Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * arch/alpha/lib/ev6-strncpy_from_user.S |
| 3 | * 21264 version contributed by Rick Gorton <rick.gorton@alpha-processor.com> |
| 4 | * |
| 5 | * Just like strncpy except in the return value: |
| 6 | * |
| 7 | * -EFAULT if an exception occurs before the terminator is copied. |
| 8 | * N if the buffer filled. |
| 9 | * |
| 10 | * Otherwise the length of the string is returned. |
| 11 | * |
| 12 | * Much of the information about 21264 scheduling/coding comes from: |
| 13 | * Compiler Writer's Guide for the Alpha 21264 |
| 14 | * abbreviated as 'CWG' in other comments here |
| 15 | * ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html |
| 16 | * Scheduling notation: |
| 17 | * E - either cluster |
| 18 | * U - upper subcluster; U0 - subcluster U0; U1 - subcluster U1 |
| 19 | * L - lower subcluster; L0 - subcluster L0; L1 - subcluster L1 |
| 20 | * A bunch of instructions got moved and temp registers were changed |
| 21 | * to aid in scheduling. Control flow was also re-arranged to eliminate |
| 22 | * branches, and to provide longer code sequences to enable better scheduling. |
| 23 | * A total rewrite (using byte load/stores for start & tail sequences) |
| 24 | * is desirable, but very difficult to do without a from-scratch rewrite. |
| 25 | * Save that for the future. |
| 26 | */ |
| 27 | |
| 28 | |
| 29 | #include <asm/errno.h> |
| 30 | #include <asm/regdef.h> |
| 31 | |
| 32 | |
| 33 | /* Allow an exception for an insn; exit if we get one. */ |
| 34 | #define EX(x,y...) \ |
| 35 | 99: x,##y; \ |
| 36 | .section __ex_table,"a"; \ |
| 37 | .long 99b - .; \ |
| 38 | lda $31, $exception-99b($0); \ |
| 39 | .previous |
| 40 | |
| 41 | |
| 42 | .set noat |
| 43 | .set noreorder |
| 44 | .text |
| 45 | |
| 46 | .globl __strncpy_from_user |
| 47 | .ent __strncpy_from_user |
| 48 | .frame $30, 0, $26 |
| 49 | .prologue 0 |
| 50 | |
| 51 | .align 4 |
| 52 | __strncpy_from_user: |
| 53 | and a0, 7, t3 # E : find dest misalignment |
| 54 | beq a2, $zerolength # U : |
| 55 | |
| 56 | /* Are source and destination co-aligned? */ |
| 57 | mov a0, v0 # E : save the string start |
| 58 | xor a0, a1, t4 # E : |
| 59 | EX( ldq_u t1, 0(a1) ) # L : Latency=3 load first quadword |
| 60 | ldq_u t0, 0(a0) # L : load first (partial) aligned dest quadword |
| 61 | |
| 62 | addq a2, t3, a2 # E : bias count by dest misalignment |
| 63 | subq a2, 1, a3 # E : |
| 64 | addq zero, 1, t10 # E : |
| 65 | and t4, 7, t4 # E : misalignment between the two |
| 66 | |
| 67 | and a3, 7, t6 # E : number of tail bytes |
| 68 | sll t10, t6, t10 # E : t10 = bitmask of last count byte |
| 69 | bne t4, $unaligned # U : |
| 70 | lda t2, -1 # E : build a mask against false zero |
| 71 | |
| 72 | /* |
| 73 | * We are co-aligned; take care of a partial first word. |
| 74 | * On entry to this basic block: |
| 75 | * t0 == the first destination word for masking back in |
| 76 | * t1 == the first source word. |
| 77 | */ |
| 78 | |
| 79 | srl a3, 3, a2 # E : a2 = loop counter = (count - 1)/8 |
| 80 | addq a1, 8, a1 # E : |
| 81 | mskqh t2, a1, t2 # U : detection in the src word |
| 82 | nop |
| 83 | |
| 84 | /* Create the 1st output word and detect 0's in the 1st input word. */ |
| 85 | mskqh t1, a1, t3 # U : |
| 86 | mskql t0, a1, t0 # U : assemble the first output word |
| 87 | ornot t1, t2, t2 # E : |
| 88 | nop |
| 89 | |
| 90 | cmpbge zero, t2, t8 # E : bits set iff null found |
| 91 | or t0, t3, t0 # E : |
| 92 | beq a2, $a_eoc # U : |
| 93 | bne t8, $a_eos # U : 2nd branch in a quad. Bad. |
| 94 | |
| 95 | /* On entry to this basic block: |
| 96 | * t0 == a source quad not containing a null. |
| 97 | * a0 - current aligned destination address |
| 98 | * a1 - current aligned source address |
| 99 | * a2 - count of quadwords to move. |
| 100 | * NOTE: Loop improvement - unrolling this is going to be |
| 101 | * a huge win, since we're going to stall otherwise. |
| 102 | * Fix this later. For _really_ large copies, look |
| 103 | * at using wh64 on a look-ahead basis. See the code |
| 104 | * in clear_user.S and copy_user.S. |
| 105 | * Presumably, since (a0) and (a1) do not overlap (by C definition) |
| 106 | * Lots of nops here: |
| 107 | * - Separate loads from stores |
| 108 | * - Keep it to 1 branch/quadpack so the branch predictor |
| 109 | * can train. |
| 110 | */ |
| 111 | $a_loop: |
| 112 | stq_u t0, 0(a0) # L : |
| 113 | addq a0, 8, a0 # E : |
| 114 | nop |
| 115 | subq a2, 1, a2 # E : |
| 116 | |
| 117 | EX( ldq_u t0, 0(a1) ) # L : |
| 118 | addq a1, 8, a1 # E : |
| 119 | cmpbge zero, t0, t8 # E : Stall 2 cycles on t0 |
| 120 | beq a2, $a_eoc # U : |
| 121 | |
| 122 | beq t8, $a_loop # U : |
| 123 | nop |
| 124 | nop |
| 125 | nop |
| 126 | |
| 127 | /* Take care of the final (partial) word store. At this point |
| 128 | * the end-of-count bit is set in t8 iff it applies. |
| 129 | * |
| 130 | * On entry to this basic block we have: |
| 131 | * t0 == the source word containing the null |
| 132 | * t8 == the cmpbge mask that found it. |
| 133 | */ |
| 134 | $a_eos: |
| 135 | negq t8, t12 # E : find low bit set |
| 136 | and t8, t12, t12 # E : |
| 137 | |
| 138 | /* We're doing a partial word store and so need to combine |
| 139 | our source and original destination words. */ |
| 140 | ldq_u t1, 0(a0) # L : |
| 141 | subq t12, 1, t6 # E : |
| 142 | |
| 143 | or t12, t6, t8 # E : |
| 144 | zapnot t0, t8, t0 # U : clear src bytes > null |
| 145 | zap t1, t8, t1 # U : clear dst bytes <= null |
| 146 | or t0, t1, t0 # E : |
| 147 | |
| 148 | stq_u t0, 0(a0) # L : |
| 149 | br $finish_up # L0 : |
| 150 | nop |
| 151 | nop |
| 152 | |
| 153 | /* Add the end-of-count bit to the eos detection bitmask. */ |
| 154 | .align 4 |
| 155 | $a_eoc: |
| 156 | or t10, t8, t8 |
| 157 | br $a_eos |
| 158 | nop |
| 159 | nop |
| 160 | |
| 161 | |
| 162 | /* The source and destination are not co-aligned. Align the destination |
| 163 | and cope. We have to be very careful about not reading too much and |
| 164 | causing a SEGV. */ |
| 165 | |
| 166 | .align 4 |
| 167 | $u_head: |
| 168 | /* We know just enough now to be able to assemble the first |
| 169 | full source word. We can still find a zero at the end of it |
| 170 | that prevents us from outputting the whole thing. |
| 171 | |
| 172 | On entry to this basic block: |
| 173 | t0 == the first dest word, unmasked |
| 174 | t1 == the shifted low bits of the first source word |
| 175 | t6 == bytemask that is -1 in dest word bytes */ |
| 176 | |
| 177 | EX( ldq_u t2, 8(a1) ) # L : load second src word |
| 178 | addq a1, 8, a1 # E : |
| 179 | mskql t0, a0, t0 # U : mask trailing garbage in dst |
| 180 | extqh t2, a1, t4 # U : |
| 181 | |
| 182 | or t1, t4, t1 # E : first aligned src word complete |
| 183 | mskqh t1, a0, t1 # U : mask leading garbage in src |
| 184 | or t0, t1, t0 # E : first output word complete |
| 185 | or t0, t6, t6 # E : mask original data for zero test |
| 186 | |
| 187 | cmpbge zero, t6, t8 # E : |
| 188 | beq a2, $u_eocfin # U : |
| 189 | bne t8, $u_final # U : bad news - 2nd branch in a quad |
| 190 | lda t6, -1 # E : mask out the bits we have |
| 191 | |
| 192 | mskql t6, a1, t6 # U : already seen |
| 193 | stq_u t0, 0(a0) # L : store first output word |
| 194 | or t6, t2, t2 # E : |
| 195 | cmpbge zero, t2, t8 # E : find nulls in second partial |
| 196 | |
| 197 | addq a0, 8, a0 # E : |
| 198 | subq a2, 1, a2 # E : |
| 199 | bne t8, $u_late_head_exit # U : |
| 200 | nop |
| 201 | |
| 202 | /* Finally, we've got all the stupid leading edge cases taken care |
| 203 | of and we can set up to enter the main loop. */ |
| 204 | |
| 205 | extql t2, a1, t1 # U : position hi-bits of lo word |
| 206 | EX( ldq_u t2, 8(a1) ) # L : read next high-order source word |
| 207 | addq a1, 8, a1 # E : |
| 208 | cmpbge zero, t2, t8 # E : |
| 209 | |
| 210 | beq a2, $u_eoc # U : |
| 211 | bne t8, $u_eos # U : |
| 212 | nop |
| 213 | nop |
| 214 | |
| 215 | /* Unaligned copy main loop. In order to avoid reading too much, |
| 216 | the loop is structured to detect zeros in aligned source words. |
| 217 | This has, unfortunately, effectively pulled half of a loop |
| 218 | iteration out into the head and half into the tail, but it does |
| 219 | prevent nastiness from accumulating in the very thing we want |
| 220 | to run as fast as possible. |
| 221 | |
| 222 | On entry to this basic block: |
| 223 | t1 == the shifted high-order bits from the previous source word |
| 224 | t2 == the unshifted current source word |
| 225 | |
| 226 | We further know that t2 does not contain a null terminator. */ |
| 227 | |
| 228 | /* |
| 229 | * Extra nops here: |
| 230 | * separate load quads from store quads |
| 231 | * only one branch/quad to permit predictor training |
| 232 | */ |
| 233 | |
| 234 | .align 4 |
| 235 | $u_loop: |
| 236 | extqh t2, a1, t0 # U : extract high bits for current word |
| 237 | addq a1, 8, a1 # E : |
| 238 | extql t2, a1, t3 # U : extract low bits for next time |
| 239 | addq a0, 8, a0 # E : |
| 240 | |
| 241 | or t0, t1, t0 # E : current dst word now complete |
| 242 | EX( ldq_u t2, 0(a1) ) # L : load high word for next time |
| 243 | subq a2, 1, a2 # E : |
| 244 | nop |
| 245 | |
| 246 | stq_u t0, -8(a0) # L : save the current word |
| 247 | mov t3, t1 # E : |
| 248 | cmpbge zero, t2, t8 # E : test new word for eos |
| 249 | beq a2, $u_eoc # U : |
| 250 | |
| 251 | beq t8, $u_loop # U : |
| 252 | nop |
| 253 | nop |
| 254 | nop |
| 255 | |
| 256 | /* We've found a zero somewhere in the source word we just read. |
| 257 | If it resides in the lower half, we have one (probably partial) |
| 258 | word to write out, and if it resides in the upper half, we |
| 259 | have one full and one partial word left to write out. |
| 260 | |
| 261 | On entry to this basic block: |
| 262 | t1 == the shifted high-order bits from the previous source word |
| 263 | t2 == the unshifted current source word. */ |
| 264 | .align 4 |
| 265 | $u_eos: |
| 266 | extqh t2, a1, t0 # U : |
| 267 | or t0, t1, t0 # E : first (partial) source word complete |
| 268 | cmpbge zero, t0, t8 # E : is the null in this first bit? |
| 269 | nop |
| 270 | |
| 271 | bne t8, $u_final # U : |
| 272 | stq_u t0, 0(a0) # L : the null was in the high-order bits |
| 273 | addq a0, 8, a0 # E : |
| 274 | subq a2, 1, a2 # E : |
| 275 | |
| 276 | .align 4 |
| 277 | $u_late_head_exit: |
| 278 | extql t2, a1, t0 # U : |
| 279 | cmpbge zero, t0, t8 # E : |
| 280 | or t8, t10, t6 # E : |
| 281 | cmoveq a2, t6, t8 # E : |
| 282 | |
| 283 | /* Take care of a final (probably partial) result word. |
| 284 | On entry to this basic block: |
| 285 | t0 == assembled source word |
| 286 | t8 == cmpbge mask that found the null. */ |
| 287 | .align 4 |
| 288 | $u_final: |
| 289 | negq t8, t6 # E : isolate low bit set |
| 290 | and t6, t8, t12 # E : |
| 291 | ldq_u t1, 0(a0) # L : |
| 292 | subq t12, 1, t6 # E : |
| 293 | |
| 294 | or t6, t12, t8 # E : |
| 295 | zapnot t0, t8, t0 # U : kill source bytes > null |
| 296 | zap t1, t8, t1 # U : kill dest bytes <= null |
| 297 | or t0, t1, t0 # E : |
| 298 | |
| 299 | stq_u t0, 0(a0) # E : |
| 300 | br $finish_up # U : |
| 301 | nop |
| 302 | nop |
| 303 | |
| 304 | .align 4 |
| 305 | $u_eoc: # end-of-count |
| 306 | extqh t2, a1, t0 # U : |
| 307 | or t0, t1, t0 # E : |
| 308 | cmpbge zero, t0, t8 # E : |
| 309 | nop |
| 310 | |
| 311 | .align 4 |
| 312 | $u_eocfin: # end-of-count, final word |
| 313 | or t10, t8, t8 # E : |
| 314 | br $u_final # U : |
| 315 | nop |
| 316 | nop |
| 317 | |
| 318 | /* Unaligned copy entry point. */ |
| 319 | .align 4 |
| 320 | $unaligned: |
| 321 | |
| 322 | srl a3, 3, a2 # U : a2 = loop counter = (count - 1)/8 |
| 323 | and a0, 7, t4 # E : find dest misalignment |
| 324 | and a1, 7, t5 # E : find src misalignment |
| 325 | mov zero, t0 # E : |
| 326 | |
| 327 | /* Conditionally load the first destination word and a bytemask |
| 328 | with 0xff indicating that the destination byte is sacrosanct. */ |
| 329 | |
| 330 | mov zero, t6 # E : |
| 331 | beq t4, 1f # U : |
| 332 | ldq_u t0, 0(a0) # L : |
| 333 | lda t6, -1 # E : |
| 334 | |
| 335 | mskql t6, a0, t6 # E : |
| 336 | nop |
| 337 | nop |
| 338 | nop |
| 339 | |
| 340 | .align 4 |
| 341 | 1: |
| 342 | subq a1, t4, a1 # E : sub dest misalignment from src addr |
| 343 | /* If source misalignment is larger than dest misalignment, we need |
| 344 | extra startup checks to avoid SEGV. */ |
| 345 | cmplt t4, t5, t12 # E : |
| 346 | extql t1, a1, t1 # U : shift src into place |
| 347 | lda t2, -1 # E : for creating masks later |
| 348 | |
| 349 | beq t12, $u_head # U : |
| 350 | mskqh t2, t5, t2 # U : begin src byte validity mask |
| 351 | cmpbge zero, t1, t8 # E : is there a zero? |
| 352 | nop |
| 353 | |
| 354 | extql t2, a1, t2 # U : |
| 355 | or t8, t10, t5 # E : test for end-of-count too |
| 356 | cmpbge zero, t2, t3 # E : |
| 357 | cmoveq a2, t5, t8 # E : Latency=2, extra map slot |
| 358 | |
| 359 | nop # E : goes with cmov |
| 360 | andnot t8, t3, t8 # E : |
| 361 | beq t8, $u_head # U : |
| 362 | nop |
| 363 | |
| 364 | /* At this point we've found a zero in the first partial word of |
| 365 | the source. We need to isolate the valid source data and mask |
| 366 | it into the original destination data. (Incidentally, we know |
| 367 | that we'll need at least one byte of that original dest word.) */ |
| 368 | |
| 369 | ldq_u t0, 0(a0) # L : |
| 370 | negq t8, t6 # E : build bitmask of bytes <= zero |
| 371 | mskqh t1, t4, t1 # U : |
| 372 | and t6, t8, t12 # E : |
| 373 | |
| 374 | subq t12, 1, t6 # E : |
| 375 | or t6, t12, t8 # E : |
| 376 | zapnot t2, t8, t2 # U : prepare source word; mirror changes |
| 377 | zapnot t1, t8, t1 # U : to source validity mask |
| 378 | |
| 379 | andnot t0, t2, t0 # E : zero place for source to reside |
| 380 | or t0, t1, t0 # E : and put it there |
| 381 | stq_u t0, 0(a0) # L : |
| 382 | nop |
| 383 | |
| 384 | .align 4 |
| 385 | $finish_up: |
| 386 | zapnot t0, t12, t4 # U : was last byte written null? |
| 387 | and t12, 0xf0, t3 # E : binary search for the address of the |
| 388 | cmovne t4, 1, t4 # E : Latency=2, extra map slot |
| 389 | nop # E : with cmovne |
| 390 | |
| 391 | and t12, 0xcc, t2 # E : last byte written |
| 392 | and t12, 0xaa, t1 # E : |
| 393 | cmovne t3, 4, t3 # E : Latency=2, extra map slot |
| 394 | nop # E : with cmovne |
| 395 | |
| 396 | bic a0, 7, t0 |
| 397 | cmovne t2, 2, t2 # E : Latency=2, extra map slot |
| 398 | nop # E : with cmovne |
| 399 | nop |
| 400 | |
| 401 | cmovne t1, 1, t1 # E : Latency=2, extra map slot |
| 402 | nop # E : with cmovne |
| 403 | addq t0, t3, t0 # E : |
| 404 | addq t1, t2, t1 # E : |
| 405 | |
| 406 | addq t0, t1, t0 # E : |
| 407 | addq t0, t4, t0 # add one if we filled the buffer |
| 408 | subq t0, v0, v0 # find string length |
| 409 | ret # L0 : |
| 410 | |
| 411 | .align 4 |
| 412 | $zerolength: |
| 413 | nop |
| 414 | nop |
| 415 | nop |
| 416 | clr v0 |
| 417 | |
| 418 | $exception: |
| 419 | nop |
| 420 | nop |
| 421 | nop |
| 422 | ret |
| 423 | |
| 424 | .end __strncpy_from_user |