blob: 0793299bd39ec9489908a206b073c32e0e8b3923 [file] [log] [blame]
danborkmann@iogearbox.net8a3b7a22012-01-19 00:39:31 +00001/*
2 * Xilinx Axi Ethernet device driver
3 *
4 * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi
5 * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net>
6 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
Michal Simek59a54f32012-04-12 01:11:12 +00007 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
8 * Copyright (c) 2010 - 2011 PetaLogix
9 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
danborkmann@iogearbox.net8a3b7a22012-01-19 00:39:31 +000010 *
11 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
12 * and Spartan6.
13 *
14 * TODO:
15 * - Add Axi Fifo support.
16 * - Factor out Axi DMA code into separate driver.
17 * - Test and fix basic multicast filtering.
18 * - Add support for extended multicast filtering.
19 * - Test basic VLAN support.
20 * - Add support for extended VLAN support.
21 */
22
23#include <linux/delay.h>
24#include <linux/etherdevice.h>
25#include <linux/init.h>
26#include <linux/module.h>
27#include <linux/netdevice.h>
28#include <linux/of_mdio.h>
29#include <linux/of_platform.h>
30#include <linux/of_address.h>
31#include <linux/skbuff.h>
32#include <linux/spinlock.h>
33#include <linux/phy.h>
34#include <linux/mii.h>
35#include <linux/ethtool.h>
36
37#include "xilinx_axienet.h"
38
39/* Descriptors defines for Tx and Rx DMA - 2^n for the best performance */
40#define TX_BD_NUM 64
41#define RX_BD_NUM 128
42
43/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
44#define DRIVER_NAME "xaxienet"
45#define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver"
46#define DRIVER_VERSION "1.00a"
47
48#define AXIENET_REGS_N 32
49
50/* Match table for of_platform binding */
51static struct of_device_id axienet_of_match[] __devinitdata = {
52 { .compatible = "xlnx,axi-ethernet-1.00.a", },
53 { .compatible = "xlnx,axi-ethernet-1.01.a", },
54 { .compatible = "xlnx,axi-ethernet-2.01.a", },
55 {},
56};
57
58MODULE_DEVICE_TABLE(of, axienet_of_match);
59
60/* Option table for setting up Axi Ethernet hardware options */
61static struct axienet_option axienet_options[] = {
62 /* Turn on jumbo packet support for both Rx and Tx */
63 {
64 .opt = XAE_OPTION_JUMBO,
65 .reg = XAE_TC_OFFSET,
66 .m_or = XAE_TC_JUM_MASK,
67 }, {
68 .opt = XAE_OPTION_JUMBO,
69 .reg = XAE_RCW1_OFFSET,
70 .m_or = XAE_RCW1_JUM_MASK,
71 }, { /* Turn on VLAN packet support for both Rx and Tx */
72 .opt = XAE_OPTION_VLAN,
73 .reg = XAE_TC_OFFSET,
74 .m_or = XAE_TC_VLAN_MASK,
75 }, {
76 .opt = XAE_OPTION_VLAN,
77 .reg = XAE_RCW1_OFFSET,
78 .m_or = XAE_RCW1_VLAN_MASK,
79 }, { /* Turn on FCS stripping on receive packets */
80 .opt = XAE_OPTION_FCS_STRIP,
81 .reg = XAE_RCW1_OFFSET,
82 .m_or = XAE_RCW1_FCS_MASK,
83 }, { /* Turn on FCS insertion on transmit packets */
84 .opt = XAE_OPTION_FCS_INSERT,
85 .reg = XAE_TC_OFFSET,
86 .m_or = XAE_TC_FCS_MASK,
87 }, { /* Turn off length/type field checking on receive packets */
88 .opt = XAE_OPTION_LENTYPE_ERR,
89 .reg = XAE_RCW1_OFFSET,
90 .m_or = XAE_RCW1_LT_DIS_MASK,
91 }, { /* Turn on Rx flow control */
92 .opt = XAE_OPTION_FLOW_CONTROL,
93 .reg = XAE_FCC_OFFSET,
94 .m_or = XAE_FCC_FCRX_MASK,
95 }, { /* Turn on Tx flow control */
96 .opt = XAE_OPTION_FLOW_CONTROL,
97 .reg = XAE_FCC_OFFSET,
98 .m_or = XAE_FCC_FCTX_MASK,
99 }, { /* Turn on promiscuous frame filtering */
100 .opt = XAE_OPTION_PROMISC,
101 .reg = XAE_FMI_OFFSET,
102 .m_or = XAE_FMI_PM_MASK,
103 }, { /* Enable transmitter */
104 .opt = XAE_OPTION_TXEN,
105 .reg = XAE_TC_OFFSET,
106 .m_or = XAE_TC_TX_MASK,
107 }, { /* Enable receiver */
108 .opt = XAE_OPTION_RXEN,
109 .reg = XAE_RCW1_OFFSET,
110 .m_or = XAE_RCW1_RX_MASK,
111 },
112 {}
113};
114
115/**
116 * axienet_dma_in32 - Memory mapped Axi DMA register read
117 * @lp: Pointer to axienet local structure
118 * @reg: Address offset from the base address of the Axi DMA core
119 *
120 * returns: The contents of the Axi DMA register
121 *
122 * This function returns the contents of the corresponding Axi DMA register.
123 */
124static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
125{
126 return in_be32(lp->dma_regs + reg);
127}
128
129/**
130 * axienet_dma_out32 - Memory mapped Axi DMA register write.
131 * @lp: Pointer to axienet local structure
132 * @reg: Address offset from the base address of the Axi DMA core
133 * @value: Value to be written into the Axi DMA register
134 *
135 * This function writes the desired value into the corresponding Axi DMA
136 * register.
137 */
138static inline void axienet_dma_out32(struct axienet_local *lp,
139 off_t reg, u32 value)
140{
141 out_be32((lp->dma_regs + reg), value);
142}
143
144/**
145 * axienet_dma_bd_release - Release buffer descriptor rings
146 * @ndev: Pointer to the net_device structure
147 *
148 * This function is used to release the descriptors allocated in
149 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
150 * driver stop api is called.
151 */
152static void axienet_dma_bd_release(struct net_device *ndev)
153{
154 int i;
155 struct axienet_local *lp = netdev_priv(ndev);
156
157 for (i = 0; i < RX_BD_NUM; i++) {
158 dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
159 lp->max_frm_size, DMA_FROM_DEVICE);
160 dev_kfree_skb((struct sk_buff *)
161 (lp->rx_bd_v[i].sw_id_offset));
162 }
163
164 if (lp->rx_bd_v) {
165 dma_free_coherent(ndev->dev.parent,
166 sizeof(*lp->rx_bd_v) * RX_BD_NUM,
167 lp->rx_bd_v,
168 lp->rx_bd_p);
169 }
170 if (lp->tx_bd_v) {
171 dma_free_coherent(ndev->dev.parent,
172 sizeof(*lp->tx_bd_v) * TX_BD_NUM,
173 lp->tx_bd_v,
174 lp->tx_bd_p);
175 }
176}
177
178/**
179 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
180 * @ndev: Pointer to the net_device structure
181 *
182 * returns: 0, on success
183 * -ENOMEM, on failure
184 *
185 * This function is called to initialize the Rx and Tx DMA descriptor
186 * rings. This initializes the descriptors with required default values
187 * and is called when Axi Ethernet driver reset is called.
188 */
189static int axienet_dma_bd_init(struct net_device *ndev)
190{
191 u32 cr;
192 int i;
193 struct sk_buff *skb;
194 struct axienet_local *lp = netdev_priv(ndev);
195
196 /* Reset the indexes which are used for accessing the BDs */
197 lp->tx_bd_ci = 0;
198 lp->tx_bd_tail = 0;
199 lp->rx_bd_ci = 0;
200
201 /*
202 * Allocate the Tx and Rx buffer descriptors.
203 */
204 lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent,
205 sizeof(*lp->tx_bd_v) * TX_BD_NUM,
206 &lp->tx_bd_p,
207 GFP_KERNEL);
208 if (!lp->tx_bd_v) {
209 dev_err(&ndev->dev, "unable to allocate DMA Tx buffer "
210 "descriptors");
211 goto out;
212 }
213
214 lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent,
215 sizeof(*lp->rx_bd_v) * RX_BD_NUM,
216 &lp->rx_bd_p,
217 GFP_KERNEL);
218 if (!lp->rx_bd_v) {
219 dev_err(&ndev->dev, "unable to allocate DMA Rx buffer "
220 "descriptors");
221 goto out;
222 }
223
224 memset(lp->tx_bd_v, 0, sizeof(*lp->tx_bd_v) * TX_BD_NUM);
225 for (i = 0; i < TX_BD_NUM; i++) {
226 lp->tx_bd_v[i].next = lp->tx_bd_p +
227 sizeof(*lp->tx_bd_v) *
228 ((i + 1) % TX_BD_NUM);
229 }
230
231 memset(lp->rx_bd_v, 0, sizeof(*lp->rx_bd_v) * RX_BD_NUM);
232 for (i = 0; i < RX_BD_NUM; i++) {
233 lp->rx_bd_v[i].next = lp->rx_bd_p +
234 sizeof(*lp->rx_bd_v) *
235 ((i + 1) % RX_BD_NUM);
236
237 skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
238 if (!skb) {
239 dev_err(&ndev->dev, "alloc_skb error %d\n", i);
240 goto out;
241 }
242
243 lp->rx_bd_v[i].sw_id_offset = (u32) skb;
244 lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
245 skb->data,
246 lp->max_frm_size,
247 DMA_FROM_DEVICE);
248 lp->rx_bd_v[i].cntrl = lp->max_frm_size;
249 }
250
251 /* Start updating the Rx channel control register */
252 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
253 /* Update the interrupt coalesce count */
254 cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
255 ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
256 /* Update the delay timer count */
257 cr = ((cr & ~XAXIDMA_DELAY_MASK) |
258 (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
259 /* Enable coalesce, delay timer and error interrupts */
260 cr |= XAXIDMA_IRQ_ALL_MASK;
261 /* Write to the Rx channel control register */
262 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
263
264 /* Start updating the Tx channel control register */
265 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
266 /* Update the interrupt coalesce count */
267 cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
268 ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
269 /* Update the delay timer count */
270 cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
271 (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
272 /* Enable coalesce, delay timer and error interrupts */
273 cr |= XAXIDMA_IRQ_ALL_MASK;
274 /* Write to the Tx channel control register */
275 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
276
277 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
278 * halted state. This will make the Rx side ready for reception.*/
279 axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
280 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
281 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
282 cr | XAXIDMA_CR_RUNSTOP_MASK);
283 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
284 (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
285
286 /* Write to the RS (Run-stop) bit in the Tx channel control register.
287 * Tx channel is now ready to run. But only after we write to the
288 * tail pointer register that the Tx channel will start transmitting */
289 axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
290 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
291 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
292 cr | XAXIDMA_CR_RUNSTOP_MASK);
293
294 return 0;
295out:
296 axienet_dma_bd_release(ndev);
297 return -ENOMEM;
298}
299
300/**
301 * axienet_set_mac_address - Write the MAC address
302 * @ndev: Pointer to the net_device structure
303 * @address: 6 byte Address to be written as MAC address
304 *
305 * This function is called to initialize the MAC address of the Axi Ethernet
306 * core. It writes to the UAW0 and UAW1 registers of the core.
307 */
308static void axienet_set_mac_address(struct net_device *ndev, void *address)
309{
310 struct axienet_local *lp = netdev_priv(ndev);
311
312 if (address)
313 memcpy(ndev->dev_addr, address, ETH_ALEN);
314 if (!is_valid_ether_addr(ndev->dev_addr))
Joe Perches7efd26d2012-07-12 19:33:06 +0000315 eth_random_addr(ndev->dev_addr);
danborkmann@iogearbox.net8a3b7a22012-01-19 00:39:31 +0000316
317 /* Set up unicast MAC address filter set its mac address */
318 axienet_iow(lp, XAE_UAW0_OFFSET,
319 (ndev->dev_addr[0]) |
320 (ndev->dev_addr[1] << 8) |
321 (ndev->dev_addr[2] << 16) |
322 (ndev->dev_addr[3] << 24));
323 axienet_iow(lp, XAE_UAW1_OFFSET,
324 (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
325 ~XAE_UAW1_UNICASTADDR_MASK) |
326 (ndev->dev_addr[4] |
327 (ndev->dev_addr[5] << 8))));
328}
329
330/**
331 * netdev_set_mac_address - Write the MAC address (from outside the driver)
332 * @ndev: Pointer to the net_device structure
333 * @p: 6 byte Address to be written as MAC address
334 *
335 * returns: 0 for all conditions. Presently, there is no failure case.
336 *
337 * This function is called to initialize the MAC address of the Axi Ethernet
338 * core. It calls the core specific axienet_set_mac_address. This is the
339 * function that goes into net_device_ops structure entry ndo_set_mac_address.
340 */
341static int netdev_set_mac_address(struct net_device *ndev, void *p)
342{
343 struct sockaddr *addr = p;
344 axienet_set_mac_address(ndev, addr->sa_data);
345 return 0;
346}
347
348/**
349 * axienet_set_multicast_list - Prepare the multicast table
350 * @ndev: Pointer to the net_device structure
351 *
352 * This function is called to initialize the multicast table during
353 * initialization. The Axi Ethernet basic multicast support has a four-entry
354 * multicast table which is initialized here. Additionally this function
355 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
356 * means whenever the multicast table entries need to be updated this
357 * function gets called.
358 */
359static void axienet_set_multicast_list(struct net_device *ndev)
360{
361 int i;
362 u32 reg, af0reg, af1reg;
363 struct axienet_local *lp = netdev_priv(ndev);
364
365 if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
366 netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
367 /* We must make the kernel realize we had to move into
368 * promiscuous mode. If it was a promiscuous mode request
369 * the flag is already set. If not we set it. */
370 ndev->flags |= IFF_PROMISC;
371 reg = axienet_ior(lp, XAE_FMI_OFFSET);
372 reg |= XAE_FMI_PM_MASK;
373 axienet_iow(lp, XAE_FMI_OFFSET, reg);
374 dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
375 } else if (!netdev_mc_empty(ndev)) {
376 struct netdev_hw_addr *ha;
377
378 i = 0;
379 netdev_for_each_mc_addr(ha, ndev) {
380 if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
381 break;
382
383 af0reg = (ha->addr[0]);
384 af0reg |= (ha->addr[1] << 8);
385 af0reg |= (ha->addr[2] << 16);
386 af0reg |= (ha->addr[3] << 24);
387
388 af1reg = (ha->addr[4]);
389 af1reg |= (ha->addr[5] << 8);
390
391 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
392 reg |= i;
393
394 axienet_iow(lp, XAE_FMI_OFFSET, reg);
395 axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
396 axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
397 i++;
398 }
399 } else {
400 reg = axienet_ior(lp, XAE_FMI_OFFSET);
401 reg &= ~XAE_FMI_PM_MASK;
402
403 axienet_iow(lp, XAE_FMI_OFFSET, reg);
404
405 for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
406 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
407 reg |= i;
408
409 axienet_iow(lp, XAE_FMI_OFFSET, reg);
410 axienet_iow(lp, XAE_AF0_OFFSET, 0);
411 axienet_iow(lp, XAE_AF1_OFFSET, 0);
412 }
413
414 dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
415 }
416}
417
418/**
419 * axienet_setoptions - Set an Axi Ethernet option
420 * @ndev: Pointer to the net_device structure
421 * @options: Option to be enabled/disabled
422 *
423 * The Axi Ethernet core has multiple features which can be selectively turned
424 * on or off. The typical options could be jumbo frame option, basic VLAN
425 * option, promiscuous mode option etc. This function is used to set or clear
426 * these options in the Axi Ethernet hardware. This is done through
427 * axienet_option structure .
428 */
429static void axienet_setoptions(struct net_device *ndev, u32 options)
430{
431 int reg;
432 struct axienet_local *lp = netdev_priv(ndev);
433 struct axienet_option *tp = &axienet_options[0];
434
435 while (tp->opt) {
436 reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
437 if (options & tp->opt)
438 reg |= tp->m_or;
439 axienet_iow(lp, tp->reg, reg);
440 tp++;
441 }
442
443 lp->options |= options;
444}
445
446static void __axienet_device_reset(struct axienet_local *lp,
447 struct device *dev, off_t offset)
448{
449 u32 timeout;
450 /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
451 * process of Axi DMA takes a while to complete as all pending
452 * commands/transfers will be flushed or completed during this
453 * reset process. */
454 axienet_dma_out32(lp, offset, XAXIDMA_CR_RESET_MASK);
455 timeout = DELAY_OF_ONE_MILLISEC;
456 while (axienet_dma_in32(lp, offset) & XAXIDMA_CR_RESET_MASK) {
457 udelay(1);
458 if (--timeout == 0) {
459 dev_err(dev, "axienet_device_reset DMA "
460 "reset timeout!\n");
461 break;
462 }
463 }
464}
465
466/**
467 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
468 * @ndev: Pointer to the net_device structure
469 *
470 * This function is called to reset and initialize the Axi Ethernet core. This
471 * is typically called during initialization. It does a reset of the Axi DMA
472 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
473 * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
474 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
475 * core.
476 */
477static void axienet_device_reset(struct net_device *ndev)
478{
479 u32 axienet_status;
480 struct axienet_local *lp = netdev_priv(ndev);
481
482 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
483 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
484
485 lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
486 lp->options &= (~XAE_OPTION_JUMBO);
487
488 if ((ndev->mtu > XAE_MTU) &&
489 (ndev->mtu <= XAE_JUMBO_MTU) &&
490 (lp->jumbo_support)) {
491 lp->max_frm_size = ndev->mtu + XAE_HDR_VLAN_SIZE +
492 XAE_TRL_SIZE;
493 lp->options |= XAE_OPTION_JUMBO;
494 }
495
496 if (axienet_dma_bd_init(ndev)) {
497 dev_err(&ndev->dev, "axienet_device_reset descriptor "
498 "allocation failed\n");
499 }
500
501 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
502 axienet_status &= ~XAE_RCW1_RX_MASK;
503 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
504
505 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
506 if (axienet_status & XAE_INT_RXRJECT_MASK)
507 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
508
509 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
510
511 /* Sync default options with HW but leave receiver and
512 * transmitter disabled.*/
513 axienet_setoptions(ndev, lp->options &
514 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
515 axienet_set_mac_address(ndev, NULL);
516 axienet_set_multicast_list(ndev);
517 axienet_setoptions(ndev, lp->options);
518
519 ndev->trans_start = jiffies;
520}
521
522/**
523 * axienet_adjust_link - Adjust the PHY link speed/duplex.
524 * @ndev: Pointer to the net_device structure
525 *
526 * This function is called to change the speed and duplex setting after
527 * auto negotiation is done by the PHY. This is the function that gets
528 * registered with the PHY interface through the "of_phy_connect" call.
529 */
530static void axienet_adjust_link(struct net_device *ndev)
531{
532 u32 emmc_reg;
533 u32 link_state;
534 u32 setspeed = 1;
535 struct axienet_local *lp = netdev_priv(ndev);
536 struct phy_device *phy = lp->phy_dev;
537
538 link_state = phy->speed | (phy->duplex << 1) | phy->link;
539 if (lp->last_link != link_state) {
540 if ((phy->speed == SPEED_10) || (phy->speed == SPEED_100)) {
541 if (lp->phy_type == XAE_PHY_TYPE_1000BASE_X)
542 setspeed = 0;
543 } else {
544 if ((phy->speed == SPEED_1000) &&
545 (lp->phy_type == XAE_PHY_TYPE_MII))
546 setspeed = 0;
547 }
548
549 if (setspeed == 1) {
550 emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
551 emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
552
553 switch (phy->speed) {
554 case SPEED_1000:
555 emmc_reg |= XAE_EMMC_LINKSPD_1000;
556 break;
557 case SPEED_100:
558 emmc_reg |= XAE_EMMC_LINKSPD_100;
559 break;
560 case SPEED_10:
561 emmc_reg |= XAE_EMMC_LINKSPD_10;
562 break;
563 default:
564 dev_err(&ndev->dev, "Speed other than 10, 100 "
565 "or 1Gbps is not supported\n");
566 break;
567 }
568
569 axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
570 lp->last_link = link_state;
571 phy_print_status(phy);
572 } else {
573 dev_err(&ndev->dev, "Error setting Axi Ethernet "
574 "mac speed\n");
575 }
576 }
577}
578
579/**
580 * axienet_start_xmit_done - Invoked once a transmit is completed by the
581 * Axi DMA Tx channel.
582 * @ndev: Pointer to the net_device structure
583 *
584 * This function is invoked from the Axi DMA Tx isr to notify the completion
585 * of transmit operation. It clears fields in the corresponding Tx BDs and
586 * unmaps the corresponding buffer so that CPU can regain ownership of the
587 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
588 * required.
589 */
590static void axienet_start_xmit_done(struct net_device *ndev)
591{
592 u32 size = 0;
593 u32 packets = 0;
594 struct axienet_local *lp = netdev_priv(ndev);
595 struct axidma_bd *cur_p;
596 unsigned int status = 0;
597
598 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
599 status = cur_p->status;
600 while (status & XAXIDMA_BD_STS_COMPLETE_MASK) {
601 dma_unmap_single(ndev->dev.parent, cur_p->phys,
602 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
603 DMA_TO_DEVICE);
604 if (cur_p->app4)
605 dev_kfree_skb_irq((struct sk_buff *)cur_p->app4);
606 /*cur_p->phys = 0;*/
607 cur_p->app0 = 0;
608 cur_p->app1 = 0;
609 cur_p->app2 = 0;
610 cur_p->app4 = 0;
611 cur_p->status = 0;
612
613 size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
614 packets++;
615
616 lp->tx_bd_ci = ++lp->tx_bd_ci % TX_BD_NUM;
617 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
618 status = cur_p->status;
619 }
620
621 ndev->stats.tx_packets += packets;
622 ndev->stats.tx_bytes += size;
623 netif_wake_queue(ndev);
624}
625
626/**
627 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
628 * @lp: Pointer to the axienet_local structure
629 * @num_frag: The number of BDs to check for
630 *
631 * returns: 0, on success
632 * NETDEV_TX_BUSY, if any of the descriptors are not free
633 *
634 * This function is invoked before BDs are allocated and transmission starts.
635 * This function returns 0 if a BD or group of BDs can be allocated for
636 * transmission. If the BD or any of the BDs are not free the function
637 * returns a busy status. This is invoked from axienet_start_xmit.
638 */
639static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
640 int num_frag)
641{
642 struct axidma_bd *cur_p;
643 cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % TX_BD_NUM];
644 if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
645 return NETDEV_TX_BUSY;
646 return 0;
647}
648
649/**
650 * axienet_start_xmit - Starts the transmission.
651 * @skb: sk_buff pointer that contains data to be Txed.
652 * @ndev: Pointer to net_device structure.
653 *
654 * returns: NETDEV_TX_OK, on success
655 * NETDEV_TX_BUSY, if any of the descriptors are not free
656 *
657 * This function is invoked from upper layers to initiate transmission. The
658 * function uses the next available free BDs and populates their fields to
659 * start the transmission. Additionally if checksum offloading is supported,
660 * it populates AXI Stream Control fields with appropriate values.
661 */
662static int axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
663{
664 u32 ii;
665 u32 num_frag;
666 u32 csum_start_off;
667 u32 csum_index_off;
668 skb_frag_t *frag;
669 dma_addr_t tail_p;
670 struct axienet_local *lp = netdev_priv(ndev);
671 struct axidma_bd *cur_p;
672
673 num_frag = skb_shinfo(skb)->nr_frags;
674 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
675
676 if (axienet_check_tx_bd_space(lp, num_frag)) {
677 if (!netif_queue_stopped(ndev))
678 netif_stop_queue(ndev);
679 return NETDEV_TX_BUSY;
680 }
681
682 if (skb->ip_summed == CHECKSUM_PARTIAL) {
683 if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
684 /* Tx Full Checksum Offload Enabled */
685 cur_p->app0 |= 2;
686 } else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
687 csum_start_off = skb_transport_offset(skb);
688 csum_index_off = csum_start_off + skb->csum_offset;
689 /* Tx Partial Checksum Offload Enabled */
690 cur_p->app0 |= 1;
691 cur_p->app1 = (csum_start_off << 16) | csum_index_off;
692 }
693 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
694 cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
695 }
696
697 cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
698 cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
699 skb_headlen(skb), DMA_TO_DEVICE);
700
701 for (ii = 0; ii < num_frag; ii++) {
702 lp->tx_bd_tail = ++lp->tx_bd_tail % TX_BD_NUM;
703 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
704 frag = &skb_shinfo(skb)->frags[ii];
705 cur_p->phys = dma_map_single(ndev->dev.parent,
706 skb_frag_address(frag),
707 skb_frag_size(frag),
708 DMA_TO_DEVICE);
709 cur_p->cntrl = skb_frag_size(frag);
710 }
711
712 cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
713 cur_p->app4 = (unsigned long)skb;
714
715 tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
716 /* Start the transfer */
717 axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
718 lp->tx_bd_tail = ++lp->tx_bd_tail % TX_BD_NUM;
719
720 return NETDEV_TX_OK;
721}
722
723/**
724 * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
725 * BD processing.
726 * @ndev: Pointer to net_device structure.
727 *
728 * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
729 * does minimal processing and invokes "netif_rx" to complete further
730 * processing.
731 */
732static void axienet_recv(struct net_device *ndev)
733{
734 u32 length;
735 u32 csumstatus;
736 u32 size = 0;
737 u32 packets = 0;
738 dma_addr_t tail_p;
739 struct axienet_local *lp = netdev_priv(ndev);
740 struct sk_buff *skb, *new_skb;
741 struct axidma_bd *cur_p;
742
743 tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
744 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
745
746 while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
747 skb = (struct sk_buff *) (cur_p->sw_id_offset);
748 length = cur_p->app4 & 0x0000FFFF;
749
750 dma_unmap_single(ndev->dev.parent, cur_p->phys,
751 lp->max_frm_size,
752 DMA_FROM_DEVICE);
753
754 skb_put(skb, length);
755 skb->protocol = eth_type_trans(skb, ndev);
756 /*skb_checksum_none_assert(skb);*/
757 skb->ip_summed = CHECKSUM_NONE;
758
759 /* if we're doing Rx csum offload, set it up */
760 if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
761 csumstatus = (cur_p->app2 &
762 XAE_FULL_CSUM_STATUS_MASK) >> 3;
763 if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
764 (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
765 skb->ip_summed = CHECKSUM_UNNECESSARY;
766 }
767 } else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
768 skb->protocol == __constant_htons(ETH_P_IP) &&
769 skb->len > 64) {
770 skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
771 skb->ip_summed = CHECKSUM_COMPLETE;
772 }
773
774 netif_rx(skb);
775
776 size += length;
777 packets++;
778
779 new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
780 if (!new_skb) {
781 dev_err(&ndev->dev, "no memory for new sk_buff\n");
782 return;
783 }
784 cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
785 lp->max_frm_size,
786 DMA_FROM_DEVICE);
787 cur_p->cntrl = lp->max_frm_size;
788 cur_p->status = 0;
789 cur_p->sw_id_offset = (u32) new_skb;
790
791 lp->rx_bd_ci = ++lp->rx_bd_ci % RX_BD_NUM;
792 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
793 }
794
795 ndev->stats.rx_packets += packets;
796 ndev->stats.rx_bytes += size;
797
798 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
799}
800
801/**
802 * axienet_tx_irq - Tx Done Isr.
803 * @irq: irq number
804 * @_ndev: net_device pointer
805 *
806 * returns: IRQ_HANDLED for all cases.
807 *
808 * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
809 * to complete the BD processing.
810 */
811static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
812{
813 u32 cr;
814 unsigned int status;
815 struct net_device *ndev = _ndev;
816 struct axienet_local *lp = netdev_priv(ndev);
817
818 status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
819 if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
820 axienet_start_xmit_done(lp->ndev);
821 goto out;
822 }
823 if (!(status & XAXIDMA_IRQ_ALL_MASK))
824 dev_err(&ndev->dev, "No interrupts asserted in Tx path");
825 if (status & XAXIDMA_IRQ_ERROR_MASK) {
826 dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
827 dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
828 (lp->tx_bd_v[lp->tx_bd_ci]).phys);
829
830 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
831 /* Disable coalesce, delay timer and error interrupts */
832 cr &= (~XAXIDMA_IRQ_ALL_MASK);
833 /* Write to the Tx channel control register */
834 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
835
836 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
837 /* Disable coalesce, delay timer and error interrupts */
838 cr &= (~XAXIDMA_IRQ_ALL_MASK);
839 /* Write to the Rx channel control register */
840 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
841
842 tasklet_schedule(&lp->dma_err_tasklet);
843 }
844out:
845 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
846 return IRQ_HANDLED;
847}
848
849/**
850 * axienet_rx_irq - Rx Isr.
851 * @irq: irq number
852 * @_ndev: net_device pointer
853 *
854 * returns: IRQ_HANDLED for all cases.
855 *
856 * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
857 * processing.
858 */
859static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
860{
861 u32 cr;
862 unsigned int status;
863 struct net_device *ndev = _ndev;
864 struct axienet_local *lp = netdev_priv(ndev);
865
866 status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
867 if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
868 axienet_recv(lp->ndev);
869 goto out;
870 }
871 if (!(status & XAXIDMA_IRQ_ALL_MASK))
872 dev_err(&ndev->dev, "No interrupts asserted in Rx path");
873 if (status & XAXIDMA_IRQ_ERROR_MASK) {
874 dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
875 dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
876 (lp->rx_bd_v[lp->rx_bd_ci]).phys);
877
878 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
879 /* Disable coalesce, delay timer and error interrupts */
880 cr &= (~XAXIDMA_IRQ_ALL_MASK);
881 /* Finally write to the Tx channel control register */
882 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
883
884 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
885 /* Disable coalesce, delay timer and error interrupts */
886 cr &= (~XAXIDMA_IRQ_ALL_MASK);
887 /* write to the Rx channel control register */
888 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
889
890 tasklet_schedule(&lp->dma_err_tasklet);
891 }
892out:
893 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
894 return IRQ_HANDLED;
895}
896
897/**
898 * axienet_open - Driver open routine.
899 * @ndev: Pointer to net_device structure
900 *
901 * returns: 0, on success.
902 * -ENODEV, if PHY cannot be connected to
903 * non-zero error value on failure
904 *
905 * This is the driver open routine. It calls phy_start to start the PHY device.
906 * It also allocates interrupt service routines, enables the interrupt lines
907 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
908 * descriptors are initialized.
909 */
910static int axienet_open(struct net_device *ndev)
911{
912 int ret, mdio_mcreg;
913 struct axienet_local *lp = netdev_priv(ndev);
914
915 dev_dbg(&ndev->dev, "axienet_open()\n");
916
917 mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
918 ret = axienet_mdio_wait_until_ready(lp);
919 if (ret < 0)
920 return ret;
921 /* Disable the MDIO interface till Axi Ethernet Reset is completed.
922 * When we do an Axi Ethernet reset, it resets the complete core
923 * including the MDIO. If MDIO is not disabled when the reset
924 * process is started, MDIO will be broken afterwards. */
925 axienet_iow(lp, XAE_MDIO_MC_OFFSET,
926 (mdio_mcreg & (~XAE_MDIO_MC_MDIOEN_MASK)));
927 axienet_device_reset(ndev);
928 /* Enable the MDIO */
929 axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
930 ret = axienet_mdio_wait_until_ready(lp);
931 if (ret < 0)
932 return ret;
933
934 if (lp->phy_node) {
935 lp->phy_dev = of_phy_connect(lp->ndev, lp->phy_node,
936 axienet_adjust_link, 0,
937 PHY_INTERFACE_MODE_GMII);
938 if (!lp->phy_dev) {
939 dev_err(lp->dev, "of_phy_connect() failed\n");
940 return -ENODEV;
941 }
942 phy_start(lp->phy_dev);
943 }
944
945 /* Enable interrupts for Axi DMA Tx */
946 ret = request_irq(lp->tx_irq, axienet_tx_irq, 0, ndev->name, ndev);
947 if (ret)
948 goto err_tx_irq;
949 /* Enable interrupts for Axi DMA Rx */
950 ret = request_irq(lp->rx_irq, axienet_rx_irq, 0, ndev->name, ndev);
951 if (ret)
952 goto err_rx_irq;
953 /* Enable tasklets for Axi DMA error handling */
954 tasklet_enable(&lp->dma_err_tasklet);
955 return 0;
956
957err_rx_irq:
958 free_irq(lp->tx_irq, ndev);
959err_tx_irq:
960 if (lp->phy_dev)
961 phy_disconnect(lp->phy_dev);
962 lp->phy_dev = NULL;
963 dev_err(lp->dev, "request_irq() failed\n");
964 return ret;
965}
966
967/**
968 * axienet_stop - Driver stop routine.
969 * @ndev: Pointer to net_device structure
970 *
971 * returns: 0, on success.
972 *
973 * This is the driver stop routine. It calls phy_disconnect to stop the PHY
974 * device. It also removes the interrupt handlers and disables the interrupts.
975 * The Axi DMA Tx/Rx BDs are released.
976 */
977static int axienet_stop(struct net_device *ndev)
978{
979 u32 cr;
980 struct axienet_local *lp = netdev_priv(ndev);
981
982 dev_dbg(&ndev->dev, "axienet_close()\n");
983
984 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
985 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
986 cr & (~XAXIDMA_CR_RUNSTOP_MASK));
987 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
988 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
989 cr & (~XAXIDMA_CR_RUNSTOP_MASK));
990 axienet_setoptions(ndev, lp->options &
991 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
992
993 tasklet_disable(&lp->dma_err_tasklet);
994
995 free_irq(lp->tx_irq, ndev);
996 free_irq(lp->rx_irq, ndev);
997
998 if (lp->phy_dev)
999 phy_disconnect(lp->phy_dev);
1000 lp->phy_dev = NULL;
1001
1002 axienet_dma_bd_release(ndev);
1003 return 0;
1004}
1005
1006/**
1007 * axienet_change_mtu - Driver change mtu routine.
1008 * @ndev: Pointer to net_device structure
1009 * @new_mtu: New mtu value to be applied
1010 *
1011 * returns: Always returns 0 (success).
1012 *
1013 * This is the change mtu driver routine. It checks if the Axi Ethernet
1014 * hardware supports jumbo frames before changing the mtu. This can be
1015 * called only when the device is not up.
1016 */
1017static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1018{
1019 struct axienet_local *lp = netdev_priv(ndev);
1020
1021 if (netif_running(ndev))
1022 return -EBUSY;
1023 if (lp->jumbo_support) {
1024 if ((new_mtu > XAE_JUMBO_MTU) || (new_mtu < 64))
1025 return -EINVAL;
1026 ndev->mtu = new_mtu;
1027 } else {
1028 if ((new_mtu > XAE_MTU) || (new_mtu < 64))
1029 return -EINVAL;
1030 ndev->mtu = new_mtu;
1031 }
1032
1033 return 0;
1034}
1035
1036#ifdef CONFIG_NET_POLL_CONTROLLER
1037/**
1038 * axienet_poll_controller - Axi Ethernet poll mechanism.
1039 * @ndev: Pointer to net_device structure
1040 *
1041 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1042 * to polling the ISRs and are enabled back after the polling is done.
1043 */
1044static void axienet_poll_controller(struct net_device *ndev)
1045{
1046 struct axienet_local *lp = netdev_priv(ndev);
1047 disable_irq(lp->tx_irq);
1048 disable_irq(lp->rx_irq);
1049 axienet_rx_irq(lp->tx_irq, ndev);
1050 axienet_tx_irq(lp->rx_irq, ndev);
1051 enable_irq(lp->tx_irq);
1052 enable_irq(lp->rx_irq);
1053}
1054#endif
1055
1056static const struct net_device_ops axienet_netdev_ops = {
1057 .ndo_open = axienet_open,
1058 .ndo_stop = axienet_stop,
1059 .ndo_start_xmit = axienet_start_xmit,
1060 .ndo_change_mtu = axienet_change_mtu,
1061 .ndo_set_mac_address = netdev_set_mac_address,
1062 .ndo_validate_addr = eth_validate_addr,
1063 .ndo_set_rx_mode = axienet_set_multicast_list,
1064#ifdef CONFIG_NET_POLL_CONTROLLER
1065 .ndo_poll_controller = axienet_poll_controller,
1066#endif
1067};
1068
1069/**
1070 * axienet_ethtools_get_settings - Get Axi Ethernet settings related to PHY.
1071 * @ndev: Pointer to net_device structure
1072 * @ecmd: Pointer to ethtool_cmd structure
1073 *
1074 * This implements ethtool command for getting PHY settings. If PHY could
1075 * not be found, the function returns -ENODEV. This function calls the
1076 * relevant PHY ethtool API to get the PHY settings.
1077 * Issue "ethtool ethX" under linux prompt to execute this function.
1078 */
1079static int axienet_ethtools_get_settings(struct net_device *ndev,
1080 struct ethtool_cmd *ecmd)
1081{
1082 struct axienet_local *lp = netdev_priv(ndev);
1083 struct phy_device *phydev = lp->phy_dev;
1084 if (!phydev)
1085 return -ENODEV;
1086 return phy_ethtool_gset(phydev, ecmd);
1087}
1088
1089/**
1090 * axienet_ethtools_set_settings - Set PHY settings as passed in the argument.
1091 * @ndev: Pointer to net_device structure
1092 * @ecmd: Pointer to ethtool_cmd structure
1093 *
1094 * This implements ethtool command for setting various PHY settings. If PHY
1095 * could not be found, the function returns -ENODEV. This function calls the
1096 * relevant PHY ethtool API to set the PHY.
1097 * Issue e.g. "ethtool -s ethX speed 1000" under linux prompt to execute this
1098 * function.
1099 */
1100static int axienet_ethtools_set_settings(struct net_device *ndev,
1101 struct ethtool_cmd *ecmd)
1102{
1103 struct axienet_local *lp = netdev_priv(ndev);
1104 struct phy_device *phydev = lp->phy_dev;
1105 if (!phydev)
1106 return -ENODEV;
1107 return phy_ethtool_sset(phydev, ecmd);
1108}
1109
1110/**
1111 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1112 * @ndev: Pointer to net_device structure
1113 * @ed: Pointer to ethtool_drvinfo structure
1114 *
1115 * This implements ethtool command for getting the driver information.
1116 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1117 */
1118static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1119 struct ethtool_drvinfo *ed)
1120{
1121 memset(ed, 0, sizeof(struct ethtool_drvinfo));
1122 strcpy(ed->driver, DRIVER_NAME);
1123 strcpy(ed->version, DRIVER_VERSION);
1124 ed->regdump_len = sizeof(u32) * AXIENET_REGS_N;
1125}
1126
1127/**
1128 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1129 * AxiEthernet core.
1130 * @ndev: Pointer to net_device structure
1131 *
1132 * This implements ethtool command for getting the total register length
1133 * information.
1134 */
1135static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1136{
1137 return sizeof(u32) * AXIENET_REGS_N;
1138}
1139
1140/**
1141 * axienet_ethtools_get_regs - Dump the contents of all registers present
1142 * in AxiEthernet core.
1143 * @ndev: Pointer to net_device structure
1144 * @regs: Pointer to ethtool_regs structure
1145 * @ret: Void pointer used to return the contents of the registers.
1146 *
1147 * This implements ethtool command for getting the Axi Ethernet register dump.
1148 * Issue "ethtool -d ethX" to execute this function.
1149 */
1150static void axienet_ethtools_get_regs(struct net_device *ndev,
1151 struct ethtool_regs *regs, void *ret)
1152{
1153 u32 *data = (u32 *) ret;
1154 size_t len = sizeof(u32) * AXIENET_REGS_N;
1155 struct axienet_local *lp = netdev_priv(ndev);
1156
1157 regs->version = 0;
1158 regs->len = len;
1159
1160 memset(data, 0, len);
1161 data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1162 data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1163 data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1164 data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1165 data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1166 data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1167 data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1168 data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1169 data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1170 data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1171 data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1172 data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1173 data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1174 data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1175 data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1176 data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1177 data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1178 data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1179 data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1180 data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1181 data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1182 data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1183 data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1184 data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET);
1185 data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET);
1186 data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET);
1187 data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET);
1188 data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1189 data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1190 data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1191 data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1192 data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1193}
1194
1195/**
1196 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1197 * Tx and Rx paths.
1198 * @ndev: Pointer to net_device structure
1199 * @epauseparm: Pointer to ethtool_pauseparam structure.
1200 *
1201 * This implements ethtool command for getting axi ethernet pause frame
1202 * setting. Issue "ethtool -a ethX" to execute this function.
1203 */
1204static void
1205axienet_ethtools_get_pauseparam(struct net_device *ndev,
1206 struct ethtool_pauseparam *epauseparm)
1207{
1208 u32 regval;
1209 struct axienet_local *lp = netdev_priv(ndev);
1210 epauseparm->autoneg = 0;
1211 regval = axienet_ior(lp, XAE_FCC_OFFSET);
1212 epauseparm->tx_pause = regval & XAE_FCC_FCTX_MASK;
1213 epauseparm->rx_pause = regval & XAE_FCC_FCRX_MASK;
1214}
1215
1216/**
1217 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1218 * settings.
1219 * @ndev: Pointer to net_device structure
1220 * @epauseparam:Pointer to ethtool_pauseparam structure
1221 *
1222 * This implements ethtool command for enabling flow control on Rx and Tx
1223 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1224 * function.
1225 */
1226static int
1227axienet_ethtools_set_pauseparam(struct net_device *ndev,
1228 struct ethtool_pauseparam *epauseparm)
1229{
1230 u32 regval = 0;
1231 struct axienet_local *lp = netdev_priv(ndev);
1232
1233 if (netif_running(ndev)) {
1234 printk(KERN_ERR "%s: Please stop netif before applying "
1235 "configruation\n", ndev->name);
1236 return -EFAULT;
1237 }
1238
1239 regval = axienet_ior(lp, XAE_FCC_OFFSET);
1240 if (epauseparm->tx_pause)
1241 regval |= XAE_FCC_FCTX_MASK;
1242 else
1243 regval &= ~XAE_FCC_FCTX_MASK;
1244 if (epauseparm->rx_pause)
1245 regval |= XAE_FCC_FCRX_MASK;
1246 else
1247 regval &= ~XAE_FCC_FCRX_MASK;
1248 axienet_iow(lp, XAE_FCC_OFFSET, regval);
1249
1250 return 0;
1251}
1252
1253/**
1254 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1255 * @ndev: Pointer to net_device structure
1256 * @ecoalesce: Pointer to ethtool_coalesce structure
1257 *
1258 * This implements ethtool command for getting the DMA interrupt coalescing
1259 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1260 * execute this function.
1261 */
1262static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1263 struct ethtool_coalesce *ecoalesce)
1264{
1265 u32 regval = 0;
1266 struct axienet_local *lp = netdev_priv(ndev);
1267 regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1268 ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1269 >> XAXIDMA_COALESCE_SHIFT;
1270 regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1271 ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1272 >> XAXIDMA_COALESCE_SHIFT;
1273 return 0;
1274}
1275
1276/**
1277 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1278 * @ndev: Pointer to net_device structure
1279 * @ecoalesce: Pointer to ethtool_coalesce structure
1280 *
1281 * This implements ethtool command for setting the DMA interrupt coalescing
1282 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1283 * prompt to execute this function.
1284 */
1285static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1286 struct ethtool_coalesce *ecoalesce)
1287{
1288 struct axienet_local *lp = netdev_priv(ndev);
1289
1290 if (netif_running(ndev)) {
1291 printk(KERN_ERR "%s: Please stop netif before applying "
1292 "configruation\n", ndev->name);
1293 return -EFAULT;
1294 }
1295
1296 if ((ecoalesce->rx_coalesce_usecs) ||
1297 (ecoalesce->rx_coalesce_usecs_irq) ||
1298 (ecoalesce->rx_max_coalesced_frames_irq) ||
1299 (ecoalesce->tx_coalesce_usecs) ||
1300 (ecoalesce->tx_coalesce_usecs_irq) ||
1301 (ecoalesce->tx_max_coalesced_frames_irq) ||
1302 (ecoalesce->stats_block_coalesce_usecs) ||
1303 (ecoalesce->use_adaptive_rx_coalesce) ||
1304 (ecoalesce->use_adaptive_tx_coalesce) ||
1305 (ecoalesce->pkt_rate_low) ||
1306 (ecoalesce->rx_coalesce_usecs_low) ||
1307 (ecoalesce->rx_max_coalesced_frames_low) ||
1308 (ecoalesce->tx_coalesce_usecs_low) ||
1309 (ecoalesce->tx_max_coalesced_frames_low) ||
1310 (ecoalesce->pkt_rate_high) ||
1311 (ecoalesce->rx_coalesce_usecs_high) ||
1312 (ecoalesce->rx_max_coalesced_frames_high) ||
1313 (ecoalesce->tx_coalesce_usecs_high) ||
1314 (ecoalesce->tx_max_coalesced_frames_high) ||
1315 (ecoalesce->rate_sample_interval))
1316 return -EOPNOTSUPP;
1317 if (ecoalesce->rx_max_coalesced_frames)
1318 lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1319 if (ecoalesce->tx_max_coalesced_frames)
1320 lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1321
1322 return 0;
1323}
1324
1325static struct ethtool_ops axienet_ethtool_ops = {
1326 .get_settings = axienet_ethtools_get_settings,
1327 .set_settings = axienet_ethtools_set_settings,
1328 .get_drvinfo = axienet_ethtools_get_drvinfo,
1329 .get_regs_len = axienet_ethtools_get_regs_len,
1330 .get_regs = axienet_ethtools_get_regs,
1331 .get_link = ethtool_op_get_link,
1332 .get_pauseparam = axienet_ethtools_get_pauseparam,
1333 .set_pauseparam = axienet_ethtools_set_pauseparam,
1334 .get_coalesce = axienet_ethtools_get_coalesce,
1335 .set_coalesce = axienet_ethtools_set_coalesce,
1336};
1337
1338/**
1339 * axienet_dma_err_handler - Tasklet handler for Axi DMA Error
1340 * @data: Data passed
1341 *
1342 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1343 * Tx/Rx BDs.
1344 */
1345static void axienet_dma_err_handler(unsigned long data)
1346{
1347 u32 axienet_status;
1348 u32 cr, i;
1349 int mdio_mcreg;
1350 struct axienet_local *lp = (struct axienet_local *) data;
1351 struct net_device *ndev = lp->ndev;
1352 struct axidma_bd *cur_p;
1353
1354 axienet_setoptions(ndev, lp->options &
1355 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1356 mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1357 axienet_mdio_wait_until_ready(lp);
1358 /* Disable the MDIO interface till Axi Ethernet Reset is completed.
1359 * When we do an Axi Ethernet reset, it resets the complete core
1360 * including the MDIO. So if MDIO is not disabled when the reset
1361 * process is started, MDIO will be broken afterwards. */
1362 axienet_iow(lp, XAE_MDIO_MC_OFFSET, (mdio_mcreg &
1363 ~XAE_MDIO_MC_MDIOEN_MASK));
1364
1365 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
1366 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
1367
1368 axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
1369 axienet_mdio_wait_until_ready(lp);
1370
1371 for (i = 0; i < TX_BD_NUM; i++) {
1372 cur_p = &lp->tx_bd_v[i];
1373 if (cur_p->phys)
1374 dma_unmap_single(ndev->dev.parent, cur_p->phys,
1375 (cur_p->cntrl &
1376 XAXIDMA_BD_CTRL_LENGTH_MASK),
1377 DMA_TO_DEVICE);
1378 if (cur_p->app4)
1379 dev_kfree_skb_irq((struct sk_buff *) cur_p->app4);
1380 cur_p->phys = 0;
1381 cur_p->cntrl = 0;
1382 cur_p->status = 0;
1383 cur_p->app0 = 0;
1384 cur_p->app1 = 0;
1385 cur_p->app2 = 0;
1386 cur_p->app3 = 0;
1387 cur_p->app4 = 0;
1388 cur_p->sw_id_offset = 0;
1389 }
1390
1391 for (i = 0; i < RX_BD_NUM; i++) {
1392 cur_p = &lp->rx_bd_v[i];
1393 cur_p->status = 0;
1394 cur_p->app0 = 0;
1395 cur_p->app1 = 0;
1396 cur_p->app2 = 0;
1397 cur_p->app3 = 0;
1398 cur_p->app4 = 0;
1399 }
1400
1401 lp->tx_bd_ci = 0;
1402 lp->tx_bd_tail = 0;
1403 lp->rx_bd_ci = 0;
1404
1405 /* Start updating the Rx channel control register */
1406 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1407 /* Update the interrupt coalesce count */
1408 cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1409 (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1410 /* Update the delay timer count */
1411 cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1412 (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1413 /* Enable coalesce, delay timer and error interrupts */
1414 cr |= XAXIDMA_IRQ_ALL_MASK;
1415 /* Finally write to the Rx channel control register */
1416 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1417
1418 /* Start updating the Tx channel control register */
1419 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1420 /* Update the interrupt coalesce count */
1421 cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1422 (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1423 /* Update the delay timer count */
1424 cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1425 (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1426 /* Enable coalesce, delay timer and error interrupts */
1427 cr |= XAXIDMA_IRQ_ALL_MASK;
1428 /* Finally write to the Tx channel control register */
1429 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1430
1431 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
1432 * halted state. This will make the Rx side ready for reception.*/
1433 axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1434 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1435 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1436 cr | XAXIDMA_CR_RUNSTOP_MASK);
1437 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1438 (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
1439
1440 /* Write to the RS (Run-stop) bit in the Tx channel control register.
1441 * Tx channel is now ready to run. But only after we write to the
1442 * tail pointer register that the Tx channel will start transmitting */
1443 axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1444 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1445 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1446 cr | XAXIDMA_CR_RUNSTOP_MASK);
1447
1448 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1449 axienet_status &= ~XAE_RCW1_RX_MASK;
1450 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1451
1452 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1453 if (axienet_status & XAE_INT_RXRJECT_MASK)
1454 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1455 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1456
1457 /* Sync default options with HW but leave receiver and
1458 * transmitter disabled.*/
1459 axienet_setoptions(ndev, lp->options &
1460 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1461 axienet_set_mac_address(ndev, NULL);
1462 axienet_set_multicast_list(ndev);
1463 axienet_setoptions(ndev, lp->options);
1464}
1465
1466/**
1467 * axienet_of_probe - Axi Ethernet probe function.
1468 * @op: Pointer to platform device structure.
1469 * @match: Pointer to device id structure
1470 *
1471 * returns: 0, on success
1472 * Non-zero error value on failure.
1473 *
1474 * This is the probe routine for Axi Ethernet driver. This is called before
1475 * any other driver routines are invoked. It allocates and sets up the Ethernet
1476 * device. Parses through device tree and populates fields of
1477 * axienet_local. It registers the Ethernet device.
1478 */
1479static int __devinit axienet_of_probe(struct platform_device *op)
1480{
1481 __be32 *p;
1482 int size, ret = 0;
1483 struct device_node *np;
1484 struct axienet_local *lp;
1485 struct net_device *ndev;
1486 const void *addr;
1487
1488 ndev = alloc_etherdev(sizeof(*lp));
Joe Perches41de8d42012-01-29 13:47:52 +00001489 if (!ndev)
danborkmann@iogearbox.net8a3b7a22012-01-19 00:39:31 +00001490 return -ENOMEM;
danborkmann@iogearbox.net8a3b7a22012-01-19 00:39:31 +00001491
1492 ether_setup(ndev);
1493 dev_set_drvdata(&op->dev, ndev);
1494
1495 SET_NETDEV_DEV(ndev, &op->dev);
1496 ndev->flags &= ~IFF_MULTICAST; /* clear multicast */
1497 ndev->features = NETIF_F_SG | NETIF_F_FRAGLIST;
1498 ndev->netdev_ops = &axienet_netdev_ops;
1499 ndev->ethtool_ops = &axienet_ethtool_ops;
1500
1501 lp = netdev_priv(ndev);
1502 lp->ndev = ndev;
1503 lp->dev = &op->dev;
1504 lp->options = XAE_OPTION_DEFAULTS;
1505 /* Map device registers */
1506 lp->regs = of_iomap(op->dev.of_node, 0);
1507 if (!lp->regs) {
1508 dev_err(&op->dev, "could not map Axi Ethernet regs.\n");
1509 goto nodev;
1510 }
1511 /* Setup checksum offload, but default to off if not specified */
1512 lp->features = 0;
1513
1514 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,txcsum", NULL);
1515 if (p) {
1516 switch (be32_to_cpup(p)) {
1517 case 1:
1518 lp->csum_offload_on_tx_path =
1519 XAE_FEATURE_PARTIAL_TX_CSUM;
1520 lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1521 /* Can checksum TCP/UDP over IPv4. */
1522 ndev->features |= NETIF_F_IP_CSUM;
1523 break;
1524 case 2:
1525 lp->csum_offload_on_tx_path =
1526 XAE_FEATURE_FULL_TX_CSUM;
1527 lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1528 /* Can checksum TCP/UDP over IPv4. */
1529 ndev->features |= NETIF_F_IP_CSUM;
1530 break;
1531 default:
1532 lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1533 }
1534 }
1535 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,rxcsum", NULL);
1536 if (p) {
1537 switch (be32_to_cpup(p)) {
1538 case 1:
1539 lp->csum_offload_on_rx_path =
1540 XAE_FEATURE_PARTIAL_RX_CSUM;
1541 lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1542 break;
1543 case 2:
1544 lp->csum_offload_on_rx_path =
1545 XAE_FEATURE_FULL_RX_CSUM;
1546 lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1547 break;
1548 default:
1549 lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1550 }
1551 }
1552 /* For supporting jumbo frames, the Axi Ethernet hardware must have
1553 * a larger Rx/Tx Memory. Typically, the size must be more than or
1554 * equal to 16384 bytes, so that we can enable jumbo option and start
1555 * supporting jumbo frames. Here we check for memory allocated for
1556 * Rx/Tx in the hardware from the device-tree and accordingly set
1557 * flags. */
1558 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,rxmem", NULL);
1559 if (p) {
1560 if ((be32_to_cpup(p)) >= 0x4000)
1561 lp->jumbo_support = 1;
1562 }
1563 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,temac-type",
1564 NULL);
1565 if (p)
1566 lp->temac_type = be32_to_cpup(p);
1567 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,phy-type", NULL);
1568 if (p)
1569 lp->phy_type = be32_to_cpup(p);
1570
1571 /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1572 np = of_parse_phandle(op->dev.of_node, "axistream-connected", 0);
1573 if (!np) {
1574 dev_err(&op->dev, "could not find DMA node\n");
1575 goto err_iounmap;
1576 }
1577 lp->dma_regs = of_iomap(np, 0);
1578 if (lp->dma_regs) {
1579 dev_dbg(&op->dev, "MEM base: %p\n", lp->dma_regs);
1580 } else {
1581 dev_err(&op->dev, "unable to map DMA registers\n");
1582 of_node_put(np);
1583 }
1584 lp->rx_irq = irq_of_parse_and_map(np, 1);
1585 lp->tx_irq = irq_of_parse_and_map(np, 0);
1586 of_node_put(np);
1587 if ((lp->rx_irq == NO_IRQ) || (lp->tx_irq == NO_IRQ)) {
1588 dev_err(&op->dev, "could not determine irqs\n");
1589 ret = -ENOMEM;
1590 goto err_iounmap_2;
1591 }
1592
1593 /* Retrieve the MAC address */
1594 addr = of_get_property(op->dev.of_node, "local-mac-address", &size);
1595 if ((!addr) || (size != 6)) {
1596 dev_err(&op->dev, "could not find MAC address\n");
1597 ret = -ENODEV;
1598 goto err_iounmap_2;
1599 }
1600 axienet_set_mac_address(ndev, (void *) addr);
1601
1602 lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1603 lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1604
1605 lp->phy_node = of_parse_phandle(op->dev.of_node, "phy-handle", 0);
1606 ret = axienet_mdio_setup(lp, op->dev.of_node);
1607 if (ret)
1608 dev_warn(&op->dev, "error registering MDIO bus\n");
1609
1610 ret = register_netdev(lp->ndev);
1611 if (ret) {
1612 dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
1613 goto err_iounmap_2;
1614 }
1615
1616 tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler,
1617 (unsigned long) lp);
1618 tasklet_disable(&lp->dma_err_tasklet);
1619
1620 return 0;
1621
1622err_iounmap_2:
1623 if (lp->dma_regs)
1624 iounmap(lp->dma_regs);
1625err_iounmap:
1626 iounmap(lp->regs);
1627nodev:
1628 free_netdev(ndev);
1629 ndev = NULL;
1630 return ret;
1631}
1632
1633static int __devexit axienet_of_remove(struct platform_device *op)
1634{
1635 struct net_device *ndev = dev_get_drvdata(&op->dev);
1636 struct axienet_local *lp = netdev_priv(ndev);
1637
1638 axienet_mdio_teardown(lp);
1639 unregister_netdev(ndev);
1640
1641 if (lp->phy_node)
1642 of_node_put(lp->phy_node);
1643 lp->phy_node = NULL;
1644
1645 dev_set_drvdata(&op->dev, NULL);
1646
1647 iounmap(lp->regs);
1648 if (lp->dma_regs)
1649 iounmap(lp->dma_regs);
1650 free_netdev(ndev);
1651
1652 return 0;
1653}
1654
1655static struct platform_driver axienet_of_driver = {
1656 .probe = axienet_of_probe,
1657 .remove = __devexit_p(axienet_of_remove),
1658 .driver = {
1659 .owner = THIS_MODULE,
1660 .name = "xilinx_axienet",
1661 .of_match_table = axienet_of_match,
1662 },
1663};
1664
Tobias Klauserb4a46672012-02-17 05:35:37 +00001665module_platform_driver(axienet_of_driver);
danborkmann@iogearbox.net8a3b7a22012-01-19 00:39:31 +00001666
1667MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
1668MODULE_AUTHOR("Xilinx");
1669MODULE_LICENSE("GPL");