Arun Murthy | 1315163 | 2012-02-29 21:54:27 +0530 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) ST-Ericsson AB 2012 |
| 3 | * |
| 4 | * Main and Back-up battery management driver. |
| 5 | * |
| 6 | * Note: Backup battery management is required in case of Li-Ion battery and not |
| 7 | * for capacitive battery. HREF boards have capacitive battery and hence backup |
| 8 | * battery management is not used and the supported code is available in this |
| 9 | * driver. |
| 10 | * |
| 11 | * License Terms: GNU General Public License v2 |
| 12 | * Author: |
| 13 | * Johan Palsson <johan.palsson@stericsson.com> |
| 14 | * Karl Komierowski <karl.komierowski@stericsson.com> |
| 15 | * Arun R Murthy <arun.murthy@stericsson.com> |
| 16 | */ |
| 17 | |
| 18 | #include <linux/init.h> |
| 19 | #include <linux/module.h> |
| 20 | #include <linux/device.h> |
| 21 | #include <linux/interrupt.h> |
| 22 | #include <linux/platform_device.h> |
| 23 | #include <linux/power_supply.h> |
| 24 | #include <linux/kobject.h> |
| 25 | #include <linux/mfd/abx500/ab8500.h> |
| 26 | #include <linux/mfd/abx500.h> |
| 27 | #include <linux/slab.h> |
| 28 | #include <linux/mfd/abx500/ab8500-bm.h> |
| 29 | #include <linux/delay.h> |
| 30 | #include <linux/mfd/abx500/ab8500-gpadc.h> |
| 31 | #include <linux/mfd/abx500.h> |
| 32 | #include <linux/time.h> |
| 33 | #include <linux/completion.h> |
| 34 | |
| 35 | #define MILLI_TO_MICRO 1000 |
| 36 | #define FG_LSB_IN_MA 1627 |
| 37 | #define QLSB_NANO_AMP_HOURS_X10 1129 |
| 38 | #define INS_CURR_TIMEOUT (3 * HZ) |
| 39 | |
| 40 | #define SEC_TO_SAMPLE(S) (S * 4) |
| 41 | |
| 42 | #define NBR_AVG_SAMPLES 20 |
| 43 | |
| 44 | #define LOW_BAT_CHECK_INTERVAL (2 * HZ) |
| 45 | |
| 46 | #define VALID_CAPACITY_SEC (45 * 60) /* 45 minutes */ |
| 47 | #define BATT_OK_MIN 2360 /* mV */ |
| 48 | #define BATT_OK_INCREMENT 50 /* mV */ |
| 49 | #define BATT_OK_MAX_NR_INCREMENTS 0xE |
| 50 | |
| 51 | /* FG constants */ |
| 52 | #define BATT_OVV 0x01 |
| 53 | |
| 54 | #define interpolate(x, x1, y1, x2, y2) \ |
| 55 | ((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1)))); |
| 56 | |
| 57 | #define to_ab8500_fg_device_info(x) container_of((x), \ |
| 58 | struct ab8500_fg, fg_psy); |
| 59 | |
| 60 | /** |
| 61 | * struct ab8500_fg_interrupts - ab8500 fg interupts |
| 62 | * @name: name of the interrupt |
| 63 | * @isr function pointer to the isr |
| 64 | */ |
| 65 | struct ab8500_fg_interrupts { |
| 66 | char *name; |
| 67 | irqreturn_t (*isr)(int irq, void *data); |
| 68 | }; |
| 69 | |
| 70 | enum ab8500_fg_discharge_state { |
| 71 | AB8500_FG_DISCHARGE_INIT, |
| 72 | AB8500_FG_DISCHARGE_INITMEASURING, |
| 73 | AB8500_FG_DISCHARGE_INIT_RECOVERY, |
| 74 | AB8500_FG_DISCHARGE_RECOVERY, |
| 75 | AB8500_FG_DISCHARGE_READOUT_INIT, |
| 76 | AB8500_FG_DISCHARGE_READOUT, |
| 77 | AB8500_FG_DISCHARGE_WAKEUP, |
| 78 | }; |
| 79 | |
| 80 | static char *discharge_state[] = { |
| 81 | "DISCHARGE_INIT", |
| 82 | "DISCHARGE_INITMEASURING", |
| 83 | "DISCHARGE_INIT_RECOVERY", |
| 84 | "DISCHARGE_RECOVERY", |
| 85 | "DISCHARGE_READOUT_INIT", |
| 86 | "DISCHARGE_READOUT", |
| 87 | "DISCHARGE_WAKEUP", |
| 88 | }; |
| 89 | |
| 90 | enum ab8500_fg_charge_state { |
| 91 | AB8500_FG_CHARGE_INIT, |
| 92 | AB8500_FG_CHARGE_READOUT, |
| 93 | }; |
| 94 | |
| 95 | static char *charge_state[] = { |
| 96 | "CHARGE_INIT", |
| 97 | "CHARGE_READOUT", |
| 98 | }; |
| 99 | |
| 100 | enum ab8500_fg_calibration_state { |
| 101 | AB8500_FG_CALIB_INIT, |
| 102 | AB8500_FG_CALIB_WAIT, |
| 103 | AB8500_FG_CALIB_END, |
| 104 | }; |
| 105 | |
| 106 | struct ab8500_fg_avg_cap { |
| 107 | int avg; |
| 108 | int samples[NBR_AVG_SAMPLES]; |
| 109 | __kernel_time_t time_stamps[NBR_AVG_SAMPLES]; |
| 110 | int pos; |
| 111 | int nbr_samples; |
| 112 | int sum; |
| 113 | }; |
| 114 | |
| 115 | struct ab8500_fg_battery_capacity { |
| 116 | int max_mah_design; |
| 117 | int max_mah; |
| 118 | int mah; |
| 119 | int permille; |
| 120 | int level; |
| 121 | int prev_mah; |
| 122 | int prev_percent; |
| 123 | int prev_level; |
| 124 | int user_mah; |
| 125 | }; |
| 126 | |
| 127 | struct ab8500_fg_flags { |
| 128 | bool fg_enabled; |
| 129 | bool conv_done; |
| 130 | bool charging; |
| 131 | bool fully_charged; |
| 132 | bool force_full; |
| 133 | bool low_bat_delay; |
| 134 | bool low_bat; |
| 135 | bool bat_ovv; |
| 136 | bool batt_unknown; |
| 137 | bool calibrate; |
| 138 | bool user_cap; |
| 139 | bool batt_id_received; |
| 140 | }; |
| 141 | |
| 142 | struct inst_curr_result_list { |
| 143 | struct list_head list; |
| 144 | int *result; |
| 145 | }; |
| 146 | |
| 147 | /** |
| 148 | * struct ab8500_fg - ab8500 FG device information |
| 149 | * @dev: Pointer to the structure device |
| 150 | * @node: a list of AB8500 FGs, hence prepared for reentrance |
| 151 | * @irq holds the CCEOC interrupt number |
| 152 | * @vbat: Battery voltage in mV |
| 153 | * @vbat_nom: Nominal battery voltage in mV |
| 154 | * @inst_curr: Instantenous battery current in mA |
| 155 | * @avg_curr: Average battery current in mA |
| 156 | * @bat_temp battery temperature |
| 157 | * @fg_samples: Number of samples used in the FG accumulation |
| 158 | * @accu_charge: Accumulated charge from the last conversion |
| 159 | * @recovery_cnt: Counter for recovery mode |
| 160 | * @high_curr_cnt: Counter for high current mode |
| 161 | * @init_cnt: Counter for init mode |
| 162 | * @recovery_needed: Indicate if recovery is needed |
| 163 | * @high_curr_mode: Indicate if we're in high current mode |
| 164 | * @init_capacity: Indicate if initial capacity measuring should be done |
| 165 | * @turn_off_fg: True if fg was off before current measurement |
| 166 | * @calib_state State during offset calibration |
| 167 | * @discharge_state: Current discharge state |
| 168 | * @charge_state: Current charge state |
| 169 | * @ab8500_fg_complete Completion struct used for the instant current reading |
| 170 | * @flags: Structure for information about events triggered |
| 171 | * @bat_cap: Structure for battery capacity specific parameters |
| 172 | * @avg_cap: Average capacity filter |
| 173 | * @parent: Pointer to the struct ab8500 |
| 174 | * @gpadc: Pointer to the struct gpadc |
| 175 | * @pdata: Pointer to the abx500_fg platform data |
| 176 | * @bat: Pointer to the abx500_bm platform data |
| 177 | * @fg_psy: Structure that holds the FG specific battery properties |
| 178 | * @fg_wq: Work queue for running the FG algorithm |
| 179 | * @fg_periodic_work: Work to run the FG algorithm periodically |
| 180 | * @fg_low_bat_work: Work to check low bat condition |
| 181 | * @fg_reinit_work Work used to reset and reinitialise the FG algorithm |
| 182 | * @fg_work: Work to run the FG algorithm instantly |
| 183 | * @fg_acc_cur_work: Work to read the FG accumulator |
| 184 | * @fg_check_hw_failure_work: Work for checking HW state |
| 185 | * @cc_lock: Mutex for locking the CC |
| 186 | * @fg_kobject: Structure of type kobject |
| 187 | */ |
| 188 | struct ab8500_fg { |
| 189 | struct device *dev; |
| 190 | struct list_head node; |
| 191 | int irq; |
| 192 | int vbat; |
| 193 | int vbat_nom; |
| 194 | int inst_curr; |
| 195 | int avg_curr; |
| 196 | int bat_temp; |
| 197 | int fg_samples; |
| 198 | int accu_charge; |
| 199 | int recovery_cnt; |
| 200 | int high_curr_cnt; |
| 201 | int init_cnt; |
| 202 | bool recovery_needed; |
| 203 | bool high_curr_mode; |
| 204 | bool init_capacity; |
| 205 | bool turn_off_fg; |
| 206 | enum ab8500_fg_calibration_state calib_state; |
| 207 | enum ab8500_fg_discharge_state discharge_state; |
| 208 | enum ab8500_fg_charge_state charge_state; |
| 209 | struct completion ab8500_fg_complete; |
| 210 | struct ab8500_fg_flags flags; |
| 211 | struct ab8500_fg_battery_capacity bat_cap; |
| 212 | struct ab8500_fg_avg_cap avg_cap; |
| 213 | struct ab8500 *parent; |
| 214 | struct ab8500_gpadc *gpadc; |
| 215 | struct abx500_fg_platform_data *pdata; |
| 216 | struct abx500_bm_data *bat; |
| 217 | struct power_supply fg_psy; |
| 218 | struct workqueue_struct *fg_wq; |
| 219 | struct delayed_work fg_periodic_work; |
| 220 | struct delayed_work fg_low_bat_work; |
| 221 | struct delayed_work fg_reinit_work; |
| 222 | struct work_struct fg_work; |
| 223 | struct work_struct fg_acc_cur_work; |
| 224 | struct delayed_work fg_check_hw_failure_work; |
| 225 | struct mutex cc_lock; |
| 226 | struct kobject fg_kobject; |
| 227 | }; |
| 228 | static LIST_HEAD(ab8500_fg_list); |
| 229 | |
| 230 | /** |
| 231 | * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge |
| 232 | * (i.e. the first fuel gauge in the instance list) |
| 233 | */ |
| 234 | struct ab8500_fg *ab8500_fg_get(void) |
| 235 | { |
| 236 | struct ab8500_fg *fg; |
| 237 | |
| 238 | if (list_empty(&ab8500_fg_list)) |
| 239 | return NULL; |
| 240 | |
| 241 | fg = list_first_entry(&ab8500_fg_list, struct ab8500_fg, node); |
| 242 | return fg; |
| 243 | } |
| 244 | |
| 245 | /* Main battery properties */ |
| 246 | static enum power_supply_property ab8500_fg_props[] = { |
| 247 | POWER_SUPPLY_PROP_VOLTAGE_NOW, |
| 248 | POWER_SUPPLY_PROP_CURRENT_NOW, |
| 249 | POWER_SUPPLY_PROP_CURRENT_AVG, |
| 250 | POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, |
| 251 | POWER_SUPPLY_PROP_ENERGY_FULL, |
| 252 | POWER_SUPPLY_PROP_ENERGY_NOW, |
| 253 | POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, |
| 254 | POWER_SUPPLY_PROP_CHARGE_FULL, |
| 255 | POWER_SUPPLY_PROP_CHARGE_NOW, |
| 256 | POWER_SUPPLY_PROP_CAPACITY, |
| 257 | POWER_SUPPLY_PROP_CAPACITY_LEVEL, |
| 258 | }; |
| 259 | |
| 260 | /* |
| 261 | * This array maps the raw hex value to lowbat voltage used by the AB8500 |
| 262 | * Values taken from the UM0836 |
| 263 | */ |
| 264 | static int ab8500_fg_lowbat_voltage_map[] = { |
| 265 | 2300 , |
| 266 | 2325 , |
| 267 | 2350 , |
| 268 | 2375 , |
| 269 | 2400 , |
| 270 | 2425 , |
| 271 | 2450 , |
| 272 | 2475 , |
| 273 | 2500 , |
| 274 | 2525 , |
| 275 | 2550 , |
| 276 | 2575 , |
| 277 | 2600 , |
| 278 | 2625 , |
| 279 | 2650 , |
| 280 | 2675 , |
| 281 | 2700 , |
| 282 | 2725 , |
| 283 | 2750 , |
| 284 | 2775 , |
| 285 | 2800 , |
| 286 | 2825 , |
| 287 | 2850 , |
| 288 | 2875 , |
| 289 | 2900 , |
| 290 | 2925 , |
| 291 | 2950 , |
| 292 | 2975 , |
| 293 | 3000 , |
| 294 | 3025 , |
| 295 | 3050 , |
| 296 | 3075 , |
| 297 | 3100 , |
| 298 | 3125 , |
| 299 | 3150 , |
| 300 | 3175 , |
| 301 | 3200 , |
| 302 | 3225 , |
| 303 | 3250 , |
| 304 | 3275 , |
| 305 | 3300 , |
| 306 | 3325 , |
| 307 | 3350 , |
| 308 | 3375 , |
| 309 | 3400 , |
| 310 | 3425 , |
| 311 | 3450 , |
| 312 | 3475 , |
| 313 | 3500 , |
| 314 | 3525 , |
| 315 | 3550 , |
| 316 | 3575 , |
| 317 | 3600 , |
| 318 | 3625 , |
| 319 | 3650 , |
| 320 | 3675 , |
| 321 | 3700 , |
| 322 | 3725 , |
| 323 | 3750 , |
| 324 | 3775 , |
| 325 | 3800 , |
| 326 | 3825 , |
| 327 | 3850 , |
| 328 | 3850 , |
| 329 | }; |
| 330 | |
| 331 | static u8 ab8500_volt_to_regval(int voltage) |
| 332 | { |
| 333 | int i; |
| 334 | |
| 335 | if (voltage < ab8500_fg_lowbat_voltage_map[0]) |
| 336 | return 0; |
| 337 | |
| 338 | for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) { |
| 339 | if (voltage < ab8500_fg_lowbat_voltage_map[i]) |
| 340 | return (u8) i - 1; |
| 341 | } |
| 342 | |
| 343 | /* If not captured above, return index of last element */ |
| 344 | return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1; |
| 345 | } |
| 346 | |
| 347 | /** |
| 348 | * ab8500_fg_is_low_curr() - Low or high current mode |
| 349 | * @di: pointer to the ab8500_fg structure |
| 350 | * @curr: the current to base or our decision on |
| 351 | * |
| 352 | * Low current mode if the current consumption is below a certain threshold |
| 353 | */ |
| 354 | static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr) |
| 355 | { |
| 356 | /* |
| 357 | * We want to know if we're in low current mode |
| 358 | */ |
| 359 | if (curr > -di->bat->fg_params->high_curr_threshold) |
| 360 | return true; |
| 361 | else |
| 362 | return false; |
| 363 | } |
| 364 | |
| 365 | /** |
| 366 | * ab8500_fg_add_cap_sample() - Add capacity to average filter |
| 367 | * @di: pointer to the ab8500_fg structure |
| 368 | * @sample: the capacity in mAh to add to the filter |
| 369 | * |
| 370 | * A capacity is added to the filter and a new mean capacity is calculated and |
| 371 | * returned |
| 372 | */ |
| 373 | static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample) |
| 374 | { |
| 375 | struct timespec ts; |
| 376 | struct ab8500_fg_avg_cap *avg = &di->avg_cap; |
| 377 | |
| 378 | getnstimeofday(&ts); |
| 379 | |
| 380 | do { |
| 381 | avg->sum += sample - avg->samples[avg->pos]; |
| 382 | avg->samples[avg->pos] = sample; |
| 383 | avg->time_stamps[avg->pos] = ts.tv_sec; |
| 384 | avg->pos++; |
| 385 | |
| 386 | if (avg->pos == NBR_AVG_SAMPLES) |
| 387 | avg->pos = 0; |
| 388 | |
| 389 | if (avg->nbr_samples < NBR_AVG_SAMPLES) |
| 390 | avg->nbr_samples++; |
| 391 | |
| 392 | /* |
| 393 | * Check the time stamp for each sample. If too old, |
| 394 | * replace with latest sample |
| 395 | */ |
| 396 | } while (ts.tv_sec - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]); |
| 397 | |
| 398 | avg->avg = avg->sum / avg->nbr_samples; |
| 399 | |
| 400 | return avg->avg; |
| 401 | } |
| 402 | |
| 403 | /** |
| 404 | * ab8500_fg_clear_cap_samples() - Clear average filter |
| 405 | * @di: pointer to the ab8500_fg structure |
| 406 | * |
| 407 | * The capacity filter is is reset to zero. |
| 408 | */ |
| 409 | static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di) |
| 410 | { |
| 411 | int i; |
| 412 | struct ab8500_fg_avg_cap *avg = &di->avg_cap; |
| 413 | |
| 414 | avg->pos = 0; |
| 415 | avg->nbr_samples = 0; |
| 416 | avg->sum = 0; |
| 417 | avg->avg = 0; |
| 418 | |
| 419 | for (i = 0; i < NBR_AVG_SAMPLES; i++) { |
| 420 | avg->samples[i] = 0; |
| 421 | avg->time_stamps[i] = 0; |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | /** |
| 426 | * ab8500_fg_fill_cap_sample() - Fill average filter |
| 427 | * @di: pointer to the ab8500_fg structure |
| 428 | * @sample: the capacity in mAh to fill the filter with |
| 429 | * |
| 430 | * The capacity filter is filled with a capacity in mAh |
| 431 | */ |
| 432 | static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample) |
| 433 | { |
| 434 | int i; |
| 435 | struct timespec ts; |
| 436 | struct ab8500_fg_avg_cap *avg = &di->avg_cap; |
| 437 | |
| 438 | getnstimeofday(&ts); |
| 439 | |
| 440 | for (i = 0; i < NBR_AVG_SAMPLES; i++) { |
| 441 | avg->samples[i] = sample; |
| 442 | avg->time_stamps[i] = ts.tv_sec; |
| 443 | } |
| 444 | |
| 445 | avg->pos = 0; |
| 446 | avg->nbr_samples = NBR_AVG_SAMPLES; |
| 447 | avg->sum = sample * NBR_AVG_SAMPLES; |
| 448 | avg->avg = sample; |
| 449 | } |
| 450 | |
| 451 | /** |
| 452 | * ab8500_fg_coulomb_counter() - enable coulomb counter |
| 453 | * @di: pointer to the ab8500_fg structure |
| 454 | * @enable: enable/disable |
| 455 | * |
| 456 | * Enable/Disable coulomb counter. |
| 457 | * On failure returns negative value. |
| 458 | */ |
| 459 | static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable) |
| 460 | { |
| 461 | int ret = 0; |
| 462 | mutex_lock(&di->cc_lock); |
| 463 | if (enable) { |
| 464 | /* To be able to reprogram the number of samples, we have to |
| 465 | * first stop the CC and then enable it again */ |
| 466 | ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, |
| 467 | AB8500_RTC_CC_CONF_REG, 0x00); |
| 468 | if (ret) |
| 469 | goto cc_err; |
| 470 | |
| 471 | /* Program the samples */ |
| 472 | ret = abx500_set_register_interruptible(di->dev, |
| 473 | AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU, |
| 474 | di->fg_samples); |
| 475 | if (ret) |
| 476 | goto cc_err; |
| 477 | |
| 478 | /* Start the CC */ |
| 479 | ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, |
| 480 | AB8500_RTC_CC_CONF_REG, |
| 481 | (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA)); |
| 482 | if (ret) |
| 483 | goto cc_err; |
| 484 | |
| 485 | di->flags.fg_enabled = true; |
| 486 | } else { |
| 487 | /* Clear any pending read requests */ |
| 488 | ret = abx500_set_register_interruptible(di->dev, |
| 489 | AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0); |
| 490 | if (ret) |
| 491 | goto cc_err; |
| 492 | |
| 493 | ret = abx500_set_register_interruptible(di->dev, |
| 494 | AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0); |
| 495 | if (ret) |
| 496 | goto cc_err; |
| 497 | |
| 498 | /* Stop the CC */ |
| 499 | ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, |
| 500 | AB8500_RTC_CC_CONF_REG, 0); |
| 501 | if (ret) |
| 502 | goto cc_err; |
| 503 | |
| 504 | di->flags.fg_enabled = false; |
| 505 | |
| 506 | } |
| 507 | dev_dbg(di->dev, " CC enabled: %d Samples: %d\n", |
| 508 | enable, di->fg_samples); |
| 509 | |
| 510 | mutex_unlock(&di->cc_lock); |
| 511 | |
| 512 | return ret; |
| 513 | cc_err: |
| 514 | dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__); |
| 515 | mutex_unlock(&di->cc_lock); |
| 516 | return ret; |
| 517 | } |
| 518 | |
| 519 | /** |
| 520 | * ab8500_fg_inst_curr_start() - start battery instantaneous current |
| 521 | * @di: pointer to the ab8500_fg structure |
| 522 | * |
| 523 | * Returns 0 or error code |
| 524 | * Note: This is part "one" and has to be called before |
| 525 | * ab8500_fg_inst_curr_finalize() |
| 526 | */ |
| 527 | int ab8500_fg_inst_curr_start(struct ab8500_fg *di) |
| 528 | { |
| 529 | u8 reg_val; |
| 530 | int ret; |
| 531 | |
| 532 | mutex_lock(&di->cc_lock); |
| 533 | |
| 534 | ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, |
| 535 | AB8500_RTC_CC_CONF_REG, ®_val); |
| 536 | if (ret < 0) |
| 537 | goto fail; |
| 538 | |
| 539 | if (!(reg_val & CC_PWR_UP_ENA)) { |
| 540 | dev_dbg(di->dev, "%s Enable FG\n", __func__); |
| 541 | di->turn_off_fg = true; |
| 542 | |
| 543 | /* Program the samples */ |
| 544 | ret = abx500_set_register_interruptible(di->dev, |
| 545 | AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU, |
| 546 | SEC_TO_SAMPLE(10)); |
| 547 | if (ret) |
| 548 | goto fail; |
| 549 | |
| 550 | /* Start the CC */ |
| 551 | ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, |
| 552 | AB8500_RTC_CC_CONF_REG, |
| 553 | (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA)); |
| 554 | if (ret) |
| 555 | goto fail; |
| 556 | } else { |
| 557 | di->turn_off_fg = false; |
| 558 | } |
| 559 | |
| 560 | /* Return and WFI */ |
| 561 | INIT_COMPLETION(di->ab8500_fg_complete); |
| 562 | enable_irq(di->irq); |
| 563 | |
| 564 | /* Note: cc_lock is still locked */ |
| 565 | return 0; |
| 566 | fail: |
| 567 | mutex_unlock(&di->cc_lock); |
| 568 | return ret; |
| 569 | } |
| 570 | |
| 571 | /** |
| 572 | * ab8500_fg_inst_curr_done() - check if fg conversion is done |
| 573 | * @di: pointer to the ab8500_fg structure |
| 574 | * |
| 575 | * Returns 1 if conversion done, 0 if still waiting |
| 576 | */ |
| 577 | int ab8500_fg_inst_curr_done(struct ab8500_fg *di) |
| 578 | { |
| 579 | return completion_done(&di->ab8500_fg_complete); |
| 580 | } |
| 581 | |
| 582 | /** |
| 583 | * ab8500_fg_inst_curr_finalize() - battery instantaneous current |
| 584 | * @di: pointer to the ab8500_fg structure |
| 585 | * @res: battery instantenous current(on success) |
| 586 | * |
| 587 | * Returns 0 or an error code |
| 588 | * Note: This is part "two" and has to be called at earliest 250 ms |
| 589 | * after ab8500_fg_inst_curr_start() |
| 590 | */ |
| 591 | int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res) |
| 592 | { |
| 593 | u8 low, high; |
| 594 | int val; |
| 595 | int ret; |
| 596 | int timeout; |
| 597 | |
| 598 | if (!completion_done(&di->ab8500_fg_complete)) { |
| 599 | timeout = wait_for_completion_timeout(&di->ab8500_fg_complete, |
| 600 | INS_CURR_TIMEOUT); |
| 601 | dev_dbg(di->dev, "Finalize time: %d ms\n", |
| 602 | ((INS_CURR_TIMEOUT - timeout) * 1000) / HZ); |
| 603 | if (!timeout) { |
| 604 | ret = -ETIME; |
| 605 | disable_irq(di->irq); |
| 606 | dev_err(di->dev, "completion timed out [%d]\n", |
| 607 | __LINE__); |
| 608 | goto fail; |
| 609 | } |
| 610 | } |
| 611 | |
| 612 | disable_irq(di->irq); |
| 613 | |
| 614 | ret = abx500_mask_and_set_register_interruptible(di->dev, |
| 615 | AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, |
| 616 | READ_REQ, READ_REQ); |
| 617 | |
| 618 | /* 100uS between read request and read is needed */ |
| 619 | usleep_range(100, 100); |
| 620 | |
| 621 | /* Read CC Sample conversion value Low and high */ |
| 622 | ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE, |
| 623 | AB8500_GASG_CC_SMPL_CNVL_REG, &low); |
| 624 | if (ret < 0) |
| 625 | goto fail; |
| 626 | |
| 627 | ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE, |
| 628 | AB8500_GASG_CC_SMPL_CNVH_REG, &high); |
| 629 | if (ret < 0) |
| 630 | goto fail; |
| 631 | |
| 632 | /* |
| 633 | * negative value for Discharging |
| 634 | * convert 2's compliment into decimal |
| 635 | */ |
| 636 | if (high & 0x10) |
| 637 | val = (low | (high << 8) | 0xFFFFE000); |
| 638 | else |
| 639 | val = (low | (high << 8)); |
| 640 | |
| 641 | /* |
| 642 | * Convert to unit value in mA |
| 643 | * Full scale input voltage is |
| 644 | * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA |
| 645 | * Given a 250ms conversion cycle time the LSB corresponds |
| 646 | * to 112.9 nAh. Convert to current by dividing by the conversion |
| 647 | * time in hours (250ms = 1 / (3600 * 4)h) |
| 648 | * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm |
| 649 | */ |
| 650 | val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) / |
| 651 | (1000 * di->bat->fg_res); |
| 652 | |
| 653 | if (di->turn_off_fg) { |
| 654 | dev_dbg(di->dev, "%s Disable FG\n", __func__); |
| 655 | |
| 656 | /* Clear any pending read requests */ |
| 657 | ret = abx500_set_register_interruptible(di->dev, |
| 658 | AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0); |
| 659 | if (ret) |
| 660 | goto fail; |
| 661 | |
| 662 | /* Stop the CC */ |
| 663 | ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, |
| 664 | AB8500_RTC_CC_CONF_REG, 0); |
| 665 | if (ret) |
| 666 | goto fail; |
| 667 | } |
| 668 | mutex_unlock(&di->cc_lock); |
| 669 | (*res) = val; |
| 670 | |
| 671 | return 0; |
| 672 | fail: |
| 673 | mutex_unlock(&di->cc_lock); |
| 674 | return ret; |
| 675 | } |
| 676 | |
| 677 | /** |
| 678 | * ab8500_fg_inst_curr_blocking() - battery instantaneous current |
| 679 | * @di: pointer to the ab8500_fg structure |
| 680 | * @res: battery instantenous current(on success) |
| 681 | * |
| 682 | * Returns 0 else error code |
| 683 | */ |
| 684 | int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di) |
| 685 | { |
| 686 | int ret; |
| 687 | int res = 0; |
| 688 | |
| 689 | ret = ab8500_fg_inst_curr_start(di); |
| 690 | if (ret) { |
| 691 | dev_err(di->dev, "Failed to initialize fg_inst\n"); |
| 692 | return 0; |
| 693 | } |
| 694 | |
| 695 | ret = ab8500_fg_inst_curr_finalize(di, &res); |
| 696 | if (ret) { |
| 697 | dev_err(di->dev, "Failed to finalize fg_inst\n"); |
| 698 | return 0; |
| 699 | } |
| 700 | |
| 701 | return res; |
| 702 | } |
| 703 | |
| 704 | /** |
| 705 | * ab8500_fg_acc_cur_work() - average battery current |
| 706 | * @work: pointer to the work_struct structure |
| 707 | * |
| 708 | * Updated the average battery current obtained from the |
| 709 | * coulomb counter. |
| 710 | */ |
| 711 | static void ab8500_fg_acc_cur_work(struct work_struct *work) |
| 712 | { |
| 713 | int val; |
| 714 | int ret; |
| 715 | u8 low, med, high; |
| 716 | |
| 717 | struct ab8500_fg *di = container_of(work, |
| 718 | struct ab8500_fg, fg_acc_cur_work); |
| 719 | |
| 720 | mutex_lock(&di->cc_lock); |
| 721 | ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE, |
| 722 | AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ); |
| 723 | if (ret) |
| 724 | goto exit; |
| 725 | |
| 726 | ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE, |
| 727 | AB8500_GASG_CC_NCOV_ACCU_LOW, &low); |
| 728 | if (ret < 0) |
| 729 | goto exit; |
| 730 | |
| 731 | ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE, |
| 732 | AB8500_GASG_CC_NCOV_ACCU_MED, &med); |
| 733 | if (ret < 0) |
| 734 | goto exit; |
| 735 | |
| 736 | ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE, |
| 737 | AB8500_GASG_CC_NCOV_ACCU_HIGH, &high); |
| 738 | if (ret < 0) |
| 739 | goto exit; |
| 740 | |
| 741 | /* Check for sign bit in case of negative value, 2's compliment */ |
| 742 | if (high & 0x10) |
| 743 | val = (low | (med << 8) | (high << 16) | 0xFFE00000); |
| 744 | else |
| 745 | val = (low | (med << 8) | (high << 16)); |
| 746 | |
| 747 | /* |
| 748 | * Convert to uAh |
| 749 | * Given a 250ms conversion cycle time the LSB corresponds |
| 750 | * to 112.9 nAh. |
| 751 | * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm |
| 752 | */ |
| 753 | di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) / |
| 754 | (100 * di->bat->fg_res); |
| 755 | |
| 756 | /* |
| 757 | * Convert to unit value in mA |
| 758 | * Full scale input voltage is |
| 759 | * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA |
| 760 | * Given a 250ms conversion cycle time the LSB corresponds |
| 761 | * to 112.9 nAh. Convert to current by dividing by the conversion |
| 762 | * time in hours (= samples / (3600 * 4)h) |
| 763 | * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm |
| 764 | */ |
| 765 | di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) / |
| 766 | (1000 * di->bat->fg_res * (di->fg_samples / 4)); |
| 767 | |
| 768 | di->flags.conv_done = true; |
| 769 | |
| 770 | mutex_unlock(&di->cc_lock); |
| 771 | |
| 772 | queue_work(di->fg_wq, &di->fg_work); |
| 773 | |
| 774 | return; |
| 775 | exit: |
| 776 | dev_err(di->dev, |
| 777 | "Failed to read or write gas gauge registers\n"); |
| 778 | mutex_unlock(&di->cc_lock); |
| 779 | queue_work(di->fg_wq, &di->fg_work); |
| 780 | } |
| 781 | |
| 782 | /** |
| 783 | * ab8500_fg_bat_voltage() - get battery voltage |
| 784 | * @di: pointer to the ab8500_fg structure |
| 785 | * |
| 786 | * Returns battery voltage(on success) else error code |
| 787 | */ |
| 788 | static int ab8500_fg_bat_voltage(struct ab8500_fg *di) |
| 789 | { |
| 790 | int vbat; |
| 791 | static int prev; |
| 792 | |
| 793 | vbat = ab8500_gpadc_convert(di->gpadc, MAIN_BAT_V); |
| 794 | if (vbat < 0) { |
| 795 | dev_err(di->dev, |
| 796 | "%s gpadc conversion failed, using previous value\n", |
| 797 | __func__); |
| 798 | return prev; |
| 799 | } |
| 800 | |
| 801 | prev = vbat; |
| 802 | return vbat; |
| 803 | } |
| 804 | |
| 805 | /** |
| 806 | * ab8500_fg_volt_to_capacity() - Voltage based capacity |
| 807 | * @di: pointer to the ab8500_fg structure |
| 808 | * @voltage: The voltage to convert to a capacity |
| 809 | * |
| 810 | * Returns battery capacity in per mille based on voltage |
| 811 | */ |
| 812 | static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage) |
| 813 | { |
| 814 | int i, tbl_size; |
Anton Vorontsov | 450ceb2 | 2012-03-14 04:38:32 +0400 | [diff] [blame] | 815 | struct abx500_v_to_cap *tbl; |
Arun Murthy | 1315163 | 2012-02-29 21:54:27 +0530 | [diff] [blame] | 816 | int cap = 0; |
| 817 | |
| 818 | tbl = di->bat->bat_type[di->bat->batt_id].v_to_cap_tbl, |
| 819 | tbl_size = di->bat->bat_type[di->bat->batt_id].n_v_cap_tbl_elements; |
| 820 | |
| 821 | for (i = 0; i < tbl_size; ++i) { |
| 822 | if (voltage > tbl[i].voltage) |
| 823 | break; |
| 824 | } |
| 825 | |
| 826 | if ((i > 0) && (i < tbl_size)) { |
| 827 | cap = interpolate(voltage, |
| 828 | tbl[i].voltage, |
| 829 | tbl[i].capacity * 10, |
| 830 | tbl[i-1].voltage, |
| 831 | tbl[i-1].capacity * 10); |
| 832 | } else if (i == 0) { |
| 833 | cap = 1000; |
| 834 | } else { |
| 835 | cap = 0; |
| 836 | } |
| 837 | |
| 838 | dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille", |
| 839 | __func__, voltage, cap); |
| 840 | |
| 841 | return cap; |
| 842 | } |
| 843 | |
| 844 | /** |
| 845 | * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity |
| 846 | * @di: pointer to the ab8500_fg structure |
| 847 | * |
| 848 | * Returns battery capacity based on battery voltage that is not compensated |
| 849 | * for the voltage drop due to the load |
| 850 | */ |
| 851 | static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di) |
| 852 | { |
| 853 | di->vbat = ab8500_fg_bat_voltage(di); |
| 854 | return ab8500_fg_volt_to_capacity(di, di->vbat); |
| 855 | } |
| 856 | |
| 857 | /** |
| 858 | * ab8500_fg_battery_resistance() - Returns the battery inner resistance |
| 859 | * @di: pointer to the ab8500_fg structure |
| 860 | * |
| 861 | * Returns battery inner resistance added with the fuel gauge resistor value |
| 862 | * to get the total resistance in the whole link from gnd to bat+ node. |
| 863 | */ |
| 864 | static int ab8500_fg_battery_resistance(struct ab8500_fg *di) |
| 865 | { |
| 866 | int i, tbl_size; |
| 867 | struct batres_vs_temp *tbl; |
| 868 | int resist = 0; |
| 869 | |
| 870 | tbl = di->bat->bat_type[di->bat->batt_id].batres_tbl; |
| 871 | tbl_size = di->bat->bat_type[di->bat->batt_id].n_batres_tbl_elements; |
| 872 | |
| 873 | for (i = 0; i < tbl_size; ++i) { |
| 874 | if (di->bat_temp / 10 > tbl[i].temp) |
| 875 | break; |
| 876 | } |
| 877 | |
| 878 | if ((i > 0) && (i < tbl_size)) { |
| 879 | resist = interpolate(di->bat_temp / 10, |
| 880 | tbl[i].temp, |
| 881 | tbl[i].resist, |
| 882 | tbl[i-1].temp, |
| 883 | tbl[i-1].resist); |
| 884 | } else if (i == 0) { |
| 885 | resist = tbl[0].resist; |
| 886 | } else { |
| 887 | resist = tbl[tbl_size - 1].resist; |
| 888 | } |
| 889 | |
| 890 | dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d" |
| 891 | " fg resistance %d, total: %d (mOhm)\n", |
| 892 | __func__, di->bat_temp, resist, di->bat->fg_res / 10, |
| 893 | (di->bat->fg_res / 10) + resist); |
| 894 | |
| 895 | /* fg_res variable is in 0.1mOhm */ |
| 896 | resist += di->bat->fg_res / 10; |
| 897 | |
| 898 | return resist; |
| 899 | } |
| 900 | |
| 901 | /** |
| 902 | * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity |
| 903 | * @di: pointer to the ab8500_fg structure |
| 904 | * |
| 905 | * Returns battery capacity based on battery voltage that is load compensated |
| 906 | * for the voltage drop |
| 907 | */ |
| 908 | static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di) |
| 909 | { |
| 910 | int vbat_comp, res; |
| 911 | int i = 0; |
| 912 | int vbat = 0; |
| 913 | |
| 914 | ab8500_fg_inst_curr_start(di); |
| 915 | |
| 916 | do { |
| 917 | vbat += ab8500_fg_bat_voltage(di); |
| 918 | i++; |
| 919 | msleep(5); |
| 920 | } while (!ab8500_fg_inst_curr_done(di)); |
| 921 | |
| 922 | ab8500_fg_inst_curr_finalize(di, &di->inst_curr); |
| 923 | |
| 924 | di->vbat = vbat / i; |
| 925 | res = ab8500_fg_battery_resistance(di); |
| 926 | |
| 927 | /* Use Ohms law to get the load compensated voltage */ |
| 928 | vbat_comp = di->vbat - (di->inst_curr * res) / 1000; |
| 929 | |
| 930 | dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, " |
| 931 | "R: %dmOhm, Current: %dmA Vbat Samples: %d\n", |
| 932 | __func__, di->vbat, vbat_comp, res, di->inst_curr, i); |
| 933 | |
| 934 | return ab8500_fg_volt_to_capacity(di, vbat_comp); |
| 935 | } |
| 936 | |
| 937 | /** |
| 938 | * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille |
| 939 | * @di: pointer to the ab8500_fg structure |
| 940 | * @cap_mah: capacity in mAh |
| 941 | * |
| 942 | * Converts capacity in mAh to capacity in permille |
| 943 | */ |
| 944 | static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah) |
| 945 | { |
| 946 | return (cap_mah * 1000) / di->bat_cap.max_mah_design; |
| 947 | } |
| 948 | |
| 949 | /** |
| 950 | * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh |
| 951 | * @di: pointer to the ab8500_fg structure |
| 952 | * @cap_pm: capacity in permille |
| 953 | * |
| 954 | * Converts capacity in permille to capacity in mAh |
| 955 | */ |
| 956 | static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm) |
| 957 | { |
| 958 | return cap_pm * di->bat_cap.max_mah_design / 1000; |
| 959 | } |
| 960 | |
| 961 | /** |
| 962 | * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh |
| 963 | * @di: pointer to the ab8500_fg structure |
| 964 | * @cap_mah: capacity in mAh |
| 965 | * |
| 966 | * Converts capacity in mAh to capacity in uWh |
| 967 | */ |
| 968 | static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah) |
| 969 | { |
| 970 | u64 div_res; |
| 971 | u32 div_rem; |
| 972 | |
| 973 | div_res = ((u64) cap_mah) * ((u64) di->vbat_nom); |
| 974 | div_rem = do_div(div_res, 1000); |
| 975 | |
| 976 | /* Make sure to round upwards if necessary */ |
| 977 | if (div_rem >= 1000 / 2) |
| 978 | div_res++; |
| 979 | |
| 980 | return (int) div_res; |
| 981 | } |
| 982 | |
| 983 | /** |
| 984 | * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging |
| 985 | * @di: pointer to the ab8500_fg structure |
| 986 | * |
| 987 | * Return the capacity in mAh based on previous calculated capcity and the FG |
| 988 | * accumulator register value. The filter is filled with this capacity |
| 989 | */ |
| 990 | static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di) |
| 991 | { |
| 992 | dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n", |
| 993 | __func__, |
| 994 | di->bat_cap.mah, |
| 995 | di->accu_charge); |
| 996 | |
| 997 | /* Capacity should not be less than 0 */ |
| 998 | if (di->bat_cap.mah + di->accu_charge > 0) |
| 999 | di->bat_cap.mah += di->accu_charge; |
| 1000 | else |
| 1001 | di->bat_cap.mah = 0; |
| 1002 | /* |
| 1003 | * We force capacity to 100% once when the algorithm |
| 1004 | * reports that it's full. |
| 1005 | */ |
| 1006 | if (di->bat_cap.mah >= di->bat_cap.max_mah_design || |
| 1007 | di->flags.force_full) { |
| 1008 | di->bat_cap.mah = di->bat_cap.max_mah_design; |
| 1009 | } |
| 1010 | |
| 1011 | ab8500_fg_fill_cap_sample(di, di->bat_cap.mah); |
| 1012 | di->bat_cap.permille = |
| 1013 | ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah); |
| 1014 | |
| 1015 | /* We need to update battery voltage and inst current when charging */ |
| 1016 | di->vbat = ab8500_fg_bat_voltage(di); |
| 1017 | di->inst_curr = ab8500_fg_inst_curr_blocking(di); |
| 1018 | |
| 1019 | return di->bat_cap.mah; |
| 1020 | } |
| 1021 | |
| 1022 | /** |
| 1023 | * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage |
| 1024 | * @di: pointer to the ab8500_fg structure |
| 1025 | * @comp: if voltage should be load compensated before capacity calc |
| 1026 | * |
| 1027 | * Return the capacity in mAh based on the battery voltage. The voltage can |
| 1028 | * either be load compensated or not. This value is added to the filter and a |
| 1029 | * new mean value is calculated and returned. |
| 1030 | */ |
| 1031 | static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp) |
| 1032 | { |
| 1033 | int permille, mah; |
| 1034 | |
| 1035 | if (comp) |
| 1036 | permille = ab8500_fg_load_comp_volt_to_capacity(di); |
| 1037 | else |
| 1038 | permille = ab8500_fg_uncomp_volt_to_capacity(di); |
| 1039 | |
| 1040 | mah = ab8500_fg_convert_permille_to_mah(di, permille); |
| 1041 | |
| 1042 | di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah); |
| 1043 | di->bat_cap.permille = |
| 1044 | ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah); |
| 1045 | |
| 1046 | return di->bat_cap.mah; |
| 1047 | } |
| 1048 | |
| 1049 | /** |
| 1050 | * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG |
| 1051 | * @di: pointer to the ab8500_fg structure |
| 1052 | * |
| 1053 | * Return the capacity in mAh based on previous calculated capcity and the FG |
| 1054 | * accumulator register value. This value is added to the filter and a |
| 1055 | * new mean value is calculated and returned. |
| 1056 | */ |
| 1057 | static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di) |
| 1058 | { |
| 1059 | int permille_volt, permille; |
| 1060 | |
| 1061 | dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n", |
| 1062 | __func__, |
| 1063 | di->bat_cap.mah, |
| 1064 | di->accu_charge); |
| 1065 | |
| 1066 | /* Capacity should not be less than 0 */ |
| 1067 | if (di->bat_cap.mah + di->accu_charge > 0) |
| 1068 | di->bat_cap.mah += di->accu_charge; |
| 1069 | else |
| 1070 | di->bat_cap.mah = 0; |
| 1071 | |
| 1072 | if (di->bat_cap.mah >= di->bat_cap.max_mah_design) |
| 1073 | di->bat_cap.mah = di->bat_cap.max_mah_design; |
| 1074 | |
| 1075 | /* |
| 1076 | * Check against voltage based capacity. It can not be lower |
| 1077 | * than what the uncompensated voltage says |
| 1078 | */ |
| 1079 | permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah); |
| 1080 | permille_volt = ab8500_fg_uncomp_volt_to_capacity(di); |
| 1081 | |
| 1082 | if (permille < permille_volt) { |
| 1083 | di->bat_cap.permille = permille_volt; |
| 1084 | di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di, |
| 1085 | di->bat_cap.permille); |
| 1086 | |
| 1087 | dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n", |
| 1088 | __func__, |
| 1089 | permille, |
| 1090 | permille_volt); |
| 1091 | |
| 1092 | ab8500_fg_fill_cap_sample(di, di->bat_cap.mah); |
| 1093 | } else { |
| 1094 | ab8500_fg_fill_cap_sample(di, di->bat_cap.mah); |
| 1095 | di->bat_cap.permille = |
| 1096 | ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah); |
| 1097 | } |
| 1098 | |
| 1099 | return di->bat_cap.mah; |
| 1100 | } |
| 1101 | |
| 1102 | /** |
| 1103 | * ab8500_fg_capacity_level() - Get the battery capacity level |
| 1104 | * @di: pointer to the ab8500_fg structure |
| 1105 | * |
| 1106 | * Get the battery capacity level based on the capacity in percent |
| 1107 | */ |
| 1108 | static int ab8500_fg_capacity_level(struct ab8500_fg *di) |
| 1109 | { |
| 1110 | int ret, percent; |
| 1111 | |
| 1112 | percent = di->bat_cap.permille / 10; |
| 1113 | |
| 1114 | if (percent <= di->bat->cap_levels->critical || |
| 1115 | di->flags.low_bat) |
| 1116 | ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; |
| 1117 | else if (percent <= di->bat->cap_levels->low) |
| 1118 | ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW; |
| 1119 | else if (percent <= di->bat->cap_levels->normal) |
| 1120 | ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; |
| 1121 | else if (percent <= di->bat->cap_levels->high) |
| 1122 | ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH; |
| 1123 | else |
| 1124 | ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL; |
| 1125 | |
| 1126 | return ret; |
| 1127 | } |
| 1128 | |
| 1129 | /** |
| 1130 | * ab8500_fg_check_capacity_limits() - Check if capacity has changed |
| 1131 | * @di: pointer to the ab8500_fg structure |
| 1132 | * @init: capacity is allowed to go up in init mode |
| 1133 | * |
| 1134 | * Check if capacity or capacity limit has changed and notify the system |
| 1135 | * about it using the power_supply framework |
| 1136 | */ |
| 1137 | static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init) |
| 1138 | { |
| 1139 | bool changed = false; |
| 1140 | |
| 1141 | di->bat_cap.level = ab8500_fg_capacity_level(di); |
| 1142 | |
| 1143 | if (di->bat_cap.level != di->bat_cap.prev_level) { |
| 1144 | /* |
| 1145 | * We do not allow reported capacity level to go up |
| 1146 | * unless we're charging or if we're in init |
| 1147 | */ |
| 1148 | if (!(!di->flags.charging && di->bat_cap.level > |
| 1149 | di->bat_cap.prev_level) || init) { |
| 1150 | dev_dbg(di->dev, "level changed from %d to %d\n", |
| 1151 | di->bat_cap.prev_level, |
| 1152 | di->bat_cap.level); |
| 1153 | di->bat_cap.prev_level = di->bat_cap.level; |
| 1154 | changed = true; |
| 1155 | } else { |
| 1156 | dev_dbg(di->dev, "level not allowed to go up " |
| 1157 | "since no charger is connected: %d to %d\n", |
| 1158 | di->bat_cap.prev_level, |
| 1159 | di->bat_cap.level); |
| 1160 | } |
| 1161 | } |
| 1162 | |
| 1163 | /* |
| 1164 | * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate |
| 1165 | * shutdown |
| 1166 | */ |
| 1167 | if (di->flags.low_bat) { |
| 1168 | dev_dbg(di->dev, "Battery low, set capacity to 0\n"); |
| 1169 | di->bat_cap.prev_percent = 0; |
| 1170 | di->bat_cap.permille = 0; |
| 1171 | di->bat_cap.prev_mah = 0; |
| 1172 | di->bat_cap.mah = 0; |
| 1173 | changed = true; |
| 1174 | } else if (di->flags.fully_charged) { |
| 1175 | /* |
| 1176 | * We report 100% if algorithm reported fully charged |
| 1177 | * unless capacity drops too much |
| 1178 | */ |
| 1179 | if (di->flags.force_full) { |
| 1180 | di->bat_cap.prev_percent = di->bat_cap.permille / 10; |
| 1181 | di->bat_cap.prev_mah = di->bat_cap.mah; |
| 1182 | } else if (!di->flags.force_full && |
| 1183 | di->bat_cap.prev_percent != |
| 1184 | (di->bat_cap.permille) / 10 && |
| 1185 | (di->bat_cap.permille / 10) < |
| 1186 | di->bat->fg_params->maint_thres) { |
| 1187 | dev_dbg(di->dev, |
| 1188 | "battery reported full " |
| 1189 | "but capacity dropping: %d\n", |
| 1190 | di->bat_cap.permille / 10); |
| 1191 | di->bat_cap.prev_percent = di->bat_cap.permille / 10; |
| 1192 | di->bat_cap.prev_mah = di->bat_cap.mah; |
| 1193 | |
| 1194 | changed = true; |
| 1195 | } |
| 1196 | } else if (di->bat_cap.prev_percent != di->bat_cap.permille / 10) { |
| 1197 | if (di->bat_cap.permille / 10 == 0) { |
| 1198 | /* |
| 1199 | * We will not report 0% unless we've got |
| 1200 | * the LOW_BAT IRQ, no matter what the FG |
| 1201 | * algorithm says. |
| 1202 | */ |
| 1203 | di->bat_cap.prev_percent = 1; |
| 1204 | di->bat_cap.permille = 1; |
| 1205 | di->bat_cap.prev_mah = 1; |
| 1206 | di->bat_cap.mah = 1; |
| 1207 | |
| 1208 | changed = true; |
| 1209 | } else if (!(!di->flags.charging && |
| 1210 | (di->bat_cap.permille / 10) > |
| 1211 | di->bat_cap.prev_percent) || init) { |
| 1212 | /* |
| 1213 | * We do not allow reported capacity to go up |
| 1214 | * unless we're charging or if we're in init |
| 1215 | */ |
| 1216 | dev_dbg(di->dev, |
| 1217 | "capacity changed from %d to %d (%d)\n", |
| 1218 | di->bat_cap.prev_percent, |
| 1219 | di->bat_cap.permille / 10, |
| 1220 | di->bat_cap.permille); |
| 1221 | di->bat_cap.prev_percent = di->bat_cap.permille / 10; |
| 1222 | di->bat_cap.prev_mah = di->bat_cap.mah; |
| 1223 | |
| 1224 | changed = true; |
| 1225 | } else { |
| 1226 | dev_dbg(di->dev, "capacity not allowed to go up since " |
| 1227 | "no charger is connected: %d to %d (%d)\n", |
| 1228 | di->bat_cap.prev_percent, |
| 1229 | di->bat_cap.permille / 10, |
| 1230 | di->bat_cap.permille); |
| 1231 | } |
| 1232 | } |
| 1233 | |
| 1234 | if (changed) { |
| 1235 | power_supply_changed(&di->fg_psy); |
| 1236 | if (di->flags.fully_charged && di->flags.force_full) { |
| 1237 | dev_dbg(di->dev, "Battery full, notifying.\n"); |
| 1238 | di->flags.force_full = false; |
| 1239 | sysfs_notify(&di->fg_kobject, NULL, "charge_full"); |
| 1240 | } |
| 1241 | sysfs_notify(&di->fg_kobject, NULL, "charge_now"); |
| 1242 | } |
| 1243 | } |
| 1244 | |
| 1245 | static void ab8500_fg_charge_state_to(struct ab8500_fg *di, |
| 1246 | enum ab8500_fg_charge_state new_state) |
| 1247 | { |
| 1248 | dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n", |
| 1249 | di->charge_state, |
| 1250 | charge_state[di->charge_state], |
| 1251 | new_state, |
| 1252 | charge_state[new_state]); |
| 1253 | |
| 1254 | di->charge_state = new_state; |
| 1255 | } |
| 1256 | |
| 1257 | static void ab8500_fg_discharge_state_to(struct ab8500_fg *di, |
Anton Vorontsov | 0fff22e | 2012-03-14 04:41:37 +0400 | [diff] [blame] | 1258 | enum ab8500_fg_discharge_state new_state) |
Arun Murthy | 1315163 | 2012-02-29 21:54:27 +0530 | [diff] [blame] | 1259 | { |
| 1260 | dev_dbg(di->dev, "Disharge state from %d [%s] to %d [%s]\n", |
| 1261 | di->discharge_state, |
| 1262 | discharge_state[di->discharge_state], |
| 1263 | new_state, |
| 1264 | discharge_state[new_state]); |
| 1265 | |
| 1266 | di->discharge_state = new_state; |
| 1267 | } |
| 1268 | |
| 1269 | /** |
| 1270 | * ab8500_fg_algorithm_charging() - FG algorithm for when charging |
| 1271 | * @di: pointer to the ab8500_fg structure |
| 1272 | * |
| 1273 | * Battery capacity calculation state machine for when we're charging |
| 1274 | */ |
| 1275 | static void ab8500_fg_algorithm_charging(struct ab8500_fg *di) |
| 1276 | { |
| 1277 | /* |
| 1278 | * If we change to discharge mode |
| 1279 | * we should start with recovery |
| 1280 | */ |
| 1281 | if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY) |
| 1282 | ab8500_fg_discharge_state_to(di, |
| 1283 | AB8500_FG_DISCHARGE_INIT_RECOVERY); |
| 1284 | |
| 1285 | switch (di->charge_state) { |
| 1286 | case AB8500_FG_CHARGE_INIT: |
| 1287 | di->fg_samples = SEC_TO_SAMPLE( |
| 1288 | di->bat->fg_params->accu_charging); |
| 1289 | |
| 1290 | ab8500_fg_coulomb_counter(di, true); |
| 1291 | ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT); |
| 1292 | |
| 1293 | break; |
| 1294 | |
| 1295 | case AB8500_FG_CHARGE_READOUT: |
| 1296 | /* |
| 1297 | * Read the FG and calculate the new capacity |
| 1298 | */ |
| 1299 | mutex_lock(&di->cc_lock); |
| 1300 | if (!di->flags.conv_done) { |
| 1301 | /* Wasn't the CC IRQ that got us here */ |
| 1302 | mutex_unlock(&di->cc_lock); |
| 1303 | dev_dbg(di->dev, "%s CC conv not done\n", |
| 1304 | __func__); |
| 1305 | |
| 1306 | break; |
| 1307 | } |
| 1308 | di->flags.conv_done = false; |
| 1309 | mutex_unlock(&di->cc_lock); |
| 1310 | |
| 1311 | ab8500_fg_calc_cap_charging(di); |
| 1312 | |
| 1313 | break; |
| 1314 | |
| 1315 | default: |
| 1316 | break; |
| 1317 | } |
| 1318 | |
| 1319 | /* Check capacity limits */ |
| 1320 | ab8500_fg_check_capacity_limits(di, false); |
| 1321 | } |
| 1322 | |
| 1323 | static void force_capacity(struct ab8500_fg *di) |
| 1324 | { |
| 1325 | int cap; |
| 1326 | |
| 1327 | ab8500_fg_clear_cap_samples(di); |
| 1328 | cap = di->bat_cap.user_mah; |
| 1329 | if (cap > di->bat_cap.max_mah_design) { |
| 1330 | dev_dbg(di->dev, "Remaining cap %d can't be bigger than total" |
| 1331 | " %d\n", cap, di->bat_cap.max_mah_design); |
| 1332 | cap = di->bat_cap.max_mah_design; |
| 1333 | } |
| 1334 | ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah); |
| 1335 | di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap); |
| 1336 | di->bat_cap.mah = cap; |
| 1337 | ab8500_fg_check_capacity_limits(di, true); |
| 1338 | } |
| 1339 | |
| 1340 | static bool check_sysfs_capacity(struct ab8500_fg *di) |
| 1341 | { |
| 1342 | int cap, lower, upper; |
| 1343 | int cap_permille; |
| 1344 | |
| 1345 | cap = di->bat_cap.user_mah; |
| 1346 | |
| 1347 | cap_permille = ab8500_fg_convert_mah_to_permille(di, |
| 1348 | di->bat_cap.user_mah); |
| 1349 | |
| 1350 | lower = di->bat_cap.permille - di->bat->fg_params->user_cap_limit * 10; |
| 1351 | upper = di->bat_cap.permille + di->bat->fg_params->user_cap_limit * 10; |
| 1352 | |
| 1353 | if (lower < 0) |
| 1354 | lower = 0; |
| 1355 | /* 1000 is permille, -> 100 percent */ |
| 1356 | if (upper > 1000) |
| 1357 | upper = 1000; |
| 1358 | |
| 1359 | dev_dbg(di->dev, "Capacity limits:" |
| 1360 | " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n", |
| 1361 | lower, cap_permille, upper, cap, di->bat_cap.mah); |
| 1362 | |
| 1363 | /* If within limits, use the saved capacity and exit estimation...*/ |
| 1364 | if (cap_permille > lower && cap_permille < upper) { |
| 1365 | dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap); |
| 1366 | force_capacity(di); |
| 1367 | return true; |
| 1368 | } |
| 1369 | dev_dbg(di->dev, "Capacity from user out of limits, ignoring"); |
| 1370 | return false; |
| 1371 | } |
| 1372 | |
| 1373 | /** |
| 1374 | * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging |
| 1375 | * @di: pointer to the ab8500_fg structure |
| 1376 | * |
| 1377 | * Battery capacity calculation state machine for when we're discharging |
| 1378 | */ |
| 1379 | static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di) |
| 1380 | { |
| 1381 | int sleep_time; |
| 1382 | |
| 1383 | /* If we change to charge mode we should start with init */ |
| 1384 | if (di->charge_state != AB8500_FG_CHARGE_INIT) |
| 1385 | ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT); |
| 1386 | |
| 1387 | switch (di->discharge_state) { |
| 1388 | case AB8500_FG_DISCHARGE_INIT: |
| 1389 | /* We use the FG IRQ to work on */ |
| 1390 | di->init_cnt = 0; |
| 1391 | di->fg_samples = SEC_TO_SAMPLE(di->bat->fg_params->init_timer); |
| 1392 | ab8500_fg_coulomb_counter(di, true); |
| 1393 | ab8500_fg_discharge_state_to(di, |
| 1394 | AB8500_FG_DISCHARGE_INITMEASURING); |
| 1395 | |
| 1396 | /* Intentional fallthrough */ |
| 1397 | case AB8500_FG_DISCHARGE_INITMEASURING: |
| 1398 | /* |
| 1399 | * Discard a number of samples during startup. |
| 1400 | * After that, use compensated voltage for a few |
| 1401 | * samples to get an initial capacity. |
| 1402 | * Then go to READOUT |
| 1403 | */ |
| 1404 | sleep_time = di->bat->fg_params->init_timer; |
| 1405 | |
| 1406 | /* Discard the first [x] seconds */ |
| 1407 | if (di->init_cnt > |
| 1408 | di->bat->fg_params->init_discard_time) { |
| 1409 | ab8500_fg_calc_cap_discharge_voltage(di, true); |
| 1410 | |
| 1411 | ab8500_fg_check_capacity_limits(di, true); |
| 1412 | } |
| 1413 | |
| 1414 | di->init_cnt += sleep_time; |
| 1415 | if (di->init_cnt > di->bat->fg_params->init_total_time) |
| 1416 | ab8500_fg_discharge_state_to(di, |
| 1417 | AB8500_FG_DISCHARGE_READOUT_INIT); |
| 1418 | |
| 1419 | break; |
| 1420 | |
| 1421 | case AB8500_FG_DISCHARGE_INIT_RECOVERY: |
| 1422 | di->recovery_cnt = 0; |
| 1423 | di->recovery_needed = true; |
| 1424 | ab8500_fg_discharge_state_to(di, |
| 1425 | AB8500_FG_DISCHARGE_RECOVERY); |
| 1426 | |
| 1427 | /* Intentional fallthrough */ |
| 1428 | |
| 1429 | case AB8500_FG_DISCHARGE_RECOVERY: |
| 1430 | sleep_time = di->bat->fg_params->recovery_sleep_timer; |
| 1431 | |
| 1432 | /* |
| 1433 | * We should check the power consumption |
| 1434 | * If low, go to READOUT (after x min) or |
| 1435 | * RECOVERY_SLEEP if time left. |
| 1436 | * If high, go to READOUT |
| 1437 | */ |
| 1438 | di->inst_curr = ab8500_fg_inst_curr_blocking(di); |
| 1439 | |
| 1440 | if (ab8500_fg_is_low_curr(di, di->inst_curr)) { |
| 1441 | if (di->recovery_cnt > |
| 1442 | di->bat->fg_params->recovery_total_time) { |
| 1443 | di->fg_samples = SEC_TO_SAMPLE( |
| 1444 | di->bat->fg_params->accu_high_curr); |
| 1445 | ab8500_fg_coulomb_counter(di, true); |
| 1446 | ab8500_fg_discharge_state_to(di, |
| 1447 | AB8500_FG_DISCHARGE_READOUT); |
| 1448 | di->recovery_needed = false; |
| 1449 | } else { |
| 1450 | queue_delayed_work(di->fg_wq, |
| 1451 | &di->fg_periodic_work, |
| 1452 | sleep_time * HZ); |
| 1453 | } |
| 1454 | di->recovery_cnt += sleep_time; |
| 1455 | } else { |
| 1456 | di->fg_samples = SEC_TO_SAMPLE( |
| 1457 | di->bat->fg_params->accu_high_curr); |
| 1458 | ab8500_fg_coulomb_counter(di, true); |
| 1459 | ab8500_fg_discharge_state_to(di, |
| 1460 | AB8500_FG_DISCHARGE_READOUT); |
| 1461 | } |
| 1462 | break; |
| 1463 | |
| 1464 | case AB8500_FG_DISCHARGE_READOUT_INIT: |
| 1465 | di->fg_samples = SEC_TO_SAMPLE( |
| 1466 | di->bat->fg_params->accu_high_curr); |
| 1467 | ab8500_fg_coulomb_counter(di, true); |
| 1468 | ab8500_fg_discharge_state_to(di, |
| 1469 | AB8500_FG_DISCHARGE_READOUT); |
| 1470 | break; |
| 1471 | |
| 1472 | case AB8500_FG_DISCHARGE_READOUT: |
| 1473 | di->inst_curr = ab8500_fg_inst_curr_blocking(di); |
| 1474 | |
| 1475 | if (ab8500_fg_is_low_curr(di, di->inst_curr)) { |
| 1476 | /* Detect mode change */ |
| 1477 | if (di->high_curr_mode) { |
| 1478 | di->high_curr_mode = false; |
| 1479 | di->high_curr_cnt = 0; |
| 1480 | } |
| 1481 | |
| 1482 | if (di->recovery_needed) { |
| 1483 | ab8500_fg_discharge_state_to(di, |
| 1484 | AB8500_FG_DISCHARGE_RECOVERY); |
| 1485 | |
| 1486 | queue_delayed_work(di->fg_wq, |
| 1487 | &di->fg_periodic_work, 0); |
| 1488 | |
| 1489 | break; |
| 1490 | } |
| 1491 | |
| 1492 | ab8500_fg_calc_cap_discharge_voltage(di, true); |
| 1493 | } else { |
| 1494 | mutex_lock(&di->cc_lock); |
| 1495 | if (!di->flags.conv_done) { |
| 1496 | /* Wasn't the CC IRQ that got us here */ |
| 1497 | mutex_unlock(&di->cc_lock); |
| 1498 | dev_dbg(di->dev, "%s CC conv not done\n", |
| 1499 | __func__); |
| 1500 | |
| 1501 | break; |
| 1502 | } |
| 1503 | di->flags.conv_done = false; |
| 1504 | mutex_unlock(&di->cc_lock); |
| 1505 | |
| 1506 | /* Detect mode change */ |
| 1507 | if (!di->high_curr_mode) { |
| 1508 | di->high_curr_mode = true; |
| 1509 | di->high_curr_cnt = 0; |
| 1510 | } |
| 1511 | |
| 1512 | di->high_curr_cnt += |
| 1513 | di->bat->fg_params->accu_high_curr; |
| 1514 | if (di->high_curr_cnt > |
| 1515 | di->bat->fg_params->high_curr_time) |
| 1516 | di->recovery_needed = true; |
| 1517 | |
| 1518 | ab8500_fg_calc_cap_discharge_fg(di); |
| 1519 | } |
| 1520 | |
| 1521 | ab8500_fg_check_capacity_limits(di, false); |
| 1522 | |
| 1523 | break; |
| 1524 | |
| 1525 | case AB8500_FG_DISCHARGE_WAKEUP: |
| 1526 | ab8500_fg_coulomb_counter(di, true); |
| 1527 | di->inst_curr = ab8500_fg_inst_curr_blocking(di); |
| 1528 | |
| 1529 | ab8500_fg_calc_cap_discharge_voltage(di, true); |
| 1530 | |
| 1531 | di->fg_samples = SEC_TO_SAMPLE( |
| 1532 | di->bat->fg_params->accu_high_curr); |
| 1533 | ab8500_fg_coulomb_counter(di, true); |
| 1534 | ab8500_fg_discharge_state_to(di, |
| 1535 | AB8500_FG_DISCHARGE_READOUT); |
| 1536 | |
| 1537 | ab8500_fg_check_capacity_limits(di, false); |
| 1538 | |
| 1539 | break; |
| 1540 | |
| 1541 | default: |
| 1542 | break; |
| 1543 | } |
| 1544 | } |
| 1545 | |
| 1546 | /** |
| 1547 | * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration |
| 1548 | * @di: pointer to the ab8500_fg structure |
| 1549 | * |
| 1550 | */ |
| 1551 | static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di) |
| 1552 | { |
| 1553 | int ret; |
| 1554 | |
| 1555 | switch (di->calib_state) { |
| 1556 | case AB8500_FG_CALIB_INIT: |
| 1557 | dev_dbg(di->dev, "Calibration ongoing...\n"); |
| 1558 | |
| 1559 | ret = abx500_mask_and_set_register_interruptible(di->dev, |
| 1560 | AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, |
| 1561 | CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8); |
| 1562 | if (ret < 0) |
| 1563 | goto err; |
| 1564 | |
| 1565 | ret = abx500_mask_and_set_register_interruptible(di->dev, |
| 1566 | AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, |
| 1567 | CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA); |
| 1568 | if (ret < 0) |
| 1569 | goto err; |
| 1570 | di->calib_state = AB8500_FG_CALIB_WAIT; |
| 1571 | break; |
| 1572 | case AB8500_FG_CALIB_END: |
| 1573 | ret = abx500_mask_and_set_register_interruptible(di->dev, |
| 1574 | AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, |
| 1575 | CC_MUXOFFSET, CC_MUXOFFSET); |
| 1576 | if (ret < 0) |
| 1577 | goto err; |
| 1578 | di->flags.calibrate = false; |
| 1579 | dev_dbg(di->dev, "Calibration done...\n"); |
| 1580 | queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); |
| 1581 | break; |
| 1582 | case AB8500_FG_CALIB_WAIT: |
| 1583 | dev_dbg(di->dev, "Calibration WFI\n"); |
| 1584 | default: |
| 1585 | break; |
| 1586 | } |
| 1587 | return; |
| 1588 | err: |
| 1589 | /* Something went wrong, don't calibrate then */ |
| 1590 | dev_err(di->dev, "failed to calibrate the CC\n"); |
| 1591 | di->flags.calibrate = false; |
| 1592 | di->calib_state = AB8500_FG_CALIB_INIT; |
| 1593 | queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); |
| 1594 | } |
| 1595 | |
| 1596 | /** |
| 1597 | * ab8500_fg_algorithm() - Entry point for the FG algorithm |
| 1598 | * @di: pointer to the ab8500_fg structure |
| 1599 | * |
| 1600 | * Entry point for the battery capacity calculation state machine |
| 1601 | */ |
| 1602 | static void ab8500_fg_algorithm(struct ab8500_fg *di) |
| 1603 | { |
| 1604 | if (di->flags.calibrate) |
| 1605 | ab8500_fg_algorithm_calibrate(di); |
| 1606 | else { |
| 1607 | if (di->flags.charging) |
| 1608 | ab8500_fg_algorithm_charging(di); |
| 1609 | else |
| 1610 | ab8500_fg_algorithm_discharging(di); |
| 1611 | } |
| 1612 | |
| 1613 | dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d " |
| 1614 | "%d %d %d %d %d %d %d\n", |
| 1615 | di->bat_cap.max_mah_design, |
| 1616 | di->bat_cap.mah, |
| 1617 | di->bat_cap.permille, |
| 1618 | di->bat_cap.level, |
| 1619 | di->bat_cap.prev_mah, |
| 1620 | di->bat_cap.prev_percent, |
| 1621 | di->bat_cap.prev_level, |
| 1622 | di->vbat, |
| 1623 | di->inst_curr, |
| 1624 | di->avg_curr, |
| 1625 | di->accu_charge, |
| 1626 | di->flags.charging, |
| 1627 | di->charge_state, |
| 1628 | di->discharge_state, |
| 1629 | di->high_curr_mode, |
| 1630 | di->recovery_needed); |
| 1631 | } |
| 1632 | |
| 1633 | /** |
| 1634 | * ab8500_fg_periodic_work() - Run the FG state machine periodically |
| 1635 | * @work: pointer to the work_struct structure |
| 1636 | * |
| 1637 | * Work queue function for periodic work |
| 1638 | */ |
| 1639 | static void ab8500_fg_periodic_work(struct work_struct *work) |
| 1640 | { |
| 1641 | struct ab8500_fg *di = container_of(work, struct ab8500_fg, |
| 1642 | fg_periodic_work.work); |
| 1643 | |
| 1644 | if (di->init_capacity) { |
| 1645 | /* A dummy read that will return 0 */ |
| 1646 | di->inst_curr = ab8500_fg_inst_curr_blocking(di); |
| 1647 | /* Get an initial capacity calculation */ |
| 1648 | ab8500_fg_calc_cap_discharge_voltage(di, true); |
| 1649 | ab8500_fg_check_capacity_limits(di, true); |
| 1650 | di->init_capacity = false; |
| 1651 | |
| 1652 | queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); |
| 1653 | } else if (di->flags.user_cap) { |
| 1654 | if (check_sysfs_capacity(di)) { |
| 1655 | ab8500_fg_check_capacity_limits(di, true); |
| 1656 | if (di->flags.charging) |
| 1657 | ab8500_fg_charge_state_to(di, |
| 1658 | AB8500_FG_CHARGE_INIT); |
| 1659 | else |
| 1660 | ab8500_fg_discharge_state_to(di, |
| 1661 | AB8500_FG_DISCHARGE_READOUT_INIT); |
| 1662 | } |
| 1663 | di->flags.user_cap = false; |
| 1664 | queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); |
| 1665 | } else |
| 1666 | ab8500_fg_algorithm(di); |
| 1667 | |
| 1668 | } |
| 1669 | |
| 1670 | /** |
| 1671 | * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition |
| 1672 | * @work: pointer to the work_struct structure |
| 1673 | * |
| 1674 | * Work queue function for checking the OVV_BAT condition |
| 1675 | */ |
| 1676 | static void ab8500_fg_check_hw_failure_work(struct work_struct *work) |
| 1677 | { |
| 1678 | int ret; |
| 1679 | u8 reg_value; |
| 1680 | |
| 1681 | struct ab8500_fg *di = container_of(work, struct ab8500_fg, |
| 1682 | fg_check_hw_failure_work.work); |
| 1683 | |
| 1684 | /* |
| 1685 | * If we have had a battery over-voltage situation, |
| 1686 | * check ovv-bit to see if it should be reset. |
| 1687 | */ |
| 1688 | if (di->flags.bat_ovv) { |
| 1689 | ret = abx500_get_register_interruptible(di->dev, |
| 1690 | AB8500_CHARGER, AB8500_CH_STAT_REG, |
| 1691 | ®_value); |
| 1692 | if (ret < 0) { |
| 1693 | dev_err(di->dev, "%s ab8500 read failed\n", __func__); |
| 1694 | return; |
| 1695 | } |
| 1696 | if ((reg_value & BATT_OVV) != BATT_OVV) { |
| 1697 | dev_dbg(di->dev, "Battery recovered from OVV\n"); |
| 1698 | di->flags.bat_ovv = false; |
| 1699 | power_supply_changed(&di->fg_psy); |
| 1700 | return; |
| 1701 | } |
| 1702 | |
| 1703 | /* Not yet recovered from ovv, reschedule this test */ |
| 1704 | queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, |
| 1705 | round_jiffies(HZ)); |
| 1706 | } |
| 1707 | } |
| 1708 | |
| 1709 | /** |
| 1710 | * ab8500_fg_low_bat_work() - Check LOW_BAT condition |
| 1711 | * @work: pointer to the work_struct structure |
| 1712 | * |
| 1713 | * Work queue function for checking the LOW_BAT condition |
| 1714 | */ |
| 1715 | static void ab8500_fg_low_bat_work(struct work_struct *work) |
| 1716 | { |
| 1717 | int vbat; |
| 1718 | |
| 1719 | struct ab8500_fg *di = container_of(work, struct ab8500_fg, |
| 1720 | fg_low_bat_work.work); |
| 1721 | |
| 1722 | vbat = ab8500_fg_bat_voltage(di); |
| 1723 | |
| 1724 | /* Check if LOW_BAT still fulfilled */ |
| 1725 | if (vbat < di->bat->fg_params->lowbat_threshold) { |
| 1726 | di->flags.low_bat = true; |
| 1727 | dev_warn(di->dev, "Battery voltage still LOW\n"); |
| 1728 | |
| 1729 | /* |
| 1730 | * We need to re-schedule this check to be able to detect |
| 1731 | * if the voltage increases again during charging |
| 1732 | */ |
| 1733 | queue_delayed_work(di->fg_wq, &di->fg_low_bat_work, |
| 1734 | round_jiffies(LOW_BAT_CHECK_INTERVAL)); |
| 1735 | } else { |
| 1736 | di->flags.low_bat = false; |
| 1737 | dev_warn(di->dev, "Battery voltage OK again\n"); |
| 1738 | } |
| 1739 | |
| 1740 | /* This is needed to dispatch LOW_BAT */ |
| 1741 | ab8500_fg_check_capacity_limits(di, false); |
| 1742 | |
| 1743 | /* Set this flag to check if LOW_BAT IRQ still occurs */ |
| 1744 | di->flags.low_bat_delay = false; |
| 1745 | } |
| 1746 | |
| 1747 | /** |
| 1748 | * ab8500_fg_battok_calc - calculate the bit pattern corresponding |
| 1749 | * to the target voltage. |
| 1750 | * @di: pointer to the ab8500_fg structure |
| 1751 | * @target target voltage |
| 1752 | * |
| 1753 | * Returns bit pattern closest to the target voltage |
| 1754 | * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS) |
| 1755 | */ |
| 1756 | |
| 1757 | static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target) |
| 1758 | { |
| 1759 | if (target > BATT_OK_MIN + |
| 1760 | (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS)) |
| 1761 | return BATT_OK_MAX_NR_INCREMENTS; |
| 1762 | if (target < BATT_OK_MIN) |
| 1763 | return 0; |
| 1764 | return (target - BATT_OK_MIN) / BATT_OK_INCREMENT; |
| 1765 | } |
| 1766 | |
| 1767 | /** |
| 1768 | * ab8500_fg_battok_init_hw_register - init battok levels |
| 1769 | * @di: pointer to the ab8500_fg structure |
| 1770 | * |
| 1771 | */ |
| 1772 | |
| 1773 | static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di) |
| 1774 | { |
| 1775 | int selected; |
| 1776 | int sel0; |
| 1777 | int sel1; |
| 1778 | int cbp_sel0; |
| 1779 | int cbp_sel1; |
| 1780 | int ret; |
| 1781 | int new_val; |
| 1782 | |
| 1783 | sel0 = di->bat->fg_params->battok_falling_th_sel0; |
| 1784 | sel1 = di->bat->fg_params->battok_raising_th_sel1; |
| 1785 | |
| 1786 | cbp_sel0 = ab8500_fg_battok_calc(di, sel0); |
| 1787 | cbp_sel1 = ab8500_fg_battok_calc(di, sel1); |
| 1788 | |
| 1789 | selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT; |
| 1790 | |
| 1791 | if (selected != sel0) |
| 1792 | dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n", |
| 1793 | sel0, selected, cbp_sel0); |
| 1794 | |
| 1795 | selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT; |
| 1796 | |
| 1797 | if (selected != sel1) |
| 1798 | dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n", |
| 1799 | sel1, selected, cbp_sel1); |
| 1800 | |
| 1801 | new_val = cbp_sel0 | (cbp_sel1 << 4); |
| 1802 | |
| 1803 | dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1); |
| 1804 | ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK, |
| 1805 | AB8500_BATT_OK_REG, new_val); |
| 1806 | return ret; |
| 1807 | } |
| 1808 | |
| 1809 | /** |
| 1810 | * ab8500_fg_instant_work() - Run the FG state machine instantly |
| 1811 | * @work: pointer to the work_struct structure |
| 1812 | * |
| 1813 | * Work queue function for instant work |
| 1814 | */ |
| 1815 | static void ab8500_fg_instant_work(struct work_struct *work) |
| 1816 | { |
| 1817 | struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work); |
| 1818 | |
| 1819 | ab8500_fg_algorithm(di); |
| 1820 | } |
| 1821 | |
| 1822 | /** |
| 1823 | * ab8500_fg_cc_data_end_handler() - isr to get battery avg current. |
| 1824 | * @irq: interrupt number |
| 1825 | * @_di: pointer to the ab8500_fg structure |
| 1826 | * |
| 1827 | * Returns IRQ status(IRQ_HANDLED) |
| 1828 | */ |
| 1829 | static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di) |
| 1830 | { |
| 1831 | struct ab8500_fg *di = _di; |
| 1832 | complete(&di->ab8500_fg_complete); |
| 1833 | return IRQ_HANDLED; |
| 1834 | } |
| 1835 | |
| 1836 | /** |
| 1837 | * ab8500_fg_cc_convend_handler() - isr to get battery avg current. |
| 1838 | * @irq: interrupt number |
| 1839 | * @_di: pointer to the ab8500_fg structure |
| 1840 | * |
| 1841 | * Returns IRQ status(IRQ_HANDLED) |
| 1842 | */ |
| 1843 | static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di) |
| 1844 | { |
| 1845 | struct ab8500_fg *di = _di; |
| 1846 | di->calib_state = AB8500_FG_CALIB_END; |
| 1847 | queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); |
| 1848 | return IRQ_HANDLED; |
| 1849 | } |
| 1850 | |
| 1851 | /** |
| 1852 | * ab8500_fg_cc_convend_handler() - isr to get battery avg current. |
| 1853 | * @irq: interrupt number |
| 1854 | * @_di: pointer to the ab8500_fg structure |
| 1855 | * |
| 1856 | * Returns IRQ status(IRQ_HANDLED) |
| 1857 | */ |
| 1858 | static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di) |
| 1859 | { |
| 1860 | struct ab8500_fg *di = _di; |
| 1861 | |
| 1862 | queue_work(di->fg_wq, &di->fg_acc_cur_work); |
| 1863 | |
| 1864 | return IRQ_HANDLED; |
| 1865 | } |
| 1866 | |
| 1867 | /** |
| 1868 | * ab8500_fg_batt_ovv_handler() - Battery OVV occured |
| 1869 | * @irq: interrupt number |
| 1870 | * @_di: pointer to the ab8500_fg structure |
| 1871 | * |
| 1872 | * Returns IRQ status(IRQ_HANDLED) |
| 1873 | */ |
| 1874 | static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di) |
| 1875 | { |
| 1876 | struct ab8500_fg *di = _di; |
| 1877 | |
| 1878 | dev_dbg(di->dev, "Battery OVV\n"); |
| 1879 | di->flags.bat_ovv = true; |
| 1880 | power_supply_changed(&di->fg_psy); |
| 1881 | |
| 1882 | /* Schedule a new HW failure check */ |
| 1883 | queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0); |
| 1884 | |
| 1885 | return IRQ_HANDLED; |
| 1886 | } |
| 1887 | |
| 1888 | /** |
| 1889 | * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold |
| 1890 | * @irq: interrupt number |
| 1891 | * @_di: pointer to the ab8500_fg structure |
| 1892 | * |
| 1893 | * Returns IRQ status(IRQ_HANDLED) |
| 1894 | */ |
| 1895 | static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di) |
| 1896 | { |
| 1897 | struct ab8500_fg *di = _di; |
| 1898 | |
| 1899 | if (!di->flags.low_bat_delay) { |
| 1900 | dev_warn(di->dev, "Battery voltage is below LOW threshold\n"); |
| 1901 | di->flags.low_bat_delay = true; |
| 1902 | /* |
| 1903 | * Start a timer to check LOW_BAT again after some time |
| 1904 | * This is done to avoid shutdown on single voltage dips |
| 1905 | */ |
| 1906 | queue_delayed_work(di->fg_wq, &di->fg_low_bat_work, |
| 1907 | round_jiffies(LOW_BAT_CHECK_INTERVAL)); |
| 1908 | } |
| 1909 | return IRQ_HANDLED; |
| 1910 | } |
| 1911 | |
| 1912 | /** |
| 1913 | * ab8500_fg_get_property() - get the fg properties |
| 1914 | * @psy: pointer to the power_supply structure |
| 1915 | * @psp: pointer to the power_supply_property structure |
| 1916 | * @val: pointer to the power_supply_propval union |
| 1917 | * |
| 1918 | * This function gets called when an application tries to get the |
| 1919 | * fg properties by reading the sysfs files. |
| 1920 | * voltage_now: battery voltage |
| 1921 | * current_now: battery instant current |
| 1922 | * current_avg: battery average current |
| 1923 | * charge_full_design: capacity where battery is considered full |
| 1924 | * charge_now: battery capacity in nAh |
| 1925 | * capacity: capacity in percent |
| 1926 | * capacity_level: capacity level |
| 1927 | * |
| 1928 | * Returns error code in case of failure else 0 on success |
| 1929 | */ |
| 1930 | static int ab8500_fg_get_property(struct power_supply *psy, |
| 1931 | enum power_supply_property psp, |
| 1932 | union power_supply_propval *val) |
| 1933 | { |
| 1934 | struct ab8500_fg *di; |
| 1935 | |
| 1936 | di = to_ab8500_fg_device_info(psy); |
| 1937 | |
| 1938 | /* |
| 1939 | * If battery is identified as unknown and charging of unknown |
| 1940 | * batteries is disabled, we always report 100% capacity and |
| 1941 | * capacity level UNKNOWN, since we can't calculate |
| 1942 | * remaining capacity |
| 1943 | */ |
| 1944 | |
| 1945 | switch (psp) { |
| 1946 | case POWER_SUPPLY_PROP_VOLTAGE_NOW: |
| 1947 | if (di->flags.bat_ovv) |
| 1948 | val->intval = BATT_OVV_VALUE * 1000; |
| 1949 | else |
| 1950 | val->intval = di->vbat * 1000; |
| 1951 | break; |
| 1952 | case POWER_SUPPLY_PROP_CURRENT_NOW: |
| 1953 | val->intval = di->inst_curr * 1000; |
| 1954 | break; |
| 1955 | case POWER_SUPPLY_PROP_CURRENT_AVG: |
| 1956 | val->intval = di->avg_curr * 1000; |
| 1957 | break; |
| 1958 | case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: |
| 1959 | val->intval = ab8500_fg_convert_mah_to_uwh(di, |
| 1960 | di->bat_cap.max_mah_design); |
| 1961 | break; |
| 1962 | case POWER_SUPPLY_PROP_ENERGY_FULL: |
| 1963 | val->intval = ab8500_fg_convert_mah_to_uwh(di, |
| 1964 | di->bat_cap.max_mah); |
| 1965 | break; |
| 1966 | case POWER_SUPPLY_PROP_ENERGY_NOW: |
| 1967 | if (di->flags.batt_unknown && !di->bat->chg_unknown_bat && |
| 1968 | di->flags.batt_id_received) |
| 1969 | val->intval = ab8500_fg_convert_mah_to_uwh(di, |
| 1970 | di->bat_cap.max_mah); |
| 1971 | else |
| 1972 | val->intval = ab8500_fg_convert_mah_to_uwh(di, |
| 1973 | di->bat_cap.prev_mah); |
| 1974 | break; |
| 1975 | case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: |
| 1976 | val->intval = di->bat_cap.max_mah_design; |
| 1977 | break; |
| 1978 | case POWER_SUPPLY_PROP_CHARGE_FULL: |
| 1979 | val->intval = di->bat_cap.max_mah; |
| 1980 | break; |
| 1981 | case POWER_SUPPLY_PROP_CHARGE_NOW: |
| 1982 | if (di->flags.batt_unknown && !di->bat->chg_unknown_bat && |
| 1983 | di->flags.batt_id_received) |
| 1984 | val->intval = di->bat_cap.max_mah; |
| 1985 | else |
| 1986 | val->intval = di->bat_cap.prev_mah; |
| 1987 | break; |
| 1988 | case POWER_SUPPLY_PROP_CAPACITY: |
| 1989 | if (di->flags.batt_unknown && !di->bat->chg_unknown_bat && |
| 1990 | di->flags.batt_id_received) |
| 1991 | val->intval = 100; |
| 1992 | else |
| 1993 | val->intval = di->bat_cap.prev_percent; |
| 1994 | break; |
| 1995 | case POWER_SUPPLY_PROP_CAPACITY_LEVEL: |
| 1996 | if (di->flags.batt_unknown && !di->bat->chg_unknown_bat && |
| 1997 | di->flags.batt_id_received) |
| 1998 | val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; |
| 1999 | else |
| 2000 | val->intval = di->bat_cap.prev_level; |
| 2001 | break; |
| 2002 | default: |
| 2003 | return -EINVAL; |
| 2004 | } |
| 2005 | return 0; |
| 2006 | } |
| 2007 | |
| 2008 | static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data) |
| 2009 | { |
| 2010 | struct power_supply *psy; |
| 2011 | struct power_supply *ext; |
| 2012 | struct ab8500_fg *di; |
| 2013 | union power_supply_propval ret; |
| 2014 | int i, j; |
| 2015 | bool psy_found = false; |
| 2016 | |
| 2017 | psy = (struct power_supply *)data; |
| 2018 | ext = dev_get_drvdata(dev); |
| 2019 | di = to_ab8500_fg_device_info(psy); |
| 2020 | |
| 2021 | /* |
| 2022 | * For all psy where the name of your driver |
| 2023 | * appears in any supplied_to |
| 2024 | */ |
| 2025 | for (i = 0; i < ext->num_supplicants; i++) { |
| 2026 | if (!strcmp(ext->supplied_to[i], psy->name)) |
| 2027 | psy_found = true; |
| 2028 | } |
| 2029 | |
| 2030 | if (!psy_found) |
| 2031 | return 0; |
| 2032 | |
| 2033 | /* Go through all properties for the psy */ |
| 2034 | for (j = 0; j < ext->num_properties; j++) { |
| 2035 | enum power_supply_property prop; |
| 2036 | prop = ext->properties[j]; |
| 2037 | |
| 2038 | if (ext->get_property(ext, prop, &ret)) |
| 2039 | continue; |
| 2040 | |
| 2041 | switch (prop) { |
| 2042 | case POWER_SUPPLY_PROP_STATUS: |
| 2043 | switch (ext->type) { |
| 2044 | case POWER_SUPPLY_TYPE_BATTERY: |
| 2045 | switch (ret.intval) { |
| 2046 | case POWER_SUPPLY_STATUS_UNKNOWN: |
| 2047 | case POWER_SUPPLY_STATUS_DISCHARGING: |
| 2048 | case POWER_SUPPLY_STATUS_NOT_CHARGING: |
| 2049 | if (!di->flags.charging) |
| 2050 | break; |
| 2051 | di->flags.charging = false; |
| 2052 | di->flags.fully_charged = false; |
| 2053 | queue_work(di->fg_wq, &di->fg_work); |
| 2054 | break; |
| 2055 | case POWER_SUPPLY_STATUS_FULL: |
| 2056 | if (di->flags.fully_charged) |
| 2057 | break; |
| 2058 | di->flags.fully_charged = true; |
| 2059 | di->flags.force_full = true; |
| 2060 | /* Save current capacity as maximum */ |
| 2061 | di->bat_cap.max_mah = di->bat_cap.mah; |
| 2062 | queue_work(di->fg_wq, &di->fg_work); |
| 2063 | break; |
| 2064 | case POWER_SUPPLY_STATUS_CHARGING: |
| 2065 | if (di->flags.charging) |
| 2066 | break; |
| 2067 | di->flags.charging = true; |
| 2068 | di->flags.fully_charged = false; |
| 2069 | queue_work(di->fg_wq, &di->fg_work); |
| 2070 | break; |
| 2071 | }; |
| 2072 | default: |
| 2073 | break; |
| 2074 | }; |
| 2075 | break; |
| 2076 | case POWER_SUPPLY_PROP_TECHNOLOGY: |
| 2077 | switch (ext->type) { |
| 2078 | case POWER_SUPPLY_TYPE_BATTERY: |
| 2079 | if (!di->flags.batt_id_received) { |
Anton Vorontsov | c34a61b | 2012-03-14 04:39:01 +0400 | [diff] [blame] | 2080 | const struct abx500_battery_type *b; |
| 2081 | |
Arun Murthy | 1315163 | 2012-02-29 21:54:27 +0530 | [diff] [blame] | 2082 | b = &(di->bat->bat_type[di->bat->batt_id]); |
| 2083 | |
| 2084 | di->flags.batt_id_received = true; |
| 2085 | |
| 2086 | di->bat_cap.max_mah_design = |
| 2087 | MILLI_TO_MICRO * |
| 2088 | b->charge_full_design; |
| 2089 | |
| 2090 | di->bat_cap.max_mah = |
| 2091 | di->bat_cap.max_mah_design; |
| 2092 | |
| 2093 | di->vbat_nom = b->nominal_voltage; |
| 2094 | } |
| 2095 | |
| 2096 | if (ret.intval) |
| 2097 | di->flags.batt_unknown = false; |
| 2098 | else |
| 2099 | di->flags.batt_unknown = true; |
| 2100 | break; |
| 2101 | default: |
| 2102 | break; |
| 2103 | } |
| 2104 | break; |
| 2105 | case POWER_SUPPLY_PROP_TEMP: |
| 2106 | switch (ext->type) { |
| 2107 | case POWER_SUPPLY_TYPE_BATTERY: |
| 2108 | if (di->flags.batt_id_received) |
| 2109 | di->bat_temp = ret.intval; |
| 2110 | break; |
| 2111 | default: |
| 2112 | break; |
| 2113 | } |
| 2114 | break; |
| 2115 | default: |
| 2116 | break; |
| 2117 | } |
| 2118 | } |
| 2119 | return 0; |
| 2120 | } |
| 2121 | |
| 2122 | /** |
| 2123 | * ab8500_fg_init_hw_registers() - Set up FG related registers |
| 2124 | * @di: pointer to the ab8500_fg structure |
| 2125 | * |
| 2126 | * Set up battery OVV, low battery voltage registers |
| 2127 | */ |
| 2128 | static int ab8500_fg_init_hw_registers(struct ab8500_fg *di) |
| 2129 | { |
| 2130 | int ret; |
| 2131 | |
| 2132 | /* Set VBAT OVV threshold */ |
| 2133 | ret = abx500_mask_and_set_register_interruptible(di->dev, |
| 2134 | AB8500_CHARGER, |
| 2135 | AB8500_BATT_OVV, |
| 2136 | BATT_OVV_TH_4P75, |
| 2137 | BATT_OVV_TH_4P75); |
| 2138 | if (ret) { |
| 2139 | dev_err(di->dev, "failed to set BATT_OVV\n"); |
| 2140 | goto out; |
| 2141 | } |
| 2142 | |
| 2143 | /* Enable VBAT OVV detection */ |
| 2144 | ret = abx500_mask_and_set_register_interruptible(di->dev, |
| 2145 | AB8500_CHARGER, |
| 2146 | AB8500_BATT_OVV, |
| 2147 | BATT_OVV_ENA, |
| 2148 | BATT_OVV_ENA); |
| 2149 | if (ret) { |
| 2150 | dev_err(di->dev, "failed to enable BATT_OVV\n"); |
| 2151 | goto out; |
| 2152 | } |
| 2153 | |
| 2154 | /* Low Battery Voltage */ |
| 2155 | ret = abx500_set_register_interruptible(di->dev, |
| 2156 | AB8500_SYS_CTRL2_BLOCK, |
| 2157 | AB8500_LOW_BAT_REG, |
| 2158 | ab8500_volt_to_regval( |
| 2159 | di->bat->fg_params->lowbat_threshold) << 1 | |
| 2160 | LOW_BAT_ENABLE); |
| 2161 | if (ret) { |
| 2162 | dev_err(di->dev, "%s write failed\n", __func__); |
| 2163 | goto out; |
| 2164 | } |
| 2165 | |
| 2166 | /* Battery OK threshold */ |
| 2167 | ret = ab8500_fg_battok_init_hw_register(di); |
| 2168 | if (ret) { |
| 2169 | dev_err(di->dev, "BattOk init write failed.\n"); |
| 2170 | goto out; |
| 2171 | } |
| 2172 | out: |
| 2173 | return ret; |
| 2174 | } |
| 2175 | |
| 2176 | /** |
| 2177 | * ab8500_fg_external_power_changed() - callback for power supply changes |
| 2178 | * @psy: pointer to the structure power_supply |
| 2179 | * |
| 2180 | * This function is the entry point of the pointer external_power_changed |
| 2181 | * of the structure power_supply. |
| 2182 | * This function gets executed when there is a change in any external power |
| 2183 | * supply that this driver needs to be notified of. |
| 2184 | */ |
| 2185 | static void ab8500_fg_external_power_changed(struct power_supply *psy) |
| 2186 | { |
| 2187 | struct ab8500_fg *di = to_ab8500_fg_device_info(psy); |
| 2188 | |
| 2189 | class_for_each_device(power_supply_class, NULL, |
| 2190 | &di->fg_psy, ab8500_fg_get_ext_psy_data); |
| 2191 | } |
| 2192 | |
| 2193 | /** |
| 2194 | * abab8500_fg_reinit_work() - work to reset the FG algorithm |
| 2195 | * @work: pointer to the work_struct structure |
| 2196 | * |
| 2197 | * Used to reset the current battery capacity to be able to |
| 2198 | * retrigger a new voltage base capacity calculation. For |
| 2199 | * test and verification purpose. |
| 2200 | */ |
| 2201 | static void ab8500_fg_reinit_work(struct work_struct *work) |
| 2202 | { |
| 2203 | struct ab8500_fg *di = container_of(work, struct ab8500_fg, |
| 2204 | fg_reinit_work.work); |
| 2205 | |
| 2206 | if (di->flags.calibrate == false) { |
| 2207 | dev_dbg(di->dev, "Resetting FG state machine to init.\n"); |
| 2208 | ab8500_fg_clear_cap_samples(di); |
| 2209 | ab8500_fg_calc_cap_discharge_voltage(di, true); |
| 2210 | ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT); |
| 2211 | ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT); |
| 2212 | queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); |
| 2213 | |
| 2214 | } else { |
| 2215 | dev_err(di->dev, "Residual offset calibration ongoing " |
| 2216 | "retrying..\n"); |
| 2217 | /* Wait one second until next try*/ |
| 2218 | queue_delayed_work(di->fg_wq, &di->fg_reinit_work, |
| 2219 | round_jiffies(1)); |
| 2220 | } |
| 2221 | } |
| 2222 | |
| 2223 | /** |
| 2224 | * ab8500_fg_reinit() - forces FG algorithm to reinitialize with current values |
| 2225 | * |
| 2226 | * This function can be used to force the FG algorithm to recalculate a new |
| 2227 | * voltage based battery capacity. |
| 2228 | */ |
| 2229 | void ab8500_fg_reinit(void) |
| 2230 | { |
| 2231 | struct ab8500_fg *di = ab8500_fg_get(); |
| 2232 | /* User won't be notified if a null pointer returned. */ |
| 2233 | if (di != NULL) |
| 2234 | queue_delayed_work(di->fg_wq, &di->fg_reinit_work, 0); |
| 2235 | } |
| 2236 | |
| 2237 | /* Exposure to the sysfs interface */ |
| 2238 | |
| 2239 | struct ab8500_fg_sysfs_entry { |
| 2240 | struct attribute attr; |
| 2241 | ssize_t (*show)(struct ab8500_fg *, char *); |
| 2242 | ssize_t (*store)(struct ab8500_fg *, const char *, size_t); |
| 2243 | }; |
| 2244 | |
| 2245 | static ssize_t charge_full_show(struct ab8500_fg *di, char *buf) |
| 2246 | { |
| 2247 | return sprintf(buf, "%d\n", di->bat_cap.max_mah); |
| 2248 | } |
| 2249 | |
| 2250 | static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf, |
| 2251 | size_t count) |
| 2252 | { |
| 2253 | unsigned long charge_full; |
| 2254 | ssize_t ret = -EINVAL; |
| 2255 | |
| 2256 | ret = strict_strtoul(buf, 10, &charge_full); |
| 2257 | |
| 2258 | dev_dbg(di->dev, "Ret %d charge_full %lu", ret, charge_full); |
| 2259 | |
| 2260 | if (!ret) { |
| 2261 | di->bat_cap.max_mah = (int) charge_full; |
| 2262 | ret = count; |
| 2263 | } |
| 2264 | return ret; |
| 2265 | } |
| 2266 | |
| 2267 | static ssize_t charge_now_show(struct ab8500_fg *di, char *buf) |
| 2268 | { |
| 2269 | return sprintf(buf, "%d\n", di->bat_cap.prev_mah); |
| 2270 | } |
| 2271 | |
| 2272 | static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf, |
| 2273 | size_t count) |
| 2274 | { |
| 2275 | unsigned long charge_now; |
| 2276 | ssize_t ret; |
| 2277 | |
| 2278 | ret = strict_strtoul(buf, 10, &charge_now); |
| 2279 | |
| 2280 | dev_dbg(di->dev, "Ret %d charge_now %lu was %d", |
| 2281 | ret, charge_now, di->bat_cap.prev_mah); |
| 2282 | |
| 2283 | if (!ret) { |
| 2284 | di->bat_cap.user_mah = (int) charge_now; |
| 2285 | di->flags.user_cap = true; |
| 2286 | ret = count; |
| 2287 | queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); |
| 2288 | } |
| 2289 | return ret; |
| 2290 | } |
| 2291 | |
| 2292 | static struct ab8500_fg_sysfs_entry charge_full_attr = |
| 2293 | __ATTR(charge_full, 0644, charge_full_show, charge_full_store); |
| 2294 | |
| 2295 | static struct ab8500_fg_sysfs_entry charge_now_attr = |
| 2296 | __ATTR(charge_now, 0644, charge_now_show, charge_now_store); |
| 2297 | |
| 2298 | static ssize_t |
| 2299 | ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf) |
| 2300 | { |
| 2301 | struct ab8500_fg_sysfs_entry *entry; |
| 2302 | struct ab8500_fg *di; |
| 2303 | |
| 2304 | entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr); |
| 2305 | di = container_of(kobj, struct ab8500_fg, fg_kobject); |
| 2306 | |
| 2307 | if (!entry->show) |
| 2308 | return -EIO; |
| 2309 | |
| 2310 | return entry->show(di, buf); |
| 2311 | } |
| 2312 | static ssize_t |
| 2313 | ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf, |
| 2314 | size_t count) |
| 2315 | { |
| 2316 | struct ab8500_fg_sysfs_entry *entry; |
| 2317 | struct ab8500_fg *di; |
| 2318 | |
| 2319 | entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr); |
| 2320 | di = container_of(kobj, struct ab8500_fg, fg_kobject); |
| 2321 | |
| 2322 | if (!entry->store) |
| 2323 | return -EIO; |
| 2324 | |
| 2325 | return entry->store(di, buf, count); |
| 2326 | } |
| 2327 | |
Anton Vorontsov | 64eb9b0 | 2012-03-14 04:43:11 +0400 | [diff] [blame] | 2328 | static const struct sysfs_ops ab8500_fg_sysfs_ops = { |
Arun Murthy | 1315163 | 2012-02-29 21:54:27 +0530 | [diff] [blame] | 2329 | .show = ab8500_fg_show, |
| 2330 | .store = ab8500_fg_store, |
| 2331 | }; |
| 2332 | |
| 2333 | static struct attribute *ab8500_fg_attrs[] = { |
| 2334 | &charge_full_attr.attr, |
| 2335 | &charge_now_attr.attr, |
| 2336 | NULL, |
| 2337 | }; |
| 2338 | |
| 2339 | static struct kobj_type ab8500_fg_ktype = { |
| 2340 | .sysfs_ops = &ab8500_fg_sysfs_ops, |
| 2341 | .default_attrs = ab8500_fg_attrs, |
| 2342 | }; |
| 2343 | |
| 2344 | /** |
| 2345 | * ab8500_chargalg_sysfs_exit() - de-init of sysfs entry |
| 2346 | * @di: pointer to the struct ab8500_chargalg |
| 2347 | * |
| 2348 | * This function removes the entry in sysfs. |
| 2349 | */ |
| 2350 | static void ab8500_fg_sysfs_exit(struct ab8500_fg *di) |
| 2351 | { |
| 2352 | kobject_del(&di->fg_kobject); |
| 2353 | } |
| 2354 | |
| 2355 | /** |
| 2356 | * ab8500_chargalg_sysfs_init() - init of sysfs entry |
| 2357 | * @di: pointer to the struct ab8500_chargalg |
| 2358 | * |
| 2359 | * This function adds an entry in sysfs. |
| 2360 | * Returns error code in case of failure else 0(on success) |
| 2361 | */ |
| 2362 | static int ab8500_fg_sysfs_init(struct ab8500_fg *di) |
| 2363 | { |
| 2364 | int ret = 0; |
| 2365 | |
| 2366 | ret = kobject_init_and_add(&di->fg_kobject, |
| 2367 | &ab8500_fg_ktype, |
| 2368 | NULL, "battery"); |
| 2369 | if (ret < 0) |
| 2370 | dev_err(di->dev, "failed to create sysfs entry\n"); |
| 2371 | |
| 2372 | return ret; |
| 2373 | } |
| 2374 | /* Exposure to the sysfs interface <<END>> */ |
| 2375 | |
| 2376 | #if defined(CONFIG_PM) |
| 2377 | static int ab8500_fg_resume(struct platform_device *pdev) |
| 2378 | { |
| 2379 | struct ab8500_fg *di = platform_get_drvdata(pdev); |
| 2380 | |
| 2381 | /* |
| 2382 | * Change state if we're not charging. If we're charging we will wake |
| 2383 | * up on the FG IRQ |
| 2384 | */ |
| 2385 | if (!di->flags.charging) { |
| 2386 | ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP); |
| 2387 | queue_work(di->fg_wq, &di->fg_work); |
| 2388 | } |
| 2389 | |
| 2390 | return 0; |
| 2391 | } |
| 2392 | |
| 2393 | static int ab8500_fg_suspend(struct platform_device *pdev, |
| 2394 | pm_message_t state) |
| 2395 | { |
| 2396 | struct ab8500_fg *di = platform_get_drvdata(pdev); |
| 2397 | |
| 2398 | flush_delayed_work(&di->fg_periodic_work); |
| 2399 | |
| 2400 | /* |
| 2401 | * If the FG is enabled we will disable it before going to suspend |
| 2402 | * only if we're not charging |
| 2403 | */ |
| 2404 | if (di->flags.fg_enabled && !di->flags.charging) |
| 2405 | ab8500_fg_coulomb_counter(di, false); |
| 2406 | |
| 2407 | return 0; |
| 2408 | } |
| 2409 | #else |
| 2410 | #define ab8500_fg_suspend NULL |
| 2411 | #define ab8500_fg_resume NULL |
| 2412 | #endif |
| 2413 | |
| 2414 | static int __devexit ab8500_fg_remove(struct platform_device *pdev) |
| 2415 | { |
| 2416 | int ret = 0; |
| 2417 | struct ab8500_fg *di = platform_get_drvdata(pdev); |
| 2418 | |
| 2419 | list_del(&di->node); |
| 2420 | |
| 2421 | /* Disable coulomb counter */ |
| 2422 | ret = ab8500_fg_coulomb_counter(di, false); |
| 2423 | if (ret) |
| 2424 | dev_err(di->dev, "failed to disable coulomb counter\n"); |
| 2425 | |
| 2426 | destroy_workqueue(di->fg_wq); |
| 2427 | ab8500_fg_sysfs_exit(di); |
| 2428 | |
| 2429 | flush_scheduled_work(); |
| 2430 | power_supply_unregister(&di->fg_psy); |
| 2431 | platform_set_drvdata(pdev, NULL); |
| 2432 | kfree(di); |
| 2433 | return ret; |
| 2434 | } |
| 2435 | |
| 2436 | /* ab8500 fg driver interrupts and their respective isr */ |
| 2437 | static struct ab8500_fg_interrupts ab8500_fg_irq[] = { |
| 2438 | {"NCONV_ACCU", ab8500_fg_cc_convend_handler}, |
| 2439 | {"BATT_OVV", ab8500_fg_batt_ovv_handler}, |
| 2440 | {"LOW_BAT_F", ab8500_fg_lowbatf_handler}, |
| 2441 | {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler}, |
| 2442 | {"CCEOC", ab8500_fg_cc_data_end_handler}, |
| 2443 | }; |
| 2444 | |
| 2445 | static int __devinit ab8500_fg_probe(struct platform_device *pdev) |
| 2446 | { |
| 2447 | int i, irq; |
| 2448 | int ret = 0; |
| 2449 | struct abx500_bm_plat_data *plat_data; |
| 2450 | |
| 2451 | struct ab8500_fg *di = |
| 2452 | kzalloc(sizeof(struct ab8500_fg), GFP_KERNEL); |
| 2453 | if (!di) |
| 2454 | return -ENOMEM; |
| 2455 | |
| 2456 | mutex_init(&di->cc_lock); |
| 2457 | |
| 2458 | /* get parent data */ |
| 2459 | di->dev = &pdev->dev; |
| 2460 | di->parent = dev_get_drvdata(pdev->dev.parent); |
| 2461 | di->gpadc = ab8500_gpadc_get("ab8500-gpadc.0"); |
| 2462 | |
| 2463 | /* get fg specific platform data */ |
| 2464 | plat_data = pdev->dev.platform_data; |
| 2465 | di->pdata = plat_data->fg; |
| 2466 | if (!di->pdata) { |
| 2467 | dev_err(di->dev, "no fg platform data supplied\n"); |
| 2468 | ret = -EINVAL; |
| 2469 | goto free_device_info; |
| 2470 | } |
| 2471 | |
| 2472 | /* get battery specific platform data */ |
| 2473 | di->bat = plat_data->battery; |
| 2474 | if (!di->bat) { |
| 2475 | dev_err(di->dev, "no battery platform data supplied\n"); |
| 2476 | ret = -EINVAL; |
| 2477 | goto free_device_info; |
| 2478 | } |
| 2479 | |
| 2480 | di->fg_psy.name = "ab8500_fg"; |
| 2481 | di->fg_psy.type = POWER_SUPPLY_TYPE_BATTERY; |
| 2482 | di->fg_psy.properties = ab8500_fg_props; |
| 2483 | di->fg_psy.num_properties = ARRAY_SIZE(ab8500_fg_props); |
| 2484 | di->fg_psy.get_property = ab8500_fg_get_property; |
| 2485 | di->fg_psy.supplied_to = di->pdata->supplied_to; |
| 2486 | di->fg_psy.num_supplicants = di->pdata->num_supplicants; |
| 2487 | di->fg_psy.external_power_changed = ab8500_fg_external_power_changed; |
| 2488 | |
| 2489 | di->bat_cap.max_mah_design = MILLI_TO_MICRO * |
| 2490 | di->bat->bat_type[di->bat->batt_id].charge_full_design; |
| 2491 | |
| 2492 | di->bat_cap.max_mah = di->bat_cap.max_mah_design; |
| 2493 | |
| 2494 | di->vbat_nom = di->bat->bat_type[di->bat->batt_id].nominal_voltage; |
| 2495 | |
| 2496 | di->init_capacity = true; |
| 2497 | |
| 2498 | ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT); |
| 2499 | ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT); |
| 2500 | |
| 2501 | /* Create a work queue for running the FG algorithm */ |
| 2502 | di->fg_wq = create_singlethread_workqueue("ab8500_fg_wq"); |
| 2503 | if (di->fg_wq == NULL) { |
| 2504 | dev_err(di->dev, "failed to create work queue\n"); |
| 2505 | goto free_device_info; |
| 2506 | } |
| 2507 | |
| 2508 | /* Init work for running the fg algorithm instantly */ |
| 2509 | INIT_WORK(&di->fg_work, ab8500_fg_instant_work); |
| 2510 | |
| 2511 | /* Init work for getting the battery accumulated current */ |
| 2512 | INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work); |
| 2513 | |
| 2514 | /* Init work for reinitialising the fg algorithm */ |
| 2515 | INIT_DELAYED_WORK_DEFERRABLE(&di->fg_reinit_work, |
| 2516 | ab8500_fg_reinit_work); |
| 2517 | |
| 2518 | /* Work delayed Queue to run the state machine */ |
| 2519 | INIT_DELAYED_WORK_DEFERRABLE(&di->fg_periodic_work, |
| 2520 | ab8500_fg_periodic_work); |
| 2521 | |
| 2522 | /* Work to check low battery condition */ |
| 2523 | INIT_DELAYED_WORK_DEFERRABLE(&di->fg_low_bat_work, |
| 2524 | ab8500_fg_low_bat_work); |
| 2525 | |
| 2526 | /* Init work for HW failure check */ |
| 2527 | INIT_DELAYED_WORK_DEFERRABLE(&di->fg_check_hw_failure_work, |
| 2528 | ab8500_fg_check_hw_failure_work); |
| 2529 | |
| 2530 | /* Initialize OVV, and other registers */ |
| 2531 | ret = ab8500_fg_init_hw_registers(di); |
| 2532 | if (ret) { |
| 2533 | dev_err(di->dev, "failed to initialize registers\n"); |
| 2534 | goto free_inst_curr_wq; |
| 2535 | } |
| 2536 | |
| 2537 | /* Consider battery unknown until we're informed otherwise */ |
| 2538 | di->flags.batt_unknown = true; |
| 2539 | di->flags.batt_id_received = false; |
| 2540 | |
| 2541 | /* Register FG power supply class */ |
| 2542 | ret = power_supply_register(di->dev, &di->fg_psy); |
| 2543 | if (ret) { |
| 2544 | dev_err(di->dev, "failed to register FG psy\n"); |
| 2545 | goto free_inst_curr_wq; |
| 2546 | } |
| 2547 | |
| 2548 | di->fg_samples = SEC_TO_SAMPLE(di->bat->fg_params->init_timer); |
| 2549 | ab8500_fg_coulomb_counter(di, true); |
| 2550 | |
| 2551 | /* Initialize completion used to notify completion of inst current */ |
| 2552 | init_completion(&di->ab8500_fg_complete); |
| 2553 | |
| 2554 | /* Register interrupts */ |
| 2555 | for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) { |
| 2556 | irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name); |
| 2557 | ret = request_threaded_irq(irq, NULL, ab8500_fg_irq[i].isr, |
| 2558 | IRQF_SHARED | IRQF_NO_SUSPEND, |
| 2559 | ab8500_fg_irq[i].name, di); |
| 2560 | |
| 2561 | if (ret != 0) { |
| 2562 | dev_err(di->dev, "failed to request %s IRQ %d: %d\n" |
| 2563 | , ab8500_fg_irq[i].name, irq, ret); |
| 2564 | goto free_irq; |
| 2565 | } |
| 2566 | dev_dbg(di->dev, "Requested %s IRQ %d: %d\n", |
| 2567 | ab8500_fg_irq[i].name, irq, ret); |
| 2568 | } |
| 2569 | di->irq = platform_get_irq_byname(pdev, "CCEOC"); |
| 2570 | disable_irq(di->irq); |
| 2571 | |
| 2572 | platform_set_drvdata(pdev, di); |
| 2573 | |
| 2574 | ret = ab8500_fg_sysfs_init(di); |
| 2575 | if (ret) { |
| 2576 | dev_err(di->dev, "failed to create sysfs entry\n"); |
| 2577 | goto free_irq; |
| 2578 | } |
| 2579 | |
| 2580 | /* Calibrate the fg first time */ |
| 2581 | di->flags.calibrate = true; |
| 2582 | di->calib_state = AB8500_FG_CALIB_INIT; |
| 2583 | |
| 2584 | /* Use room temp as default value until we get an update from driver. */ |
| 2585 | di->bat_temp = 210; |
| 2586 | |
| 2587 | /* Run the FG algorithm */ |
| 2588 | queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); |
| 2589 | |
| 2590 | list_add_tail(&di->node, &ab8500_fg_list); |
| 2591 | |
| 2592 | return ret; |
| 2593 | |
| 2594 | free_irq: |
| 2595 | power_supply_unregister(&di->fg_psy); |
| 2596 | |
| 2597 | /* We also have to free all successfully registered irqs */ |
| 2598 | for (i = i - 1; i >= 0; i--) { |
| 2599 | irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name); |
| 2600 | free_irq(irq, di); |
| 2601 | } |
| 2602 | free_inst_curr_wq: |
| 2603 | destroy_workqueue(di->fg_wq); |
| 2604 | free_device_info: |
| 2605 | kfree(di); |
| 2606 | |
| 2607 | return ret; |
| 2608 | } |
| 2609 | |
| 2610 | static struct platform_driver ab8500_fg_driver = { |
| 2611 | .probe = ab8500_fg_probe, |
| 2612 | .remove = __devexit_p(ab8500_fg_remove), |
| 2613 | .suspend = ab8500_fg_suspend, |
| 2614 | .resume = ab8500_fg_resume, |
| 2615 | .driver = { |
| 2616 | .name = "ab8500-fg", |
| 2617 | .owner = THIS_MODULE, |
| 2618 | }, |
| 2619 | }; |
| 2620 | |
| 2621 | static int __init ab8500_fg_init(void) |
| 2622 | { |
| 2623 | return platform_driver_register(&ab8500_fg_driver); |
| 2624 | } |
| 2625 | |
| 2626 | static void __exit ab8500_fg_exit(void) |
| 2627 | { |
| 2628 | platform_driver_unregister(&ab8500_fg_driver); |
| 2629 | } |
| 2630 | |
| 2631 | subsys_initcall_sync(ab8500_fg_init); |
| 2632 | module_exit(ab8500_fg_exit); |
| 2633 | |
| 2634 | MODULE_LICENSE("GPL v2"); |
| 2635 | MODULE_AUTHOR("Johan Palsson, Karl Komierowski"); |
| 2636 | MODULE_ALIAS("platform:ab8500-fg"); |
| 2637 | MODULE_DESCRIPTION("AB8500 Fuel Gauge driver"); |