Vimal Singh | 67ce04b | 2009-05-12 13:47:03 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com> |
| 3 | * Copyright © 2004 Micron Technology Inc. |
| 4 | * Copyright © 2004 David Brownell |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU General Public License version 2 as |
| 8 | * published by the Free Software Foundation. |
| 9 | */ |
| 10 | |
| 11 | #include <linux/platform_device.h> |
| 12 | #include <linux/dma-mapping.h> |
| 13 | #include <linux/delay.h> |
| 14 | #include <linux/mtd/mtd.h> |
| 15 | #include <linux/mtd/nand.h> |
| 16 | #include <linux/mtd/partitions.h> |
| 17 | #include <linux/io.h> |
| 18 | |
| 19 | #include <asm/dma.h> |
| 20 | |
| 21 | #include <mach/gpmc.h> |
| 22 | #include <mach/nand.h> |
| 23 | |
| 24 | #define GPMC_IRQ_STATUS 0x18 |
| 25 | #define GPMC_ECC_CONFIG 0x1F4 |
| 26 | #define GPMC_ECC_CONTROL 0x1F8 |
| 27 | #define GPMC_ECC_SIZE_CONFIG 0x1FC |
| 28 | #define GPMC_ECC1_RESULT 0x200 |
| 29 | |
| 30 | #define DRIVER_NAME "omap2-nand" |
| 31 | |
| 32 | /* size (4 KiB) for IO mapping */ |
| 33 | #define NAND_IO_SIZE SZ_4K |
| 34 | |
| 35 | #define NAND_WP_OFF 0 |
| 36 | #define NAND_WP_BIT 0x00000010 |
| 37 | #define WR_RD_PIN_MONITORING 0x00600000 |
| 38 | |
| 39 | #define GPMC_BUF_FULL 0x00000001 |
| 40 | #define GPMC_BUF_EMPTY 0x00000000 |
| 41 | |
| 42 | #define NAND_Ecc_P1e (1 << 0) |
| 43 | #define NAND_Ecc_P2e (1 << 1) |
| 44 | #define NAND_Ecc_P4e (1 << 2) |
| 45 | #define NAND_Ecc_P8e (1 << 3) |
| 46 | #define NAND_Ecc_P16e (1 << 4) |
| 47 | #define NAND_Ecc_P32e (1 << 5) |
| 48 | #define NAND_Ecc_P64e (1 << 6) |
| 49 | #define NAND_Ecc_P128e (1 << 7) |
| 50 | #define NAND_Ecc_P256e (1 << 8) |
| 51 | #define NAND_Ecc_P512e (1 << 9) |
| 52 | #define NAND_Ecc_P1024e (1 << 10) |
| 53 | #define NAND_Ecc_P2048e (1 << 11) |
| 54 | |
| 55 | #define NAND_Ecc_P1o (1 << 16) |
| 56 | #define NAND_Ecc_P2o (1 << 17) |
| 57 | #define NAND_Ecc_P4o (1 << 18) |
| 58 | #define NAND_Ecc_P8o (1 << 19) |
| 59 | #define NAND_Ecc_P16o (1 << 20) |
| 60 | #define NAND_Ecc_P32o (1 << 21) |
| 61 | #define NAND_Ecc_P64o (1 << 22) |
| 62 | #define NAND_Ecc_P128o (1 << 23) |
| 63 | #define NAND_Ecc_P256o (1 << 24) |
| 64 | #define NAND_Ecc_P512o (1 << 25) |
| 65 | #define NAND_Ecc_P1024o (1 << 26) |
| 66 | #define NAND_Ecc_P2048o (1 << 27) |
| 67 | |
| 68 | #define TF(value) (value ? 1 : 0) |
| 69 | |
| 70 | #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0) |
| 71 | #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1) |
| 72 | #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2) |
| 73 | #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3) |
| 74 | #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4) |
| 75 | #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5) |
| 76 | #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6) |
| 77 | #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7) |
| 78 | |
| 79 | #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0) |
| 80 | #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1) |
| 81 | #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2) |
| 82 | #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3) |
| 83 | #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4) |
| 84 | #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5) |
| 85 | #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6) |
| 86 | #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7) |
| 87 | |
| 88 | #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0) |
| 89 | #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1) |
| 90 | #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2) |
| 91 | #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3) |
| 92 | #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4) |
| 93 | #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5) |
| 94 | #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6) |
| 95 | #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7) |
| 96 | |
| 97 | #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0) |
| 98 | #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1) |
| 99 | #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2) |
| 100 | #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3) |
| 101 | #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4) |
| 102 | #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5) |
| 103 | #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6) |
| 104 | #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7) |
| 105 | |
| 106 | #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0) |
| 107 | #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1) |
| 108 | |
| 109 | #ifdef CONFIG_MTD_PARTITIONS |
| 110 | static const char *part_probes[] = { "cmdlinepart", NULL }; |
| 111 | #endif |
| 112 | |
| 113 | struct omap_nand_info { |
| 114 | struct nand_hw_control controller; |
| 115 | struct omap_nand_platform_data *pdata; |
| 116 | struct mtd_info mtd; |
| 117 | struct mtd_partition *parts; |
| 118 | struct nand_chip nand; |
| 119 | struct platform_device *pdev; |
| 120 | |
| 121 | int gpmc_cs; |
| 122 | unsigned long phys_base; |
| 123 | void __iomem *gpmc_cs_baseaddr; |
| 124 | void __iomem *gpmc_baseaddr; |
| 125 | }; |
| 126 | |
| 127 | /** |
| 128 | * omap_nand_wp - This function enable or disable the Write Protect feature |
| 129 | * @mtd: MTD device structure |
| 130 | * @mode: WP ON/OFF |
| 131 | */ |
| 132 | static void omap_nand_wp(struct mtd_info *mtd, int mode) |
| 133 | { |
| 134 | struct omap_nand_info *info = container_of(mtd, |
| 135 | struct omap_nand_info, mtd); |
| 136 | |
| 137 | unsigned long config = __raw_readl(info->gpmc_baseaddr + GPMC_CONFIG); |
| 138 | |
| 139 | if (mode) |
| 140 | config &= ~(NAND_WP_BIT); /* WP is ON */ |
| 141 | else |
| 142 | config |= (NAND_WP_BIT); /* WP is OFF */ |
| 143 | |
| 144 | __raw_writel(config, (info->gpmc_baseaddr + GPMC_CONFIG)); |
| 145 | } |
| 146 | |
| 147 | /** |
| 148 | * omap_hwcontrol - hardware specific access to control-lines |
| 149 | * @mtd: MTD device structure |
| 150 | * @cmd: command to device |
| 151 | * @ctrl: |
| 152 | * NAND_NCE: bit 0 -> don't care |
| 153 | * NAND_CLE: bit 1 -> Command Latch |
| 154 | * NAND_ALE: bit 2 -> Address Latch |
| 155 | * |
| 156 | * NOTE: boards may use different bits for these!! |
| 157 | */ |
| 158 | static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) |
| 159 | { |
| 160 | struct omap_nand_info *info = container_of(mtd, |
| 161 | struct omap_nand_info, mtd); |
| 162 | switch (ctrl) { |
| 163 | case NAND_CTRL_CHANGE | NAND_CTRL_CLE: |
| 164 | info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr + |
| 165 | GPMC_CS_NAND_COMMAND; |
| 166 | info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr + |
| 167 | GPMC_CS_NAND_DATA; |
| 168 | break; |
| 169 | |
| 170 | case NAND_CTRL_CHANGE | NAND_CTRL_ALE: |
| 171 | info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr + |
| 172 | GPMC_CS_NAND_ADDRESS; |
| 173 | info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr + |
| 174 | GPMC_CS_NAND_DATA; |
| 175 | break; |
| 176 | |
| 177 | case NAND_CTRL_CHANGE | NAND_NCE: |
| 178 | info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr + |
| 179 | GPMC_CS_NAND_DATA; |
| 180 | info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr + |
| 181 | GPMC_CS_NAND_DATA; |
| 182 | break; |
| 183 | } |
| 184 | |
| 185 | if (cmd != NAND_CMD_NONE) |
| 186 | __raw_writeb(cmd, info->nand.IO_ADDR_W); |
| 187 | } |
| 188 | |
| 189 | /** |
| 190 | * omap_read_buf16 - read data from NAND controller into buffer |
| 191 | * @mtd: MTD device structure |
| 192 | * @buf: buffer to store date |
| 193 | * @len: number of bytes to read |
| 194 | */ |
| 195 | static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len) |
| 196 | { |
| 197 | struct nand_chip *nand = mtd->priv; |
| 198 | |
| 199 | __raw_readsw(nand->IO_ADDR_R, buf, len / 2); |
| 200 | } |
| 201 | |
| 202 | /** |
| 203 | * omap_write_buf16 - write buffer to NAND controller |
| 204 | * @mtd: MTD device structure |
| 205 | * @buf: data buffer |
| 206 | * @len: number of bytes to write |
| 207 | */ |
| 208 | static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len) |
| 209 | { |
| 210 | struct omap_nand_info *info = container_of(mtd, |
| 211 | struct omap_nand_info, mtd); |
| 212 | u16 *p = (u16 *) buf; |
| 213 | |
| 214 | /* FIXME try bursts of writesw() or DMA ... */ |
| 215 | len >>= 1; |
| 216 | |
| 217 | while (len--) { |
| 218 | writew(*p++, info->nand.IO_ADDR_W); |
| 219 | |
| 220 | while (GPMC_BUF_EMPTY == (readl(info->gpmc_baseaddr + |
| 221 | GPMC_STATUS) & GPMC_BUF_FULL)) |
| 222 | ; |
| 223 | } |
| 224 | } |
| 225 | /** |
| 226 | * omap_verify_buf - Verify chip data against buffer |
| 227 | * @mtd: MTD device structure |
| 228 | * @buf: buffer containing the data to compare |
| 229 | * @len: number of bytes to compare |
| 230 | */ |
| 231 | static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len) |
| 232 | { |
| 233 | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, |
| 234 | mtd); |
| 235 | u16 *p = (u16 *) buf; |
| 236 | |
| 237 | len >>= 1; |
| 238 | while (len--) { |
| 239 | if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R))) |
| 240 | return -EFAULT; |
| 241 | } |
| 242 | |
| 243 | return 0; |
| 244 | } |
| 245 | |
| 246 | #ifdef CONFIG_MTD_NAND_OMAP_HWECC |
| 247 | /** |
| 248 | * omap_hwecc_init - Initialize the HW ECC for NAND flash in GPMC controller |
| 249 | * @mtd: MTD device structure |
| 250 | */ |
| 251 | static void omap_hwecc_init(struct mtd_info *mtd) |
| 252 | { |
| 253 | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, |
| 254 | mtd); |
| 255 | struct nand_chip *chip = mtd->priv; |
| 256 | unsigned long val = 0x0; |
| 257 | |
| 258 | /* Read from ECC Control Register */ |
| 259 | val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONTROL); |
| 260 | /* Clear all ECC | Enable Reg1 */ |
| 261 | val = ((0x00000001<<8) | 0x00000001); |
| 262 | __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONTROL); |
| 263 | |
| 264 | /* Read from ECC Size Config Register */ |
| 265 | val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG); |
| 266 | /* ECCSIZE1=512 | Select eccResultsize[0-3] */ |
| 267 | val = ((((chip->ecc.size >> 1) - 1) << 22) | (0x0000000F)); |
| 268 | __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG); |
| 269 | } |
| 270 | |
| 271 | /** |
| 272 | * gen_true_ecc - This function will generate true ECC value |
| 273 | * @ecc_buf: buffer to store ecc code |
| 274 | * |
| 275 | * This generated true ECC value can be used when correcting |
| 276 | * data read from NAND flash memory core |
| 277 | */ |
| 278 | static void gen_true_ecc(u8 *ecc_buf) |
| 279 | { |
| 280 | u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) | |
| 281 | ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8); |
| 282 | |
| 283 | ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) | |
| 284 | P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp)); |
| 285 | ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) | |
| 286 | P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp)); |
| 287 | ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) | |
| 288 | P1e(tmp) | P2048o(tmp) | P2048e(tmp)); |
| 289 | } |
| 290 | |
| 291 | /** |
| 292 | * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data |
| 293 | * @ecc_data1: ecc code from nand spare area |
| 294 | * @ecc_data2: ecc code from hardware register obtained from hardware ecc |
| 295 | * @page_data: page data |
| 296 | * |
| 297 | * This function compares two ECC's and indicates if there is an error. |
| 298 | * If the error can be corrected it will be corrected to the buffer. |
| 299 | */ |
| 300 | static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */ |
| 301 | u8 *ecc_data2, /* read from register */ |
| 302 | u8 *page_data) |
| 303 | { |
| 304 | uint i; |
| 305 | u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8]; |
| 306 | u8 comp0_bit[8], comp1_bit[8], comp2_bit[8]; |
| 307 | u8 ecc_bit[24]; |
| 308 | u8 ecc_sum = 0; |
| 309 | u8 find_bit = 0; |
| 310 | uint find_byte = 0; |
| 311 | int isEccFF; |
| 312 | |
| 313 | isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF); |
| 314 | |
| 315 | gen_true_ecc(ecc_data1); |
| 316 | gen_true_ecc(ecc_data2); |
| 317 | |
| 318 | for (i = 0; i <= 2; i++) { |
| 319 | *(ecc_data1 + i) = ~(*(ecc_data1 + i)); |
| 320 | *(ecc_data2 + i) = ~(*(ecc_data2 + i)); |
| 321 | } |
| 322 | |
| 323 | for (i = 0; i < 8; i++) { |
| 324 | tmp0_bit[i] = *ecc_data1 % 2; |
| 325 | *ecc_data1 = *ecc_data1 / 2; |
| 326 | } |
| 327 | |
| 328 | for (i = 0; i < 8; i++) { |
| 329 | tmp1_bit[i] = *(ecc_data1 + 1) % 2; |
| 330 | *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2; |
| 331 | } |
| 332 | |
| 333 | for (i = 0; i < 8; i++) { |
| 334 | tmp2_bit[i] = *(ecc_data1 + 2) % 2; |
| 335 | *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2; |
| 336 | } |
| 337 | |
| 338 | for (i = 0; i < 8; i++) { |
| 339 | comp0_bit[i] = *ecc_data2 % 2; |
| 340 | *ecc_data2 = *ecc_data2 / 2; |
| 341 | } |
| 342 | |
| 343 | for (i = 0; i < 8; i++) { |
| 344 | comp1_bit[i] = *(ecc_data2 + 1) % 2; |
| 345 | *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2; |
| 346 | } |
| 347 | |
| 348 | for (i = 0; i < 8; i++) { |
| 349 | comp2_bit[i] = *(ecc_data2 + 2) % 2; |
| 350 | *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2; |
| 351 | } |
| 352 | |
| 353 | for (i = 0; i < 6; i++) |
| 354 | ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2]; |
| 355 | |
| 356 | for (i = 0; i < 8; i++) |
| 357 | ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i]; |
| 358 | |
| 359 | for (i = 0; i < 8; i++) |
| 360 | ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i]; |
| 361 | |
| 362 | ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0]; |
| 363 | ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1]; |
| 364 | |
| 365 | for (i = 0; i < 24; i++) |
| 366 | ecc_sum += ecc_bit[i]; |
| 367 | |
| 368 | switch (ecc_sum) { |
| 369 | case 0: |
| 370 | /* Not reached because this function is not called if |
| 371 | * ECC values are equal |
| 372 | */ |
| 373 | return 0; |
| 374 | |
| 375 | case 1: |
| 376 | /* Uncorrectable error */ |
| 377 | DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n"); |
| 378 | return -1; |
| 379 | |
| 380 | case 11: |
| 381 | /* UN-Correctable error */ |
| 382 | DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n"); |
| 383 | return -1; |
| 384 | |
| 385 | case 12: |
| 386 | /* Correctable error */ |
| 387 | find_byte = (ecc_bit[23] << 8) + |
| 388 | (ecc_bit[21] << 7) + |
| 389 | (ecc_bit[19] << 6) + |
| 390 | (ecc_bit[17] << 5) + |
| 391 | (ecc_bit[15] << 4) + |
| 392 | (ecc_bit[13] << 3) + |
| 393 | (ecc_bit[11] << 2) + |
| 394 | (ecc_bit[9] << 1) + |
| 395 | ecc_bit[7]; |
| 396 | |
| 397 | find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1]; |
| 398 | |
| 399 | DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at " |
| 400 | "offset: %d, bit: %d\n", find_byte, find_bit); |
| 401 | |
| 402 | page_data[find_byte] ^= (1 << find_bit); |
| 403 | |
| 404 | return 0; |
| 405 | default: |
| 406 | if (isEccFF) { |
| 407 | if (ecc_data2[0] == 0 && |
| 408 | ecc_data2[1] == 0 && |
| 409 | ecc_data2[2] == 0) |
| 410 | return 0; |
| 411 | } |
| 412 | DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n"); |
| 413 | return -1; |
| 414 | } |
| 415 | } |
| 416 | |
| 417 | /** |
| 418 | * omap_correct_data - Compares the ECC read with HW generated ECC |
| 419 | * @mtd: MTD device structure |
| 420 | * @dat: page data |
| 421 | * @read_ecc: ecc read from nand flash |
| 422 | * @calc_ecc: ecc read from HW ECC registers |
| 423 | * |
| 424 | * Compares the ecc read from nand spare area with ECC registers values |
| 425 | * and if ECC's mismached, it will call 'omap_compare_ecc' for error detection |
| 426 | * and correction. |
| 427 | */ |
| 428 | static int omap_correct_data(struct mtd_info *mtd, u_char *dat, |
| 429 | u_char *read_ecc, u_char *calc_ecc) |
| 430 | { |
| 431 | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, |
| 432 | mtd); |
| 433 | int blockCnt = 0, i = 0, ret = 0; |
| 434 | |
| 435 | /* Ex NAND_ECC_HW12_2048 */ |
| 436 | if ((info->nand.ecc.mode == NAND_ECC_HW) && |
| 437 | (info->nand.ecc.size == 2048)) |
| 438 | blockCnt = 4; |
| 439 | else |
| 440 | blockCnt = 1; |
| 441 | |
| 442 | for (i = 0; i < blockCnt; i++) { |
| 443 | if (memcmp(read_ecc, calc_ecc, 3) != 0) { |
| 444 | ret = omap_compare_ecc(read_ecc, calc_ecc, dat); |
| 445 | if (ret < 0) |
| 446 | return ret; |
| 447 | } |
| 448 | read_ecc += 3; |
| 449 | calc_ecc += 3; |
| 450 | dat += 512; |
| 451 | } |
| 452 | return 0; |
| 453 | } |
| 454 | |
| 455 | /** |
| 456 | * omap_calcuate_ecc - Generate non-inverted ECC bytes. |
| 457 | * @mtd: MTD device structure |
| 458 | * @dat: The pointer to data on which ecc is computed |
| 459 | * @ecc_code: The ecc_code buffer |
| 460 | * |
| 461 | * Using noninverted ECC can be considered ugly since writing a blank |
| 462 | * page ie. padding will clear the ECC bytes. This is no problem as long |
| 463 | * nobody is trying to write data on the seemingly unused page. Reading |
| 464 | * an erased page will produce an ECC mismatch between generated and read |
| 465 | * ECC bytes that has to be dealt with separately. |
| 466 | */ |
| 467 | static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat, |
| 468 | u_char *ecc_code) |
| 469 | { |
| 470 | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, |
| 471 | mtd); |
| 472 | unsigned long val = 0x0; |
| 473 | unsigned long reg; |
| 474 | |
| 475 | /* Start Reading from HW ECC1_Result = 0x200 */ |
| 476 | reg = (unsigned long)(info->gpmc_baseaddr + GPMC_ECC1_RESULT); |
| 477 | val = __raw_readl(reg); |
| 478 | *ecc_code++ = val; /* P128e, ..., P1e */ |
| 479 | *ecc_code++ = val >> 16; /* P128o, ..., P1o */ |
| 480 | /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */ |
| 481 | *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0); |
| 482 | reg += 4; |
| 483 | |
| 484 | return 0; |
| 485 | } |
| 486 | |
| 487 | /** |
| 488 | * omap_enable_hwecc - This function enables the hardware ecc functionality |
| 489 | * @mtd: MTD device structure |
| 490 | * @mode: Read/Write mode |
| 491 | */ |
| 492 | static void omap_enable_hwecc(struct mtd_info *mtd, int mode) |
| 493 | { |
| 494 | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, |
| 495 | mtd); |
| 496 | struct nand_chip *chip = mtd->priv; |
| 497 | unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; |
| 498 | unsigned long val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONFIG); |
| 499 | |
| 500 | switch (mode) { |
| 501 | case NAND_ECC_READ: |
| 502 | __raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL); |
| 503 | /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ |
| 504 | val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); |
| 505 | break; |
| 506 | case NAND_ECC_READSYN: |
| 507 | __raw_writel(0x100, info->gpmc_baseaddr + GPMC_ECC_CONTROL); |
| 508 | /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ |
| 509 | val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); |
| 510 | break; |
| 511 | case NAND_ECC_WRITE: |
| 512 | __raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL); |
| 513 | /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ |
| 514 | val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); |
| 515 | break; |
| 516 | default: |
| 517 | DEBUG(MTD_DEBUG_LEVEL0, "Error: Unrecognized Mode[%d]!\n", |
| 518 | mode); |
| 519 | break; |
| 520 | } |
| 521 | |
| 522 | __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONFIG); |
| 523 | } |
| 524 | #endif |
| 525 | |
| 526 | /** |
| 527 | * omap_wait - wait until the command is done |
| 528 | * @mtd: MTD device structure |
| 529 | * @chip: NAND Chip structure |
| 530 | * |
| 531 | * Wait function is called during Program and erase operations and |
| 532 | * the way it is called from MTD layer, we should wait till the NAND |
| 533 | * chip is ready after the programming/erase operation has completed. |
| 534 | * |
| 535 | * Erase can take up to 400ms and program up to 20ms according to |
| 536 | * general NAND and SmartMedia specs |
| 537 | */ |
| 538 | static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip) |
| 539 | { |
| 540 | struct nand_chip *this = mtd->priv; |
| 541 | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, |
| 542 | mtd); |
| 543 | unsigned long timeo = jiffies; |
| 544 | int status, state = this->state; |
| 545 | |
| 546 | if (state == FL_ERASING) |
| 547 | timeo += (HZ * 400) / 1000; |
| 548 | else |
| 549 | timeo += (HZ * 20) / 1000; |
| 550 | |
| 551 | this->IO_ADDR_W = (void *) info->gpmc_cs_baseaddr + |
| 552 | GPMC_CS_NAND_COMMAND; |
| 553 | this->IO_ADDR_R = (void *) info->gpmc_cs_baseaddr + GPMC_CS_NAND_DATA; |
| 554 | |
| 555 | __raw_writeb(NAND_CMD_STATUS & 0xFF, this->IO_ADDR_W); |
| 556 | |
| 557 | while (time_before(jiffies, timeo)) { |
| 558 | status = __raw_readb(this->IO_ADDR_R); |
| 559 | if (!(status & 0x40)) |
| 560 | break; |
| 561 | } |
| 562 | return status; |
| 563 | } |
| 564 | |
| 565 | /** |
| 566 | * omap_dev_ready - calls the platform specific dev_ready function |
| 567 | * @mtd: MTD device structure |
| 568 | */ |
| 569 | static int omap_dev_ready(struct mtd_info *mtd) |
| 570 | { |
| 571 | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, |
| 572 | mtd); |
| 573 | unsigned int val = __raw_readl(info->gpmc_baseaddr + GPMC_IRQ_STATUS); |
| 574 | |
| 575 | if ((val & 0x100) == 0x100) { |
| 576 | /* Clear IRQ Interrupt */ |
| 577 | val |= 0x100; |
| 578 | val &= ~(0x0); |
| 579 | __raw_writel(val, info->gpmc_baseaddr + GPMC_IRQ_STATUS); |
| 580 | } else { |
| 581 | unsigned int cnt = 0; |
| 582 | while (cnt++ < 0x1FF) { |
| 583 | if ((val & 0x100) == 0x100) |
| 584 | return 0; |
| 585 | val = __raw_readl(info->gpmc_baseaddr + |
| 586 | GPMC_IRQ_STATUS); |
| 587 | } |
| 588 | } |
| 589 | |
| 590 | return 1; |
| 591 | } |
| 592 | |
| 593 | static int __devinit omap_nand_probe(struct platform_device *pdev) |
| 594 | { |
| 595 | struct omap_nand_info *info; |
| 596 | struct omap_nand_platform_data *pdata; |
| 597 | int err; |
| 598 | unsigned long val; |
| 599 | |
| 600 | |
| 601 | pdata = pdev->dev.platform_data; |
| 602 | if (pdata == NULL) { |
| 603 | dev_err(&pdev->dev, "platform data missing\n"); |
| 604 | return -ENODEV; |
| 605 | } |
| 606 | |
| 607 | info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL); |
| 608 | if (!info) |
| 609 | return -ENOMEM; |
| 610 | |
| 611 | platform_set_drvdata(pdev, info); |
| 612 | |
| 613 | spin_lock_init(&info->controller.lock); |
| 614 | init_waitqueue_head(&info->controller.wq); |
| 615 | |
| 616 | info->pdev = pdev; |
| 617 | |
| 618 | info->gpmc_cs = pdata->cs; |
| 619 | info->gpmc_baseaddr = pdata->gpmc_baseaddr; |
| 620 | info->gpmc_cs_baseaddr = pdata->gpmc_cs_baseaddr; |
| 621 | |
| 622 | info->mtd.priv = &info->nand; |
| 623 | info->mtd.name = dev_name(&pdev->dev); |
| 624 | info->mtd.owner = THIS_MODULE; |
| 625 | |
| 626 | err = gpmc_cs_request(info->gpmc_cs, NAND_IO_SIZE, &info->phys_base); |
| 627 | if (err < 0) { |
| 628 | dev_err(&pdev->dev, "Cannot request GPMC CS\n"); |
| 629 | goto out_free_info; |
| 630 | } |
| 631 | |
| 632 | /* Enable RD PIN Monitoring Reg */ |
| 633 | if (pdata->dev_ready) { |
| 634 | val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1); |
| 635 | val |= WR_RD_PIN_MONITORING; |
| 636 | gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG1, val); |
| 637 | } |
| 638 | |
| 639 | val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG7); |
| 640 | val &= ~(0xf << 8); |
| 641 | val |= (0xc & 0xf) << 8; |
| 642 | gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG7, val); |
| 643 | |
| 644 | /* NAND write protect off */ |
| 645 | omap_nand_wp(&info->mtd, NAND_WP_OFF); |
| 646 | |
| 647 | if (!request_mem_region(info->phys_base, NAND_IO_SIZE, |
| 648 | pdev->dev.driver->name)) { |
| 649 | err = -EBUSY; |
| 650 | goto out_free_cs; |
| 651 | } |
| 652 | |
| 653 | info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE); |
| 654 | if (!info->nand.IO_ADDR_R) { |
| 655 | err = -ENOMEM; |
| 656 | goto out_release_mem_region; |
| 657 | } |
| 658 | info->nand.controller = &info->controller; |
| 659 | |
| 660 | info->nand.IO_ADDR_W = info->nand.IO_ADDR_R; |
| 661 | info->nand.cmd_ctrl = omap_hwcontrol; |
| 662 | |
| 663 | /* REVISIT: only supports 16-bit NAND flash */ |
| 664 | |
| 665 | info->nand.read_buf = omap_read_buf16; |
| 666 | info->nand.write_buf = omap_write_buf16; |
| 667 | info->nand.verify_buf = omap_verify_buf; |
| 668 | |
| 669 | /* |
| 670 | * If RDY/BSY line is connected to OMAP then use the omap ready |
| 671 | * funcrtion and the generic nand_wait function which reads the status |
| 672 | * register after monitoring the RDY/BSY line.Otherwise use a standard |
| 673 | * chip delay which is slightly more than tR (AC Timing) of the NAND |
| 674 | * device and read status register until you get a failure or success |
| 675 | */ |
| 676 | if (pdata->dev_ready) { |
| 677 | info->nand.dev_ready = omap_dev_ready; |
| 678 | info->nand.chip_delay = 0; |
| 679 | } else { |
| 680 | info->nand.waitfunc = omap_wait; |
| 681 | info->nand.chip_delay = 50; |
| 682 | } |
| 683 | |
| 684 | info->nand.options |= NAND_SKIP_BBTSCAN; |
| 685 | if ((gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1) & 0x3000) |
| 686 | == 0x1000) |
| 687 | info->nand.options |= NAND_BUSWIDTH_16; |
| 688 | |
| 689 | #ifdef CONFIG_MTD_NAND_OMAP_HWECC |
| 690 | info->nand.ecc.bytes = 3; |
| 691 | info->nand.ecc.size = 512; |
| 692 | info->nand.ecc.calculate = omap_calculate_ecc; |
| 693 | info->nand.ecc.hwctl = omap_enable_hwecc; |
| 694 | info->nand.ecc.correct = omap_correct_data; |
| 695 | info->nand.ecc.mode = NAND_ECC_HW; |
| 696 | |
| 697 | /* init HW ECC */ |
| 698 | omap_hwecc_init(&info->mtd); |
| 699 | #else |
| 700 | info->nand.ecc.mode = NAND_ECC_SOFT; |
| 701 | #endif |
| 702 | |
| 703 | /* DIP switches on some boards change between 8 and 16 bit |
| 704 | * bus widths for flash. Try the other width if the first try fails. |
| 705 | */ |
| 706 | if (nand_scan(&info->mtd, 1)) { |
| 707 | info->nand.options ^= NAND_BUSWIDTH_16; |
| 708 | if (nand_scan(&info->mtd, 1)) { |
| 709 | err = -ENXIO; |
| 710 | goto out_release_mem_region; |
| 711 | } |
| 712 | } |
| 713 | |
| 714 | #ifdef CONFIG_MTD_PARTITIONS |
| 715 | err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0); |
| 716 | if (err > 0) |
| 717 | add_mtd_partitions(&info->mtd, info->parts, err); |
| 718 | else if (pdata->parts) |
| 719 | add_mtd_partitions(&info->mtd, pdata->parts, pdata->nr_parts); |
| 720 | else |
| 721 | #endif |
| 722 | add_mtd_device(&info->mtd); |
| 723 | |
| 724 | platform_set_drvdata(pdev, &info->mtd); |
| 725 | |
| 726 | return 0; |
| 727 | |
| 728 | out_release_mem_region: |
| 729 | release_mem_region(info->phys_base, NAND_IO_SIZE); |
| 730 | out_free_cs: |
| 731 | gpmc_cs_free(info->gpmc_cs); |
| 732 | out_free_info: |
| 733 | kfree(info); |
| 734 | |
| 735 | return err; |
| 736 | } |
| 737 | |
| 738 | static int omap_nand_remove(struct platform_device *pdev) |
| 739 | { |
| 740 | struct mtd_info *mtd = platform_get_drvdata(pdev); |
| 741 | struct omap_nand_info *info = mtd->priv; |
| 742 | |
| 743 | platform_set_drvdata(pdev, NULL); |
| 744 | /* Release NAND device, its internal structures and partitions */ |
| 745 | nand_release(&info->mtd); |
| 746 | iounmap(info->nand.IO_ADDR_R); |
| 747 | kfree(&info->mtd); |
| 748 | return 0; |
| 749 | } |
| 750 | |
| 751 | static struct platform_driver omap_nand_driver = { |
| 752 | .probe = omap_nand_probe, |
| 753 | .remove = omap_nand_remove, |
| 754 | .driver = { |
| 755 | .name = DRIVER_NAME, |
| 756 | .owner = THIS_MODULE, |
| 757 | }, |
| 758 | }; |
| 759 | |
| 760 | static int __init omap_nand_init(void) |
| 761 | { |
| 762 | printk(KERN_INFO "%s driver initializing\n", DRIVER_NAME); |
| 763 | return platform_driver_register(&omap_nand_driver); |
| 764 | } |
| 765 | |
| 766 | static void __exit omap_nand_exit(void) |
| 767 | { |
| 768 | platform_driver_unregister(&omap_nand_driver); |
| 769 | } |
| 770 | |
| 771 | module_init(omap_nand_init); |
| 772 | module_exit(omap_nand_exit); |
| 773 | |
| 774 | MODULE_ALIAS(DRIVER_NAME); |
| 775 | MODULE_LICENSE("GPL"); |
| 776 | MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards"); |