Stuart Menefy | c1b40e4 | 2013-06-26 12:48:38 +0100 | [diff] [blame] | 1 | /* |
| 2 | * drivers/clocksource/arm_global_timer.c |
| 3 | * |
| 4 | * Copyright (C) 2013 STMicroelectronics (R&D) Limited. |
| 5 | * Author: Stuart Menefy <stuart.menefy@st.com> |
| 6 | * Author: Srinivas Kandagatla <srinivas.kandagatla@st.com> |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or modify |
| 9 | * it under the terms of the GNU General Public License version 2 as |
| 10 | * published by the Free Software Foundation. |
| 11 | */ |
| 12 | |
| 13 | #include <linux/init.h> |
| 14 | #include <linux/interrupt.h> |
| 15 | #include <linux/clocksource.h> |
| 16 | #include <linux/clockchips.h> |
| 17 | #include <linux/cpu.h> |
| 18 | #include <linux/clk.h> |
| 19 | #include <linux/err.h> |
| 20 | #include <linux/io.h> |
| 21 | #include <linux/of.h> |
| 22 | #include <linux/of_irq.h> |
| 23 | #include <linux/of_address.h> |
| 24 | #include <linux/sched_clock.h> |
| 25 | |
| 26 | #include <asm/cputype.h> |
| 27 | |
| 28 | #define GT_COUNTER0 0x00 |
| 29 | #define GT_COUNTER1 0x04 |
| 30 | |
| 31 | #define GT_CONTROL 0x08 |
| 32 | #define GT_CONTROL_TIMER_ENABLE BIT(0) /* this bit is NOT banked */ |
| 33 | #define GT_CONTROL_COMP_ENABLE BIT(1) /* banked */ |
| 34 | #define GT_CONTROL_IRQ_ENABLE BIT(2) /* banked */ |
| 35 | #define GT_CONTROL_AUTO_INC BIT(3) /* banked */ |
| 36 | |
| 37 | #define GT_INT_STATUS 0x0c |
| 38 | #define GT_INT_STATUS_EVENT_FLAG BIT(0) |
| 39 | |
| 40 | #define GT_COMP0 0x10 |
| 41 | #define GT_COMP1 0x14 |
| 42 | #define GT_AUTO_INC 0x18 |
| 43 | |
| 44 | /* |
| 45 | * We are expecting to be clocked by the ARM peripheral clock. |
| 46 | * |
| 47 | * Note: it is assumed we are using a prescaler value of zero, so this is |
| 48 | * the units for all operations. |
| 49 | */ |
| 50 | static void __iomem *gt_base; |
| 51 | static unsigned long gt_clk_rate; |
| 52 | static int gt_ppi; |
| 53 | static struct clock_event_device __percpu *gt_evt; |
| 54 | |
| 55 | /* |
| 56 | * To get the value from the Global Timer Counter register proceed as follows: |
| 57 | * 1. Read the upper 32-bit timer counter register |
| 58 | * 2. Read the lower 32-bit timer counter register |
| 59 | * 3. Read the upper 32-bit timer counter register again. If the value is |
| 60 | * different to the 32-bit upper value read previously, go back to step 2. |
| 61 | * Otherwise the 64-bit timer counter value is correct. |
| 62 | */ |
| 63 | static u64 gt_counter_read(void) |
| 64 | { |
| 65 | u64 counter; |
| 66 | u32 lower; |
| 67 | u32 upper, old_upper; |
| 68 | |
| 69 | upper = readl_relaxed(gt_base + GT_COUNTER1); |
| 70 | do { |
| 71 | old_upper = upper; |
| 72 | lower = readl_relaxed(gt_base + GT_COUNTER0); |
| 73 | upper = readl_relaxed(gt_base + GT_COUNTER1); |
| 74 | } while (upper != old_upper); |
| 75 | |
| 76 | counter = upper; |
| 77 | counter <<= 32; |
| 78 | counter |= lower; |
| 79 | return counter; |
| 80 | } |
| 81 | |
| 82 | /** |
| 83 | * To ensure that updates to comparator value register do not set the |
| 84 | * Interrupt Status Register proceed as follows: |
| 85 | * 1. Clear the Comp Enable bit in the Timer Control Register. |
| 86 | * 2. Write the lower 32-bit Comparator Value Register. |
| 87 | * 3. Write the upper 32-bit Comparator Value Register. |
| 88 | * 4. Set the Comp Enable bit and, if necessary, the IRQ enable bit. |
| 89 | */ |
| 90 | static void gt_compare_set(unsigned long delta, int periodic) |
| 91 | { |
| 92 | u64 counter = gt_counter_read(); |
| 93 | unsigned long ctrl; |
| 94 | |
| 95 | counter += delta; |
| 96 | ctrl = GT_CONTROL_TIMER_ENABLE; |
| 97 | writel(ctrl, gt_base + GT_CONTROL); |
| 98 | writel(lower_32_bits(counter), gt_base + GT_COMP0); |
| 99 | writel(upper_32_bits(counter), gt_base + GT_COMP1); |
| 100 | |
| 101 | if (periodic) { |
| 102 | writel(delta, gt_base + GT_AUTO_INC); |
| 103 | ctrl |= GT_CONTROL_AUTO_INC; |
| 104 | } |
| 105 | |
| 106 | ctrl |= GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE; |
| 107 | writel(ctrl, gt_base + GT_CONTROL); |
| 108 | } |
| 109 | |
| 110 | static void gt_clockevent_set_mode(enum clock_event_mode mode, |
| 111 | struct clock_event_device *clk) |
| 112 | { |
| 113 | unsigned long ctrl; |
| 114 | |
| 115 | switch (mode) { |
| 116 | case CLOCK_EVT_MODE_PERIODIC: |
| 117 | gt_compare_set(DIV_ROUND_CLOSEST(gt_clk_rate, HZ), 1); |
| 118 | break; |
| 119 | case CLOCK_EVT_MODE_ONESHOT: |
| 120 | case CLOCK_EVT_MODE_UNUSED: |
| 121 | case CLOCK_EVT_MODE_SHUTDOWN: |
| 122 | ctrl = readl(gt_base + GT_CONTROL); |
| 123 | ctrl &= ~(GT_CONTROL_COMP_ENABLE | |
| 124 | GT_CONTROL_IRQ_ENABLE | GT_CONTROL_AUTO_INC); |
| 125 | writel(ctrl, gt_base + GT_CONTROL); |
| 126 | break; |
| 127 | default: |
| 128 | break; |
| 129 | } |
| 130 | } |
| 131 | |
| 132 | static int gt_clockevent_set_next_event(unsigned long evt, |
| 133 | struct clock_event_device *unused) |
| 134 | { |
| 135 | gt_compare_set(evt, 0); |
| 136 | return 0; |
| 137 | } |
| 138 | |
| 139 | static irqreturn_t gt_clockevent_interrupt(int irq, void *dev_id) |
| 140 | { |
| 141 | struct clock_event_device *evt = dev_id; |
| 142 | |
| 143 | if (!(readl_relaxed(gt_base + GT_INT_STATUS) & |
| 144 | GT_INT_STATUS_EVENT_FLAG)) |
| 145 | return IRQ_NONE; |
| 146 | |
| 147 | /** |
| 148 | * ERRATA 740657( Global Timer can send 2 interrupts for |
| 149 | * the same event in single-shot mode) |
| 150 | * Workaround: |
| 151 | * Either disable single-shot mode. |
| 152 | * Or |
| 153 | * Modify the Interrupt Handler to avoid the |
| 154 | * offending sequence. This is achieved by clearing |
| 155 | * the Global Timer flag _after_ having incremented |
| 156 | * the Comparator register value to a higher value. |
| 157 | */ |
| 158 | if (evt->mode == CLOCK_EVT_MODE_ONESHOT) |
| 159 | gt_compare_set(ULONG_MAX, 0); |
| 160 | |
| 161 | writel_relaxed(GT_INT_STATUS_EVENT_FLAG, gt_base + GT_INT_STATUS); |
| 162 | evt->event_handler(evt); |
| 163 | |
| 164 | return IRQ_HANDLED; |
| 165 | } |
| 166 | |
Paul Gortmaker | 8c37bb3 | 2013-06-19 11:32:08 -0400 | [diff] [blame] | 167 | static int gt_clockevents_init(struct clock_event_device *clk) |
Stuart Menefy | c1b40e4 | 2013-06-26 12:48:38 +0100 | [diff] [blame] | 168 | { |
| 169 | int cpu = smp_processor_id(); |
| 170 | |
| 171 | clk->name = "arm_global_timer"; |
Soren Brinkmann | 6661039 | 2013-09-18 11:48:36 -0700 | [diff] [blame] | 172 | clk->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT | |
| 173 | CLOCK_EVT_FEAT_PERCPU; |
Stuart Menefy | c1b40e4 | 2013-06-26 12:48:38 +0100 | [diff] [blame] | 174 | clk->set_mode = gt_clockevent_set_mode; |
| 175 | clk->set_next_event = gt_clockevent_set_next_event; |
| 176 | clk->cpumask = cpumask_of(cpu); |
| 177 | clk->rating = 300; |
| 178 | clk->irq = gt_ppi; |
| 179 | clockevents_config_and_register(clk, gt_clk_rate, |
| 180 | 1, 0xffffffff); |
| 181 | enable_percpu_irq(clk->irq, IRQ_TYPE_NONE); |
| 182 | return 0; |
| 183 | } |
| 184 | |
| 185 | static void gt_clockevents_stop(struct clock_event_device *clk) |
| 186 | { |
| 187 | gt_clockevent_set_mode(CLOCK_EVT_MODE_UNUSED, clk); |
| 188 | disable_percpu_irq(clk->irq); |
| 189 | } |
| 190 | |
| 191 | static cycle_t gt_clocksource_read(struct clocksource *cs) |
| 192 | { |
| 193 | return gt_counter_read(); |
| 194 | } |
| 195 | |
| 196 | static struct clocksource gt_clocksource = { |
| 197 | .name = "arm_global_timer", |
| 198 | .rating = 300, |
| 199 | .read = gt_clocksource_read, |
| 200 | .mask = CLOCKSOURCE_MASK(64), |
| 201 | .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| 202 | }; |
| 203 | |
| 204 | #ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK |
Stephen Boyd | af066fc | 2013-11-20 00:47:32 +0100 | [diff] [blame] | 205 | static u64 notrace gt_sched_clock_read(void) |
Stuart Menefy | c1b40e4 | 2013-06-26 12:48:38 +0100 | [diff] [blame] | 206 | { |
| 207 | return gt_counter_read(); |
| 208 | } |
| 209 | #endif |
| 210 | |
| 211 | static void __init gt_clocksource_init(void) |
| 212 | { |
| 213 | writel(0, gt_base + GT_CONTROL); |
| 214 | writel(0, gt_base + GT_COUNTER0); |
| 215 | writel(0, gt_base + GT_COUNTER1); |
| 216 | /* enables timer on all the cores */ |
| 217 | writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL); |
| 218 | |
| 219 | #ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK |
Stephen Boyd | af066fc | 2013-11-20 00:47:32 +0100 | [diff] [blame] | 220 | sched_clock_register(gt_sched_clock_read, 64, gt_clk_rate); |
Stuart Menefy | c1b40e4 | 2013-06-26 12:48:38 +0100 | [diff] [blame] | 221 | #endif |
| 222 | clocksource_register_hz(>_clocksource, gt_clk_rate); |
| 223 | } |
| 224 | |
Paul Gortmaker | 8c37bb3 | 2013-06-19 11:32:08 -0400 | [diff] [blame] | 225 | static int gt_cpu_notify(struct notifier_block *self, unsigned long action, |
| 226 | void *hcpu) |
Stuart Menefy | c1b40e4 | 2013-06-26 12:48:38 +0100 | [diff] [blame] | 227 | { |
| 228 | switch (action & ~CPU_TASKS_FROZEN) { |
| 229 | case CPU_STARTING: |
| 230 | gt_clockevents_init(this_cpu_ptr(gt_evt)); |
| 231 | break; |
| 232 | case CPU_DYING: |
| 233 | gt_clockevents_stop(this_cpu_ptr(gt_evt)); |
| 234 | break; |
| 235 | } |
| 236 | |
| 237 | return NOTIFY_OK; |
| 238 | } |
Paul Gortmaker | 8c37bb3 | 2013-06-19 11:32:08 -0400 | [diff] [blame] | 239 | static struct notifier_block gt_cpu_nb = { |
Stuart Menefy | c1b40e4 | 2013-06-26 12:48:38 +0100 | [diff] [blame] | 240 | .notifier_call = gt_cpu_notify, |
| 241 | }; |
| 242 | |
| 243 | static void __init global_timer_of_register(struct device_node *np) |
| 244 | { |
| 245 | struct clk *gt_clk; |
| 246 | int err = 0; |
| 247 | |
| 248 | /* |
| 249 | * In r2p0 the comparators for each processor with the global timer |
| 250 | * fire when the timer value is greater than or equal to. In previous |
| 251 | * revisions the comparators fired when the timer value was equal to. |
| 252 | */ |
| 253 | if ((read_cpuid_id() & 0xf0000f) < 0x200000) { |
| 254 | pr_warn("global-timer: non support for this cpu version.\n"); |
| 255 | return; |
| 256 | } |
| 257 | |
| 258 | gt_ppi = irq_of_parse_and_map(np, 0); |
| 259 | if (!gt_ppi) { |
| 260 | pr_warn("global-timer: unable to parse irq\n"); |
| 261 | return; |
| 262 | } |
| 263 | |
| 264 | gt_base = of_iomap(np, 0); |
| 265 | if (!gt_base) { |
| 266 | pr_warn("global-timer: invalid base address\n"); |
| 267 | return; |
| 268 | } |
| 269 | |
| 270 | gt_clk = of_clk_get(np, 0); |
| 271 | if (!IS_ERR(gt_clk)) { |
| 272 | err = clk_prepare_enable(gt_clk); |
| 273 | if (err) |
| 274 | goto out_unmap; |
| 275 | } else { |
| 276 | pr_warn("global-timer: clk not found\n"); |
| 277 | err = -EINVAL; |
| 278 | goto out_unmap; |
| 279 | } |
| 280 | |
| 281 | gt_clk_rate = clk_get_rate(gt_clk); |
| 282 | gt_evt = alloc_percpu(struct clock_event_device); |
| 283 | if (!gt_evt) { |
| 284 | pr_warn("global-timer: can't allocate memory\n"); |
| 285 | err = -ENOMEM; |
| 286 | goto out_clk; |
| 287 | } |
| 288 | |
| 289 | err = request_percpu_irq(gt_ppi, gt_clockevent_interrupt, |
| 290 | "gt", gt_evt); |
| 291 | if (err) { |
| 292 | pr_warn("global-timer: can't register interrupt %d (%d)\n", |
| 293 | gt_ppi, err); |
| 294 | goto out_free; |
| 295 | } |
| 296 | |
| 297 | err = register_cpu_notifier(>_cpu_nb); |
| 298 | if (err) { |
| 299 | pr_warn("global-timer: unable to register cpu notifier.\n"); |
| 300 | goto out_irq; |
| 301 | } |
| 302 | |
| 303 | /* Immediately configure the timer on the boot CPU */ |
| 304 | gt_clocksource_init(); |
| 305 | gt_clockevents_init(this_cpu_ptr(gt_evt)); |
| 306 | |
| 307 | return; |
| 308 | |
| 309 | out_irq: |
| 310 | free_percpu_irq(gt_ppi, gt_evt); |
| 311 | out_free: |
| 312 | free_percpu(gt_evt); |
| 313 | out_clk: |
| 314 | clk_disable_unprepare(gt_clk); |
| 315 | out_unmap: |
| 316 | iounmap(gt_base); |
| 317 | WARN(err, "ARM Global timer register failed (%d)\n", err); |
| 318 | } |
| 319 | |
| 320 | /* Only tested on r2p2 and r3p0 */ |
| 321 | CLOCKSOURCE_OF_DECLARE(arm_gt, "arm,cortex-a9-global-timer", |
| 322 | global_timer_of_register); |