blob: 9c8776d0ada87bcf9fa70bc401ce69e336b93d74 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Scatterlist Cryptographic API.
3 *
4 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
5 * Copyright (c) 2002 David S. Miller (davem@redhat.com)
Herbert Xu5cb14542005-11-05 16:58:14 +11006 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
Linus Torvalds1da177e2005-04-16 15:20:36 -07007 *
8 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
John Anthony Kazos Jr18735dd2007-10-19 23:07:36 +02009 * and Nettle, by Niels Möller.
Linus Torvalds1da177e2005-04-16 15:20:36 -070010 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
14 * any later version.
15 *
16 */
17#ifndef _LINUX_CRYPTO_H
18#define _LINUX_CRYPTO_H
19
Arun Sharma600634972011-07-26 16:09:06 -070020#include <linux/atomic.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070021#include <linux/kernel.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070022#include <linux/list.h>
Paul Gortmaker187f1882011-11-23 20:12:59 -050023#include <linux/bug.h>
Herbert Xu79911102006-08-21 21:03:52 +100024#include <linux/slab.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070025#include <linux/string.h>
Herbert Xu79911102006-08-21 21:03:52 +100026#include <linux/uaccess.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070027
28/*
Kees Cook5d26a102014-11-20 17:05:53 -080029 * Autoloaded crypto modules should only use a prefixed name to avoid allowing
30 * arbitrary modules to be loaded. Loading from userspace may still need the
31 * unprefixed names, so retains those aliases as well.
32 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
33 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
34 * expands twice on the same line. Instead, use a separate base name for the
35 * alias.
36 */
37#define MODULE_ALIAS_CRYPTO(name) \
38 __MODULE_INFO(alias, alias_userspace, name); \
39 __MODULE_INFO(alias, alias_crypto, "crypto-" name)
40
41/*
Linus Torvalds1da177e2005-04-16 15:20:36 -070042 * Algorithm masks and types.
43 */
Herbert Xu28259822006-08-06 21:23:26 +100044#define CRYPTO_ALG_TYPE_MASK 0x0000000f
Linus Torvalds1da177e2005-04-16 15:20:36 -070045#define CRYPTO_ALG_TYPE_CIPHER 0x00000001
Loc Ho004a4032008-05-14 20:41:47 +080046#define CRYPTO_ALG_TYPE_COMPRESS 0x00000002
47#define CRYPTO_ALG_TYPE_AEAD 0x00000003
Herbert Xu055bcee2006-08-19 22:24:23 +100048#define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004
Herbert Xu332f88402007-11-15 22:36:07 +080049#define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005
Herbert Xu61da88e2007-12-17 21:51:27 +080050#define CRYPTO_ALG_TYPE_GIVCIPHER 0x00000006
Loc Ho004a4032008-05-14 20:41:47 +080051#define CRYPTO_ALG_TYPE_DIGEST 0x00000008
Herbert Xu5f7082e2008-08-31 22:21:09 +100052#define CRYPTO_ALG_TYPE_HASH 0x00000008
53#define CRYPTO_ALG_TYPE_SHASH 0x00000009
Loc Ho004a4032008-05-14 20:41:47 +080054#define CRYPTO_ALG_TYPE_AHASH 0x0000000a
Neil Horman17f0f4a2008-08-14 22:15:52 +100055#define CRYPTO_ALG_TYPE_RNG 0x0000000c
Geert Uytterhoevena1d2f092009-03-04 15:05:33 +080056#define CRYPTO_ALG_TYPE_PCOMPRESS 0x0000000f
Herbert Xu055bcee2006-08-19 22:24:23 +100057
58#define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e
Loc Ho004a4032008-05-14 20:41:47 +080059#define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000c
Herbert Xu332f88402007-11-15 22:36:07 +080060#define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c
Linus Torvalds1da177e2005-04-16 15:20:36 -070061
Herbert Xu28259822006-08-06 21:23:26 +100062#define CRYPTO_ALG_LARVAL 0x00000010
Herbert Xu6bfd4802006-09-21 11:39:29 +100063#define CRYPTO_ALG_DEAD 0x00000020
64#define CRYPTO_ALG_DYING 0x00000040
Herbert Xuf3f632d2006-08-06 23:12:59 +100065#define CRYPTO_ALG_ASYNC 0x00000080
Herbert Xu28259822006-08-06 21:23:26 +100066
Linus Torvalds1da177e2005-04-16 15:20:36 -070067/*
Herbert Xu60104392006-08-26 18:34:10 +100068 * Set this bit if and only if the algorithm requires another algorithm of
69 * the same type to handle corner cases.
70 */
71#define CRYPTO_ALG_NEED_FALLBACK 0x00000100
72
73/*
Herbert Xuecfc4322007-12-05 21:08:36 +110074 * This bit is set for symmetric key ciphers that have already been wrapped
75 * with a generic IV generator to prevent them from being wrapped again.
76 */
77#define CRYPTO_ALG_GENIV 0x00000200
78
79/*
Herbert Xu73d38642008-08-03 21:15:23 +080080 * Set if the algorithm has passed automated run-time testing. Note that
81 * if there is no run-time testing for a given algorithm it is considered
82 * to have passed.
83 */
84
85#define CRYPTO_ALG_TESTED 0x00000400
86
87/*
Steffen Klassert64a947b2011-09-27 07:21:26 +020088 * Set if the algorithm is an instance that is build from templates.
89 */
90#define CRYPTO_ALG_INSTANCE 0x00000800
91
Nikos Mavrogiannopoulosd912bb72011-11-01 13:39:56 +010092/* Set this bit if the algorithm provided is hardware accelerated but
93 * not available to userspace via instruction set or so.
94 */
95#define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000
96
Steffen Klassert64a947b2011-09-27 07:21:26 +020097/*
Linus Torvalds1da177e2005-04-16 15:20:36 -070098 * Transform masks and values (for crt_flags).
99 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700100#define CRYPTO_TFM_REQ_MASK 0x000fff00
101#define CRYPTO_TFM_RES_MASK 0xfff00000
102
Linus Torvalds1da177e2005-04-16 15:20:36 -0700103#define CRYPTO_TFM_REQ_WEAK_KEY 0x00000100
Herbert Xu64baf3c2005-09-01 17:43:05 -0700104#define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200
Herbert Xu32e39832007-03-24 14:35:34 +1100105#define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400
Linus Torvalds1da177e2005-04-16 15:20:36 -0700106#define CRYPTO_TFM_RES_WEAK_KEY 0x00100000
107#define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000
108#define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000
109#define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000
110#define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000
111
112/*
113 * Miscellaneous stuff.
114 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700115#define CRYPTO_MAX_ALG_NAME 64
116
Herbert Xu79911102006-08-21 21:03:52 +1000117/*
118 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
119 * declaration) is used to ensure that the crypto_tfm context structure is
120 * aligned correctly for the given architecture so that there are no alignment
121 * faults for C data types. In particular, this is required on platforms such
122 * as arm where pointers are 32-bit aligned but there are data types such as
123 * u64 which require 64-bit alignment.
124 */
Herbert Xu79911102006-08-21 21:03:52 +1000125#define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
Herbert Xu79911102006-08-21 21:03:52 +1000126
Herbert Xu79911102006-08-21 21:03:52 +1000127#define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
Herbert Xu79911102006-08-21 21:03:52 +1000128
Linus Torvalds1da177e2005-04-16 15:20:36 -0700129struct scatterlist;
Herbert Xu32e39832007-03-24 14:35:34 +1100130struct crypto_ablkcipher;
131struct crypto_async_request;
Herbert Xu1ae97822007-08-30 15:36:14 +0800132struct crypto_aead;
Herbert Xu5cde0af2006-08-22 00:07:53 +1000133struct crypto_blkcipher;
Herbert Xu055bcee2006-08-19 22:24:23 +1000134struct crypto_hash;
Neil Horman17f0f4a2008-08-14 22:15:52 +1000135struct crypto_rng;
Herbert Xu40725182005-07-06 13:51:52 -0700136struct crypto_tfm;
Herbert Xue853c3c2006-08-22 00:06:54 +1000137struct crypto_type;
Herbert Xu743edf52007-12-10 16:18:01 +0800138struct aead_givcrypt_request;
Herbert Xu61da88e2007-12-17 21:51:27 +0800139struct skcipher_givcrypt_request;
Herbert Xu40725182005-07-06 13:51:52 -0700140
Herbert Xu32e39832007-03-24 14:35:34 +1100141typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
142
Stephan Mueller0d7f4882014-11-12 05:27:49 +0100143/**
144 * DOC: Block Cipher Context Data Structures
145 *
146 * These data structures define the operating context for each block cipher
147 * type.
148 */
149
Herbert Xu32e39832007-03-24 14:35:34 +1100150struct crypto_async_request {
151 struct list_head list;
152 crypto_completion_t complete;
153 void *data;
154 struct crypto_tfm *tfm;
155
156 u32 flags;
157};
158
159struct ablkcipher_request {
160 struct crypto_async_request base;
161
162 unsigned int nbytes;
163
164 void *info;
165
166 struct scatterlist *src;
167 struct scatterlist *dst;
168
169 void *__ctx[] CRYPTO_MINALIGN_ATTR;
170};
171
Herbert Xu1ae97822007-08-30 15:36:14 +0800172/**
173 * struct aead_request - AEAD request
174 * @base: Common attributes for async crypto requests
175 * @assoclen: Length in bytes of associated data for authentication
176 * @cryptlen: Length of data to be encrypted or decrypted
177 * @iv: Initialisation vector
178 * @assoc: Associated data
179 * @src: Source data
180 * @dst: Destination data
181 * @__ctx: Start of private context data
182 */
183struct aead_request {
184 struct crypto_async_request base;
185
186 unsigned int assoclen;
187 unsigned int cryptlen;
188
189 u8 *iv;
190
191 struct scatterlist *assoc;
192 struct scatterlist *src;
193 struct scatterlist *dst;
194
195 void *__ctx[] CRYPTO_MINALIGN_ATTR;
196};
197
Herbert Xu5cde0af2006-08-22 00:07:53 +1000198struct blkcipher_desc {
199 struct crypto_blkcipher *tfm;
200 void *info;
201 u32 flags;
202};
203
Herbert Xu40725182005-07-06 13:51:52 -0700204struct cipher_desc {
205 struct crypto_tfm *tfm;
Herbert Xu6c2bb982006-05-16 22:09:29 +1000206 void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
Herbert Xu40725182005-07-06 13:51:52 -0700207 unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
208 const u8 *src, unsigned int nbytes);
209 void *info;
210};
Linus Torvalds1da177e2005-04-16 15:20:36 -0700211
Herbert Xu055bcee2006-08-19 22:24:23 +1000212struct hash_desc {
213 struct crypto_hash *tfm;
214 u32 flags;
215};
216
Stephan Mueller0d7f4882014-11-12 05:27:49 +0100217/**
218 * DOC: Block Cipher Algorithm Definitions
219 *
220 * These data structures define modular crypto algorithm implementations,
221 * managed via crypto_register_alg() and crypto_unregister_alg().
222 */
223
224/**
225 * struct ablkcipher_alg - asynchronous block cipher definition
226 * @min_keysize: Minimum key size supported by the transformation. This is the
227 * smallest key length supported by this transformation algorithm.
228 * This must be set to one of the pre-defined values as this is
229 * not hardware specific. Possible values for this field can be
230 * found via git grep "_MIN_KEY_SIZE" include/crypto/
231 * @max_keysize: Maximum key size supported by the transformation. This is the
232 * largest key length supported by this transformation algorithm.
233 * This must be set to one of the pre-defined values as this is
234 * not hardware specific. Possible values for this field can be
235 * found via git grep "_MAX_KEY_SIZE" include/crypto/
236 * @setkey: Set key for the transformation. This function is used to either
237 * program a supplied key into the hardware or store the key in the
238 * transformation context for programming it later. Note that this
239 * function does modify the transformation context. This function can
240 * be called multiple times during the existence of the transformation
241 * object, so one must make sure the key is properly reprogrammed into
242 * the hardware. This function is also responsible for checking the key
243 * length for validity. In case a software fallback was put in place in
244 * the @cra_init call, this function might need to use the fallback if
245 * the algorithm doesn't support all of the key sizes.
246 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
247 * the supplied scatterlist containing the blocks of data. The crypto
248 * API consumer is responsible for aligning the entries of the
249 * scatterlist properly and making sure the chunks are correctly
250 * sized. In case a software fallback was put in place in the
251 * @cra_init call, this function might need to use the fallback if
252 * the algorithm doesn't support all of the key sizes. In case the
253 * key was stored in transformation context, the key might need to be
254 * re-programmed into the hardware in this function. This function
255 * shall not modify the transformation context, as this function may
256 * be called in parallel with the same transformation object.
257 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
258 * and the conditions are exactly the same.
259 * @givencrypt: Update the IV for encryption. With this function, a cipher
260 * implementation may provide the function on how to update the IV
261 * for encryption.
262 * @givdecrypt: Update the IV for decryption. This is the reverse of
263 * @givencrypt .
264 * @geniv: The transformation implementation may use an "IV generator" provided
265 * by the kernel crypto API. Several use cases have a predefined
266 * approach how IVs are to be updated. For such use cases, the kernel
267 * crypto API provides ready-to-use implementations that can be
268 * referenced with this variable.
269 * @ivsize: IV size applicable for transformation. The consumer must provide an
270 * IV of exactly that size to perform the encrypt or decrypt operation.
271 *
272 * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
273 * mandatory and must be filled.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700274 */
Herbert Xub5b7f082007-04-16 20:48:54 +1000275struct ablkcipher_alg {
276 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
277 unsigned int keylen);
278 int (*encrypt)(struct ablkcipher_request *req);
279 int (*decrypt)(struct ablkcipher_request *req);
Herbert Xu61da88e2007-12-17 21:51:27 +0800280 int (*givencrypt)(struct skcipher_givcrypt_request *req);
281 int (*givdecrypt)(struct skcipher_givcrypt_request *req);
Herbert Xub5b7f082007-04-16 20:48:54 +1000282
Herbert Xu23508e12007-11-27 21:33:24 +0800283 const char *geniv;
284
Herbert Xub5b7f082007-04-16 20:48:54 +1000285 unsigned int min_keysize;
286 unsigned int max_keysize;
287 unsigned int ivsize;
288};
289
Stephan Mueller0d7f4882014-11-12 05:27:49 +0100290/**
291 * struct aead_alg - AEAD cipher definition
292 * @maxauthsize: Set the maximum authentication tag size supported by the
293 * transformation. A transformation may support smaller tag sizes.
294 * As the authentication tag is a message digest to ensure the
295 * integrity of the encrypted data, a consumer typically wants the
296 * largest authentication tag possible as defined by this
297 * variable.
298 * @setauthsize: Set authentication size for the AEAD transformation. This
299 * function is used to specify the consumer requested size of the
300 * authentication tag to be either generated by the transformation
301 * during encryption or the size of the authentication tag to be
302 * supplied during the decryption operation. This function is also
303 * responsible for checking the authentication tag size for
304 * validity.
305 * @setkey: see struct ablkcipher_alg
306 * @encrypt: see struct ablkcipher_alg
307 * @decrypt: see struct ablkcipher_alg
308 * @givencrypt: see struct ablkcipher_alg
309 * @givdecrypt: see struct ablkcipher_alg
310 * @geniv: see struct ablkcipher_alg
311 * @ivsize: see struct ablkcipher_alg
312 *
313 * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
314 * mandatory and must be filled.
315 */
Herbert Xu1ae97822007-08-30 15:36:14 +0800316struct aead_alg {
317 int (*setkey)(struct crypto_aead *tfm, const u8 *key,
318 unsigned int keylen);
Herbert Xu7ba683a2007-12-02 18:49:21 +1100319 int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize);
Herbert Xu1ae97822007-08-30 15:36:14 +0800320 int (*encrypt)(struct aead_request *req);
321 int (*decrypt)(struct aead_request *req);
Herbert Xu743edf52007-12-10 16:18:01 +0800322 int (*givencrypt)(struct aead_givcrypt_request *req);
323 int (*givdecrypt)(struct aead_givcrypt_request *req);
Herbert Xu1ae97822007-08-30 15:36:14 +0800324
Herbert Xu5b6d2d72007-12-12 19:23:36 +0800325 const char *geniv;
326
Herbert Xu1ae97822007-08-30 15:36:14 +0800327 unsigned int ivsize;
Herbert Xu7ba683a2007-12-02 18:49:21 +1100328 unsigned int maxauthsize;
Herbert Xu1ae97822007-08-30 15:36:14 +0800329};
330
Stephan Mueller0d7f4882014-11-12 05:27:49 +0100331/**
332 * struct blkcipher_alg - synchronous block cipher definition
333 * @min_keysize: see struct ablkcipher_alg
334 * @max_keysize: see struct ablkcipher_alg
335 * @setkey: see struct ablkcipher_alg
336 * @encrypt: see struct ablkcipher_alg
337 * @decrypt: see struct ablkcipher_alg
338 * @geniv: see struct ablkcipher_alg
339 * @ivsize: see struct ablkcipher_alg
340 *
341 * All fields except @geniv and @ivsize are mandatory and must be filled.
342 */
Herbert Xu5cde0af2006-08-22 00:07:53 +1000343struct blkcipher_alg {
344 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
345 unsigned int keylen);
346 int (*encrypt)(struct blkcipher_desc *desc,
347 struct scatterlist *dst, struct scatterlist *src,
348 unsigned int nbytes);
349 int (*decrypt)(struct blkcipher_desc *desc,
350 struct scatterlist *dst, struct scatterlist *src,
351 unsigned int nbytes);
352
Herbert Xu23508e12007-11-27 21:33:24 +0800353 const char *geniv;
354
Herbert Xu5cde0af2006-08-22 00:07:53 +1000355 unsigned int min_keysize;
356 unsigned int max_keysize;
357 unsigned int ivsize;
358};
359
Stephan Mueller0d7f4882014-11-12 05:27:49 +0100360/**
361 * struct cipher_alg - single-block symmetric ciphers definition
362 * @cia_min_keysize: Minimum key size supported by the transformation. This is
363 * the smallest key length supported by this transformation
364 * algorithm. This must be set to one of the pre-defined
365 * values as this is not hardware specific. Possible values
366 * for this field can be found via git grep "_MIN_KEY_SIZE"
367 * include/crypto/
368 * @cia_max_keysize: Maximum key size supported by the transformation. This is
369 * the largest key length supported by this transformation
370 * algorithm. This must be set to one of the pre-defined values
371 * as this is not hardware specific. Possible values for this
372 * field can be found via git grep "_MAX_KEY_SIZE"
373 * include/crypto/
374 * @cia_setkey: Set key for the transformation. This function is used to either
375 * program a supplied key into the hardware or store the key in the
376 * transformation context for programming it later. Note that this
377 * function does modify the transformation context. This function
378 * can be called multiple times during the existence of the
379 * transformation object, so one must make sure the key is properly
380 * reprogrammed into the hardware. This function is also
381 * responsible for checking the key length for validity.
382 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
383 * single block of data, which must be @cra_blocksize big. This
384 * always operates on a full @cra_blocksize and it is not possible
385 * to encrypt a block of smaller size. The supplied buffers must
386 * therefore also be at least of @cra_blocksize size. Both the
387 * input and output buffers are always aligned to @cra_alignmask.
388 * In case either of the input or output buffer supplied by user
389 * of the crypto API is not aligned to @cra_alignmask, the crypto
390 * API will re-align the buffers. The re-alignment means that a
391 * new buffer will be allocated, the data will be copied into the
392 * new buffer, then the processing will happen on the new buffer,
393 * then the data will be copied back into the original buffer and
394 * finally the new buffer will be freed. In case a software
395 * fallback was put in place in the @cra_init call, this function
396 * might need to use the fallback if the algorithm doesn't support
397 * all of the key sizes. In case the key was stored in
398 * transformation context, the key might need to be re-programmed
399 * into the hardware in this function. This function shall not
400 * modify the transformation context, as this function may be
401 * called in parallel with the same transformation object.
402 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
403 * @cia_encrypt, and the conditions are exactly the same.
404 *
405 * All fields are mandatory and must be filled.
406 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700407struct cipher_alg {
408 unsigned int cia_min_keysize;
409 unsigned int cia_max_keysize;
Herbert Xu6c2bb982006-05-16 22:09:29 +1000410 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
Herbert Xu560c06a2006-08-13 14:16:39 +1000411 unsigned int keylen);
Herbert Xu6c2bb982006-05-16 22:09:29 +1000412 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
413 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700414};
415
Linus Torvalds1da177e2005-04-16 15:20:36 -0700416struct compress_alg {
Herbert Xu6c2bb982006-05-16 22:09:29 +1000417 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
418 unsigned int slen, u8 *dst, unsigned int *dlen);
419 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
420 unsigned int slen, u8 *dst, unsigned int *dlen);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700421};
422
Stephan Mueller0d7f4882014-11-12 05:27:49 +0100423/**
424 * struct rng_alg - random number generator definition
425 * @rng_make_random: The function defined by this variable obtains a random
426 * number. The random number generator transform must generate
427 * the random number out of the context provided with this
428 * call.
429 * @rng_reset: Reset of the random number generator by clearing the entire state.
430 * With the invocation of this function call, the random number
431 * generator shall completely reinitialize its state. If the random
432 * number generator requires a seed for setting up a new state,
433 * the seed must be provided by the consumer while invoking this
434 * function. The required size of the seed is defined with
435 * @seedsize .
436 * @seedsize: The seed size required for a random number generator
437 * initialization defined with this variable. Some random number
438 * generators like the SP800-90A DRBG does not require a seed as the
439 * seeding is implemented internally without the need of support by
440 * the consumer. In this case, the seed size is set to zero.
441 */
Neil Horman17f0f4a2008-08-14 22:15:52 +1000442struct rng_alg {
443 int (*rng_make_random)(struct crypto_rng *tfm, u8 *rdata,
444 unsigned int dlen);
445 int (*rng_reset)(struct crypto_rng *tfm, u8 *seed, unsigned int slen);
446
447 unsigned int seedsize;
448};
449
450
Herbert Xub5b7f082007-04-16 20:48:54 +1000451#define cra_ablkcipher cra_u.ablkcipher
Herbert Xu1ae97822007-08-30 15:36:14 +0800452#define cra_aead cra_u.aead
Herbert Xu5cde0af2006-08-22 00:07:53 +1000453#define cra_blkcipher cra_u.blkcipher
Linus Torvalds1da177e2005-04-16 15:20:36 -0700454#define cra_cipher cra_u.cipher
Linus Torvalds1da177e2005-04-16 15:20:36 -0700455#define cra_compress cra_u.compress
Neil Horman17f0f4a2008-08-14 22:15:52 +1000456#define cra_rng cra_u.rng
Linus Torvalds1da177e2005-04-16 15:20:36 -0700457
Stephan Mueller0d7f4882014-11-12 05:27:49 +0100458/**
459 * struct crypto_alg - definition of a cryptograpic cipher algorithm
460 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
461 * CRYPTO_ALG_* flags for the flags which go in here. Those are
462 * used for fine-tuning the description of the transformation
463 * algorithm.
464 * @cra_blocksize: Minimum block size of this transformation. The size in bytes
465 * of the smallest possible unit which can be transformed with
466 * this algorithm. The users must respect this value.
467 * In case of HASH transformation, it is possible for a smaller
468 * block than @cra_blocksize to be passed to the crypto API for
469 * transformation, in case of any other transformation type, an
470 * error will be returned upon any attempt to transform smaller
471 * than @cra_blocksize chunks.
472 * @cra_ctxsize: Size of the operational context of the transformation. This
473 * value informs the kernel crypto API about the memory size
474 * needed to be allocated for the transformation context.
475 * @cra_alignmask: Alignment mask for the input and output data buffer. The data
476 * buffer containing the input data for the algorithm must be
477 * aligned to this alignment mask. The data buffer for the
478 * output data must be aligned to this alignment mask. Note that
479 * the Crypto API will do the re-alignment in software, but
480 * only under special conditions and there is a performance hit.
481 * The re-alignment happens at these occasions for different
482 * @cra_u types: cipher -- For both input data and output data
483 * buffer; ahash -- For output hash destination buf; shash --
484 * For output hash destination buf.
485 * This is needed on hardware which is flawed by design and
486 * cannot pick data from arbitrary addresses.
487 * @cra_priority: Priority of this transformation implementation. In case
488 * multiple transformations with same @cra_name are available to
489 * the Crypto API, the kernel will use the one with highest
490 * @cra_priority.
491 * @cra_name: Generic name (usable by multiple implementations) of the
492 * transformation algorithm. This is the name of the transformation
493 * itself. This field is used by the kernel when looking up the
494 * providers of particular transformation.
495 * @cra_driver_name: Unique name of the transformation provider. This is the
496 * name of the provider of the transformation. This can be any
497 * arbitrary value, but in the usual case, this contains the
498 * name of the chip or provider and the name of the
499 * transformation algorithm.
500 * @cra_type: Type of the cryptographic transformation. This is a pointer to
501 * struct crypto_type, which implements callbacks common for all
502 * trasnformation types. There are multiple options:
503 * &crypto_blkcipher_type, &crypto_ablkcipher_type,
504 * &crypto_ahash_type, &crypto_aead_type, &crypto_rng_type.
505 * This field might be empty. In that case, there are no common
506 * callbacks. This is the case for: cipher, compress, shash.
507 * @cra_u: Callbacks implementing the transformation. This is a union of
508 * multiple structures. Depending on the type of transformation selected
509 * by @cra_type and @cra_flags above, the associated structure must be
510 * filled with callbacks. This field might be empty. This is the case
511 * for ahash, shash.
512 * @cra_init: Initialize the cryptographic transformation object. This function
513 * is used to initialize the cryptographic transformation object.
514 * This function is called only once at the instantiation time, right
515 * after the transformation context was allocated. In case the
516 * cryptographic hardware has some special requirements which need to
517 * be handled by software, this function shall check for the precise
518 * requirement of the transformation and put any software fallbacks
519 * in place.
520 * @cra_exit: Deinitialize the cryptographic transformation object. This is a
521 * counterpart to @cra_init, used to remove various changes set in
522 * @cra_init.
523 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
524 * @cra_list: internally used
525 * @cra_users: internally used
526 * @cra_refcnt: internally used
527 * @cra_destroy: internally used
528 *
529 * The struct crypto_alg describes a generic Crypto API algorithm and is common
530 * for all of the transformations. Any variable not documented here shall not
531 * be used by a cipher implementation as it is internal to the Crypto API.
532 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700533struct crypto_alg {
534 struct list_head cra_list;
Herbert Xu6bfd4802006-09-21 11:39:29 +1000535 struct list_head cra_users;
536
Linus Torvalds1da177e2005-04-16 15:20:36 -0700537 u32 cra_flags;
538 unsigned int cra_blocksize;
539 unsigned int cra_ctxsize;
Herbert Xu95477372005-07-06 13:52:09 -0700540 unsigned int cra_alignmask;
Herbert Xu5cb14542005-11-05 16:58:14 +1100541
542 int cra_priority;
Herbert Xu6521f302006-08-06 20:28:44 +1000543 atomic_t cra_refcnt;
Herbert Xu5cb14542005-11-05 16:58:14 +1100544
Herbert Xud913ea02006-05-21 08:45:26 +1000545 char cra_name[CRYPTO_MAX_ALG_NAME];
546 char cra_driver_name[CRYPTO_MAX_ALG_NAME];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700547
Herbert Xue853c3c2006-08-22 00:06:54 +1000548 const struct crypto_type *cra_type;
549
Linus Torvalds1da177e2005-04-16 15:20:36 -0700550 union {
Herbert Xub5b7f082007-04-16 20:48:54 +1000551 struct ablkcipher_alg ablkcipher;
Herbert Xu1ae97822007-08-30 15:36:14 +0800552 struct aead_alg aead;
Herbert Xu5cde0af2006-08-22 00:07:53 +1000553 struct blkcipher_alg blkcipher;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700554 struct cipher_alg cipher;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700555 struct compress_alg compress;
Neil Horman17f0f4a2008-08-14 22:15:52 +1000556 struct rng_alg rng;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700557 } cra_u;
Herbert Xuc7fc0592006-05-24 13:02:26 +1000558
559 int (*cra_init)(struct crypto_tfm *tfm);
560 void (*cra_exit)(struct crypto_tfm *tfm);
Herbert Xu6521f302006-08-06 20:28:44 +1000561 void (*cra_destroy)(struct crypto_alg *alg);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700562
563 struct module *cra_module;
564};
565
566/*
567 * Algorithm registration interface.
568 */
569int crypto_register_alg(struct crypto_alg *alg);
570int crypto_unregister_alg(struct crypto_alg *alg);
Mark Brown4b004342012-01-17 23:34:26 +0000571int crypto_register_algs(struct crypto_alg *algs, int count);
572int crypto_unregister_algs(struct crypto_alg *algs, int count);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700573
574/*
575 * Algorithm query interface.
576 */
Herbert Xufce32d72006-08-26 17:35:45 +1000577int crypto_has_alg(const char *name, u32 type, u32 mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700578
579/*
580 * Transforms: user-instantiated objects which encapsulate algorithms
Herbert Xu6d7d6842006-07-30 11:53:01 +1000581 * and core processing logic. Managed via crypto_alloc_*() and
582 * crypto_free_*(), as well as the various helpers below.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700583 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700584
Herbert Xu32e39832007-03-24 14:35:34 +1100585struct ablkcipher_tfm {
586 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
587 unsigned int keylen);
588 int (*encrypt)(struct ablkcipher_request *req);
589 int (*decrypt)(struct ablkcipher_request *req);
Herbert Xu61da88e2007-12-17 21:51:27 +0800590 int (*givencrypt)(struct skcipher_givcrypt_request *req);
591 int (*givdecrypt)(struct skcipher_givcrypt_request *req);
592
Herbert Xuecfc4322007-12-05 21:08:36 +1100593 struct crypto_ablkcipher *base;
594
Herbert Xu32e39832007-03-24 14:35:34 +1100595 unsigned int ivsize;
596 unsigned int reqsize;
597};
598
Herbert Xu1ae97822007-08-30 15:36:14 +0800599struct aead_tfm {
600 int (*setkey)(struct crypto_aead *tfm, const u8 *key,
601 unsigned int keylen);
602 int (*encrypt)(struct aead_request *req);
603 int (*decrypt)(struct aead_request *req);
Herbert Xu743edf52007-12-10 16:18:01 +0800604 int (*givencrypt)(struct aead_givcrypt_request *req);
605 int (*givdecrypt)(struct aead_givcrypt_request *req);
Herbert Xu5b6d2d72007-12-12 19:23:36 +0800606
607 struct crypto_aead *base;
608
Herbert Xu1ae97822007-08-30 15:36:14 +0800609 unsigned int ivsize;
610 unsigned int authsize;
611 unsigned int reqsize;
612};
613
Herbert Xu5cde0af2006-08-22 00:07:53 +1000614struct blkcipher_tfm {
615 void *iv;
616 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
617 unsigned int keylen);
618 int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
619 struct scatterlist *src, unsigned int nbytes);
620 int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
621 struct scatterlist *src, unsigned int nbytes);
622};
623
Linus Torvalds1da177e2005-04-16 15:20:36 -0700624struct cipher_tfm {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700625 int (*cit_setkey)(struct crypto_tfm *tfm,
626 const u8 *key, unsigned int keylen);
Herbert Xuf28776a2006-08-13 20:58:18 +1000627 void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
628 void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700629};
630
Herbert Xu055bcee2006-08-19 22:24:23 +1000631struct hash_tfm {
632 int (*init)(struct hash_desc *desc);
633 int (*update)(struct hash_desc *desc,
634 struct scatterlist *sg, unsigned int nsg);
635 int (*final)(struct hash_desc *desc, u8 *out);
636 int (*digest)(struct hash_desc *desc, struct scatterlist *sg,
637 unsigned int nsg, u8 *out);
638 int (*setkey)(struct crypto_hash *tfm, const u8 *key,
639 unsigned int keylen);
Herbert Xu055bcee2006-08-19 22:24:23 +1000640 unsigned int digestsize;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700641};
642
643struct compress_tfm {
644 int (*cot_compress)(struct crypto_tfm *tfm,
645 const u8 *src, unsigned int slen,
646 u8 *dst, unsigned int *dlen);
647 int (*cot_decompress)(struct crypto_tfm *tfm,
648 const u8 *src, unsigned int slen,
649 u8 *dst, unsigned int *dlen);
650};
651
Neil Horman17f0f4a2008-08-14 22:15:52 +1000652struct rng_tfm {
653 int (*rng_gen_random)(struct crypto_rng *tfm, u8 *rdata,
654 unsigned int dlen);
655 int (*rng_reset)(struct crypto_rng *tfm, u8 *seed, unsigned int slen);
656};
657
Herbert Xu32e39832007-03-24 14:35:34 +1100658#define crt_ablkcipher crt_u.ablkcipher
Herbert Xu1ae97822007-08-30 15:36:14 +0800659#define crt_aead crt_u.aead
Herbert Xu5cde0af2006-08-22 00:07:53 +1000660#define crt_blkcipher crt_u.blkcipher
Linus Torvalds1da177e2005-04-16 15:20:36 -0700661#define crt_cipher crt_u.cipher
Herbert Xu055bcee2006-08-19 22:24:23 +1000662#define crt_hash crt_u.hash
Linus Torvalds1da177e2005-04-16 15:20:36 -0700663#define crt_compress crt_u.compress
Neil Horman17f0f4a2008-08-14 22:15:52 +1000664#define crt_rng crt_u.rng
Linus Torvalds1da177e2005-04-16 15:20:36 -0700665
666struct crypto_tfm {
667
668 u32 crt_flags;
669
670 union {
Herbert Xu32e39832007-03-24 14:35:34 +1100671 struct ablkcipher_tfm ablkcipher;
Herbert Xu1ae97822007-08-30 15:36:14 +0800672 struct aead_tfm aead;
Herbert Xu5cde0af2006-08-22 00:07:53 +1000673 struct blkcipher_tfm blkcipher;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700674 struct cipher_tfm cipher;
Herbert Xu055bcee2006-08-19 22:24:23 +1000675 struct hash_tfm hash;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700676 struct compress_tfm compress;
Neil Horman17f0f4a2008-08-14 22:15:52 +1000677 struct rng_tfm rng;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700678 } crt_u;
Herbert Xu4a779482008-09-13 18:19:03 -0700679
680 void (*exit)(struct crypto_tfm *tfm);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700681
682 struct crypto_alg *__crt_alg;
Herbert Xuf10b7892006-01-25 22:34:01 +1100683
Herbert Xu79911102006-08-21 21:03:52 +1000684 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700685};
686
Herbert Xu32e39832007-03-24 14:35:34 +1100687struct crypto_ablkcipher {
688 struct crypto_tfm base;
689};
690
Herbert Xu1ae97822007-08-30 15:36:14 +0800691struct crypto_aead {
692 struct crypto_tfm base;
693};
694
Herbert Xu5cde0af2006-08-22 00:07:53 +1000695struct crypto_blkcipher {
696 struct crypto_tfm base;
697};
698
Herbert Xu78a1fe42006-12-24 10:02:00 +1100699struct crypto_cipher {
700 struct crypto_tfm base;
701};
702
703struct crypto_comp {
704 struct crypto_tfm base;
705};
706
Herbert Xu055bcee2006-08-19 22:24:23 +1000707struct crypto_hash {
708 struct crypto_tfm base;
709};
710
Neil Horman17f0f4a2008-08-14 22:15:52 +1000711struct crypto_rng {
712 struct crypto_tfm base;
713};
714
Herbert Xu2b8c19d2006-09-21 11:31:44 +1000715enum {
716 CRYPTOA_UNSPEC,
717 CRYPTOA_ALG,
Herbert Xuebc610e2007-01-01 18:37:02 +1100718 CRYPTOA_TYPE,
Herbert Xu39e1ee012007-08-29 19:27:26 +0800719 CRYPTOA_U32,
Herbert Xuebc610e2007-01-01 18:37:02 +1100720 __CRYPTOA_MAX,
Herbert Xu2b8c19d2006-09-21 11:31:44 +1000721};
722
Herbert Xuebc610e2007-01-01 18:37:02 +1100723#define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
724
Herbert Xu39e1ee012007-08-29 19:27:26 +0800725/* Maximum number of (rtattr) parameters for each template. */
726#define CRYPTO_MAX_ATTRS 32
727
Herbert Xu2b8c19d2006-09-21 11:31:44 +1000728struct crypto_attr_alg {
729 char name[CRYPTO_MAX_ALG_NAME];
730};
731
Herbert Xuebc610e2007-01-01 18:37:02 +1100732struct crypto_attr_type {
733 u32 type;
734 u32 mask;
735};
736
Herbert Xu39e1ee012007-08-29 19:27:26 +0800737struct crypto_attr_u32 {
738 u32 num;
739};
740
Linus Torvalds1da177e2005-04-16 15:20:36 -0700741/*
742 * Transform user interface.
743 */
744
Herbert Xu6d7d6842006-07-30 11:53:01 +1000745struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
Herbert Xu7b2cd922009-02-05 16:48:24 +1100746void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
747
748static inline void crypto_free_tfm(struct crypto_tfm *tfm)
749{
750 return crypto_destroy_tfm(tfm, tfm);
751}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700752
Herbert Xuda7f0332008-07-31 17:08:25 +0800753int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
754
Linus Torvalds1da177e2005-04-16 15:20:36 -0700755/*
756 * Transform helpers which query the underlying algorithm.
757 */
758static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
759{
760 return tfm->__crt_alg->cra_name;
761}
762
Michal Ludvigb14cdd62006-07-09 09:02:24 +1000763static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
764{
765 return tfm->__crt_alg->cra_driver_name;
766}
767
768static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
769{
770 return tfm->__crt_alg->cra_priority;
771}
772
Linus Torvalds1da177e2005-04-16 15:20:36 -0700773static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
774{
775 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
776}
777
Linus Torvalds1da177e2005-04-16 15:20:36 -0700778static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
779{
780 return tfm->__crt_alg->cra_blocksize;
781}
782
Herbert Xufbdae9f2005-07-06 13:53:29 -0700783static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
784{
785 return tfm->__crt_alg->cra_alignmask;
786}
787
Herbert Xuf28776a2006-08-13 20:58:18 +1000788static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
789{
790 return tfm->crt_flags;
791}
792
793static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
794{
795 tfm->crt_flags |= flags;
796}
797
798static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
799{
800 tfm->crt_flags &= ~flags;
801}
802
Herbert Xu40725182005-07-06 13:51:52 -0700803static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
804{
Herbert Xuf10b7892006-01-25 22:34:01 +1100805 return tfm->__crt_ctx;
806}
807
808static inline unsigned int crypto_tfm_ctx_alignment(void)
809{
810 struct crypto_tfm *tfm;
811 return __alignof__(tfm->__crt_ctx);
Herbert Xu40725182005-07-06 13:51:52 -0700812}
813
Linus Torvalds1da177e2005-04-16 15:20:36 -0700814/*
815 * API wrappers.
816 */
Herbert Xu32e39832007-03-24 14:35:34 +1100817static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
818 struct crypto_tfm *tfm)
819{
820 return (struct crypto_ablkcipher *)tfm;
821}
822
Herbert Xu378f4f52007-12-17 20:07:31 +0800823static inline u32 crypto_skcipher_type(u32 type)
824{
Herbert Xuecfc4322007-12-05 21:08:36 +1100825 type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
Herbert Xu378f4f52007-12-17 20:07:31 +0800826 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
827 return type;
828}
829
830static inline u32 crypto_skcipher_mask(u32 mask)
831{
Herbert Xuecfc4322007-12-05 21:08:36 +1100832 mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
Herbert Xu378f4f52007-12-17 20:07:31 +0800833 mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
834 return mask;
835}
836
Stephan Muellerf13ec332014-11-12 05:28:22 +0100837/**
838 * DOC: Asynchronous Block Cipher API
839 *
840 * Asynchronous block cipher API is used with the ciphers of type
841 * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
842 *
843 * Asynchronous cipher operations imply that the function invocation for a
844 * cipher request returns immediately before the completion of the operation.
845 * The cipher request is scheduled as a separate kernel thread and therefore
846 * load-balanced on the different CPUs via the process scheduler. To allow
847 * the kernel crypto API to inform the caller about the completion of a cipher
848 * request, the caller must provide a callback function. That function is
849 * invoked with the cipher handle when the request completes.
850 *
851 * To support the asynchronous operation, additional information than just the
852 * cipher handle must be supplied to the kernel crypto API. That additional
853 * information is given by filling in the ablkcipher_request data structure.
854 *
855 * For the asynchronous block cipher API, the state is maintained with the tfm
856 * cipher handle. A single tfm can be used across multiple calls and in
857 * parallel. For asynchronous block cipher calls, context data supplied and
858 * only used by the caller can be referenced the request data structure in
859 * addition to the IV used for the cipher request. The maintenance of such
860 * state information would be important for a crypto driver implementer to
861 * have, because when calling the callback function upon completion of the
862 * cipher operation, that callback function may need some information about
863 * which operation just finished if it invoked multiple in parallel. This
864 * state information is unused by the kernel crypto API.
865 */
866
867/**
868 * crypto_alloc_ablkcipher() - allocate asynchronous block cipher handle
869 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
870 * ablkcipher cipher
871 * @type: specifies the type of the cipher
872 * @mask: specifies the mask for the cipher
873 *
874 * Allocate a cipher handle for an ablkcipher. The returned struct
875 * crypto_ablkcipher is the cipher handle that is required for any subsequent
876 * API invocation for that ablkcipher.
877 *
878 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
879 * of an error, PTR_ERR() returns the error code.
880 */
Herbert Xub9c55aa2007-12-04 12:46:48 +1100881struct crypto_ablkcipher *crypto_alloc_ablkcipher(const char *alg_name,
882 u32 type, u32 mask);
Herbert Xu32e39832007-03-24 14:35:34 +1100883
884static inline struct crypto_tfm *crypto_ablkcipher_tfm(
885 struct crypto_ablkcipher *tfm)
886{
887 return &tfm->base;
888}
889
Stephan Muellerf13ec332014-11-12 05:28:22 +0100890/**
891 * crypto_free_ablkcipher() - zeroize and free cipher handle
892 * @tfm: cipher handle to be freed
893 */
Herbert Xu32e39832007-03-24 14:35:34 +1100894static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
895{
896 crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
897}
898
Stephan Muellerf13ec332014-11-12 05:28:22 +0100899/**
900 * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
901 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
902 * ablkcipher
903 * @type: specifies the type of the cipher
904 * @mask: specifies the mask for the cipher
905 *
906 * Return: true when the ablkcipher is known to the kernel crypto API; false
907 * otherwise
908 */
Herbert Xu32e39832007-03-24 14:35:34 +1100909static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
910 u32 mask)
911{
Herbert Xu378f4f52007-12-17 20:07:31 +0800912 return crypto_has_alg(alg_name, crypto_skcipher_type(type),
913 crypto_skcipher_mask(mask));
Herbert Xu32e39832007-03-24 14:35:34 +1100914}
915
916static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
917 struct crypto_ablkcipher *tfm)
918{
919 return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
920}
921
Stephan Muellerf13ec332014-11-12 05:28:22 +0100922/**
923 * crypto_ablkcipher_ivsize() - obtain IV size
924 * @tfm: cipher handle
925 *
926 * The size of the IV for the ablkcipher referenced by the cipher handle is
927 * returned. This IV size may be zero if the cipher does not need an IV.
928 *
929 * Return: IV size in bytes
930 */
Herbert Xu32e39832007-03-24 14:35:34 +1100931static inline unsigned int crypto_ablkcipher_ivsize(
932 struct crypto_ablkcipher *tfm)
933{
934 return crypto_ablkcipher_crt(tfm)->ivsize;
935}
936
Stephan Muellerf13ec332014-11-12 05:28:22 +0100937/**
938 * crypto_ablkcipher_blocksize() - obtain block size of cipher
939 * @tfm: cipher handle
940 *
941 * The block size for the ablkcipher referenced with the cipher handle is
942 * returned. The caller may use that information to allocate appropriate
943 * memory for the data returned by the encryption or decryption operation
944 *
945 * Return: block size of cipher
946 */
Herbert Xu32e39832007-03-24 14:35:34 +1100947static inline unsigned int crypto_ablkcipher_blocksize(
948 struct crypto_ablkcipher *tfm)
949{
950 return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
951}
952
953static inline unsigned int crypto_ablkcipher_alignmask(
954 struct crypto_ablkcipher *tfm)
955{
956 return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
957}
958
959static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
960{
961 return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
962}
963
964static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
965 u32 flags)
966{
967 crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
968}
969
970static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
971 u32 flags)
972{
973 crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
974}
975
Stephan Muellerf13ec332014-11-12 05:28:22 +0100976/**
977 * crypto_ablkcipher_setkey() - set key for cipher
978 * @tfm: cipher handle
979 * @key: buffer holding the key
980 * @keylen: length of the key in bytes
981 *
982 * The caller provided key is set for the ablkcipher referenced by the cipher
983 * handle.
984 *
985 * Note, the key length determines the cipher type. Many block ciphers implement
986 * different cipher modes depending on the key size, such as AES-128 vs AES-192
987 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
988 * is performed.
989 *
990 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
991 */
Herbert Xu32e39832007-03-24 14:35:34 +1100992static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
993 const u8 *key, unsigned int keylen)
994{
Herbert Xuecfc4322007-12-05 21:08:36 +1100995 struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
996
997 return crt->setkey(crt->base, key, keylen);
Herbert Xu32e39832007-03-24 14:35:34 +1100998}
999
Stephan Muellerf13ec332014-11-12 05:28:22 +01001000/**
1001 * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
1002 * @req: ablkcipher_request out of which the cipher handle is to be obtained
1003 *
1004 * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
1005 * data structure.
1006 *
1007 * Return: crypto_ablkcipher handle
1008 */
Herbert Xu32e39832007-03-24 14:35:34 +11001009static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
1010 struct ablkcipher_request *req)
1011{
1012 return __crypto_ablkcipher_cast(req->base.tfm);
1013}
1014
Stephan Muellerf13ec332014-11-12 05:28:22 +01001015/**
1016 * crypto_ablkcipher_encrypt() - encrypt plaintext
1017 * @req: reference to the ablkcipher_request handle that holds all information
1018 * needed to perform the cipher operation
1019 *
1020 * Encrypt plaintext data using the ablkcipher_request handle. That data
1021 * structure and how it is filled with data is discussed with the
1022 * ablkcipher_request_* functions.
1023 *
1024 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1025 */
Herbert Xu32e39832007-03-24 14:35:34 +11001026static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
1027{
1028 struct ablkcipher_tfm *crt =
1029 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
1030 return crt->encrypt(req);
1031}
1032
Stephan Muellerf13ec332014-11-12 05:28:22 +01001033/**
1034 * crypto_ablkcipher_decrypt() - decrypt ciphertext
1035 * @req: reference to the ablkcipher_request handle that holds all information
1036 * needed to perform the cipher operation
1037 *
1038 * Decrypt ciphertext data using the ablkcipher_request handle. That data
1039 * structure and how it is filled with data is discussed with the
1040 * ablkcipher_request_* functions.
1041 *
1042 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1043 */
Herbert Xu32e39832007-03-24 14:35:34 +11001044static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
1045{
1046 struct ablkcipher_tfm *crt =
1047 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
1048 return crt->decrypt(req);
1049}
1050
Stephan Muellerf13ec332014-11-12 05:28:22 +01001051/**
1052 * DOC: Asynchronous Cipher Request Handle
1053 *
1054 * The ablkcipher_request data structure contains all pointers to data
1055 * required for the asynchronous cipher operation. This includes the cipher
1056 * handle (which can be used by multiple ablkcipher_request instances), pointer
1057 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
1058 * as a handle to the ablkcipher_request_* API calls in a similar way as
1059 * ablkcipher handle to the crypto_ablkcipher_* API calls.
1060 */
1061
1062/**
1063 * crypto_ablkcipher_reqsize() - obtain size of the request data structure
1064 * @tfm: cipher handle
1065 *
1066 * Return: number of bytes
1067 */
Herbert Xub16c3a22007-08-29 19:02:04 +08001068static inline unsigned int crypto_ablkcipher_reqsize(
1069 struct crypto_ablkcipher *tfm)
Herbert Xu32e39832007-03-24 14:35:34 +11001070{
1071 return crypto_ablkcipher_crt(tfm)->reqsize;
1072}
1073
Stephan Muellerf13ec332014-11-12 05:28:22 +01001074/**
1075 * ablkcipher_request_set_tfm() - update cipher handle reference in request
1076 * @req: request handle to be modified
1077 * @tfm: cipher handle that shall be added to the request handle
1078 *
1079 * Allow the caller to replace the existing ablkcipher handle in the request
1080 * data structure with a different one.
1081 */
Herbert Xue196d622007-04-14 16:09:14 +10001082static inline void ablkcipher_request_set_tfm(
1083 struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
1084{
Herbert Xuecfc4322007-12-05 21:08:36 +11001085 req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
Herbert Xue196d622007-04-14 16:09:14 +10001086}
1087
Herbert Xub5b7f082007-04-16 20:48:54 +10001088static inline struct ablkcipher_request *ablkcipher_request_cast(
1089 struct crypto_async_request *req)
1090{
1091 return container_of(req, struct ablkcipher_request, base);
1092}
1093
Stephan Muellerf13ec332014-11-12 05:28:22 +01001094/**
1095 * ablkcipher_request_alloc() - allocate request data structure
1096 * @tfm: cipher handle to be registered with the request
1097 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
1098 *
1099 * Allocate the request data structure that must be used with the ablkcipher
1100 * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
1101 * handle is registered in the request data structure.
1102 *
1103 * Return: allocated request handle in case of success; IS_ERR() is true in case
1104 * of an error, PTR_ERR() returns the error code.
1105 */
Herbert Xu32e39832007-03-24 14:35:34 +11001106static inline struct ablkcipher_request *ablkcipher_request_alloc(
1107 struct crypto_ablkcipher *tfm, gfp_t gfp)
1108{
1109 struct ablkcipher_request *req;
1110
1111 req = kmalloc(sizeof(struct ablkcipher_request) +
1112 crypto_ablkcipher_reqsize(tfm), gfp);
1113
1114 if (likely(req))
Herbert Xue196d622007-04-14 16:09:14 +10001115 ablkcipher_request_set_tfm(req, tfm);
Herbert Xu32e39832007-03-24 14:35:34 +11001116
1117 return req;
1118}
1119
Stephan Muellerf13ec332014-11-12 05:28:22 +01001120/**
1121 * ablkcipher_request_free() - zeroize and free request data structure
1122 * @req: request data structure cipher handle to be freed
1123 */
Herbert Xu32e39832007-03-24 14:35:34 +11001124static inline void ablkcipher_request_free(struct ablkcipher_request *req)
1125{
Herbert Xuaef73cf2009-07-11 22:22:14 +08001126 kzfree(req);
Herbert Xu32e39832007-03-24 14:35:34 +11001127}
1128
Stephan Muellerf13ec332014-11-12 05:28:22 +01001129/**
1130 * ablkcipher_request_set_callback() - set asynchronous callback function
1131 * @req: request handle
1132 * @flags: specify zero or an ORing of the flags
1133 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
1134 * increase the wait queue beyond the initial maximum size;
1135 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1136 * @compl: callback function pointer to be registered with the request handle
1137 * @data: The data pointer refers to memory that is not used by the kernel
1138 * crypto API, but provided to the callback function for it to use. Here,
1139 * the caller can provide a reference to memory the callback function can
1140 * operate on. As the callback function is invoked asynchronously to the
1141 * related functionality, it may need to access data structures of the
1142 * related functionality which can be referenced using this pointer. The
1143 * callback function can access the memory via the "data" field in the
1144 * crypto_async_request data structure provided to the callback function.
1145 *
1146 * This function allows setting the callback function that is triggered once the
1147 * cipher operation completes.
1148 *
1149 * The callback function is registered with the ablkcipher_request handle and
1150 * must comply with the following template:
1151 *
1152 * void callback_function(struct crypto_async_request *req, int error)
1153 */
Herbert Xu32e39832007-03-24 14:35:34 +11001154static inline void ablkcipher_request_set_callback(
1155 struct ablkcipher_request *req,
Mark Rustad3e3dc252014-07-25 02:53:38 -07001156 u32 flags, crypto_completion_t compl, void *data)
Herbert Xu32e39832007-03-24 14:35:34 +11001157{
Mark Rustad3e3dc252014-07-25 02:53:38 -07001158 req->base.complete = compl;
Herbert Xu32e39832007-03-24 14:35:34 +11001159 req->base.data = data;
1160 req->base.flags = flags;
1161}
1162
Stephan Muellerf13ec332014-11-12 05:28:22 +01001163/**
1164 * ablkcipher_request_set_crypt() - set data buffers
1165 * @req: request handle
1166 * @src: source scatter / gather list
1167 * @dst: destination scatter / gather list
1168 * @nbytes: number of bytes to process from @src
1169 * @iv: IV for the cipher operation which must comply with the IV size defined
1170 * by crypto_ablkcipher_ivsize
1171 *
1172 * This function allows setting of the source data and destination data
1173 * scatter / gather lists.
1174 *
1175 * For encryption, the source is treated as the plaintext and the
1176 * destination is the ciphertext. For a decryption operation, the use is
1177 * reversed: the source is the ciphertext and the destination is the plaintext.
1178 */
Herbert Xu32e39832007-03-24 14:35:34 +11001179static inline void ablkcipher_request_set_crypt(
1180 struct ablkcipher_request *req,
1181 struct scatterlist *src, struct scatterlist *dst,
1182 unsigned int nbytes, void *iv)
1183{
1184 req->src = src;
1185 req->dst = dst;
1186 req->nbytes = nbytes;
1187 req->info = iv;
1188}
1189
Stephan Muellerfced7b02014-11-12 05:29:00 +01001190/**
1191 * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API
1192 *
1193 * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD
1194 * (listed as type "aead" in /proc/crypto)
1195 *
1196 * The most prominent examples for this type of encryption is GCM and CCM.
1197 * However, the kernel supports other types of AEAD ciphers which are defined
1198 * with the following cipher string:
1199 *
1200 * authenc(keyed message digest, block cipher)
1201 *
1202 * For example: authenc(hmac(sha256), cbc(aes))
1203 *
1204 * The example code provided for the asynchronous block cipher operation
1205 * applies here as well. Naturally all *ablkcipher* symbols must be exchanged
1206 * the *aead* pendants discussed in the following. In addtion, for the AEAD
1207 * operation, the aead_request_set_assoc function must be used to set the
1208 * pointer to the associated data memory location before performing the
1209 * encryption or decryption operation. In case of an encryption, the associated
1210 * data memory is filled during the encryption operation. For decryption, the
1211 * associated data memory must contain data that is used to verify the integrity
1212 * of the decrypted data. Another deviation from the asynchronous block cipher
1213 * operation is that the caller should explicitly check for -EBADMSG of the
1214 * crypto_aead_decrypt. That error indicates an authentication error, i.e.
1215 * a breach in the integrity of the message. In essence, that -EBADMSG error
1216 * code is the key bonus an AEAD cipher has over "standard" block chaining
1217 * modes.
1218 */
1219
Herbert Xu1ae97822007-08-30 15:36:14 +08001220static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm)
1221{
1222 return (struct crypto_aead *)tfm;
1223}
1224
Stephan Muellerfced7b02014-11-12 05:29:00 +01001225/**
1226 * crypto_alloc_aead() - allocate AEAD cipher handle
1227 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1228 * AEAD cipher
1229 * @type: specifies the type of the cipher
1230 * @mask: specifies the mask for the cipher
1231 *
1232 * Allocate a cipher handle for an AEAD. The returned struct
1233 * crypto_aead is the cipher handle that is required for any subsequent
1234 * API invocation for that AEAD.
1235 *
1236 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1237 * of an error, PTR_ERR() returns the error code.
1238 */
Herbert Xud29ce982007-12-12 19:24:27 +08001239struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask);
Herbert Xu1ae97822007-08-30 15:36:14 +08001240
1241static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm)
1242{
1243 return &tfm->base;
1244}
1245
Stephan Muellerfced7b02014-11-12 05:29:00 +01001246/**
1247 * crypto_free_aead() - zeroize and free aead handle
1248 * @tfm: cipher handle to be freed
1249 */
Herbert Xu1ae97822007-08-30 15:36:14 +08001250static inline void crypto_free_aead(struct crypto_aead *tfm)
1251{
1252 crypto_free_tfm(crypto_aead_tfm(tfm));
1253}
1254
1255static inline struct aead_tfm *crypto_aead_crt(struct crypto_aead *tfm)
1256{
1257 return &crypto_aead_tfm(tfm)->crt_aead;
1258}
1259
Stephan Muellerfced7b02014-11-12 05:29:00 +01001260/**
1261 * crypto_aead_ivsize() - obtain IV size
1262 * @tfm: cipher handle
1263 *
1264 * The size of the IV for the aead referenced by the cipher handle is
1265 * returned. This IV size may be zero if the cipher does not need an IV.
1266 *
1267 * Return: IV size in bytes
1268 */
Herbert Xu1ae97822007-08-30 15:36:14 +08001269static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm)
1270{
1271 return crypto_aead_crt(tfm)->ivsize;
1272}
1273
Stephan Muellerfced7b02014-11-12 05:29:00 +01001274/**
1275 * crypto_aead_authsize() - obtain maximum authentication data size
1276 * @tfm: cipher handle
1277 *
1278 * The maximum size of the authentication data for the AEAD cipher referenced
1279 * by the AEAD cipher handle is returned. The authentication data size may be
1280 * zero if the cipher implements a hard-coded maximum.
1281 *
1282 * The authentication data may also be known as "tag value".
1283 *
1284 * Return: authentication data size / tag size in bytes
1285 */
Herbert Xu1ae97822007-08-30 15:36:14 +08001286static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm)
1287{
1288 return crypto_aead_crt(tfm)->authsize;
1289}
1290
Stephan Muellerfced7b02014-11-12 05:29:00 +01001291/**
1292 * crypto_aead_blocksize() - obtain block size of cipher
1293 * @tfm: cipher handle
1294 *
1295 * The block size for the AEAD referenced with the cipher handle is returned.
1296 * The caller may use that information to allocate appropriate memory for the
1297 * data returned by the encryption or decryption operation
1298 *
1299 * Return: block size of cipher
1300 */
Herbert Xu1ae97822007-08-30 15:36:14 +08001301static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm)
1302{
1303 return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm));
1304}
1305
1306static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm)
1307{
1308 return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm));
1309}
1310
1311static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm)
1312{
1313 return crypto_tfm_get_flags(crypto_aead_tfm(tfm));
1314}
1315
1316static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags)
1317{
1318 crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags);
1319}
1320
1321static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags)
1322{
1323 crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags);
1324}
1325
Stephan Muellerfced7b02014-11-12 05:29:00 +01001326/**
1327 * crypto_aead_setkey() - set key for cipher
1328 * @tfm: cipher handle
1329 * @key: buffer holding the key
1330 * @keylen: length of the key in bytes
1331 *
1332 * The caller provided key is set for the AEAD referenced by the cipher
1333 * handle.
1334 *
1335 * Note, the key length determines the cipher type. Many block ciphers implement
1336 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1337 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1338 * is performed.
1339 *
1340 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1341 */
Herbert Xu1ae97822007-08-30 15:36:14 +08001342static inline int crypto_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1343 unsigned int keylen)
1344{
Herbert Xu5b6d2d72007-12-12 19:23:36 +08001345 struct aead_tfm *crt = crypto_aead_crt(tfm);
1346
1347 return crt->setkey(crt->base, key, keylen);
Herbert Xu1ae97822007-08-30 15:36:14 +08001348}
1349
Stephan Muellerfced7b02014-11-12 05:29:00 +01001350/**
1351 * crypto_aead_setauthsize() - set authentication data size
1352 * @tfm: cipher handle
1353 * @authsize: size of the authentication data / tag in bytes
1354 *
1355 * Set the authentication data size / tag size. AEAD requires an authentication
1356 * tag (or MAC) in addition to the associated data.
1357 *
1358 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1359 */
Herbert Xu7ba683a2007-12-02 18:49:21 +11001360int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize);
1361
Herbert Xu1ae97822007-08-30 15:36:14 +08001362static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req)
1363{
1364 return __crypto_aead_cast(req->base.tfm);
1365}
1366
Stephan Muellerfced7b02014-11-12 05:29:00 +01001367/**
1368 * crypto_aead_encrypt() - encrypt plaintext
1369 * @req: reference to the aead_request handle that holds all information
1370 * needed to perform the cipher operation
1371 *
1372 * Encrypt plaintext data using the aead_request handle. That data structure
1373 * and how it is filled with data is discussed with the aead_request_*
1374 * functions.
1375 *
1376 * IMPORTANT NOTE The encryption operation creates the authentication data /
1377 * tag. That data is concatenated with the created ciphertext.
1378 * The ciphertext memory size is therefore the given number of
1379 * block cipher blocks + the size defined by the
1380 * crypto_aead_setauthsize invocation. The caller must ensure
1381 * that sufficient memory is available for the ciphertext and
1382 * the authentication tag.
1383 *
1384 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1385 */
Herbert Xu1ae97822007-08-30 15:36:14 +08001386static inline int crypto_aead_encrypt(struct aead_request *req)
1387{
1388 return crypto_aead_crt(crypto_aead_reqtfm(req))->encrypt(req);
1389}
1390
Stephan Muellerfced7b02014-11-12 05:29:00 +01001391/**
1392 * crypto_aead_decrypt() - decrypt ciphertext
1393 * @req: reference to the ablkcipher_request handle that holds all information
1394 * needed to perform the cipher operation
1395 *
1396 * Decrypt ciphertext data using the aead_request handle. That data structure
1397 * and how it is filled with data is discussed with the aead_request_*
1398 * functions.
1399 *
1400 * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the
1401 * authentication data / tag. That authentication data / tag
1402 * must have the size defined by the crypto_aead_setauthsize
1403 * invocation.
1404 *
1405 *
1406 * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD
1407 * cipher operation performs the authentication of the data during the
1408 * decryption operation. Therefore, the function returns this error if
1409 * the authentication of the ciphertext was unsuccessful (i.e. the
1410 * integrity of the ciphertext or the associated data was violated);
1411 * < 0 if an error occurred.
1412 */
Herbert Xu1ae97822007-08-30 15:36:14 +08001413static inline int crypto_aead_decrypt(struct aead_request *req)
1414{
1415 return crypto_aead_crt(crypto_aead_reqtfm(req))->decrypt(req);
1416}
1417
Stephan Muellerfced7b02014-11-12 05:29:00 +01001418/**
1419 * DOC: Asynchronous AEAD Request Handle
1420 *
1421 * The aead_request data structure contains all pointers to data required for
1422 * the AEAD cipher operation. This includes the cipher handle (which can be
1423 * used by multiple aead_request instances), pointer to plaintext and
1424 * ciphertext, asynchronous callback function, etc. It acts as a handle to the
1425 * aead_request_* API calls in a similar way as AEAD handle to the
1426 * crypto_aead_* API calls.
1427 */
1428
1429/**
1430 * crypto_aead_reqsize() - obtain size of the request data structure
1431 * @tfm: cipher handle
1432 *
1433 * Return: number of bytes
1434 */
Herbert Xub16c3a22007-08-29 19:02:04 +08001435static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm)
Herbert Xu1ae97822007-08-30 15:36:14 +08001436{
1437 return crypto_aead_crt(tfm)->reqsize;
1438}
1439
Stephan Muellerfced7b02014-11-12 05:29:00 +01001440/**
1441 * aead_request_set_tfm() - update cipher handle reference in request
1442 * @req: request handle to be modified
1443 * @tfm: cipher handle that shall be added to the request handle
1444 *
1445 * Allow the caller to replace the existing aead handle in the request
1446 * data structure with a different one.
1447 */
Herbert Xu1ae97822007-08-30 15:36:14 +08001448static inline void aead_request_set_tfm(struct aead_request *req,
1449 struct crypto_aead *tfm)
1450{
Herbert Xu5b6d2d72007-12-12 19:23:36 +08001451 req->base.tfm = crypto_aead_tfm(crypto_aead_crt(tfm)->base);
Herbert Xu1ae97822007-08-30 15:36:14 +08001452}
1453
Stephan Muellerfced7b02014-11-12 05:29:00 +01001454/**
1455 * aead_request_alloc() - allocate request data structure
1456 * @tfm: cipher handle to be registered with the request
1457 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
1458 *
1459 * Allocate the request data structure that must be used with the AEAD
1460 * encrypt and decrypt API calls. During the allocation, the provided aead
1461 * handle is registered in the request data structure.
1462 *
1463 * Return: allocated request handle in case of success; IS_ERR() is true in case
1464 * of an error, PTR_ERR() returns the error code.
1465 */
Herbert Xu1ae97822007-08-30 15:36:14 +08001466static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm,
1467 gfp_t gfp)
1468{
1469 struct aead_request *req;
1470
1471 req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp);
1472
1473 if (likely(req))
1474 aead_request_set_tfm(req, tfm);
1475
1476 return req;
1477}
1478
Stephan Muellerfced7b02014-11-12 05:29:00 +01001479/**
1480 * aead_request_free() - zeroize and free request data structure
1481 * @req: request data structure cipher handle to be freed
1482 */
Herbert Xu1ae97822007-08-30 15:36:14 +08001483static inline void aead_request_free(struct aead_request *req)
1484{
Herbert Xuaef73cf2009-07-11 22:22:14 +08001485 kzfree(req);
Herbert Xu1ae97822007-08-30 15:36:14 +08001486}
1487
Stephan Muellerfced7b02014-11-12 05:29:00 +01001488/**
1489 * aead_request_set_callback() - set asynchronous callback function
1490 * @req: request handle
1491 * @flags: specify zero or an ORing of the flags
1492 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
1493 * increase the wait queue beyond the initial maximum size;
1494 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1495 * @compl: callback function pointer to be registered with the request handle
1496 * @data: The data pointer refers to memory that is not used by the kernel
1497 * crypto API, but provided to the callback function for it to use. Here,
1498 * the caller can provide a reference to memory the callback function can
1499 * operate on. As the callback function is invoked asynchronously to the
1500 * related functionality, it may need to access data structures of the
1501 * related functionality which can be referenced using this pointer. The
1502 * callback function can access the memory via the "data" field in the
1503 * crypto_async_request data structure provided to the callback function.
1504 *
1505 * Setting the callback function that is triggered once the cipher operation
1506 * completes
1507 *
1508 * The callback function is registered with the aead_request handle and
1509 * must comply with the following template:
1510 *
1511 * void callback_function(struct crypto_async_request *req, int error)
1512 */
Herbert Xu1ae97822007-08-30 15:36:14 +08001513static inline void aead_request_set_callback(struct aead_request *req,
1514 u32 flags,
Mark Rustad3e3dc252014-07-25 02:53:38 -07001515 crypto_completion_t compl,
Herbert Xu1ae97822007-08-30 15:36:14 +08001516 void *data)
1517{
Mark Rustad3e3dc252014-07-25 02:53:38 -07001518 req->base.complete = compl;
Herbert Xu1ae97822007-08-30 15:36:14 +08001519 req->base.data = data;
1520 req->base.flags = flags;
1521}
1522
Stephan Muellerfced7b02014-11-12 05:29:00 +01001523/**
1524 * aead_request_set_crypt - set data buffers
1525 * @req: request handle
1526 * @src: source scatter / gather list
1527 * @dst: destination scatter / gather list
1528 * @cryptlen: number of bytes to process from @src
1529 * @iv: IV for the cipher operation which must comply with the IV size defined
1530 * by crypto_aead_ivsize()
1531 *
1532 * Setting the source data and destination data scatter / gather lists.
1533 *
1534 * For encryption, the source is treated as the plaintext and the
1535 * destination is the ciphertext. For a decryption operation, the use is
1536 * reversed: the source is the ciphertext and the destination is the plaintext.
1537 *
1538 * IMPORTANT NOTE AEAD requires an authentication tag (MAC). For decryption,
1539 * the caller must concatenate the ciphertext followed by the
1540 * authentication tag and provide the entire data stream to the
1541 * decryption operation (i.e. the data length used for the
1542 * initialization of the scatterlist and the data length for the
1543 * decryption operation is identical). For encryption, however,
1544 * the authentication tag is created while encrypting the data.
1545 * The destination buffer must hold sufficient space for the
1546 * ciphertext and the authentication tag while the encryption
1547 * invocation must only point to the plaintext data size. The
1548 * following code snippet illustrates the memory usage
1549 * buffer = kmalloc(ptbuflen + (enc ? authsize : 0));
1550 * sg_init_one(&sg, buffer, ptbuflen + (enc ? authsize : 0));
1551 * aead_request_set_crypt(req, &sg, &sg, ptbuflen, iv);
1552 */
Herbert Xu1ae97822007-08-30 15:36:14 +08001553static inline void aead_request_set_crypt(struct aead_request *req,
1554 struct scatterlist *src,
1555 struct scatterlist *dst,
1556 unsigned int cryptlen, u8 *iv)
1557{
1558 req->src = src;
1559 req->dst = dst;
1560 req->cryptlen = cryptlen;
1561 req->iv = iv;
1562}
1563
Stephan Muellerfced7b02014-11-12 05:29:00 +01001564/**
1565 * aead_request_set_assoc() - set the associated data scatter / gather list
1566 * @req: request handle
1567 * @assoc: associated data scatter / gather list
1568 * @assoclen: number of bytes to process from @assoc
1569 *
1570 * For encryption, the memory is filled with the associated data. For
1571 * decryption, the memory must point to the associated data.
1572 */
Herbert Xu1ae97822007-08-30 15:36:14 +08001573static inline void aead_request_set_assoc(struct aead_request *req,
1574 struct scatterlist *assoc,
1575 unsigned int assoclen)
1576{
1577 req->assoc = assoc;
1578 req->assoclen = assoclen;
1579}
1580
Stephan Mueller58284f02014-11-12 05:29:36 +01001581/**
1582 * DOC: Synchronous Block Cipher API
1583 *
1584 * The synchronous block cipher API is used with the ciphers of type
1585 * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1586 *
1587 * Synchronous calls, have a context in the tfm. But since a single tfm can be
1588 * used in multiple calls and in parallel, this info should not be changeable
1589 * (unless a lock is used). This applies, for example, to the symmetric key.
1590 * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1591 * structure for synchronous blkcipher api. So, its the only state info that can
1592 * be kept for synchronous calls without using a big lock across a tfm.
1593 *
1594 * The block cipher API allows the use of a complete cipher, i.e. a cipher
1595 * consisting of a template (a block chaining mode) and a single block cipher
1596 * primitive (e.g. AES).
1597 *
1598 * The plaintext data buffer and the ciphertext data buffer are pointed to
1599 * by using scatter/gather lists. The cipher operation is performed
1600 * on all segments of the provided scatter/gather lists.
1601 *
1602 * The kernel crypto API supports a cipher operation "in-place" which means that
1603 * the caller may provide the same scatter/gather list for the plaintext and
1604 * cipher text. After the completion of the cipher operation, the plaintext
1605 * data is replaced with the ciphertext data in case of an encryption and vice
1606 * versa for a decryption. The caller must ensure that the scatter/gather lists
1607 * for the output data point to sufficiently large buffers, i.e. multiples of
1608 * the block size of the cipher.
1609 */
1610
Herbert Xu5cde0af2006-08-22 00:07:53 +10001611static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1612 struct crypto_tfm *tfm)
1613{
1614 return (struct crypto_blkcipher *)tfm;
1615}
1616
1617static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1618 struct crypto_tfm *tfm)
1619{
1620 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1621 return __crypto_blkcipher_cast(tfm);
1622}
1623
Stephan Mueller58284f02014-11-12 05:29:36 +01001624/**
1625 * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1626 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1627 * blkcipher cipher
1628 * @type: specifies the type of the cipher
1629 * @mask: specifies the mask for the cipher
1630 *
1631 * Allocate a cipher handle for a block cipher. The returned struct
1632 * crypto_blkcipher is the cipher handle that is required for any subsequent
1633 * API invocation for that block cipher.
1634 *
1635 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1636 * of an error, PTR_ERR() returns the error code.
1637 */
Herbert Xu5cde0af2006-08-22 00:07:53 +10001638static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1639 const char *alg_name, u32 type, u32 mask)
1640{
Herbert Xu332f88402007-11-15 22:36:07 +08001641 type &= ~CRYPTO_ALG_TYPE_MASK;
Herbert Xu5cde0af2006-08-22 00:07:53 +10001642 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
Herbert Xu332f88402007-11-15 22:36:07 +08001643 mask |= CRYPTO_ALG_TYPE_MASK;
Herbert Xu5cde0af2006-08-22 00:07:53 +10001644
1645 return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1646}
1647
1648static inline struct crypto_tfm *crypto_blkcipher_tfm(
1649 struct crypto_blkcipher *tfm)
1650{
1651 return &tfm->base;
1652}
1653
Stephan Mueller58284f02014-11-12 05:29:36 +01001654/**
1655 * crypto_free_blkcipher() - zeroize and free the block cipher handle
1656 * @tfm: cipher handle to be freed
1657 */
Herbert Xu5cde0af2006-08-22 00:07:53 +10001658static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1659{
1660 crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1661}
1662
Stephan Mueller58284f02014-11-12 05:29:36 +01001663/**
1664 * crypto_has_blkcipher() - Search for the availability of a block cipher
1665 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1666 * block cipher
1667 * @type: specifies the type of the cipher
1668 * @mask: specifies the mask for the cipher
1669 *
1670 * Return: true when the block cipher is known to the kernel crypto API; false
1671 * otherwise
1672 */
Herbert Xufce32d72006-08-26 17:35:45 +10001673static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1674{
Herbert Xu332f88402007-11-15 22:36:07 +08001675 type &= ~CRYPTO_ALG_TYPE_MASK;
Herbert Xufce32d72006-08-26 17:35:45 +10001676 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
Herbert Xu332f88402007-11-15 22:36:07 +08001677 mask |= CRYPTO_ALG_TYPE_MASK;
Herbert Xufce32d72006-08-26 17:35:45 +10001678
1679 return crypto_has_alg(alg_name, type, mask);
1680}
1681
Stephan Mueller58284f02014-11-12 05:29:36 +01001682/**
1683 * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1684 * @tfm: cipher handle
1685 *
1686 * Return: The character string holding the name of the cipher
1687 */
Herbert Xu5cde0af2006-08-22 00:07:53 +10001688static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1689{
1690 return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1691}
1692
1693static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1694 struct crypto_blkcipher *tfm)
1695{
1696 return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1697}
1698
1699static inline struct blkcipher_alg *crypto_blkcipher_alg(
1700 struct crypto_blkcipher *tfm)
1701{
1702 return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1703}
1704
Stephan Mueller58284f02014-11-12 05:29:36 +01001705/**
1706 * crypto_blkcipher_ivsize() - obtain IV size
1707 * @tfm: cipher handle
1708 *
1709 * The size of the IV for the block cipher referenced by the cipher handle is
1710 * returned. This IV size may be zero if the cipher does not need an IV.
1711 *
1712 * Return: IV size in bytes
1713 */
Herbert Xu5cde0af2006-08-22 00:07:53 +10001714static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1715{
1716 return crypto_blkcipher_alg(tfm)->ivsize;
1717}
1718
Stephan Mueller58284f02014-11-12 05:29:36 +01001719/**
1720 * crypto_blkcipher_blocksize() - obtain block size of cipher
1721 * @tfm: cipher handle
1722 *
1723 * The block size for the block cipher referenced with the cipher handle is
1724 * returned. The caller may use that information to allocate appropriate
1725 * memory for the data returned by the encryption or decryption operation.
1726 *
1727 * Return: block size of cipher
1728 */
Herbert Xu5cde0af2006-08-22 00:07:53 +10001729static inline unsigned int crypto_blkcipher_blocksize(
1730 struct crypto_blkcipher *tfm)
1731{
1732 return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1733}
1734
1735static inline unsigned int crypto_blkcipher_alignmask(
1736 struct crypto_blkcipher *tfm)
1737{
1738 return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1739}
1740
1741static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1742{
1743 return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1744}
1745
1746static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1747 u32 flags)
1748{
1749 crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1750}
1751
1752static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1753 u32 flags)
1754{
1755 crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1756}
1757
Stephan Mueller58284f02014-11-12 05:29:36 +01001758/**
1759 * crypto_blkcipher_setkey() - set key for cipher
1760 * @tfm: cipher handle
1761 * @key: buffer holding the key
1762 * @keylen: length of the key in bytes
1763 *
1764 * The caller provided key is set for the block cipher referenced by the cipher
1765 * handle.
1766 *
1767 * Note, the key length determines the cipher type. Many block ciphers implement
1768 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1769 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1770 * is performed.
1771 *
1772 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1773 */
Herbert Xu5cde0af2006-08-22 00:07:53 +10001774static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1775 const u8 *key, unsigned int keylen)
1776{
1777 return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1778 key, keylen);
1779}
1780
Stephan Mueller58284f02014-11-12 05:29:36 +01001781/**
1782 * crypto_blkcipher_encrypt() - encrypt plaintext
1783 * @desc: reference to the block cipher handle with meta data
1784 * @dst: scatter/gather list that is filled by the cipher operation with the
1785 * ciphertext
1786 * @src: scatter/gather list that holds the plaintext
1787 * @nbytes: number of bytes of the plaintext to encrypt.
1788 *
1789 * Encrypt plaintext data using the IV set by the caller with a preceding
1790 * call of crypto_blkcipher_set_iv.
1791 *
1792 * The blkcipher_desc data structure must be filled by the caller and can
1793 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1794 * with the block cipher handle; desc.flags is filled with either
1795 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1796 *
1797 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1798 */
Herbert Xu5cde0af2006-08-22 00:07:53 +10001799static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1800 struct scatterlist *dst,
1801 struct scatterlist *src,
1802 unsigned int nbytes)
1803{
1804 desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1805 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1806}
1807
Stephan Mueller58284f02014-11-12 05:29:36 +01001808/**
1809 * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1810 * @desc: reference to the block cipher handle with meta data
1811 * @dst: scatter/gather list that is filled by the cipher operation with the
1812 * ciphertext
1813 * @src: scatter/gather list that holds the plaintext
1814 * @nbytes: number of bytes of the plaintext to encrypt.
1815 *
1816 * Encrypt plaintext data with the use of an IV that is solely used for this
1817 * cipher operation. Any previously set IV is not used.
1818 *
1819 * The blkcipher_desc data structure must be filled by the caller and can
1820 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1821 * with the block cipher handle; desc.info is filled with the IV to be used for
1822 * the current operation; desc.flags is filled with either
1823 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1824 *
1825 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1826 */
Herbert Xu5cde0af2006-08-22 00:07:53 +10001827static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1828 struct scatterlist *dst,
1829 struct scatterlist *src,
1830 unsigned int nbytes)
1831{
1832 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1833}
1834
Stephan Mueller58284f02014-11-12 05:29:36 +01001835/**
1836 * crypto_blkcipher_decrypt() - decrypt ciphertext
1837 * @desc: reference to the block cipher handle with meta data
1838 * @dst: scatter/gather list that is filled by the cipher operation with the
1839 * plaintext
1840 * @src: scatter/gather list that holds the ciphertext
1841 * @nbytes: number of bytes of the ciphertext to decrypt.
1842 *
1843 * Decrypt ciphertext data using the IV set by the caller with a preceding
1844 * call of crypto_blkcipher_set_iv.
1845 *
1846 * The blkcipher_desc data structure must be filled by the caller as documented
1847 * for the crypto_blkcipher_encrypt call above.
1848 *
1849 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1850 *
1851 */
Herbert Xu5cde0af2006-08-22 00:07:53 +10001852static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1853 struct scatterlist *dst,
1854 struct scatterlist *src,
1855 unsigned int nbytes)
1856{
1857 desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1858 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1859}
1860
Stephan Mueller58284f02014-11-12 05:29:36 +01001861/**
1862 * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1863 * @desc: reference to the block cipher handle with meta data
1864 * @dst: scatter/gather list that is filled by the cipher operation with the
1865 * plaintext
1866 * @src: scatter/gather list that holds the ciphertext
1867 * @nbytes: number of bytes of the ciphertext to decrypt.
1868 *
1869 * Decrypt ciphertext data with the use of an IV that is solely used for this
1870 * cipher operation. Any previously set IV is not used.
1871 *
1872 * The blkcipher_desc data structure must be filled by the caller as documented
1873 * for the crypto_blkcipher_encrypt_iv call above.
1874 *
1875 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1876 */
Herbert Xu5cde0af2006-08-22 00:07:53 +10001877static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1878 struct scatterlist *dst,
1879 struct scatterlist *src,
1880 unsigned int nbytes)
1881{
1882 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1883}
1884
Stephan Mueller58284f02014-11-12 05:29:36 +01001885/**
1886 * crypto_blkcipher_set_iv() - set IV for cipher
1887 * @tfm: cipher handle
1888 * @src: buffer holding the IV
1889 * @len: length of the IV in bytes
1890 *
1891 * The caller provided IV is set for the block cipher referenced by the cipher
1892 * handle.
1893 */
Herbert Xu5cde0af2006-08-22 00:07:53 +10001894static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1895 const u8 *src, unsigned int len)
1896{
1897 memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1898}
1899
Stephan Mueller58284f02014-11-12 05:29:36 +01001900/**
1901 * crypto_blkcipher_get_iv() - obtain IV from cipher
1902 * @tfm: cipher handle
1903 * @dst: buffer filled with the IV
1904 * @len: length of the buffer dst
1905 *
1906 * The caller can obtain the IV set for the block cipher referenced by the
1907 * cipher handle and store it into the user-provided buffer. If the buffer
1908 * has an insufficient space, the IV is truncated to fit the buffer.
1909 */
Herbert Xu5cde0af2006-08-22 00:07:53 +10001910static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1911 u8 *dst, unsigned int len)
1912{
1913 memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1914}
1915
Stephan Mueller16e61032014-11-12 05:30:06 +01001916/**
1917 * DOC: Single Block Cipher API
1918 *
1919 * The single block cipher API is used with the ciphers of type
1920 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1921 *
1922 * Using the single block cipher API calls, operations with the basic cipher
1923 * primitive can be implemented. These cipher primitives exclude any block
1924 * chaining operations including IV handling.
1925 *
1926 * The purpose of this single block cipher API is to support the implementation
1927 * of templates or other concepts that only need to perform the cipher operation
1928 * on one block at a time. Templates invoke the underlying cipher primitive
1929 * block-wise and process either the input or the output data of these cipher
1930 * operations.
1931 */
1932
Herbert Xuf28776a2006-08-13 20:58:18 +10001933static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1934{
1935 return (struct crypto_cipher *)tfm;
1936}
1937
1938static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1939{
1940 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1941 return __crypto_cipher_cast(tfm);
1942}
1943
Stephan Mueller16e61032014-11-12 05:30:06 +01001944/**
1945 * crypto_alloc_cipher() - allocate single block cipher handle
1946 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1947 * single block cipher
1948 * @type: specifies the type of the cipher
1949 * @mask: specifies the mask for the cipher
1950 *
1951 * Allocate a cipher handle for a single block cipher. The returned struct
1952 * crypto_cipher is the cipher handle that is required for any subsequent API
1953 * invocation for that single block cipher.
1954 *
1955 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1956 * of an error, PTR_ERR() returns the error code.
1957 */
Herbert Xuf28776a2006-08-13 20:58:18 +10001958static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1959 u32 type, u32 mask)
1960{
1961 type &= ~CRYPTO_ALG_TYPE_MASK;
1962 type |= CRYPTO_ALG_TYPE_CIPHER;
1963 mask |= CRYPTO_ALG_TYPE_MASK;
1964
1965 return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1966}
1967
1968static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1969{
Herbert Xu78a1fe42006-12-24 10:02:00 +11001970 return &tfm->base;
Herbert Xuf28776a2006-08-13 20:58:18 +10001971}
1972
Stephan Mueller16e61032014-11-12 05:30:06 +01001973/**
1974 * crypto_free_cipher() - zeroize and free the single block cipher handle
1975 * @tfm: cipher handle to be freed
1976 */
Herbert Xuf28776a2006-08-13 20:58:18 +10001977static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1978{
1979 crypto_free_tfm(crypto_cipher_tfm(tfm));
1980}
1981
Stephan Mueller16e61032014-11-12 05:30:06 +01001982/**
1983 * crypto_has_cipher() - Search for the availability of a single block cipher
1984 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1985 * single block cipher
1986 * @type: specifies the type of the cipher
1987 * @mask: specifies the mask for the cipher
1988 *
1989 * Return: true when the single block cipher is known to the kernel crypto API;
1990 * false otherwise
1991 */
Herbert Xufce32d72006-08-26 17:35:45 +10001992static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1993{
1994 type &= ~CRYPTO_ALG_TYPE_MASK;
1995 type |= CRYPTO_ALG_TYPE_CIPHER;
1996 mask |= CRYPTO_ALG_TYPE_MASK;
1997
1998 return crypto_has_alg(alg_name, type, mask);
1999}
2000
Herbert Xuf28776a2006-08-13 20:58:18 +10002001static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
2002{
2003 return &crypto_cipher_tfm(tfm)->crt_cipher;
2004}
2005
Stephan Mueller16e61032014-11-12 05:30:06 +01002006/**
2007 * crypto_cipher_blocksize() - obtain block size for cipher
2008 * @tfm: cipher handle
2009 *
2010 * The block size for the single block cipher referenced with the cipher handle
2011 * tfm is returned. The caller may use that information to allocate appropriate
2012 * memory for the data returned by the encryption or decryption operation
2013 *
2014 * Return: block size of cipher
2015 */
Herbert Xuf28776a2006-08-13 20:58:18 +10002016static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
2017{
2018 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
2019}
2020
2021static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
2022{
2023 return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
2024}
2025
2026static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
2027{
2028 return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
2029}
2030
2031static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
2032 u32 flags)
2033{
2034 crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
2035}
2036
2037static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
2038 u32 flags)
2039{
2040 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
2041}
2042
Stephan Mueller16e61032014-11-12 05:30:06 +01002043/**
2044 * crypto_cipher_setkey() - set key for cipher
2045 * @tfm: cipher handle
2046 * @key: buffer holding the key
2047 * @keylen: length of the key in bytes
2048 *
2049 * The caller provided key is set for the single block cipher referenced by the
2050 * cipher handle.
2051 *
2052 * Note, the key length determines the cipher type. Many block ciphers implement
2053 * different cipher modes depending on the key size, such as AES-128 vs AES-192
2054 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
2055 * is performed.
2056 *
2057 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
2058 */
Herbert Xu7226bc872006-08-21 21:40:49 +10002059static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
2060 const u8 *key, unsigned int keylen)
2061{
2062 return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
2063 key, keylen);
2064}
2065
Stephan Mueller16e61032014-11-12 05:30:06 +01002066/**
2067 * crypto_cipher_encrypt_one() - encrypt one block of plaintext
2068 * @tfm: cipher handle
2069 * @dst: points to the buffer that will be filled with the ciphertext
2070 * @src: buffer holding the plaintext to be encrypted
2071 *
2072 * Invoke the encryption operation of one block. The caller must ensure that
2073 * the plaintext and ciphertext buffers are at least one block in size.
2074 */
Herbert Xuf28776a2006-08-13 20:58:18 +10002075static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
2076 u8 *dst, const u8 *src)
2077{
2078 crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
2079 dst, src);
2080}
2081
Stephan Mueller16e61032014-11-12 05:30:06 +01002082/**
2083 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
2084 * @tfm: cipher handle
2085 * @dst: points to the buffer that will be filled with the plaintext
2086 * @src: buffer holding the ciphertext to be decrypted
2087 *
2088 * Invoke the decryption operation of one block. The caller must ensure that
2089 * the plaintext and ciphertext buffers are at least one block in size.
2090 */
Herbert Xuf28776a2006-08-13 20:58:18 +10002091static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
2092 u8 *dst, const u8 *src)
2093{
2094 crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
2095 dst, src);
2096}
2097
Stephan Mueller47ca5be2014-11-12 05:30:42 +01002098/**
2099 * DOC: Synchronous Message Digest API
2100 *
2101 * The synchronous message digest API is used with the ciphers of type
2102 * CRYPTO_ALG_TYPE_HASH (listed as type "hash" in /proc/crypto)
2103 */
2104
Herbert Xu055bcee2006-08-19 22:24:23 +10002105static inline struct crypto_hash *__crypto_hash_cast(struct crypto_tfm *tfm)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002106{
Herbert Xu055bcee2006-08-19 22:24:23 +10002107 return (struct crypto_hash *)tfm;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002108}
2109
Herbert Xu055bcee2006-08-19 22:24:23 +10002110static inline struct crypto_hash *crypto_hash_cast(struct crypto_tfm *tfm)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002111{
Herbert Xu055bcee2006-08-19 22:24:23 +10002112 BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_HASH) &
2113 CRYPTO_ALG_TYPE_HASH_MASK);
2114 return __crypto_hash_cast(tfm);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002115}
2116
Stephan Mueller47ca5be2014-11-12 05:30:42 +01002117/**
2118 * crypto_alloc_hash() - allocate synchronous message digest handle
2119 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
2120 * message digest cipher
2121 * @type: specifies the type of the cipher
2122 * @mask: specifies the mask for the cipher
2123 *
2124 * Allocate a cipher handle for a message digest. The returned struct
2125 * crypto_hash is the cipher handle that is required for any subsequent
2126 * API invocation for that message digest.
2127 *
2128 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
2129 * of an error, PTR_ERR() returns the error code.
2130 */
Herbert Xu055bcee2006-08-19 22:24:23 +10002131static inline struct crypto_hash *crypto_alloc_hash(const char *alg_name,
2132 u32 type, u32 mask)
2133{
2134 type &= ~CRYPTO_ALG_TYPE_MASK;
Herbert Xu551a09a2007-12-01 21:47:07 +11002135 mask &= ~CRYPTO_ALG_TYPE_MASK;
Herbert Xu055bcee2006-08-19 22:24:23 +10002136 type |= CRYPTO_ALG_TYPE_HASH;
2137 mask |= CRYPTO_ALG_TYPE_HASH_MASK;
2138
2139 return __crypto_hash_cast(crypto_alloc_base(alg_name, type, mask));
2140}
2141
2142static inline struct crypto_tfm *crypto_hash_tfm(struct crypto_hash *tfm)
2143{
2144 return &tfm->base;
2145}
2146
Stephan Mueller47ca5be2014-11-12 05:30:42 +01002147/**
2148 * crypto_free_hash() - zeroize and free message digest handle
2149 * @tfm: cipher handle to be freed
2150 */
Herbert Xu055bcee2006-08-19 22:24:23 +10002151static inline void crypto_free_hash(struct crypto_hash *tfm)
2152{
2153 crypto_free_tfm(crypto_hash_tfm(tfm));
2154}
2155
Stephan Mueller47ca5be2014-11-12 05:30:42 +01002156/**
2157 * crypto_has_hash() - Search for the availability of a message digest
2158 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
2159 * message digest cipher
2160 * @type: specifies the type of the cipher
2161 * @mask: specifies the mask for the cipher
2162 *
2163 * Return: true when the message digest cipher is known to the kernel crypto
2164 * API; false otherwise
2165 */
Herbert Xufce32d72006-08-26 17:35:45 +10002166static inline int crypto_has_hash(const char *alg_name, u32 type, u32 mask)
2167{
2168 type &= ~CRYPTO_ALG_TYPE_MASK;
Herbert Xu551a09a2007-12-01 21:47:07 +11002169 mask &= ~CRYPTO_ALG_TYPE_MASK;
Herbert Xufce32d72006-08-26 17:35:45 +10002170 type |= CRYPTO_ALG_TYPE_HASH;
2171 mask |= CRYPTO_ALG_TYPE_HASH_MASK;
2172
2173 return crypto_has_alg(alg_name, type, mask);
2174}
2175
Herbert Xu055bcee2006-08-19 22:24:23 +10002176static inline struct hash_tfm *crypto_hash_crt(struct crypto_hash *tfm)
2177{
2178 return &crypto_hash_tfm(tfm)->crt_hash;
2179}
2180
Stephan Mueller47ca5be2014-11-12 05:30:42 +01002181/**
2182 * crypto_hash_blocksize() - obtain block size for message digest
2183 * @tfm: cipher handle
2184 *
2185 * The block size for the message digest cipher referenced with the cipher
2186 * handle is returned.
2187 *
2188 * Return: block size of cipher
2189 */
Herbert Xu055bcee2006-08-19 22:24:23 +10002190static inline unsigned int crypto_hash_blocksize(struct crypto_hash *tfm)
2191{
2192 return crypto_tfm_alg_blocksize(crypto_hash_tfm(tfm));
2193}
2194
2195static inline unsigned int crypto_hash_alignmask(struct crypto_hash *tfm)
2196{
2197 return crypto_tfm_alg_alignmask(crypto_hash_tfm(tfm));
2198}
2199
Stephan Mueller47ca5be2014-11-12 05:30:42 +01002200/**
2201 * crypto_hash_digestsize() - obtain message digest size
2202 * @tfm: cipher handle
2203 *
2204 * The size for the message digest created by the message digest cipher
2205 * referenced with the cipher handle is returned.
2206 *
2207 * Return: message digest size
2208 */
Herbert Xu055bcee2006-08-19 22:24:23 +10002209static inline unsigned int crypto_hash_digestsize(struct crypto_hash *tfm)
2210{
2211 return crypto_hash_crt(tfm)->digestsize;
2212}
2213
2214static inline u32 crypto_hash_get_flags(struct crypto_hash *tfm)
2215{
2216 return crypto_tfm_get_flags(crypto_hash_tfm(tfm));
2217}
2218
2219static inline void crypto_hash_set_flags(struct crypto_hash *tfm, u32 flags)
2220{
2221 crypto_tfm_set_flags(crypto_hash_tfm(tfm), flags);
2222}
2223
2224static inline void crypto_hash_clear_flags(struct crypto_hash *tfm, u32 flags)
2225{
2226 crypto_tfm_clear_flags(crypto_hash_tfm(tfm), flags);
2227}
2228
Stephan Mueller47ca5be2014-11-12 05:30:42 +01002229/**
2230 * crypto_hash_init() - (re)initialize message digest handle
2231 * @desc: cipher request handle that to be filled by caller --
2232 * desc.tfm is filled with the hash cipher handle;
2233 * desc.flags is filled with either CRYPTO_TFM_REQ_MAY_SLEEP or 0.
2234 *
2235 * The call (re-)initializes the message digest referenced by the hash cipher
2236 * request handle. Any potentially existing state created by previous
2237 * operations is discarded.
2238 *
2239 * Return: 0 if the message digest initialization was successful; < 0 if an
2240 * error occurred
2241 */
Herbert Xu055bcee2006-08-19 22:24:23 +10002242static inline int crypto_hash_init(struct hash_desc *desc)
2243{
2244 return crypto_hash_crt(desc->tfm)->init(desc);
2245}
2246
Stephan Mueller47ca5be2014-11-12 05:30:42 +01002247/**
2248 * crypto_hash_update() - add data to message digest for processing
2249 * @desc: cipher request handle
2250 * @sg: scatter / gather list pointing to the data to be added to the message
2251 * digest
2252 * @nbytes: number of bytes to be processed from @sg
2253 *
2254 * Updates the message digest state of the cipher handle pointed to by the
2255 * hash cipher request handle with the input data pointed to by the
2256 * scatter/gather list.
2257 *
2258 * Return: 0 if the message digest update was successful; < 0 if an error
2259 * occurred
2260 */
Herbert Xu055bcee2006-08-19 22:24:23 +10002261static inline int crypto_hash_update(struct hash_desc *desc,
2262 struct scatterlist *sg,
2263 unsigned int nbytes)
2264{
2265 return crypto_hash_crt(desc->tfm)->update(desc, sg, nbytes);
2266}
2267
Stephan Mueller47ca5be2014-11-12 05:30:42 +01002268/**
2269 * crypto_hash_final() - calculate message digest
2270 * @desc: cipher request handle
2271 * @out: message digest output buffer -- The caller must ensure that the out
2272 * buffer has a sufficient size (e.g. by using the crypto_hash_digestsize
2273 * function).
2274 *
2275 * Finalize the message digest operation and create the message digest
2276 * based on all data added to the cipher handle. The message digest is placed
2277 * into the output buffer.
2278 *
2279 * Return: 0 if the message digest creation was successful; < 0 if an error
2280 * occurred
2281 */
Herbert Xu055bcee2006-08-19 22:24:23 +10002282static inline int crypto_hash_final(struct hash_desc *desc, u8 *out)
2283{
2284 return crypto_hash_crt(desc->tfm)->final(desc, out);
2285}
2286
Stephan Mueller47ca5be2014-11-12 05:30:42 +01002287/**
2288 * crypto_hash_digest() - calculate message digest for a buffer
2289 * @desc: see crypto_hash_final()
2290 * @sg: see crypto_hash_update()
2291 * @nbytes: see crypto_hash_update()
2292 * @out: see crypto_hash_final()
2293 *
2294 * This function is a "short-hand" for the function calls of crypto_hash_init,
2295 * crypto_hash_update and crypto_hash_final. The parameters have the same
2296 * meaning as discussed for those separate three functions.
2297 *
2298 * Return: 0 if the message digest creation was successful; < 0 if an error
2299 * occurred
2300 */
Herbert Xu055bcee2006-08-19 22:24:23 +10002301static inline int crypto_hash_digest(struct hash_desc *desc,
2302 struct scatterlist *sg,
2303 unsigned int nbytes, u8 *out)
2304{
2305 return crypto_hash_crt(desc->tfm)->digest(desc, sg, nbytes, out);
2306}
2307
Stephan Mueller47ca5be2014-11-12 05:30:42 +01002308/**
2309 * crypto_hash_setkey() - set key for message digest
2310 * @hash: cipher handle
2311 * @key: buffer holding the key
2312 * @keylen: length of the key in bytes
2313 *
2314 * The caller provided key is set for the message digest cipher. The cipher
2315 * handle must point to a keyed hash in order for this function to succeed.
2316 *
2317 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
2318 */
Herbert Xu055bcee2006-08-19 22:24:23 +10002319static inline int crypto_hash_setkey(struct crypto_hash *hash,
2320 const u8 *key, unsigned int keylen)
2321{
2322 return crypto_hash_crt(hash)->setkey(hash, key, keylen);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002323}
2324
Herbert Xufce32d72006-08-26 17:35:45 +10002325static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
2326{
2327 return (struct crypto_comp *)tfm;
2328}
2329
2330static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
2331{
2332 BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
2333 CRYPTO_ALG_TYPE_MASK);
2334 return __crypto_comp_cast(tfm);
2335}
2336
2337static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
2338 u32 type, u32 mask)
2339{
2340 type &= ~CRYPTO_ALG_TYPE_MASK;
2341 type |= CRYPTO_ALG_TYPE_COMPRESS;
2342 mask |= CRYPTO_ALG_TYPE_MASK;
2343
2344 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
2345}
2346
2347static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
2348{
Herbert Xu78a1fe42006-12-24 10:02:00 +11002349 return &tfm->base;
Herbert Xufce32d72006-08-26 17:35:45 +10002350}
2351
2352static inline void crypto_free_comp(struct crypto_comp *tfm)
2353{
2354 crypto_free_tfm(crypto_comp_tfm(tfm));
2355}
2356
2357static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
2358{
2359 type &= ~CRYPTO_ALG_TYPE_MASK;
2360 type |= CRYPTO_ALG_TYPE_COMPRESS;
2361 mask |= CRYPTO_ALG_TYPE_MASK;
2362
2363 return crypto_has_alg(alg_name, type, mask);
2364}
2365
Herbert Xue4d5b792006-08-26 18:12:40 +10002366static inline const char *crypto_comp_name(struct crypto_comp *tfm)
2367{
2368 return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
2369}
2370
Herbert Xufce32d72006-08-26 17:35:45 +10002371static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
2372{
2373 return &crypto_comp_tfm(tfm)->crt_compress;
2374}
2375
2376static inline int crypto_comp_compress(struct crypto_comp *tfm,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002377 const u8 *src, unsigned int slen,
2378 u8 *dst, unsigned int *dlen)
2379{
Herbert Xu78a1fe42006-12-24 10:02:00 +11002380 return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
2381 src, slen, dst, dlen);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002382}
2383
Herbert Xufce32d72006-08-26 17:35:45 +10002384static inline int crypto_comp_decompress(struct crypto_comp *tfm,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002385 const u8 *src, unsigned int slen,
2386 u8 *dst, unsigned int *dlen)
2387{
Herbert Xu78a1fe42006-12-24 10:02:00 +11002388 return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
2389 src, slen, dst, dlen);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002390}
2391
Linus Torvalds1da177e2005-04-16 15:20:36 -07002392#endif /* _LINUX_CRYPTO_H */
2393