w FP_SCR1(%a6),%d0 # move exp to d0 |
| 13656 | mov.w &0x3fff,FP_SCR1(%a6) # replace exponent with 0x3fff |
| 13657 | fmov.x FP_SCR1(%a6),%fp0 # now fp0 has 1.f |
| 13658 | sub.w &0x3fff,%d0 # strip off bias |
| 13659 | fadd.w %d0,%fp0 # add in exp |
| 13660 | fsub.s FONE(%pc),%fp0 # subtract off 1.0 |
| 13661 | fbge.w pos_res # if pos, branch |
| 13662 | fmul.x PLOG2UP1(%pc),%fp0 # if neg, mul by LOG2UP1 |
| 13663 | fmov.l %fp0,%d6 # put ILOG in d6 as a lword |
| 13664 | bra.b A4_str # go move out ILOG |
| 13665 | pos_res: |
| 13666 | fmul.x PLOG2(%pc),%fp0 # if pos, mul by LOG2 |
| 13667 | fmov.l %fp0,%d6 # put ILOG in d6 as a lword |
| 13668 | |
| 13669 | |
| 13670 | # A4. Clr INEX bit. |
| 13671 | # The operation in A3 above may have set INEX2. |
| 13672 | |
| 13673 | A4_str: |
| 13674 | fmov.l &0,%fpsr # zero all of fpsr - nothing needed |
| 13675 | |
| 13676 | |
| 13677 | # A5. Set ICTR = 0; |
| 13678 | # ICTR is a flag used in A13. It must be set before the |
| 13679 | # loop entry A6. The lower word of d5 is used for ICTR. |
| 13680 | |
| 13681 | clr.w %d5 # clear ICTR |
| 13682 | |
| 13683 | # A6. Calculate LEN. |
| 13684 | # LEN is the number of digits to be displayed. The k-factor |
| 13685 | # can dictate either the total number of digits, if it is |
| 13686 | # a positive number, or the number of digits after the |
| 13687 | # original decimal point which are to be included as |
| 13688 | # significant. See the 68882 manual for examples. |
| 13689 | # If LEN is computed to be greater than 17, set OPERR in |
| 13690 | # USER_FPSR. LEN is stored in d4. |
| 13691 | # |
| 13692 | # Register usage: |
| 13693 | # Input/Output |
| 13694 | # d0: exponent/Unchanged |
| 13695 | # d2: x/x/scratch |
| 13696 | # d3: x/x |
| 13697 | # d4: exc picture/LEN |
| 13698 | # d5: ICTR/Unchanged |
| 13699 | # d6: ILOG/Unchanged |
| 13700 | # d7: k-factor/Unchanged |
| 13701 | # a0: ptr for original operand/final result |
| 13702 | # a1: x/x |
| 13703 | # a2: x/x |
| 13704 | # fp0: float(ILOG)/Unchanged |
| 13705 | # fp1: x/x |
| 13706 | # fp2: x/x |
| 13707 | # F_SCR1:x/x |
| 13708 | # F_SCR2:Abs(X) with $3fff exponent/Unchanged |
| 13709 | # L_SCR1:x/x |
| 13710 | # L_SCR2:first word of X packed/Unchanged |
| 13711 | |
| 13712 | A6_str: |
| 13713 | tst.l %d7 # branch on sign of k |
| 13714 | ble.b k_neg # if k <= 0, LEN = ILOG + 1 - k |
| 13715 | mov.l %d7,%d4 # if k > 0, LEN = k |
| 13716 | bra.b len_ck # skip to LEN check |
| 13717 | k_neg: |
| 13718 | mov.l %d6,%d4 # first load ILOG to d4 |
| 13719 | sub.l %d7,%d4 # subtract off k |
| 13720 | addq.l &1,%d4 # add in the 1 |
| 13721 | len_ck: |
| 13722 | tst.l %d4 # LEN check: branch on sign of LEN |
| 13723 | ble.b LEN_ng # if neg, set LEN = 1 |
| 13724 | cmp.l %d4,&17 # test if LEN > 17 |
| 13725 | ble.b A7_str # if not, forget it |
| 13726 | mov.l &17,%d4 # set max LEN = 17 |
| 13727 | tst.l %d7 # if negative, never set OPERR |
| 13728 | ble.b A7_str # if positive, continue |
| 13729 | or.l &opaop_mask,USER_FPSR(%a6) # set OPERR & AIOP in USER_FPSR |
| 13730 | bra.b A7_str # finished here |
| 13731 | LEN_ng: |
| 13732 | mov.l &1,%d4 # min LEN is 1 |
| 13733 | |
| 13734 | |
| 13735 | # A7. Calculate SCALE. |
| 13736 | # SCALE is equal to 10^ISCALE, where ISCALE is the number |
| 13737 | # of decimal places needed to insure LEN integer digits |
| 13738 | # in the output before conversion to bcd. LAMBDA is the sign |
| 13739 | # of ISCALE, used in A9. Fp1 contains 10^^(abs(ISCALE)) using |
| 13740 | # the rounding mode as given in the following table (see |
| 13741 | # Coonen, p. 7.23 as ref.; however, the SCALE variable is |
| 13742 | # of opposite sign in bindec.sa from Coonen). |
| 13743 | # |
| 13744 | # Initial USE |
| 13745 | # FPCR[6:5] LAMBDA SIGN(X) FPCR[6:5] |
| 13746 | # ---------------------------------------------- |
| 13747 | # RN 00 0 0 00/0 RN |
| 13748 | # RN 00 0 1 00/0 RN |
| 13749 | # RN 00 1 0 00/0 RN |
| 13750 | # RN 00 1 1 00/0 RN |
| 13751 | # RZ 01 0 0 11/3 RP |
| 13752 | # RZ 01 0 1 11/3 RP |
| 13753 | # RZ 01 1 0 10/2 RM |
| 13754 | # RZ 01 1 1 10/2 RM |
| 13755 | # RM 10 0 0 11/3 RP |
| 13756 | # RM 10 0 1 10/2 RM |
| 13757 | # RM 10 1 0 10/2 RM |
| 13758 | # RM 10 1 1 11/3 RP |
| 13759 | # RP 11 0 0 10/2 RM |
| 13760 | # RP 11 0 1 11/3 RP |
| 13761 | # RP 11 1 0 11/3 RP |
| 13762 | # RP 11 1 1 10/2 RM |
| 13763 | # |
| 13764 | # Register usage: |
| 13765 | # Input/Output |
| 13766 | # d0: exponent/scratch - final is 0 |
| 13767 | # d2: x/0 or 24 for A9 |
| 13768 | # d3: x/scratch - offset ptr into PTENRM array |
| 13769 | # d4: LEN/Unchanged |
| 13770 | # d5: 0/ICTR:LAMBDA |
| 13771 | # d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k)) |
| 13772 | # d7: k-factor/Unchanged |
| 13773 | # a0: ptr for original operand/final result |
| 13774 | # a1: x/ptr to PTENRM array |
| 13775 | # a2: x/x |
| 13776 | # fp0: float(ILOG)/Unchanged |
| 13777 | # fp1: x/10^ISCALE |
| 13778 | # fp2: x/x |
| 13779 | # F_SCR1:x/x |
| 13780 | # F_SCR2:Abs(X) with $3fff exponent/Unchanged |
| 13781 | # L_SCR1:x/x |
| 13782 | # L_SCR2:first word of X packed/Unchanged |
| 13783 | |
| 13784 | A7_str: |
| 13785 | tst.l %d7 # test sign of k |
| 13786 | bgt.b k_pos # if pos and > 0, skip this |
| 13787 | cmp.l %d7,%d6 # test k - ILOG |
| 13788 | blt.b k_pos # if ILOG >= k, skip this |
| 13789 | mov.l %d7,%d6 # if ((k<0) & (ILOG < k)) ILOG = k |
| 13790 | k_pos: |
| 13791 | mov.l %d6,%d0 # calc ILOG + 1 - LEN in d0 |
| 13792 | addq.l &1,%d0 # add the 1 |
| 13793 | sub.l %d4,%d0 # sub off LEN |
| 13794 | swap %d5 # use upper word of d5 for LAMBDA |
| 13795 | clr.w %d5 # set it zero initially |
| 13796 | clr.w %d2 # set up d2 for very small case |
| 13797 | tst.l %d0 # test sign of ISCALE |
| 13798 | bge.b iscale # if pos, skip next inst |
| 13799 | addq.w &1,%d5 # if neg, set LAMBDA true |
| 13800 | cmp.l %d0,&0xffffecd4 # test iscale <= -4908 |
| 13801 | bgt.b no_inf # if false, skip rest |
| 13802 | add.l &24,%d0 # add in 24 to iscale |
| 13803 | mov.l &24,%d2 # put 24 in d2 for A9 |
| 13804 | no_inf: |
| 13805 | neg.l %d0 # and take abs of ISCALE |
| 13806 | iscale: |
| 13807 | fmov.s FONE(%pc),%fp1 # init fp1 to 1 |
| 13808 | bfextu USER_FPCR(%a6){&26:&2},%d1 # get initial rmode bits |
| 13809 | lsl.w &1,%d1 # put them in bits 2:1 |
| 13810 | add.w %d5,%d1 # add in LAMBDA |
| 13811 | lsl.w &1,%d1 # put them in bits 3:1 |
| 13812 | tst.l L_SCR2(%a6) # test sign of original x |
| 13813 | bge.b x_pos # if pos, don't set bit 0 |
| 13814 | addq.l &1,%d1 # if neg, set bit 0 |
| 13815 | x_pos: |
| 13816 | lea.l RBDTBL(%pc),%a2 # load rbdtbl base |
| 13817 | mov.b (%a2,%d1),%d3 # load d3 with new rmode |
| 13818 | lsl.l &4,%d3 # put bits in proper position |
| 13819 | fmov.l %d3,%fpcr # load bits into fpu |
| 13820 | lsr.l &4,%d3 # put bits in proper position |
| 13821 | tst.b %d3 # decode new rmode for pten table |
| 13822 | bne.b not_rn # if zero, it is RN |
| 13823 | lea.l PTENRN(%pc),%a1 # load a1 with RN table base |
| 13824 | bra.b rmode # exit decode |
| 13825 | not_rn: |
| 13826 | lsr.b &1,%d3 # get lsb in carry |
| 13827 | bcc.b not_rp2 # if carry clear, it is RM |
| 13828 | lea.l PTENRP(%pc),%a1 # load a1 with RP table base |
| 13829 | bra.b rmode # exit decode |
| 13830 | not_rp2: |
| 13831 | lea.l PTENRM(%pc),%a1 # load a1 with RM table base |
| 13832 | rmode: |
| 13833 | clr.l %d3 # clr table index |
| 13834 | e_loop2: |
| 13835 | lsr.l &1,%d0 # shift next bit into carry |
| 13836 | bcc.b e_next2 # if zero, skip the mul |
| 13837 | fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no) |
| 13838 | e_next2: |
| 13839 | add.l &12,%d3 # inc d3 to next pwrten table entry |
| 13840 | tst.l %d0 # test if ISCALE is zero |
| 13841 | bne.b e_loop2 # if not, loop |
| 13842 | |
| 13843 | # A8. Clr INEX; Force RZ. |
| 13844 | # The operation in A3 above may have set INEX2. |
| 13845 | # RZ mode is forced for the scaling operation to insure |
| 13846 | # only one rounding error. The grs bits are collected in |
| 13847 | # the INEX flag for use in A10. |
| 13848 | # |
| 13849 | # Register usage: |
| 13850 | # Input/Output |
| 13851 | |
| 13852 | fmov.l &0,%fpsr # clr INEX |
| 13853 | fmov.l &rz_mode*0x10,%fpcr # set RZ rounding mode |
| 13854 | |
| 13855 | # A9. Scale X -> Y. |
| 13856 | # The mantissa is scaled to the desired number of significant |
| 13857 | # digits. The excess digits are collected in INEX2. If mul, |
| 13858 | # Check d2 for excess 10 exponential value. If not zero, |
| 13859 | # the iscale value would have caused the pwrten calculation |
| 13860 | # to overflow. Only a negative iscale can cause this, so |
| 13861 | # multiply by 10^(d2), which is now only allowed to be 24, |
| 13862 | # with a multiply by 10^8 and 10^16, which is exact since |
| 13863 | # 10^24 is exact. If the input was denormalized, we must |
| 13864 | # create a busy stack frame with the mul command and the |
| 13865 | # two operands, and allow the fpu to complete the multiply. |
| 13866 | # |
| 13867 | # Register usage: |
| 13868 | # Input/Output |
| 13869 | # d0: FPCR with RZ mode/Unchanged |
| 13870 | # d2: 0 or 24/unchanged |
| 13871 | # d3: x/x |
| 13872 | # d4: LEN/Unchanged |
| 13873 | # d5: ICTR:LAMBDA |
| 13874 | # d6: ILOG/Unchanged |
| 13875 | # d7: k-factor/Unchanged |
| 13876 | # a0: ptr for original operand/final result |
| 13877 | # a1: ptr to PTENRM array/Unchanged |
| 13878 | # a2: x/x |
| 13879 | # fp0: float(ILOG)/X adjusted for SCALE (Y) |
| 13880 | # fp1: 10^ISCALE/Unchanged |
| 13881 | # fp2: x/x |
| 13882 | # F_SCR1:x/x |
| 13883 | # F_SCR2:Abs(X) with $3fff exponent/Unchanged |
| 13884 | # L_SCR1:x/x |
| 13885 | # L_SCR2:first word of X packed/Unchanged |
| 13886 | |
| 13887 | A9_str: |
| 13888 | fmov.x (%a0),%fp0 # load X from memory |
| 13889 | fabs.x %fp0 # use abs(X) |
| 13890 | tst.w %d5 # LAMBDA is in lower word of d5 |
| 13891 | bne.b sc_mul # if neg (LAMBDA = 1), scale by mul |
| 13892 | fdiv.x %fp1,%fp0 # calculate X / SCALE -> Y to fp0 |
| 13893 | bra.w A10_st # branch to A10 |
| 13894 | |
| 13895 | sc_mul: |
| 13896 | tst.b BINDEC_FLG(%a6) # check for denorm |
| 13897 | beq.w A9_norm # if norm, continue with mul |
| 13898 | |
| 13899 | # for DENORM, we must calculate: |
| 13900 | # fp0 = input_op * 10^ISCALE * 10^24 |
| 13901 | # since the input operand is a DENORM, we can't multiply it directly. |
| 13902 | # so, we do the multiplication of the exponents and mantissas separately. |
| 13903 | # in this way, we avoid underflow on intermediate stages of the |
| 13904 | # multiplication and guarantee a result without exception. |
| 13905 | fmovm.x &0x2,-(%sp) # save 10^ISCALE to stack |
| 13906 | |
| 13907 | mov.w (%sp),%d3 # grab exponent |
| 13908 | andi.w &0x7fff,%d3 # clear sign |
| 13909 | ori.w &0x8000,(%a0) # make DENORM exp negative |
| 13910 | add.w (%a0),%d3 # add DENORM exp to 10^ISCALE exp |
| 13911 | subi.w &0x3fff,%d3 # subtract BIAS |
| 13912 | add.w 36(%a1),%d3 |
| 13913 | subi.w &0x3fff,%d3 # subtract BIAS |
| 13914 | add.w 48(%a1),%d3 |
| 13915 | subi.w &0x3fff,%d3 # subtract BIAS |
| 13916 | |
| 13917 | bmi.w sc_mul_err # is result is DENORM, punt!!! |
| 13918 | |
| 13919 | andi.w &0x8000,(%sp) # keep sign |
| 13920 | or.w %d3,(%sp) # insert new exponent |
| 13921 | andi.w &0x7fff,(%a0) # clear sign bit on DENORM again |
| 13922 | mov.l 0x8(%a0),-(%sp) # put input op mantissa on stk |
| 13923 | mov.l 0x4(%a0),-(%sp) |
| 13924 | mov.l &0x3fff0000,-(%sp) # force exp to zero |
| 13925 | fmovm.x (%sp)+,&0x80 # load normalized DENORM into fp0 |
| 13926 | fmul.x (%sp)+,%fp0 |
| 13927 | |
| 13928 | # fmul.x 36(%a1),%fp0 # multiply fp0 by 10^8 |
| 13929 | # fmul.x 48(%a1),%fp0 # multiply fp0 by 10^16 |
| 13930 | mov.l 36+8(%a1),-(%sp) # get 10^8 mantissa |
| 13931 | mov.l 36+4(%a1),-(%sp) |
| 13932 | mov.l &0x3fff0000,-(%sp) # force exp to zero |
| 13933 | mov.l 48+8(%a1),-(%sp) # get 10^16 mantissa |
| 13934 | mov.l 48+4(%a1),-(%sp) |
| 13935 | mov.l &0x3fff0000,-(%sp)# force exp to zero |
| 13936 | fmul.x (%sp)+,%fp0 # multiply fp0 by 10^8 |
| 13937 | fmul.x (%sp)+,%fp0 # multiply fp0 by 10^16 |
| 13938 | bra.b A10_st |
| 13939 | |
| 13940 | sc_mul_err: |
| 13941 | bra.b sc_mul_err |
| 13942 | |
| 13943 | A9_norm: |
| 13944 | tst.w %d2 # test for small exp case |
| 13945 | beq.b A9_con # if zero, continue as normal |
| 13946 | fmul.x 36(%a1),%fp0 # multiply fp0 by 10^8 |
| 13947 | fmul.x 48(%a1),%fp0 # multiply fp0 by 10^16 |
| 13948 | A9_con: |
| 13949 | fmul.x %fp1,%fp0 # calculate X * SCALE -> Y to fp0 |
| 13950 | |
| 13951 | # A10. Or in INEX. |
| 13952 | # If INEX is set, round error occurred. This is compensated |
| 13953 | # for by 'or-ing' in the INEX2 flag to the lsb of Y. |
| 13954 | # |
| 13955 | # Register usage: |
| 13956 | # Input/Output |
| 13957 | # d0: FPCR with RZ mode/FPSR with INEX2 isolated |
| 13958 | # d2: x/x |
| 13959 | # d3: x/x |
| 13960 | # d4: LEN/Unchanged |
| 13961 | # d5: ICTR:LAMBDA |
| 13962 | # d6: ILOG/Unchanged |
| 13963 | # d7: k-factor/Unchanged |
| 13964 | # a0: ptr for original operand/final result |
| 13965 | # a1: ptr to PTENxx array/Unchanged |
| 13966 | # a2: x/ptr to FP_SCR1(a6) |
| 13967 | # fp0: Y/Y with lsb adjusted |
| 13968 | # fp1: 10^ISCALE/Unchanged |
| 13969 | # fp2: x/x |
| 13970 | |
| 13971 | A10_st: |
| 13972 | fmov.l %fpsr,%d0 # get FPSR |
| 13973 | fmov.x %fp0,FP_SCR1(%a6) # move Y to memory |
| 13974 | lea.l FP_SCR1(%a6),%a2 # load a2 with ptr to FP_SCR1 |
| 13975 | btst &9,%d0 # check if INEX2 set |
| 13976 | beq.b A11_st # if clear, skip rest |
| 13977 | or.l &1,8(%a2) # or in 1 to lsb of mantissa |
| 13978 | fmov.x FP_SCR1(%a6),%fp0 # write adjusted Y back to fpu |
| 13979 | |
| 13980 | |
| 13981 | # A11. Restore original FPCR; set size ext. |
| 13982 | # Perform FINT operation in the user's rounding mode. Keep |
| 13983 | # the size to extended. The sintdo entry point in the sint |
| 13984 | # routine expects the FPCR value to be in USER_FPCR for |
| 13985 | # mode and precision. The original FPCR is saved in L_SCR1. |
| 13986 | |
| 13987 | A11_st: |
| 13988 | mov.l USER_FPCR(%a6),L_SCR1(%a6) # save it for later |
| 13989 | and.l &0x00000030,USER_FPCR(%a6) # set size to ext, |
| 13990 | # ;block exceptions |
| 13991 | |
| 13992 | |
| 13993 | # A12. Calculate YINT = FINT(Y) according to user's rounding mode. |
| 13994 | # The FPSP routine sintd0 is used. The output is in fp0. |
| 13995 | # |
| 13996 | # Register usage: |
| 13997 | # Input/Output |
| 13998 | # d0: FPSR with AINEX cleared/FPCR with size set to ext |
| 13999 | # d2: x/x/scratch |
| 14000 | # d3: x/x |
| 14001 | # d4: LEN/Unchanged |
| 14002 | # d5: ICTR:LAMBDA/Unchanged |
| 14003 | # d6: ILOG/Unchanged |
| 14004 | # d7: k-factor/Unchanged |
| 14005 | # a0: ptr for original operand/src ptr for sintdo |
| 14006 | # a1: ptr to PTENxx array/Unchanged |
| 14007 | # a2: ptr to FP_SCR1(a6)/Unchanged |
| 14008 | # a6: temp pointer to FP_SCR1(a6) - orig value saved and restored |
| 14009 | # fp0: Y/YINT |
| 14010 | # fp1: 10^ISCALE/Unchanged |
| 14011 | # fp2: x/x |
| 14012 | # F_SCR1:x/x |
| 14013 | # F_SCR2:Y adjusted for inex/Y with original exponent |
| 14014 | # L_SCR1:x/original USER_FPCR |
| 14015 | # L_SCR2:first word of X packed/Unchanged |
| 14016 | |
| 14017 | A12_st: |
| 14018 | movm.l &0xc0c0,-(%sp) # save regs used by sintd0 {%d0-%d1/%a0-%a1} |
| 14019 | mov.l L_SCR1(%a6),-(%sp) |
| 14020 | mov.l L_SCR2(%a6),-(%sp) |
| 14021 | |
| 14022 | lea.l FP_SCR1(%a6),%a0 # a0 is ptr to FP_SCR1(a6) |
| 14023 | fmov.x %fp0,(%a0) # move Y to memory at FP_SCR1(a6) |
| 14024 | tst.l L_SCR2(%a6) # test sign of original operand |
| 14025 | bge.b do_fint12 # if pos, use Y |
| 14026 | or.l &0x80000000,(%a0) # if neg, use -Y |
| 14027 | do_fint12: |
| 14028 | mov.l USER_FPSR(%a6),-(%sp) |
| 14029 | # bsr sintdo # sint routine returns int in fp0 |
| 14030 | |
| 14031 | fmov.l USER_FPCR(%a6),%fpcr |
| 14032 | fmov.l &0x0,%fpsr # clear the AEXC bits!!! |
| 14033 | ## mov.l USER_FPCR(%a6),%d0 # ext prec/keep rnd mode |
| 14034 | ## andi.l &0x00000030,%d0 |
| 14035 | ## fmov.l %d0,%fpcr |
| 14036 | fint.x FP_SCR1(%a6),%fp0 # do fint() |
| 14037 | fmov.l %fpsr,%d0 |
| 14038 | or.w %d0,FPSR_EXCEPT(%a6) |
| 14039 | ## fmov.l &0x0,%fpcr |
| 14040 | ## fmov.l %fpsr,%d0 # don't keep ccodes |
| 14041 | ## or.w %d0,FPSR_EXCEPT(%a6) |
| 14042 | |
| 14043 | mov.b (%sp),USER_FPSR(%a6) |
| 14044 | add.l &4,%sp |
| 14045 | |
| 14046 | mov.l (%sp)+,L_SCR2(%a6) |
| 14047 | mov.l (%sp)+,L_SCR1(%a6) |
| 14048 | movm.l (%sp)+,&0x303 # restore regs used by sint {%d0-%d1/%a0-%a1} |
| 14049 | |
| 14050 | mov.l L_SCR2(%a6),FP_SCR1(%a6) # restore original exponent |
| 14051 | mov.l L_SCR1(%a6),USER_FPCR(%a6) # restore user's FPCR |
| 14052 | |
| 14053 | # A13. Check for LEN digits. |
| 14054 | # If the int operation results in more than LEN digits, |
| 14055 | # or less than LEN -1 digits, adjust ILOG and repeat from |
| 14056 | # A6. This test occurs only on the first pass. If the |
| 14057 | # result is exactly 10^LEN, decrement ILOG and divide |
| 14058 | # the mantissa by 10. The calculation of 10^LEN cannot |
| 14059 | # be inexact, since all powers of ten upto 10^27 are exact |
| 14060 | # in extended precision, so the use of a previous power-of-ten |
| 14061 | # table will introduce no error. |
| 14062 | # |
| 14063 | # |
| 14064 | # Register usage: |
| 14065 | # Input/Output |
| 14066 | # d0: FPCR with size set to ext/scratch final = 0 |
| 14067 | # d2: x/x |
| 14068 | # d3: x/scratch final = x |
| 14069 | # d4: LEN/LEN adjusted |
| 14070 | # d5: ICTR:LAMBDA/LAMBDA:ICTR |
| 14071 | # d6: ILOG/ILOG adjusted |
| 14072 | # d7: k-factor/Unchanged |
| 14073 | # a0: pointer into memory for packed bcd string formation |
| 14074 | # a1: ptr to PTENxx array/Unchanged |
| 14075 | # a2: ptr to FP_SCR1(a6)/Unchanged |
| 14076 | # fp0: int portion of Y/abs(YINT) adjusted |
| 14077 | # fp1: 10^ISCALE/Unchanged |
| 14078 | # fp2: x/10^LEN |
| 14079 | # F_SCR1:x/x |
| 14080 | # F_SCR2:Y with original exponent/Unchanged |
| 14081 | # L_SCR1:original USER_FPCR/Unchanged |
| 14082 | # L_SCR2:first word of X packed/Unchanged |
| 14083 | |
| 14084 | A13_st: |
| 14085 | swap %d5 # put ICTR in lower word of d5 |
| 14086 | tst.w %d5 # check if ICTR = 0 |
| 14087 | bne not_zr # if non-zero, go to second test |
| 14088 | # |
| 14089 | # Compute 10^(LEN-1) |
| 14090 | # |
| 14091 | fmov.s FONE(%pc),%fp2 # init fp2 to 1.0 |
| 14092 | mov.l %d4,%d0 # put LEN in d0 |
| 14093 | subq.l &1,%d0 # d0 = LEN -1 |
| 14094 | clr.l %d3 # clr table index |
| 14095 | l_loop: |
| 14096 | lsr.l &1,%d0 # shift next bit into carry |
| 14097 | bcc.b l_next # if zero, skip the mul |
| 14098 | fmul.x (%a1,%d3),%fp2 # mul by 10**(d3_bit_no) |
| 14099 | l_next: |
| 14100 | add.l &12,%d3 # inc d3 to next pwrten table entry |
| 14101 | tst.l %d0 # test if LEN is zero |
| 14102 | bne.b l_loop # if not, loop |
| 14103 | # |
| 14104 | # 10^LEN-1 is computed for this test and A14. If the input was |
| 14105 | # denormalized, check only the case in which YINT > 10^LEN. |
| 14106 | # |
| 14107 | tst.b BINDEC_FLG(%a6) # check if input was norm |
| 14108 | beq.b A13_con # if norm, continue with checking |
| 14109 | fabs.x %fp0 # take abs of YINT |
| 14110 | bra test_2 |
| 14111 | # |
| 14112 | # Compare abs(YINT) to 10^(LEN-1) and 10^LEN |
| 14113 | # |
| 14114 | A13_con: |
| 14115 | fabs.x %fp0 # take abs of YINT |
| 14116 | fcmp.x %fp0,%fp2 # compare abs(YINT) with 10^(LEN-1) |
| 14117 | fbge.w test_2 # if greater, do next test |
| 14118 | subq.l &1,%d6 # subtract 1 from ILOG |
| 14119 | mov.w &1,%d5 # set ICTR |
| 14120 | fmov.l &rm_mode*0x10,%fpcr # set rmode to RM |
| 14121 | fmul.s FTEN(%pc),%fp2 # compute 10^LEN |
| 14122 | bra.w A6_str # return to A6 and recompute YINT |
| 14123 | test_2: |
| 14124 | fmul.s FTEN(%pc),%fp2 # compute 10^LEN |
| 14125 | fcmp.x %fp0,%fp2 # compare abs(YINT) with 10^LEN |
| 14126 | fblt.w A14_st # if less, all is ok, go to A14 |
| 14127 | fbgt.w fix_ex # if greater, fix and redo |
| 14128 | fdiv.s FTEN(%pc),%fp0 # if equal, divide by 10 |
| 14129 | addq.l &1,%d6 # and inc ILOG |
| 14130 | bra.b A14_st # and continue elsewhere |
| 14131 | fix_ex: |
| 14132 | addq.l &1,%d6 # increment ILOG by 1 |
| 14133 | mov.w &1,%d5 # set ICTR |
| 14134 | fmov.l &rm_mode*0x10,%fpcr # set rmode to RM |
| 14135 | bra.w A6_str # return to A6 and recompute YINT |
| 14136 | # |
| 14137 | # Since ICTR <> 0, we have already been through one adjustment, |
| 14138 | # and shouldn't have another; this is to check if abs(YINT) = 10^LEN |
| 14139 | # 10^LEN is again computed using whatever table is in a1 since the |
| 14140 | # value calculated cannot be inexact. |
| 14141 | # |
| 14142 | not_zr: |
| 14143 | fmov.s FONE(%pc),%fp2 # init fp2 to 1.0 |
| 14144 | mov.l %d4,%d0 # put LEN in d0 |
| 14145 | clr.l %d3 # clr table index |
| 14146 | z_loop: |
| 14147 | lsr.l &1,%d0 # shift next bit into carry |
| 14148 | bcc.b z_next # if zero, skip the mul |
| 14149 | fmul.x (%a1,%d3),%fp2 # mul by 10**(d3_bit_no) |
| 14150 | z_next: |
| 14151 | add.l &12,%d3 # inc d3 to next pwrten table entry |
| 14152 | tst.l %d0 # test if LEN is zero |
| 14153 | bne.b z_loop # if not, loop |
| 14154 | fabs.x %fp0 # get abs(YINT) |
| 14155 | fcmp.x %fp0,%fp2 # check if abs(YINT) = 10^LEN |
| 14156 | fbneq.w A14_st # if not, skip this |
| 14157 | fdiv.s FTEN(%pc),%fp0 # divide abs(YINT) by 10 |
| 14158 | addq.l &1,%d6 # and inc ILOG by 1 |
| 14159 | addq.l &1,%d4 # and inc LEN |
| 14160 | fmul.s FTEN(%pc),%fp2 # if LEN++, the get 10^^LEN |
| 14161 | |
| 14162 | # A14. Convert the mantissa to bcd. |
| 14163 | # The binstr routine is used to convert the LEN digit |
| 14164 | # mantissa to bcd in memory. The input to binstr is |
| 14165 | # to be a fraction; i.e. (mantissa)/10^LEN and adjusted |
| 14166 | # such that the decimal point is to the left of bit 63. |
| 14167 | # The bcd digits are stored in the correct position in |
| 14168 | # the final string area in memory. |
| 14169 | # |
| 14170 | # |
| 14171 | # Register usage: |
| 14172 | # Input/Output |
| 14173 | # d0: x/LEN call to binstr - final is 0 |
| 14174 | # d1: x/0 |
| 14175 | # d2: x/ms 32-bits of mant of abs(YINT) |
| 14176 | # d3: x/ls 32-bits of mant of abs(YINT) |
| 14177 | # d4: LEN/Unchanged |
| 14178 | # d5: ICTR:LAMBDA/LAMBDA:ICTR |
| 14179 | # d6: ILOG |
| 14180 | # d7: k-factor/Unchanged |
| 14181 | # a0: pointer into memory for packed bcd string formation |
| 14182 | # /ptr to first mantissa byte in result string |
| 14183 | # a1: ptr to PTENxx array/Unchanged |
| 14184 | # a2: ptr to FP_SCR1(a6)/Unchanged |
| 14185 | # fp0: int portion of Y/abs(YINT) adjusted |
| 14186 | # fp1: 10^ISCALE/Unchanged |
| 14187 | # fp2: 10^LEN/Unchanged |
| 14188 | # F_SCR1:x/Work area for final result |
| 14189 | # F_SCR2:Y with original exponent/Unchanged |
| 14190 | # L_SCR1:original USER_FPCR/Unchanged |
| 14191 | # L_SCR2:first word of X packed/Unchanged |
| 14192 | |
| 14193 | A14_st: |
| 14194 | fmov.l &rz_mode*0x10,%fpcr # force rz for conversion |
| 14195 | fdiv.x %fp2,%fp0 # divide abs(YINT) by 10^LEN |
| 14196 | lea.l FP_SCR0(%a6),%a0 |
| 14197 | fmov.x %fp0,(%a0) # move abs(YINT)/10^LEN to memory |
| 14198 | mov.l 4(%a0),%d2 # move 2nd word of FP_RES to d2 |
| 14199 | mov.l 8(%a0),%d3 # move 3rd word of FP_RES to d3 |
| 14200 | clr.l 4(%a0) # zero word 2 of FP_RES |
| 14201 | clr.l 8(%a0) # zero word 3 of FP_RES |
| 14202 | mov.l (%a0),%d0 # move exponent to d0 |
| 14203 | swap %d0 # put exponent in lower word |
| 14204 | beq.b no_sft # if zero, don't shift |
| 14205 | sub.l &0x3ffd,%d0 # sub bias less 2 to make fract |
| 14206 | tst.l %d0 # check if > 1 |
| 14207 | bgt.b no_sft # if so, don't shift |
| 14208 | neg.l %d0 # make exp positive |
| 14209 | m_loop: |
| 14210 | lsr.l &1,%d2 # shift d2:d3 right, add 0s |
| 14211 | roxr.l &1,%d3 # the number of places |
| 14212 | dbf.w %d0,m_loop # given in d0 |
| 14213 | no_sft: |
| 14214 | tst.l %d2 # check for mantissa of zero |
| 14215 | bne.b no_zr # if not, go on |
| 14216 | tst.l %d3 # continue zero check |
| 14217 | beq.b zer_m # if zero, go directly to binstr |
| 14218 | no_zr: |
| 14219 | clr.l %d1 # put zero in d1 for addx |
| 14220 | add.l &0x00000080,%d3 # inc at bit 7 |
| 14221 | addx.l %d1,%d2 # continue inc |
| 14222 | and.l &0xffffff80,%d3 # strip off lsb not used by 882 |
| 14223 | zer_m: |
| 14224 | mov.l %d4,%d0 # put LEN in d0 for binstr call |
| 14225 | addq.l &3,%a0 # a0 points to M16 byte in result |
| 14226 | bsr binstr # call binstr to convert mant |
| 14227 | |
| 14228 | |
| 14229 | # A15. Convert the exponent to bcd. |
| 14230 | # As in A14 above, the exp is converted to bcd and the |
| 14231 | # digits are stored in the final string. |
| 14232 | # |
| 14233 | # Digits are stored in L_SCR1(a6) on return from BINDEC as: |
| 14234 | # |
| 14235 | # 32 16 15 0 |
| 14236 | # ----------------------------------------- |
| 14237 | # | 0 | e3 | e2 | e1 | e4 | X | X | X | |
| 14238 | # ----------------------------------------- |
| 14239 | # |
| 14240 | # And are moved into their proper places in FP_SCR0. If digit e4 |
| 14241 | # is non-zero, OPERR is signaled. In all cases, all 4 digits are |
| 14242 | # written as specified in the 881/882 manual for packed decimal. |
| 14243 | # |
| 14244 | # Register usage: |
| 14245 | # Input/Output |
| 14246 | # d0: x/LEN call to binstr - final is 0 |
| 14247 | # d1: x/scratch (0);shift count for final exponent packing |
| 14248 | # d2: x/ms 32-bits of exp fraction/scratch |
| 14249 | # d3: x/ls 32-bits of exp fraction |
| 14250 | # d4: LEN/Unchanged |
| 14251 | # d5: ICTR:LAMBDA/LAMBDA:ICTR |
| 14252 | # d6: ILOG |
| 14253 | # d7: k-factor/Unchanged |
| 14254 | # a0: ptr to result string/ptr to L_SCR1(a6) |
| 14255 | # a1: ptr to PTENxx array/Unchanged |
| 14256 | # a2: ptr to FP_SCR1(a6)/Unchanged |
| 14257 | # fp0: abs(YINT) adjusted/float(ILOG) |
| 14258 | # fp1: 10^ISCALE/Unchanged |
| 14259 | # fp2: 10^LEN/Unchanged |
| 14260 | # F_SCR1:Work area for final result/BCD result |
| 14261 | # F_SCR2:Y with original exponent/ILOG/10^4 |
| 14262 | # L_SCR1:original USER_FPCR/Exponent digits on return from binstr |
| 14263 | # L_SCR2:first word of X packed/Unchanged |
| 14264 | |
| 14265 | A15_st: |
| 14266 | tst.b BINDEC_FLG(%a6) # check for denorm |
| 14267 | beq.b not_denorm |
| 14268 | ftest.x %fp0 # test for zero |
| 14269 | fbeq.w den_zero # if zero, use k-factor or 4933 |
| 14270 | fmov.l %d6,%fp0 # float ILOG |
| 14271 | fabs.x %fp0 # get abs of ILOG |
| 14272 | bra.b convrt |
| 14273 | den_zero: |
| 14274 | tst.l %d7 # check sign of the k-factor |
| 14275 | blt.b use_ilog # if negative, use ILOG |
| 14276 | fmov.s F4933(%pc),%fp0 # force exponent to 4933 |
| 14277 | bra.b convrt # do it |
| 14278 | use_ilog: |
| 14279 | fmov.l %d6,%fp0 # float ILOG |
| 14280 | fabs.x %fp0 # get abs of ILOG |
| 14281 | bra.b convrt |
| 14282 | not_denorm: |
| 14283 | ftest.x %fp0 # test for zero |
| 14284 | fbneq.w not_zero # if zero, force exponent |
| 14285 | fmov.s FONE(%pc),%fp0 # force exponent to 1 |
| 14286 | bra.b convrt # do it |
| 14287 | not_zero: |
| 14288 | fmov.l %d6,%fp0 # float ILOG |
| 14289 | fabs.x %fp0 # get abs of ILOG |
| 14290 | convrt: |
| 14291 | fdiv.x 24(%a1),%fp0 # compute ILOG/10^4 |
| 14292 | fmov.x %fp0,FP_SCR1(%a6) # store fp0 in memory |
| 14293 | mov.l 4(%a2),%d2 # move word 2 to d2 |
| 14294 | mov.l 8(%a2),%d3 # move word 3 to d3 |
| 14295 | mov.w (%a2),%d0 # move exp to d0 |
| 14296 | beq.b x_loop_fin # if zero, skip the shift |
| 14297 | sub.w &0x3ffd,%d0 # subtract off bias |
| 14298 | neg.w %d0 # make exp positive |
| 14299 | x_loop: |
| 14300 | lsr.l &1,%d2 # shift d2:d3 right |
| 14301 | roxr.l &1,%d3 # the number of places |
| 14302 | dbf.w %d0,x_loop # given in d0 |
| 14303 | x_loop_fin: |
| 14304 | clr.l %d1 # put zero in d1 for addx |
| 14305 | add.l &0x00000080,%d3 # inc at bit 6 |
| 14306 | addx.l %d1,%d2 # continue inc |
| 14307 | and.l &0xffffff80,%d3 # strip off lsb not used by 882 |
| 14308 | mov.l &4,%d0 # put 4 in d0 for binstr call |
| 14309 | lea.l L_SCR1(%a6),%a0 # a0 is ptr to L_SCR1 for exp digits |
| 14310 | bsr binstr # call binstr to convert exp |
| 14311 | mov.l L_SCR1(%a6),%d0 # load L_SCR1 lword to d0 |
| 14312 | mov.l &12,%d1 # use d1 for shift count |
| 14313 | lsr.l %d1,%d0 # shift d0 right by 12 |
| 14314 | bfins %d0,FP_SCR0(%a6){&4:&12} # put e3:e2:e1 in FP_SCR0 |
| 14315 | lsr.l %d1,%d0 # shift d0 right by 12 |
| 14316 | bfins %d0,FP_SCR0(%a6){&16:&4} # put e4 in FP_SCR0 |
| 14317 | tst.b %d0 # check if e4 is zero |
| 14318 | beq.b A16_st # if zero, skip rest |
| 14319 | or.l &opaop_mask,USER_FPSR(%a6) # set OPERR & AIOP in USER_FPSR |
| 14320 | |
| 14321 | |
| 14322 | # A16. Write sign bits to final string. |
| 14323 | # Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG). |
| 14324 | # |
| 14325 | # Register usage: |
| 14326 | # Input/Output |
| 14327 | # d0: x/scratch - final is x |
| 14328 | # d2: x/x |
| 14329 | # d3: x/x |
| 14330 | # d4: LEN/Unchanged |
| 14331 | # d5: ICTR:LAMBDA/LAMBDA:ICTR |
| 14332 | # d6: ILOG/ILOG adjusted |
| 14333 | # d7: k-factor/Unchanged |
| 14334 | # a0: ptr to L_SCR1(a6)/Unchanged |
| 14335 | # a1: ptr to PTENxx array/Unchanged |
| 14336 | # a2: ptr to FP_SCR1(a6)/Unchanged |
| 14337 | # fp0: float(ILOG)/Unchanged |
| 14338 | # fp1: 10^ISCALE/Unchanged |
| 14339 | # fp2: 10^LEN/Unchanged |
| 14340 | # F_SCR1:BCD result with correct signs |
| 14341 | # F_SCR2:ILOG/10^4 |
| 14342 | # L_SCR1:Exponent digits on return from binstr |
| 14343 | # L_SCR2:first word of X packed/Unchanged |
| 14344 | |
| 14345 | A16_st: |
| 14346 | clr.l %d0 # clr d0 for collection of signs |
| 14347 | and.b &0x0f,FP_SCR0(%a6) # clear first nibble of FP_SCR0 |
| 14348 | tst.l L_SCR2(%a6) # check sign of original mantissa |
| 14349 | bge.b mant_p # if pos, don't set SM |
| 14350 | mov.l &2,%d0 # move 2 in to d0 for SM |
| 14351 | mant_p: |
| 14352 | tst.l %d6 # check sign of ILOG |
| 14353 | bge.b wr_sgn # if pos, don't set SE |
| 14354 | addq.l &1,%d0 # set bit 0 in d0 for SE |
| 14355 | wr_sgn: |
| 14356 | bfins %d0,FP_SCR0(%a6){&0:&2} # insert SM and SE into FP_SCR0 |
| 14357 | |
| 14358 | # Clean up and restore all registers used. |
| 14359 | |
| 14360 | fmov.l &0,%fpsr # clear possible inex2/ainex bits |
| 14361 | fmovm.x (%sp)+,&0xe0 # {%fp0-%fp2} |
| 14362 | movm.l (%sp)+,&0x4fc # {%d2-%d7/%a2} |
| 14363 | rts |
| 14364 | |
| 14365 | global PTENRN |
| 14366 | PTENRN: |
| 14367 | long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 |
| 14368 | long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 |
| 14369 | long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 |
| 14370 | long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 |
| 14371 | long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 |
| 14372 | long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32 |
| 14373 | long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64 |
| 14374 | long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128 |
| 14375 | long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256 |
| 14376 | long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512 |
| 14377 | long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024 |
| 14378 | long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048 |
| 14379 | long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096 |
| 14380 | |
| 14381 | global PTENRP |
| 14382 | PTENRP: |
| 14383 | long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 |
| 14384 | long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 |
| 14385 | long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 |
| 14386 | long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 |
| 14387 | long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 |
| 14388 | long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32 |
| 14389 | long 0x40D30000,0xC2781F49,0xFFCFA6D6 # 10 ^ 64 |
| 14390 | long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128 |
| 14391 | long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256 |
| 14392 | long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512 |
| 14393 | long 0x4D480000,0xC9767586,0x81750C18 # 10 ^ 1024 |
| 14394 | long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048 |
| 14395 | long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096 |
| 14396 | |
| 14397 | global PTENRM |
| 14398 | PTENRM: |
| 14399 | long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 |
| 14400 | long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 |
| 14401 | long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 |
| 14402 | long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 |
| 14403 | long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 |
| 14404 | long 0x40690000,0x9DC5ADA8,0x2B70B59D # 10 ^ 32 |
| 14405 | long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64 |
| 14406 | long 0x41A80000,0x93BA47C9,0x80E98CDF # 10 ^ 128 |
| 14407 | long 0x43510000,0xAA7EEBFB,0x9DF9DE8D # 10 ^ 256 |
| 14408 | long 0x46A30000,0xE319A0AE,0xA60E91C6 # 10 ^ 512 |
| 14409 | long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024 |
| 14410 | long 0x5A920000,0x9E8B3B5D,0xC53D5DE4 # 10 ^ 2048 |
| 14411 | long 0x75250000,0xC4605202,0x8A20979A # 10 ^ 4096 |
| 14412 | |
| 14413 | ######################################################################### |
| 14414 | # binstr(): Converts a 64-bit binary integer to bcd. # |
| 14415 | # # |
| 14416 | # INPUT *************************************************************** # |
| 14417 | # d2:d3 = 64-bit binary integer # |
| 14418 | # d0 = desired length (LEN) # |
| 14419 | # a0 = pointer to start in memory for bcd characters # |
| 14420 | # (This pointer must point to byte 4 of the first # |
| 14421 | # lword of the packed decimal memory string.) # |
| 14422 | # # |
| 14423 | # OUTPUT ************************************************************** # |
| 14424 | # a0 = pointer to LEN bcd digits representing the 64-bit integer. # |
| 14425 | # # |
| 14426 | # ALGORITHM *********************************************************** # |
| 14427 | # The 64-bit binary is assumed to have a decimal point before # |
| 14428 | # bit 63. The fraction is multiplied by 10 using a mul by 2 # |
| 14429 | # shift and a mul by 8 shift. The bits shifted out of the # |
| 14430 | # msb form a decimal digit. This process is iterated until # |
| 14431 | # LEN digits are formed. # |
| 14432 | # # |
| 14433 | # A1. Init d7 to 1. D7 is the byte digit counter, and if 1, the # |
| 14434 | # digit formed will be assumed the least significant. This is # |
| 14435 | # to force the first byte formed to have a 0 in the upper 4 bits. # |
| 14436 | # # |
| 14437 | # A2. Beginning of the loop: # |
| 14438 | # Copy the fraction in d2:d3 to d4:d5. # |
| 14439 | # # |
| 14440 | # A3. Multiply the fraction in d2:d3 by 8 using bit-field # |
| 14441 | # extracts and shifts. The three msbs from d2 will go into d1. # |
| 14442 | # # |
| 14443 | # A4. Multiply the fraction in d4:d5 by 2 using shifts. The msb # |
| 14444 | # will be collected by the carry. # |
| 14445 | # # |
| 14446 | # A5. Add using the carry the 64-bit quantities in d2:d3 and d4:d5 # |
| 14447 | # into d2:d3. D1 will contain the bcd digit formed. # |
| 14448 | # # |
| 14449 | # A6. Test d7. If zero, the digit formed is the ms digit. If non- # |
| 14450 | # zero, it is the ls digit. Put the digit in its place in the # |
| 14451 | # upper word of d0. If it is the ls digit, write the word # |
| 14452 | # from d0 to memory. # |
| 14453 | # # |
| 14454 | # A7. Decrement d6 (LEN counter) and repeat the loop until zero. # |
| 14455 | # # |
| 14456 | ######################################################################### |
| 14457 | |
| 14458 | # Implementation Notes: |
| 14459 | # |
| 14460 | # The registers are used as follows: |
| 14461 | # |
| 14462 | # d0: LEN counter |
| 14463 | # d1: temp used to form the digit |
| 14464 | # d2: upper 32-bits of fraction for mul by 8 |
| 14465 | # d3: lower 32-bits of fraction for mul by 8 |
| 14466 | # d4: upper 32-bits of fraction for mul by 2 |
| 14467 | # d5: lower 32-bits of fraction for mul by 2 |
| 14468 | # d6: temp for bit-field extracts |
| 14469 | # d7: byte digit formation word;digit count {0,1} |
| 14470 | # a0: pointer into memory for packed bcd string formation |
| 14471 | # |
| 14472 | |
| 14473 | global binstr |
| 14474 | binstr: |
| 14475 | movm.l &0xff00,-(%sp) # {%d0-%d7} |
| 14476 | |
| 14477 | # |
| 14478 | # A1: Init d7 |
| 14479 | # |
| 14480 | mov.l &1,%d7 # init d7 for second digit |
| 14481 | subq.l &1,%d0 # for dbf d0 would have LEN+1 passes |
| 14482 | # |
| 14483 | # A2. Copy d2:d3 to d4:d5. Start loop. |
| 14484 | # |
| 14485 | loop: |
| 14486 | mov.l %d2,%d4 # copy the fraction before muls |
| 14487 | mov.l %d3,%d5 # to d4:d5 |
| 14488 | # |
| 14489 | # A3. Multiply d2:d3 by 8; extract msbs into d1. |
| 14490 | # |
| 14491 | bfextu %d2{&0:&3},%d1 # copy 3 msbs of d2 into d1 |
| 14492 | asl.l &3,%d2 # shift d2 left by 3 places |
| 14493 | bfextu %d3{&0:&3},%d6 # copy 3 msbs of d3 into d6 |
| 14494 | asl.l &3,%d3 # shift d3 left by 3 places |
| 14495 | or.l %d6,%d2 # or in msbs from d3 into d2 |
| 14496 | # |
| 14497 | # A4. Multiply d4:d5 by 2; add carry out to d1. |
| 14498 | # |
| 14499 | asl.l &1,%d5 # mul d5 by 2 |
| 14500 | roxl.l &1,%d4 # mul d4 by 2 |
| 14501 | swap %d6 # put 0 in d6 lower word |
| 14502 | addx.w %d6,%d1 # add in extend from mul by 2 |
| 14503 | # |
| 14504 | # A5. Add mul by 8 to mul by 2. D1 contains the digit formed. |
| 14505 | # |
| 14506 | add.l %d5,%d3 # add lower 32 bits |
| 14507 | nop # ERRATA FIX #13 (Rev. 1.2 6/6/90) |
| 14508 | addx.l %d4,%d2 # add with extend upper 32 bits |
| 14509 | nop # ERRATA FIX #13 (Rev. 1.2 6/6/90) |
| 14510 | addx.w %d6,%d1 # add in extend from add to d1 |
| 14511 | swap %d6 # with d6 = 0; put 0 in upper word |
| 14512 | # |
| 14513 | # A6. Test d7 and branch. |
| 14514 | # |
| 14515 | tst.w %d7 # if zero, store digit & to loop |
| 14516 | beq.b first_d # if non-zero, form byte & write |
| 14517 | sec_d: |
| 14518 | swap %d7 # bring first digit to word d7b |
| 14519 | asl.w &4,%d7 # first digit in upper 4 bits d7b |
| 14520 | add.w %d1,%d7 # add in ls digit to d7b |
| 14521 | mov.b %d7,(%a0)+ # store d7b byte in memory |
| 14522 | swap %d7 # put LEN counter in word d7a |
| 14523 | clr.w %d7 # set d7a to signal no digits done |
| 14524 | dbf.w %d0,loop # do loop some more! |
| 14525 | bra.b end_bstr # finished, so exit |
| 14526 | first_d: |
| 14527 | swap %d7 # put digit word in d7b |
| 14528 | mov.w %d1,%d7 # put new digit in d7b |
| 14529 | swap %d7 # put LEN counter in word d7a |
| 14530 | addq.w &1,%d7 # set d7a to signal first digit done |
| 14531 | dbf.w %d0,loop # do loop some more! |
| 14532 | swap %d7 # put last digit in string |
| 14533 | lsl.w &4,%d7 # move it to upper 4 bits |
| 14534 | mov.b %d7,(%a0)+ # store it in memory string |
| 14535 | # |
| 14536 | # Clean up and return with result in fp0. |
| 14537 | # |
| 14538 | end_bstr: |
| 14539 | movm.l (%sp)+,&0xff # {%d0-%d7} |
| 14540 | rts |
| 14541 | |
| 14542 | ######################################################################### |
| 14543 | # XDEF **************************************************************** # |
| 14544 | # facc_in_b(): dmem_read_byte failed # |
| 14545 | # facc_in_w(): dmem_read_word failed # |
| 14546 | # facc_in_l(): dmem_read_long failed # |
| 14547 | # facc_in_d(): dmem_read of dbl prec failed # |
| 14548 | # facc_in_x(): dmem_read of ext prec failed # |
| 14549 | # # |
| 14550 | # facc_out_b(): dmem_write_byte failed # |
| 14551 | # facc_out_w(): dmem_write_word failed # |
| 14552 | # facc_out_l(): dmem_write_long failed # |
| 14553 | # facc_out_d(): dmem_write of dbl prec failed # |
| 14554 | # facc_out_x(): dmem_write of ext prec failed # |
| 14555 | # # |
| 14556 | # XREF **************************************************************** # |
| 14557 | # _real_access() - exit through access error handler # |
| 14558 | # # |
| 14559 | # INPUT *************************************************************** # |
| 14560 | # None # |
| 14561 | # # |
| 14562 | # OUTPUT ************************************************************** # |
| 14563 | # None # |
| 14564 | # # |
| 14565 | # ALGORITHM *********************************************************** # |
| 14566 | # Flow jumps here when an FP data fetch call gets an error # |
| 14567 | # result. This means the operating system wants an access error frame # |
| 14568 | # made out of the current exception stack frame. # |
| 14569 | # So, we first call restore() which makes sure that any updated # |
| 14570 | # -(an)+ register gets returned to its pre-exception value and then # |
| 14571 | # we change the stack to an access error stack frame. # |
| 14572 | # # |
| 14573 | ######################################################################### |
| 14574 | |
| 14575 | facc_in_b: |
| 14576 | movq.l &0x1,%d0 # one byte |
| 14577 | bsr.w restore # fix An |
| 14578 | |
| 14579 | mov.w &0x0121,EXC_VOFF(%a6) # set FSLW |
| 14580 | bra.w facc_finish |
| 14581 | |
| 14582 | facc_in_w: |
| 14583 | movq.l &0x2,%d0 # two bytes |
| 14584 | bsr.w restore # fix An |
| 14585 | |
| 14586 | mov.w &0x0141,EXC_VOFF(%a6) # set FSLW |
| 14587 | bra.b facc_finish |
| 14588 | |
| 14589 | facc_in_l: |
| 14590 | movq.l &0x4,%d0 # four bytes |
| 14591 | bsr.w restore # fix An |
| 14592 | |
| 14593 | mov.w &0x0101,EXC_VOFF(%a6) # set FSLW |
| 14594 | bra.b facc_finish |
| 14595 | |
| 14596 | facc_in_d: |
| 14597 | movq.l &0x8,%d0 # eight bytes |
| 14598 | bsr.w restore # fix An |
| 14599 | |
| 14600 | mov.w &0x0161,EXC_VOFF(%a6) # set FSLW |
| 14601 | bra.b facc_finish |
| 14602 | |
| 14603 | facc_in_x: |
| 14604 | movq.l &0xc,%d0 # twelve bytes |
| 14605 | bsr.w restore # fix An |
| 14606 | |
| 14607 | mov.w &0x0161,EXC_VOFF(%a6) # set FSLW |
| 14608 | bra.b facc_finish |
| 14609 | |
| 14610 | ################################################################ |
| 14611 | |
| 14612 | facc_out_b: |
| 14613 | movq.l &0x1,%d0 # one byte |
| 14614 | bsr.w restore # restore An |
| 14615 | |
| 14616 | mov.w &0x00a1,EXC_VOFF(%a6) # set FSLW |
| 14617 | bra.b facc_finish |
| 14618 | |
| 14619 | facc_out_w: |
| 14620 | movq.l &0x2,%d0 # two bytes |
| 14621 | bsr.w restore # restore An |
| 14622 | |
| 14623 | mov.w &0x00c1,EXC_VOFF(%a6) # set FSLW |
| 14624 | bra.b facc_finish |
| 14625 | |
| 14626 | facc_out_l: |
| 14627 | movq.l &0x4,%d0 # four bytes |
| 14628 | bsr.w restore # restore An |
| 14629 | |
| 14630 | mov.w &0x0081,EXC_VOFF(%a6) # set FSLW |
| 14631 | bra.b facc_finish |
| 14632 | |
| 14633 | facc_out_d: |
| 14634 | movq.l &0x8,%d0 # eight bytes |
| 14635 | bsr.w restore # restore An |
| 14636 | |
| 14637 | mov.w &0x00e1,EXC_VOFF(%a6) # set FSLW |
| 14638 | bra.b facc_finish |
| 14639 | |
| 14640 | facc_out_x: |
| 14641 | mov.l &0xc,%d0 # twelve bytes |
| 14642 | bsr.w restore # restore An |
| 14643 | |
| 14644 | mov.w &0x00e1,EXC_VOFF(%a6) # set FSLW |
| 14645 | |
| 14646 | # here's where we actually create the access error frame from the |
| 14647 | # current exception stack frame. |
| 14648 | facc_finish: |
| 14649 | mov.l USER_FPIAR(%a6),EXC_PC(%a6) # store current PC |
| 14650 | |
| 14651 | fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 |
| 14652 | fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs |
| 14653 | movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 |
| 14654 | |
| 14655 | unlk %a6 |
| 14656 | |
| 14657 | mov.l (%sp),-(%sp) # store SR, hi(PC) |
| 14658 | mov.l 0x8(%sp),0x4(%sp) # store lo(PC) |
| 14659 | mov.l 0xc(%sp),0x8(%sp) # store EA |
| 14660 | mov.l &0x00000001,0xc(%sp) # store FSLW |
| 14661 | mov.w 0x6(%sp),0xc(%sp) # fix FSLW (size) |
| 14662 | mov.w &0x4008,0x6(%sp) # store voff |
| 14663 | |
| 14664 | btst &0x5,(%sp) # supervisor or user mode? |
| 14665 | beq.b facc_out2 # user |
| 14666 | bset &0x2,0xd(%sp) # set supervisor TM bit |
| 14667 | |
| 14668 | facc_out2: |
| 14669 | bra.l _real_access |
| 14670 | |
| 14671 | ################################################################## |
| 14672 | |
| 14673 | # if the effective addressing mode was predecrement or postincrement, |
| 14674 | # the emulation has already changed its value to the correct post- |
| 14675 | # instruction value. but since we're exiting to the access error |
| 14676 | # handler, then AN must be returned to its pre-instruction value. |
| 14677 | # we do that here. |
| 14678 | restore: |
| 14679 | mov.b EXC_OPWORD+0x1(%a6),%d1 |
| 14680 | andi.b &0x38,%d1 # extract opmode |
| 14681 | cmpi.b %d1,&0x18 # postinc? |
| 14682 | beq.w rest_inc |
| 14683 | cmpi.b %d1,&0x20 # predec? |
| 14684 | beq.w rest_dec |
| 14685 | rts |
| 14686 | |
| 14687 | rest_inc: |
| 14688 | mov.b EXC_OPWORD+0x1(%a6),%d1 |
| 14689 | andi.w &0x0007,%d1 # fetch An |
| 14690 | |
| 14691 | mov.w (tbl_rest_inc.b,%pc,%d1.w*2),%d1 |
| 14692 | jmp (tbl_rest_inc.b,%pc,%d1.w*1) |
| 14693 | |
| 14694 | tbl_rest_inc: |
| 14695 | short ri_a0 - tbl_rest_inc |
| 14696 | short ri_a1 - tbl_rest_inc |
| 14697 | short ri_a2 - tbl_rest_inc |
| 14698 | short ri_a3 - tbl_rest_inc |
| 14699 | short ri_a4 - tbl_rest_inc |
| 14700 | short ri_a5 - tbl_rest_inc |
| 14701 | short ri_a6 - tbl_rest_inc |
| 14702 | short ri_a7 - tbl_rest_inc |
| 14703 | |
| 14704 | ri_a0: |
| 14705 | sub.l %d0,EXC_DREGS+0x8(%a6) # fix stacked a0 |
| 14706 | rts |
| 14707 | ri_a1: |
| 14708 | sub.l %d0,EXC_DREGS+0xc(%a6) # fix stacked a1 |
| 14709 | rts |
| 14710 | ri_a2: |
| 14711 | sub.l %d0,%a2 # fix a2 |
| 14712 | rts |
| 14713 | ri_a3: |
| 14714 | sub.l %d0,%a3 # fix a3 |
| 14715 | rts |
| 14716 | ri_a4: |
| 14717 | sub.l %d0,%a4 # fix a4 |
| 14718 | rts |
| 14719 | ri_a5: |
| 14720 | sub.l %d0,%a5 # fix a5 |
| 14721 | rts |
| 14722 | ri_a6: |
| 14723 | sub.l %d0,(%a6) # fix stacked a6 |
| 14724 | rts |
| 14725 | # if it's a fmove out instruction, we don't have to fix a7 |
| 14726 | # because we hadn't changed it yet. if it's an opclass two |
| 14727 | # instruction (data moved in) and the exception was in supervisor |
| 14728 | # mode, then also also wasn't updated. if it was user mode, then |
| 14729 | # restore the correct a7 which is in the USP currently. |
| 14730 | ri_a7: |
| 14731 | cmpi.b EXC_VOFF(%a6),&0x30 # move in or out? |
| 14732 | bne.b ri_a7_done # out |
| 14733 | |
| 14734 | btst &0x5,EXC_SR(%a6) # user or supervisor? |
| 14735 | bne.b ri_a7_done # supervisor |
| 14736 | movc %usp,%a0 # restore USP |
| 14737 | sub.l %d0,%a0 |
| 14738 | movc %a0,%usp |
| 14739 | ri_a7_done: |
| 14740 | rts |
| 14741 | |
| 14742 | # need to invert adjustment value if the <ea> was predec |
| 14743 | rest_dec: |
| 14744 | neg.l %d0 |
| 14745 | bra.b rest_inc |