blob: 5b3adbae482011ffebfcfe9216e8d392e18f587b [file] [log] [blame]
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001/*
2 Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21/*
22 Module: rt2400pci
23 Abstract: rt2400pci device specific routines.
24 Supported chipsets: RT2460.
25 */
26
27/*
28 * Set enviroment defines for rt2x00.h
29 */
30#define DRV_NAME "rt2400pci"
31
32#include <linux/delay.h>
33#include <linux/etherdevice.h>
34#include <linux/init.h>
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/eeprom_93cx6.h>
39
40#include "rt2x00.h"
41#include "rt2x00pci.h"
42#include "rt2400pci.h"
43
44/*
45 * Register access.
46 * All access to the CSR registers will go through the methods
47 * rt2x00pci_register_read and rt2x00pci_register_write.
48 * BBP and RF register require indirect register access,
49 * and use the CSR registers BBPCSR and RFCSR to achieve this.
50 * These indirect registers work with busy bits,
51 * and we will try maximal REGISTER_BUSY_COUNT times to access
52 * the register while taking a REGISTER_BUSY_DELAY us delay
53 * between each attampt. When the busy bit is still set at that time,
54 * the access attempt is considered to have failed,
55 * and we will print an error.
56 */
57static u32 rt2400pci_bbp_check(const struct rt2x00_dev *rt2x00dev)
58{
59 u32 reg;
60 unsigned int i;
61
62 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
63 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
64 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
65 break;
66 udelay(REGISTER_BUSY_DELAY);
67 }
68
69 return reg;
70}
71
72static void rt2400pci_bbp_write(const struct rt2x00_dev *rt2x00dev,
73 const unsigned int word, const u8 value)
74{
75 u32 reg;
76
77 /*
78 * Wait until the BBP becomes ready.
79 */
80 reg = rt2400pci_bbp_check(rt2x00dev);
81 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
82 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
83 return;
84 }
85
86 /*
87 * Write the data into the BBP.
88 */
89 reg = 0;
90 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
91 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
92 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
93 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
94
95 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
96}
97
98static void rt2400pci_bbp_read(const struct rt2x00_dev *rt2x00dev,
99 const unsigned int word, u8 *value)
100{
101 u32 reg;
102
103 /*
104 * Wait until the BBP becomes ready.
105 */
106 reg = rt2400pci_bbp_check(rt2x00dev);
107 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
108 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
109 return;
110 }
111
112 /*
113 * Write the request into the BBP.
114 */
115 reg = 0;
116 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
117 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
118 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
119
120 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
121
122 /*
123 * Wait until the BBP becomes ready.
124 */
125 reg = rt2400pci_bbp_check(rt2x00dev);
126 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
127 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
128 *value = 0xff;
129 return;
130 }
131
132 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
133}
134
135static void rt2400pci_rf_write(const struct rt2x00_dev *rt2x00dev,
136 const unsigned int word, const u32 value)
137{
138 u32 reg;
139 unsigned int i;
140
141 if (!word)
142 return;
143
144 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
145 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
146 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
147 goto rf_write;
148 udelay(REGISTER_BUSY_DELAY);
149 }
150
151 ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
152 return;
153
154rf_write:
155 reg = 0;
156 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
157 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
158 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
159 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
160
161 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
162 rt2x00_rf_write(rt2x00dev, word, value);
163}
164
165static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
166{
167 struct rt2x00_dev *rt2x00dev = eeprom->data;
168 u32 reg;
169
170 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
171
172 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
173 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
174 eeprom->reg_data_clock =
175 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
176 eeprom->reg_chip_select =
177 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
178}
179
180static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
181{
182 struct rt2x00_dev *rt2x00dev = eeprom->data;
183 u32 reg = 0;
184
185 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
186 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
187 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
188 !!eeprom->reg_data_clock);
189 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
190 !!eeprom->reg_chip_select);
191
192 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
193}
194
195#ifdef CONFIG_RT2X00_LIB_DEBUGFS
196#define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
197
198static void rt2400pci_read_csr(const struct rt2x00_dev *rt2x00dev,
199 const unsigned int word, u32 *data)
200{
201 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
202}
203
204static void rt2400pci_write_csr(const struct rt2x00_dev *rt2x00dev,
205 const unsigned int word, u32 data)
206{
207 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
208}
209
210static const struct rt2x00debug rt2400pci_rt2x00debug = {
211 .owner = THIS_MODULE,
212 .csr = {
213 .read = rt2400pci_read_csr,
214 .write = rt2400pci_write_csr,
215 .word_size = sizeof(u32),
216 .word_count = CSR_REG_SIZE / sizeof(u32),
217 },
218 .eeprom = {
219 .read = rt2x00_eeprom_read,
220 .write = rt2x00_eeprom_write,
221 .word_size = sizeof(u16),
222 .word_count = EEPROM_SIZE / sizeof(u16),
223 },
224 .bbp = {
225 .read = rt2400pci_bbp_read,
226 .write = rt2400pci_bbp_write,
227 .word_size = sizeof(u8),
228 .word_count = BBP_SIZE / sizeof(u8),
229 },
230 .rf = {
231 .read = rt2x00_rf_read,
232 .write = rt2400pci_rf_write,
233 .word_size = sizeof(u32),
234 .word_count = RF_SIZE / sizeof(u32),
235 },
236};
237#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
238
239#ifdef CONFIG_RT2400PCI_RFKILL
240static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
241{
242 u32 reg;
243
244 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
245 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
246}
Ivo van Doorn81873e92007-10-06 14:14:06 +0200247#else
248#define rt2400pci_rfkill_poll NULL
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700249#endif /* CONFIG_RT2400PCI_RFKILL */
250
251/*
252 * Configuration handlers.
253 */
Ivo van Doorn4abee4b2007-10-06 14:11:46 +0200254static void rt2400pci_config_mac_addr(struct rt2x00_dev *rt2x00dev,
255 __le32 *mac)
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700256{
Ivo van Doorn4abee4b2007-10-06 14:11:46 +0200257 rt2x00pci_register_multiwrite(rt2x00dev, CSR3, mac,
258 (2 * sizeof(__le32)));
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700259}
260
Ivo van Doorn4abee4b2007-10-06 14:11:46 +0200261static void rt2400pci_config_bssid(struct rt2x00_dev *rt2x00dev,
262 __le32 *bssid)
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700263{
Ivo van Doorn4abee4b2007-10-06 14:11:46 +0200264 rt2x00pci_register_multiwrite(rt2x00dev, CSR5, bssid,
265 (2 * sizeof(__le32)));
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700266}
267
Ivo van Doornfeb24692007-10-06 14:14:29 +0200268static void rt2400pci_config_type(struct rt2x00_dev *rt2x00dev, const int type,
269 const int tsf_sync)
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700270{
271 u32 reg;
272
273 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
274
275 /*
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700276 * Enable beacon config
277 */
278 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
279 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD,
Ivo van Doorna137e202007-10-06 14:14:58 +0200280 PREAMBLE + get_duration(IEEE80211_HEADER, 20));
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700281 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
282
283 /*
284 * Enable synchronisation.
285 */
286 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
Johannes Berg4150c572007-09-17 01:29:23 -0400287 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
288 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700289 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
Ivo van Doornfeb24692007-10-06 14:14:29 +0200290 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, tsf_sync);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700291 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
292}
293
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200294static void rt2400pci_config_preamble(struct rt2x00_dev *rt2x00dev,
295 const int short_preamble,
296 const int ack_timeout,
297 const int ack_consume_time)
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700298{
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200299 int preamble_mask;
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700300 u32 reg;
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700301
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200302 /*
303 * When short preamble is enabled, we should set bit 0x08
304 */
305 preamble_mask = short_preamble << 3;
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700306
307 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200308 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, ack_timeout);
309 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, ack_consume_time);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700310 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
311
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700312 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200313 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700314 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
315 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
316 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
317
318 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200319 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700320 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
321 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
322 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
323
324 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200325 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700326 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
327 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
328 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
329
330 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200331 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700332 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
333 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
334 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
335}
336
337static void rt2400pci_config_phymode(struct rt2x00_dev *rt2x00dev,
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200338 const int basic_rate_mask)
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700339{
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200340 rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700341}
342
343static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200344 struct rf_channel *rf)
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700345{
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700346 /*
347 * Switch on tuning bits.
348 */
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200349 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
350 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700351
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200352 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
353 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
354 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700355
356 /*
357 * RF2420 chipset don't need any additional actions.
358 */
359 if (rt2x00_rf(&rt2x00dev->chip, RF2420))
360 return;
361
362 /*
363 * For the RT2421 chipsets we need to write an invalid
364 * reference clock rate to activate auto_tune.
365 * After that we set the value back to the correct channel.
366 */
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200367 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700368 rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200369 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700370
371 msleep(1);
372
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200373 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
374 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
375 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700376
377 msleep(1);
378
379 /*
380 * Switch off tuning bits.
381 */
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200382 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
383 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700384
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200385 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
386 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700387
388 /*
389 * Clear false CRC during channel switch.
390 */
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200391 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700392}
393
394static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
395{
396 rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
397}
398
399static void rt2400pci_config_antenna(struct rt2x00_dev *rt2x00dev,
Ivo van Doornaddc81bd2007-10-13 16:26:23 +0200400 struct antenna_setup *ant)
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700401{
402 u8 r1;
403 u8 r4;
404
405 rt2400pci_bbp_read(rt2x00dev, 4, &r4);
406 rt2400pci_bbp_read(rt2x00dev, 1, &r1);
407
408 /*
409 * Configure the TX antenna.
410 */
Ivo van Doornaddc81bd2007-10-13 16:26:23 +0200411 switch (ant->tx) {
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700412 case ANTENNA_HW_DIVERSITY:
413 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
414 break;
415 case ANTENNA_A:
416 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
417 break;
Ivo van Doorn39e75852007-10-13 16:26:27 +0200418 case ANTENNA_SW_DIVERSITY:
419 /*
420 * NOTE: We should never come here because rt2x00lib is
421 * supposed to catch this and send us the correct antenna
422 * explicitely. However we are nog going to bug about this.
423 * Instead, just default to antenna B.
424 */
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700425 case ANTENNA_B:
426 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
427 break;
428 }
429
430 /*
431 * Configure the RX antenna.
432 */
Ivo van Doornaddc81bd2007-10-13 16:26:23 +0200433 switch (ant->rx) {
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700434 case ANTENNA_HW_DIVERSITY:
435 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
436 break;
437 case ANTENNA_A:
438 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
439 break;
Ivo van Doorn39e75852007-10-13 16:26:27 +0200440 case ANTENNA_SW_DIVERSITY:
441 /*
442 * NOTE: We should never come here because rt2x00lib is
443 * supposed to catch this and send us the correct antenna
444 * explicitely. However we are nog going to bug about this.
445 * Instead, just default to antenna B.
446 */
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700447 case ANTENNA_B:
448 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
449 break;
450 }
451
452 rt2400pci_bbp_write(rt2x00dev, 4, r4);
453 rt2400pci_bbp_write(rt2x00dev, 1, r1);
454}
455
456static void rt2400pci_config_duration(struct rt2x00_dev *rt2x00dev,
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200457 struct rt2x00lib_conf *libconf)
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700458{
459 u32 reg;
460
461 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200462 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700463 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
464
465 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200466 rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
467 rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700468 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
469
470 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200471 rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
472 rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700473 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
474
475 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
476 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
477 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
478 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
479
480 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200481 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
482 libconf->conf->beacon_int * 16);
483 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
484 libconf->conf->beacon_int * 16);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700485 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
486}
487
488static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
489 const unsigned int flags,
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200490 struct rt2x00lib_conf *libconf)
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700491{
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700492 if (flags & CONFIG_UPDATE_PHYMODE)
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200493 rt2400pci_config_phymode(rt2x00dev, libconf->basic_rates);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700494 if (flags & CONFIG_UPDATE_CHANNEL)
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200495 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700496 if (flags & CONFIG_UPDATE_TXPOWER)
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200497 rt2400pci_config_txpower(rt2x00dev,
498 libconf->conf->power_level);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700499 if (flags & CONFIG_UPDATE_ANTENNA)
Ivo van Doornaddc81bd2007-10-13 16:26:23 +0200500 rt2400pci_config_antenna(rt2x00dev, &libconf->ant);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700501 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
Ivo van Doorn5c58ee52007-10-06 13:34:52 +0200502 rt2400pci_config_duration(rt2x00dev, libconf);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700503}
504
505static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
506 struct ieee80211_tx_queue_params *params)
507{
508 u32 reg;
509
510 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
511 rt2x00_set_field32(&reg, CSR11_CWMIN, params->cw_min);
512 rt2x00_set_field32(&reg, CSR11_CWMAX, params->cw_max);
513 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
514}
515
516/*
517 * LED functions.
518 */
519static void rt2400pci_enable_led(struct rt2x00_dev *rt2x00dev)
520{
521 u32 reg;
522
523 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
524
525 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
526 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
527
528 if (rt2x00dev->led_mode == LED_MODE_TXRX_ACTIVITY) {
529 rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
530 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
531 } else if (rt2x00dev->led_mode == LED_MODE_ASUS) {
532 rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
533 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
534 } else {
535 rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
536 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
537 }
538
539 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
540}
541
542static void rt2400pci_disable_led(struct rt2x00_dev *rt2x00dev)
543{
544 u32 reg;
545
546 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
547 rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
548 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
549 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
550}
551
552/*
553 * Link tuning
554 */
Ivo van Doornebcf26d2007-10-13 16:26:12 +0200555static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
556 struct link_qual *qual)
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700557{
558 u32 reg;
559 u8 bbp;
560
561 /*
562 * Update FCS error count from register.
563 */
564 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
Ivo van Doornebcf26d2007-10-13 16:26:12 +0200565 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700566
567 /*
568 * Update False CCA count from register.
569 */
570 rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
Ivo van Doornebcf26d2007-10-13 16:26:12 +0200571 qual->false_cca = bbp;
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700572}
573
574static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
575{
576 rt2400pci_bbp_write(rt2x00dev, 13, 0x08);
577 rt2x00dev->link.vgc_level = 0x08;
578}
579
580static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev)
581{
582 u8 reg;
583
584 /*
585 * The link tuner should not run longer then 60 seconds,
586 * and should run once every 2 seconds.
587 */
588 if (rt2x00dev->link.count > 60 || !(rt2x00dev->link.count & 1))
589 return;
590
591 /*
592 * Base r13 link tuning on the false cca count.
593 */
594 rt2400pci_bbp_read(rt2x00dev, 13, &reg);
595
Ivo van Doornebcf26d2007-10-13 16:26:12 +0200596 if (rt2x00dev->link.qual.false_cca > 512 && reg < 0x20) {
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700597 rt2400pci_bbp_write(rt2x00dev, 13, ++reg);
598 rt2x00dev->link.vgc_level = reg;
Ivo van Doornebcf26d2007-10-13 16:26:12 +0200599 } else if (rt2x00dev->link.qual.false_cca < 100 && reg > 0x08) {
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700600 rt2400pci_bbp_write(rt2x00dev, 13, --reg);
601 rt2x00dev->link.vgc_level = reg;
602 }
603}
604
605/*
606 * Initialization functions.
607 */
608static void rt2400pci_init_rxring(struct rt2x00_dev *rt2x00dev)
609{
610 struct data_ring *ring = rt2x00dev->rx;
611 struct data_desc *rxd;
612 unsigned int i;
613 u32 word;
614
615 memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
616
617 for (i = 0; i < ring->stats.limit; i++) {
618 rxd = ring->entry[i].priv;
619
620 rt2x00_desc_read(rxd, 2, &word);
621 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH,
622 ring->data_size);
623 rt2x00_desc_write(rxd, 2, word);
624
625 rt2x00_desc_read(rxd, 1, &word);
626 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS,
627 ring->entry[i].data_dma);
628 rt2x00_desc_write(rxd, 1, word);
629
630 rt2x00_desc_read(rxd, 0, &word);
631 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
632 rt2x00_desc_write(rxd, 0, word);
633 }
634
635 rt2x00_ring_index_clear(rt2x00dev->rx);
636}
637
638static void rt2400pci_init_txring(struct rt2x00_dev *rt2x00dev, const int queue)
639{
640 struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
641 struct data_desc *txd;
642 unsigned int i;
643 u32 word;
644
645 memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
646
647 for (i = 0; i < ring->stats.limit; i++) {
648 txd = ring->entry[i].priv;
649
650 rt2x00_desc_read(txd, 1, &word);
651 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS,
652 ring->entry[i].data_dma);
653 rt2x00_desc_write(txd, 1, word);
654
655 rt2x00_desc_read(txd, 2, &word);
656 rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH,
657 ring->data_size);
658 rt2x00_desc_write(txd, 2, word);
659
660 rt2x00_desc_read(txd, 0, &word);
661 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
662 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
663 rt2x00_desc_write(txd, 0, word);
664 }
665
666 rt2x00_ring_index_clear(ring);
667}
668
669static int rt2400pci_init_rings(struct rt2x00_dev *rt2x00dev)
670{
671 u32 reg;
672
673 /*
674 * Initialize rings.
675 */
676 rt2400pci_init_rxring(rt2x00dev);
677 rt2400pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
678 rt2400pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
679 rt2400pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
680 rt2400pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
681
682 /*
683 * Initialize registers.
684 */
685 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
686 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE,
687 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size);
688 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD,
689 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
690 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM,
691 rt2x00dev->bcn[1].stats.limit);
692 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO,
693 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
694 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
695
696 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
697 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
698 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
699 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
700
701 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
702 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
703 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
704 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
705
706 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
707 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
708 rt2x00dev->bcn[1].data_dma);
709 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
710
711 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
712 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
713 rt2x00dev->bcn[0].data_dma);
714 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
715
716 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
717 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
718 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->stats.limit);
719 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
720
721 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
722 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
723 rt2x00dev->rx->data_dma);
724 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
725
726 return 0;
727}
728
729static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
730{
731 u32 reg;
732
733 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
734 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
735 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
736 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
737
738 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
739 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
740 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
741 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
742 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
743
744 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
745 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
746 (rt2x00dev->rx->data_size / 128));
747 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
748
749 rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
750
751 rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
752 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
753 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
754 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
755 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
756 rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
757
758 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
759 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
760 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
761 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
762 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
763 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
764 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
765 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
766
767 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
768
769 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
770 return -EBUSY;
771
772 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
773 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
774
775 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
776 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
777 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
778
779 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
780 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
781 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
782 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
783 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
784 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
785
786 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
787 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
788 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
789 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
790 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
791
792 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
793 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
794 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
795 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
796
797 /*
798 * We must clear the FCS and FIFO error count.
799 * These registers are cleared on read,
800 * so we may pass a useless variable to store the value.
801 */
802 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
803 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
804
805 return 0;
806}
807
808static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
809{
810 unsigned int i;
811 u16 eeprom;
812 u8 reg_id;
813 u8 value;
814
815 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
816 rt2400pci_bbp_read(rt2x00dev, 0, &value);
817 if ((value != 0xff) && (value != 0x00))
818 goto continue_csr_init;
819 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
820 udelay(REGISTER_BUSY_DELAY);
821 }
822
823 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
824 return -EACCES;
825
826continue_csr_init:
827 rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
828 rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
829 rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
830 rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
831 rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
832 rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
833 rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
834 rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
835 rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
836 rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
837 rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
838 rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
839 rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
840 rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
841
842 DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
843 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
844 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
845
846 if (eeprom != 0xffff && eeprom != 0x0000) {
847 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
848 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
849 DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
850 reg_id, value);
851 rt2400pci_bbp_write(rt2x00dev, reg_id, value);
852 }
853 }
854 DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
855
856 return 0;
857}
858
859/*
860 * Device state switch handlers.
861 */
862static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
863 enum dev_state state)
864{
865 u32 reg;
866
867 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
868 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
869 state == STATE_RADIO_RX_OFF);
870 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
871}
872
873static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
874 enum dev_state state)
875{
876 int mask = (state == STATE_RADIO_IRQ_OFF);
877 u32 reg;
878
879 /*
880 * When interrupts are being enabled, the interrupt registers
881 * should clear the register to assure a clean state.
882 */
883 if (state == STATE_RADIO_IRQ_ON) {
884 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
885 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
886 }
887
888 /*
889 * Only toggle the interrupts bits we are going to use.
890 * Non-checked interrupt bits are disabled by default.
891 */
892 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
893 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
894 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
895 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
896 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
897 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
898 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
899}
900
901static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
902{
903 /*
904 * Initialize all registers.
905 */
906 if (rt2400pci_init_rings(rt2x00dev) ||
907 rt2400pci_init_registers(rt2x00dev) ||
908 rt2400pci_init_bbp(rt2x00dev)) {
909 ERROR(rt2x00dev, "Register initialization failed.\n");
910 return -EIO;
911 }
912
913 /*
914 * Enable interrupts.
915 */
916 rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
917
918 /*
919 * Enable LED
920 */
921 rt2400pci_enable_led(rt2x00dev);
922
923 return 0;
924}
925
926static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
927{
928 u32 reg;
929
930 /*
931 * Disable LED
932 */
933 rt2400pci_disable_led(rt2x00dev);
934
935 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
936
937 /*
938 * Disable synchronisation.
939 */
940 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
941
942 /*
943 * Cancel RX and TX.
944 */
945 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
946 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
947 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
948
949 /*
950 * Disable interrupts.
951 */
952 rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
953}
954
955static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
956 enum dev_state state)
957{
958 u32 reg;
959 unsigned int i;
960 char put_to_sleep;
961 char bbp_state;
962 char rf_state;
963
964 put_to_sleep = (state != STATE_AWAKE);
965
966 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
967 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
968 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
969 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
970 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
971 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
972
973 /*
974 * Device is not guaranteed to be in the requested state yet.
975 * We must wait until the register indicates that the
976 * device has entered the correct state.
977 */
978 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
979 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
980 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
981 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
982 if (bbp_state == state && rf_state == state)
983 return 0;
984 msleep(10);
985 }
986
987 NOTICE(rt2x00dev, "Device failed to enter state %d, "
988 "current device state: bbp %d and rf %d.\n",
989 state, bbp_state, rf_state);
990
991 return -EBUSY;
992}
993
994static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
995 enum dev_state state)
996{
997 int retval = 0;
998
999 switch (state) {
1000 case STATE_RADIO_ON:
1001 retval = rt2400pci_enable_radio(rt2x00dev);
1002 break;
1003 case STATE_RADIO_OFF:
1004 rt2400pci_disable_radio(rt2x00dev);
1005 break;
1006 case STATE_RADIO_RX_ON:
1007 case STATE_RADIO_RX_OFF:
1008 rt2400pci_toggle_rx(rt2x00dev, state);
1009 break;
1010 case STATE_DEEP_SLEEP:
1011 case STATE_SLEEP:
1012 case STATE_STANDBY:
1013 case STATE_AWAKE:
1014 retval = rt2400pci_set_state(rt2x00dev, state);
1015 break;
1016 default:
1017 retval = -ENOTSUPP;
1018 break;
1019 }
1020
1021 return retval;
1022}
1023
1024/*
1025 * TX descriptor initialization
1026 */
1027static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1028 struct data_desc *txd,
Johannes Berg4150c572007-09-17 01:29:23 -04001029 struct txdata_entry_desc *desc,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001030 struct ieee80211_hdr *ieee80211hdr,
1031 unsigned int length,
1032 struct ieee80211_tx_control *control)
1033{
1034 u32 word;
1035 u32 signal = 0;
1036 u32 service = 0;
1037 u32 length_high = 0;
1038 u32 length_low = 0;
1039
1040 /*
1041 * The PLCP values should be treated as if they
1042 * were BBP values.
1043 */
1044 rt2x00_set_field32(&signal, BBPCSR_VALUE, desc->signal);
1045 rt2x00_set_field32(&signal, BBPCSR_REGNUM, 5);
1046 rt2x00_set_field32(&signal, BBPCSR_BUSY, 1);
1047
1048 rt2x00_set_field32(&service, BBPCSR_VALUE, desc->service);
1049 rt2x00_set_field32(&service, BBPCSR_REGNUM, 6);
1050 rt2x00_set_field32(&service, BBPCSR_BUSY, 1);
1051
1052 rt2x00_set_field32(&length_high, BBPCSR_VALUE, desc->length_high);
1053 rt2x00_set_field32(&length_high, BBPCSR_REGNUM, 7);
1054 rt2x00_set_field32(&length_high, BBPCSR_BUSY, 1);
1055
1056 rt2x00_set_field32(&length_low, BBPCSR_VALUE, desc->length_low);
1057 rt2x00_set_field32(&length_low, BBPCSR_REGNUM, 8);
1058 rt2x00_set_field32(&length_low, BBPCSR_BUSY, 1);
1059
1060 /*
1061 * Start writing the descriptor words.
1062 */
1063 rt2x00_desc_read(txd, 2, &word);
1064 rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, length);
1065 rt2x00_desc_write(txd, 2, word);
1066
1067 rt2x00_desc_read(txd, 3, &word);
1068 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, signal);
1069 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, service);
1070 rt2x00_desc_write(txd, 3, word);
1071
1072 rt2x00_desc_read(txd, 4, &word);
1073 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, length_low);
1074 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, length_high);
1075 rt2x00_desc_write(txd, 4, word);
1076
1077 rt2x00_desc_read(txd, 0, &word);
1078 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1079 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1080 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1081 test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
1082 rt2x00_set_field32(&word, TXD_W0_ACK,
1083 !(control->flags & IEEE80211_TXCTL_NO_ACK));
1084 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1085 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
1086 rt2x00_set_field32(&word, TXD_W0_RTS,
1087 test_bit(ENTRY_TXD_RTS_FRAME, &desc->flags));
1088 rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
1089 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1090 !!(control->flags &
1091 IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1092 rt2x00_desc_write(txd, 0, word);
1093}
1094
1095/*
1096 * TX data initialization
1097 */
1098static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1099 unsigned int queue)
1100{
1101 u32 reg;
1102
1103 if (queue == IEEE80211_TX_QUEUE_BEACON) {
1104 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1105 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1106 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1107 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1108 }
1109 return;
1110 }
1111
1112 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1113 if (queue == IEEE80211_TX_QUEUE_DATA0)
1114 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
1115 else if (queue == IEEE80211_TX_QUEUE_DATA1)
1116 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
1117 else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
1118 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
1119 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1120}
1121
1122/*
1123 * RX control handlers
1124 */
Johannes Berg4150c572007-09-17 01:29:23 -04001125static void rt2400pci_fill_rxdone(struct data_entry *entry,
1126 struct rxdata_entry_desc *desc)
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001127{
1128 struct data_desc *rxd = entry->priv;
1129 u32 word0;
1130 u32 word2;
1131
1132 rt2x00_desc_read(rxd, 0, &word0);
1133 rt2x00_desc_read(rxd, 2, &word2);
1134
Johannes Berg4150c572007-09-17 01:29:23 -04001135 desc->flags = 0;
1136 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1137 desc->flags |= RX_FLAG_FAILED_FCS_CRC;
1138 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1139 desc->flags |= RX_FLAG_FAILED_PLCP_CRC;
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001140
1141 /*
1142 * Obtain the status about this packet.
1143 */
Johannes Berg4150c572007-09-17 01:29:23 -04001144 desc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1145 desc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001146 entry->ring->rt2x00dev->rssi_offset;
Johannes Berg4150c572007-09-17 01:29:23 -04001147 desc->ofdm = 0;
1148 desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001149}
1150
1151/*
1152 * Interrupt functions.
1153 */
1154static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev, const int queue)
1155{
1156 struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
1157 struct data_entry *entry;
1158 struct data_desc *txd;
1159 u32 word;
1160 int tx_status;
1161 int retry;
1162
1163 while (!rt2x00_ring_empty(ring)) {
1164 entry = rt2x00_get_data_entry_done(ring);
1165 txd = entry->priv;
1166 rt2x00_desc_read(txd, 0, &word);
1167
1168 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1169 !rt2x00_get_field32(word, TXD_W0_VALID))
1170 break;
1171
1172 /*
1173 * Obtain the status about this packet.
1174 */
1175 tx_status = rt2x00_get_field32(word, TXD_W0_RESULT);
1176 retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1177
1178 rt2x00lib_txdone(entry, tx_status, retry);
1179
1180 /*
1181 * Make this entry available for reuse.
1182 */
1183 entry->flags = 0;
1184 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1185 rt2x00_desc_write(txd, 0, word);
1186 rt2x00_ring_index_done_inc(ring);
1187 }
1188
1189 /*
1190 * If the data ring was full before the txdone handler
1191 * we must make sure the packet queue in the mac80211 stack
1192 * is reenabled when the txdone handler has finished.
1193 */
1194 entry = ring->entry;
1195 if (!rt2x00_ring_full(ring))
1196 ieee80211_wake_queue(rt2x00dev->hw,
1197 entry->tx_status.control.queue);
1198}
1199
1200static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1201{
1202 struct rt2x00_dev *rt2x00dev = dev_instance;
1203 u32 reg;
1204
1205 /*
1206 * Get the interrupt sources & saved to local variable.
1207 * Write register value back to clear pending interrupts.
1208 */
1209 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1210 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1211
1212 if (!reg)
1213 return IRQ_NONE;
1214
1215 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1216 return IRQ_HANDLED;
1217
1218 /*
1219 * Handle interrupts, walk through all bits
1220 * and run the tasks, the bits are checked in order of
1221 * priority.
1222 */
1223
1224 /*
1225 * 1 - Beacon timer expired interrupt.
1226 */
1227 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1228 rt2x00lib_beacondone(rt2x00dev);
1229
1230 /*
1231 * 2 - Rx ring done interrupt.
1232 */
1233 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1234 rt2x00pci_rxdone(rt2x00dev);
1235
1236 /*
1237 * 3 - Atim ring transmit done interrupt.
1238 */
1239 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1240 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
1241
1242 /*
1243 * 4 - Priority ring transmit done interrupt.
1244 */
1245 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1246 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1247
1248 /*
1249 * 5 - Tx ring transmit done interrupt.
1250 */
1251 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1252 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1253
1254 return IRQ_HANDLED;
1255}
1256
1257/*
1258 * Device probe functions.
1259 */
1260static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1261{
1262 struct eeprom_93cx6 eeprom;
1263 u32 reg;
1264 u16 word;
1265 u8 *mac;
1266
1267 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1268
1269 eeprom.data = rt2x00dev;
1270 eeprom.register_read = rt2400pci_eepromregister_read;
1271 eeprom.register_write = rt2400pci_eepromregister_write;
1272 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1273 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1274 eeprom.reg_data_in = 0;
1275 eeprom.reg_data_out = 0;
1276 eeprom.reg_data_clock = 0;
1277 eeprom.reg_chip_select = 0;
1278
1279 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1280 EEPROM_SIZE / sizeof(u16));
1281
1282 /*
1283 * Start validation of the data that has been read.
1284 */
1285 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1286 if (!is_valid_ether_addr(mac)) {
Joe Perches0795af52007-10-03 17:59:30 -07001287 DECLARE_MAC_BUF(macbuf);
1288
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001289 random_ether_addr(mac);
Joe Perches0795af52007-10-03 17:59:30 -07001290 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001291 }
1292
1293 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1294 if (word == 0xffff) {
1295 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1296 return -EINVAL;
1297 }
1298
1299 return 0;
1300}
1301
1302static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1303{
1304 u32 reg;
1305 u16 value;
1306 u16 eeprom;
1307
1308 /*
1309 * Read EEPROM word for configuration.
1310 */
1311 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1312
1313 /*
1314 * Identify RF chipset.
1315 */
1316 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1317 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1318 rt2x00_set_chip(rt2x00dev, RT2460, value, reg);
1319
1320 if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
1321 !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
1322 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1323 return -ENODEV;
1324 }
1325
1326 /*
1327 * Identify default antenna configuration.
1328 */
Ivo van Doornaddc81bd2007-10-13 16:26:23 +02001329 rt2x00dev->default_ant.tx =
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001330 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
Ivo van Doornaddc81bd2007-10-13 16:26:23 +02001331 rt2x00dev->default_ant.rx =
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001332 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1333
1334 /*
Ivo van Doornaddc81bd2007-10-13 16:26:23 +02001335 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1336 * I am not 100% sure about this, but the legacy drivers do not
1337 * indicate antenna swapping in software is required when
1338 * diversity is enabled.
1339 */
1340 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1341 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1342 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1343 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1344
1345 /*
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001346 * Store led mode, for correct led behaviour.
1347 */
1348 rt2x00dev->led_mode =
1349 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1350
1351 /*
1352 * Detect if this device has an hardware controlled radio.
1353 */
Ivo van Doorn81873e92007-10-06 14:14:06 +02001354#ifdef CONFIG_RT2400PCI_RFKILL
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001355 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
Ivo van Doorn066cb632007-09-25 20:55:39 +02001356 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
Ivo van Doorn81873e92007-10-06 14:14:06 +02001357#endif /* CONFIG_RT2400PCI_RFKILL */
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001358
1359 /*
1360 * Check if the BBP tuning should be enabled.
1361 */
1362 if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1363 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1364
1365 return 0;
1366}
1367
1368/*
1369 * RF value list for RF2420 & RF2421
1370 * Supports: 2.4 GHz
1371 */
1372static const struct rf_channel rf_vals_bg[] = {
1373 { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
1374 { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
1375 { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
1376 { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
1377 { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
1378 { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
1379 { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
1380 { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
1381 { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
1382 { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1383 { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1384 { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1385 { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1386 { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1387};
1388
1389static void rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1390{
1391 struct hw_mode_spec *spec = &rt2x00dev->spec;
1392 u8 *txpower;
1393 unsigned int i;
1394
1395 /*
1396 * Initialize all hw fields.
1397 */
Johannes Berg4150c572007-09-17 01:29:23 -04001398 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001399 rt2x00dev->hw->extra_tx_headroom = 0;
1400 rt2x00dev->hw->max_signal = MAX_SIGNAL;
1401 rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1402 rt2x00dev->hw->queues = 2;
1403
1404 SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1405 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1406 rt2x00_eeprom_addr(rt2x00dev,
1407 EEPROM_MAC_ADDR_0));
1408
1409 /*
1410 * Convert tx_power array in eeprom.
1411 */
1412 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1413 for (i = 0; i < 14; i++)
1414 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1415
1416 /*
1417 * Initialize hw_mode information.
1418 */
1419 spec->num_modes = 1;
1420 spec->num_rates = 4;
1421 spec->tx_power_a = NULL;
1422 spec->tx_power_bg = txpower;
1423 spec->tx_power_default = DEFAULT_TXPOWER;
1424
1425 spec->num_channels = ARRAY_SIZE(rf_vals_bg);
1426 spec->channels = rf_vals_bg;
1427}
1428
1429static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1430{
1431 int retval;
1432
1433 /*
1434 * Allocate eeprom data.
1435 */
1436 retval = rt2400pci_validate_eeprom(rt2x00dev);
1437 if (retval)
1438 return retval;
1439
1440 retval = rt2400pci_init_eeprom(rt2x00dev);
1441 if (retval)
1442 return retval;
1443
1444 /*
1445 * Initialize hw specifications.
1446 */
1447 rt2400pci_probe_hw_mode(rt2x00dev);
1448
1449 /*
1450 * This device requires the beacon ring
1451 */
Ivo van Doorn066cb632007-09-25 20:55:39 +02001452 __set_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001453
1454 /*
1455 * Set the rssi offset.
1456 */
1457 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1458
1459 return 0;
1460}
1461
1462/*
1463 * IEEE80211 stack callback functions.
1464 */
Johannes Berg4150c572007-09-17 01:29:23 -04001465static void rt2400pci_configure_filter(struct ieee80211_hw *hw,
1466 unsigned int changed_flags,
1467 unsigned int *total_flags,
1468 int mc_count,
1469 struct dev_addr_list *mc_list)
1470{
1471 struct rt2x00_dev *rt2x00dev = hw->priv;
1472 struct interface *intf = &rt2x00dev->interface;
1473 u32 reg;
1474
1475 /*
1476 * Mask off any flags we are going to ignore from
1477 * the total_flags field.
1478 */
1479 *total_flags &=
1480 FIF_ALLMULTI |
1481 FIF_FCSFAIL |
1482 FIF_PLCPFAIL |
1483 FIF_CONTROL |
1484 FIF_OTHER_BSS |
1485 FIF_PROMISC_IN_BSS;
1486
1487 /*
1488 * Apply some rules to the filters:
1489 * - Some filters imply different filters to be set.
1490 * - Some things we can't filter out at all.
1491 * - Some filters are set based on interface type.
1492 */
1493 *total_flags |= FIF_ALLMULTI;
Ivo van Doorn5886d0d2007-10-06 14:13:38 +02001494 if (*total_flags & FIF_OTHER_BSS ||
1495 *total_flags & FIF_PROMISC_IN_BSS)
Johannes Berg4150c572007-09-17 01:29:23 -04001496 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1497 if (is_interface_type(intf, IEEE80211_IF_TYPE_AP))
1498 *total_flags |= FIF_PROMISC_IN_BSS;
1499
1500 /*
1501 * Check if there is any work left for us.
1502 */
1503 if (intf->filter == *total_flags)
1504 return;
1505 intf->filter = *total_flags;
1506
1507 /*
1508 * Start configuration steps.
1509 * Note that the version error will always be dropped
1510 * since there is no filter for it at this time.
1511 */
1512 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1513 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
1514 !(*total_flags & FIF_FCSFAIL));
1515 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
1516 !(*total_flags & FIF_PLCPFAIL));
1517 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
1518 !(*total_flags & FIF_CONTROL));
1519 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
1520 !(*total_flags & FIF_PROMISC_IN_BSS));
1521 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
1522 !(*total_flags & FIF_PROMISC_IN_BSS));
1523 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
1524 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1525}
1526
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001527static int rt2400pci_set_retry_limit(struct ieee80211_hw *hw,
1528 u32 short_retry, u32 long_retry)
1529{
1530 struct rt2x00_dev *rt2x00dev = hw->priv;
1531 u32 reg;
1532
1533 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1534 rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1535 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1536 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1537
1538 return 0;
1539}
1540
1541static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
1542 int queue,
1543 const struct ieee80211_tx_queue_params *params)
1544{
1545 struct rt2x00_dev *rt2x00dev = hw->priv;
1546
1547 /*
1548 * We don't support variating cw_min and cw_max variables
1549 * per queue. So by default we only configure the TX queue,
1550 * and ignore all other configurations.
1551 */
1552 if (queue != IEEE80211_TX_QUEUE_DATA0)
1553 return -EINVAL;
1554
1555 if (rt2x00mac_conf_tx(hw, queue, params))
1556 return -EINVAL;
1557
1558 /*
1559 * Write configuration to register.
1560 */
1561 rt2400pci_config_cw(rt2x00dev, &rt2x00dev->tx->tx_params);
1562
1563 return 0;
1564}
1565
1566static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1567{
1568 struct rt2x00_dev *rt2x00dev = hw->priv;
1569 u64 tsf;
1570 u32 reg;
1571
1572 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1573 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1574 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1575 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1576
1577 return tsf;
1578}
1579
1580static void rt2400pci_reset_tsf(struct ieee80211_hw *hw)
1581{
1582 struct rt2x00_dev *rt2x00dev = hw->priv;
1583
1584 rt2x00pci_register_write(rt2x00dev, CSR16, 0);
1585 rt2x00pci_register_write(rt2x00dev, CSR17, 0);
1586}
1587
1588static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1589{
1590 struct rt2x00_dev *rt2x00dev = hw->priv;
1591 u32 reg;
1592
1593 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1594 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1595}
1596
1597static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1598 .tx = rt2x00mac_tx,
Johannes Berg4150c572007-09-17 01:29:23 -04001599 .start = rt2x00mac_start,
1600 .stop = rt2x00mac_stop,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001601 .add_interface = rt2x00mac_add_interface,
1602 .remove_interface = rt2x00mac_remove_interface,
1603 .config = rt2x00mac_config,
1604 .config_interface = rt2x00mac_config_interface,
Johannes Berg4150c572007-09-17 01:29:23 -04001605 .configure_filter = rt2400pci_configure_filter,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001606 .get_stats = rt2x00mac_get_stats,
1607 .set_retry_limit = rt2400pci_set_retry_limit,
Ivo van Doorn5c58ee52007-10-06 13:34:52 +02001608 .erp_ie_changed = rt2x00mac_erp_ie_changed,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001609 .conf_tx = rt2400pci_conf_tx,
1610 .get_tx_stats = rt2x00mac_get_tx_stats,
1611 .get_tsf = rt2400pci_get_tsf,
1612 .reset_tsf = rt2400pci_reset_tsf,
1613 .beacon_update = rt2x00pci_beacon_update,
1614 .tx_last_beacon = rt2400pci_tx_last_beacon,
1615};
1616
1617static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1618 .irq_handler = rt2400pci_interrupt,
1619 .probe_hw = rt2400pci_probe_hw,
1620 .initialize = rt2x00pci_initialize,
1621 .uninitialize = rt2x00pci_uninitialize,
1622 .set_device_state = rt2400pci_set_device_state,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001623 .rfkill_poll = rt2400pci_rfkill_poll,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001624 .link_stats = rt2400pci_link_stats,
1625 .reset_tuner = rt2400pci_reset_tuner,
1626 .link_tuner = rt2400pci_link_tuner,
1627 .write_tx_desc = rt2400pci_write_tx_desc,
1628 .write_tx_data = rt2x00pci_write_tx_data,
1629 .kick_tx_queue = rt2400pci_kick_tx_queue,
1630 .fill_rxdone = rt2400pci_fill_rxdone,
1631 .config_mac_addr = rt2400pci_config_mac_addr,
1632 .config_bssid = rt2400pci_config_bssid,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001633 .config_type = rt2400pci_config_type,
Ivo van Doorn5c58ee52007-10-06 13:34:52 +02001634 .config_preamble = rt2400pci_config_preamble,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001635 .config = rt2400pci_config,
1636};
1637
1638static const struct rt2x00_ops rt2400pci_ops = {
1639 .name = DRV_NAME,
1640 .rxd_size = RXD_DESC_SIZE,
1641 .txd_size = TXD_DESC_SIZE,
1642 .eeprom_size = EEPROM_SIZE,
1643 .rf_size = RF_SIZE,
1644 .lib = &rt2400pci_rt2x00_ops,
1645 .hw = &rt2400pci_mac80211_ops,
1646#ifdef CONFIG_RT2X00_LIB_DEBUGFS
1647 .debugfs = &rt2400pci_rt2x00debug,
1648#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1649};
1650
1651/*
1652 * RT2400pci module information.
1653 */
1654static struct pci_device_id rt2400pci_device_table[] = {
1655 { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
1656 { 0, }
1657};
1658
1659MODULE_AUTHOR(DRV_PROJECT);
1660MODULE_VERSION(DRV_VERSION);
1661MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1662MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1663MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1664MODULE_LICENSE("GPL");
1665
1666static struct pci_driver rt2400pci_driver = {
1667 .name = DRV_NAME,
1668 .id_table = rt2400pci_device_table,
1669 .probe = rt2x00pci_probe,
1670 .remove = __devexit_p(rt2x00pci_remove),
1671 .suspend = rt2x00pci_suspend,
1672 .resume = rt2x00pci_resume,
1673};
1674
1675static int __init rt2400pci_init(void)
1676{
1677 return pci_register_driver(&rt2400pci_driver);
1678}
1679
1680static void __exit rt2400pci_exit(void)
1681{
1682 pci_unregister_driver(&rt2400pci_driver);
1683}
1684
1685module_init(rt2400pci_init);
1686module_exit(rt2400pci_exit);