Linus Torvalds | 1361b83 | 2012-02-21 13:19:22 -0800 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 1994 Linus Torvalds |
| 3 | * |
| 4 | * Pentium III FXSR, SSE support |
| 5 | * General FPU state handling cleanups |
| 6 | * Gareth Hughes <gareth@valinux.com>, May 2000 |
| 7 | * x86-64 work by Andi Kleen 2002 |
| 8 | */ |
| 9 | |
| 10 | #ifndef _FPU_INTERNAL_H |
| 11 | #define _FPU_INTERNAL_H |
| 12 | |
| 13 | #include <linux/kernel_stat.h> |
| 14 | #include <linux/regset.h> |
| 15 | #include <linux/slab.h> |
| 16 | #include <asm/asm.h> |
| 17 | #include <asm/cpufeature.h> |
| 18 | #include <asm/processor.h> |
| 19 | #include <asm/sigcontext.h> |
| 20 | #include <asm/user.h> |
| 21 | #include <asm/uaccess.h> |
| 22 | #include <asm/xsave.h> |
| 23 | |
| 24 | extern unsigned int sig_xstate_size; |
| 25 | extern void fpu_init(void); |
| 26 | |
| 27 | DECLARE_PER_CPU(struct task_struct *, fpu_owner_task); |
| 28 | |
| 29 | extern user_regset_active_fn fpregs_active, xfpregs_active; |
| 30 | extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get, |
| 31 | xstateregs_get; |
| 32 | extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set, |
| 33 | xstateregs_set; |
| 34 | |
| 35 | |
| 36 | /* |
| 37 | * xstateregs_active == fpregs_active. Please refer to the comment |
| 38 | * at the definition of fpregs_active. |
| 39 | */ |
| 40 | #define xstateregs_active fpregs_active |
| 41 | |
| 42 | extern struct _fpx_sw_bytes fx_sw_reserved; |
| 43 | #ifdef CONFIG_IA32_EMULATION |
| 44 | extern unsigned int sig_xstate_ia32_size; |
| 45 | extern struct _fpx_sw_bytes fx_sw_reserved_ia32; |
| 46 | struct _fpstate_ia32; |
| 47 | struct _xstate_ia32; |
| 48 | extern int save_i387_xstate_ia32(void __user *buf); |
| 49 | extern int restore_i387_xstate_ia32(void __user *buf); |
| 50 | #endif |
| 51 | |
| 52 | #ifdef CONFIG_MATH_EMULATION |
| 53 | extern void finit_soft_fpu(struct i387_soft_struct *soft); |
| 54 | #else |
| 55 | static inline void finit_soft_fpu(struct i387_soft_struct *soft) {} |
| 56 | #endif |
| 57 | |
| 58 | #define X87_FSW_ES (1 << 7) /* Exception Summary */ |
| 59 | |
| 60 | static __always_inline __pure bool use_xsaveopt(void) |
| 61 | { |
| 62 | return static_cpu_has(X86_FEATURE_XSAVEOPT); |
| 63 | } |
| 64 | |
| 65 | static __always_inline __pure bool use_xsave(void) |
| 66 | { |
| 67 | return static_cpu_has(X86_FEATURE_XSAVE); |
| 68 | } |
| 69 | |
| 70 | static __always_inline __pure bool use_fxsr(void) |
| 71 | { |
| 72 | return static_cpu_has(X86_FEATURE_FXSR); |
| 73 | } |
| 74 | |
| 75 | extern void __sanitize_i387_state(struct task_struct *); |
| 76 | |
| 77 | static inline void sanitize_i387_state(struct task_struct *tsk) |
| 78 | { |
| 79 | if (!use_xsaveopt()) |
| 80 | return; |
| 81 | __sanitize_i387_state(tsk); |
| 82 | } |
| 83 | |
| 84 | #ifdef CONFIG_X86_64 |
| 85 | static inline int fxrstor_checking(struct i387_fxsave_struct *fx) |
| 86 | { |
| 87 | int err; |
| 88 | |
| 89 | /* See comment in fxsave() below. */ |
| 90 | #ifdef CONFIG_AS_FXSAVEQ |
| 91 | asm volatile("1: fxrstorq %[fx]\n\t" |
| 92 | "2:\n" |
| 93 | ".section .fixup,\"ax\"\n" |
| 94 | "3: movl $-1,%[err]\n" |
| 95 | " jmp 2b\n" |
| 96 | ".previous\n" |
| 97 | _ASM_EXTABLE(1b, 3b) |
| 98 | : [err] "=r" (err) |
| 99 | : [fx] "m" (*fx), "0" (0)); |
| 100 | #else |
| 101 | asm volatile("1: rex64/fxrstor (%[fx])\n\t" |
| 102 | "2:\n" |
| 103 | ".section .fixup,\"ax\"\n" |
| 104 | "3: movl $-1,%[err]\n" |
| 105 | " jmp 2b\n" |
| 106 | ".previous\n" |
| 107 | _ASM_EXTABLE(1b, 3b) |
| 108 | : [err] "=r" (err) |
| 109 | : [fx] "R" (fx), "m" (*fx), "0" (0)); |
| 110 | #endif |
| 111 | return err; |
| 112 | } |
| 113 | |
| 114 | static inline int fxsave_user(struct i387_fxsave_struct __user *fx) |
| 115 | { |
| 116 | int err; |
| 117 | |
| 118 | /* |
| 119 | * Clear the bytes not touched by the fxsave and reserved |
| 120 | * for the SW usage. |
| 121 | */ |
| 122 | err = __clear_user(&fx->sw_reserved, |
| 123 | sizeof(struct _fpx_sw_bytes)); |
| 124 | if (unlikely(err)) |
| 125 | return -EFAULT; |
| 126 | |
| 127 | /* See comment in fxsave() below. */ |
| 128 | #ifdef CONFIG_AS_FXSAVEQ |
| 129 | asm volatile("1: fxsaveq %[fx]\n\t" |
| 130 | "2:\n" |
| 131 | ".section .fixup,\"ax\"\n" |
| 132 | "3: movl $-1,%[err]\n" |
| 133 | " jmp 2b\n" |
| 134 | ".previous\n" |
| 135 | _ASM_EXTABLE(1b, 3b) |
| 136 | : [err] "=r" (err), [fx] "=m" (*fx) |
| 137 | : "0" (0)); |
| 138 | #else |
| 139 | asm volatile("1: rex64/fxsave (%[fx])\n\t" |
| 140 | "2:\n" |
| 141 | ".section .fixup,\"ax\"\n" |
| 142 | "3: movl $-1,%[err]\n" |
| 143 | " jmp 2b\n" |
| 144 | ".previous\n" |
| 145 | _ASM_EXTABLE(1b, 3b) |
| 146 | : [err] "=r" (err), "=m" (*fx) |
| 147 | : [fx] "R" (fx), "0" (0)); |
| 148 | #endif |
| 149 | if (unlikely(err) && |
| 150 | __clear_user(fx, sizeof(struct i387_fxsave_struct))) |
| 151 | err = -EFAULT; |
| 152 | /* No need to clear here because the caller clears USED_MATH */ |
| 153 | return err; |
| 154 | } |
| 155 | |
| 156 | static inline void fpu_fxsave(struct fpu *fpu) |
| 157 | { |
| 158 | /* Using "rex64; fxsave %0" is broken because, if the memory operand |
| 159 | uses any extended registers for addressing, a second REX prefix |
| 160 | will be generated (to the assembler, rex64 followed by semicolon |
| 161 | is a separate instruction), and hence the 64-bitness is lost. */ |
| 162 | |
| 163 | #ifdef CONFIG_AS_FXSAVEQ |
| 164 | /* Using "fxsaveq %0" would be the ideal choice, but is only supported |
| 165 | starting with gas 2.16. */ |
| 166 | __asm__ __volatile__("fxsaveq %0" |
| 167 | : "=m" (fpu->state->fxsave)); |
| 168 | #else |
| 169 | /* Using, as a workaround, the properly prefixed form below isn't |
| 170 | accepted by any binutils version so far released, complaining that |
| 171 | the same type of prefix is used twice if an extended register is |
| 172 | needed for addressing (fix submitted to mainline 2005-11-21). |
| 173 | asm volatile("rex64/fxsave %0" |
| 174 | : "=m" (fpu->state->fxsave)); |
| 175 | This, however, we can work around by forcing the compiler to select |
| 176 | an addressing mode that doesn't require extended registers. */ |
| 177 | asm volatile("rex64/fxsave (%[fx])" |
| 178 | : "=m" (fpu->state->fxsave) |
| 179 | : [fx] "R" (&fpu->state->fxsave)); |
| 180 | #endif |
| 181 | } |
| 182 | |
| 183 | #else /* CONFIG_X86_32 */ |
| 184 | |
| 185 | /* perform fxrstor iff the processor has extended states, otherwise frstor */ |
| 186 | static inline int fxrstor_checking(struct i387_fxsave_struct *fx) |
| 187 | { |
| 188 | /* |
| 189 | * The "nop" is needed to make the instructions the same |
| 190 | * length. |
| 191 | */ |
| 192 | alternative_input( |
| 193 | "nop ; frstor %1", |
| 194 | "fxrstor %1", |
| 195 | X86_FEATURE_FXSR, |
| 196 | "m" (*fx)); |
| 197 | |
| 198 | return 0; |
| 199 | } |
| 200 | |
| 201 | static inline void fpu_fxsave(struct fpu *fpu) |
| 202 | { |
| 203 | asm volatile("fxsave %[fx]" |
| 204 | : [fx] "=m" (fpu->state->fxsave)); |
| 205 | } |
| 206 | |
| 207 | #endif /* CONFIG_X86_64 */ |
| 208 | |
| 209 | /* |
| 210 | * These must be called with preempt disabled. Returns |
| 211 | * 'true' if the FPU state is still intact. |
| 212 | */ |
| 213 | static inline int fpu_save_init(struct fpu *fpu) |
| 214 | { |
| 215 | if (use_xsave()) { |
| 216 | fpu_xsave(fpu); |
| 217 | |
| 218 | /* |
| 219 | * xsave header may indicate the init state of the FP. |
| 220 | */ |
| 221 | if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP)) |
| 222 | return 1; |
| 223 | } else if (use_fxsr()) { |
| 224 | fpu_fxsave(fpu); |
| 225 | } else { |
| 226 | asm volatile("fnsave %[fx]; fwait" |
| 227 | : [fx] "=m" (fpu->state->fsave)); |
| 228 | return 0; |
| 229 | } |
| 230 | |
| 231 | /* |
| 232 | * If exceptions are pending, we need to clear them so |
| 233 | * that we don't randomly get exceptions later. |
| 234 | * |
| 235 | * FIXME! Is this perhaps only true for the old-style |
| 236 | * irq13 case? Maybe we could leave the x87 state |
| 237 | * intact otherwise? |
| 238 | */ |
| 239 | if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) { |
| 240 | asm volatile("fnclex"); |
| 241 | return 0; |
| 242 | } |
| 243 | return 1; |
| 244 | } |
| 245 | |
| 246 | static inline int __save_init_fpu(struct task_struct *tsk) |
| 247 | { |
| 248 | return fpu_save_init(&tsk->thread.fpu); |
| 249 | } |
| 250 | |
| 251 | static inline int fpu_fxrstor_checking(struct fpu *fpu) |
| 252 | { |
| 253 | return fxrstor_checking(&fpu->state->fxsave); |
| 254 | } |
| 255 | |
| 256 | static inline int fpu_restore_checking(struct fpu *fpu) |
| 257 | { |
| 258 | if (use_xsave()) |
| 259 | return fpu_xrstor_checking(fpu); |
| 260 | else |
| 261 | return fpu_fxrstor_checking(fpu); |
| 262 | } |
| 263 | |
| 264 | static inline int restore_fpu_checking(struct task_struct *tsk) |
| 265 | { |
| 266 | /* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception |
| 267 | is pending. Clear the x87 state here by setting it to fixed |
| 268 | values. "m" is a random variable that should be in L1 */ |
| 269 | alternative_input( |
| 270 | ASM_NOP8 ASM_NOP2, |
| 271 | "emms\n\t" /* clear stack tags */ |
| 272 | "fildl %P[addr]", /* set F?P to defined value */ |
| 273 | X86_FEATURE_FXSAVE_LEAK, |
| 274 | [addr] "m" (tsk->thread.fpu.has_fpu)); |
| 275 | |
| 276 | return fpu_restore_checking(&tsk->thread.fpu); |
| 277 | } |
| 278 | |
| 279 | /* |
| 280 | * Software FPU state helpers. Careful: these need to |
| 281 | * be preemption protection *and* they need to be |
| 282 | * properly paired with the CR0.TS changes! |
| 283 | */ |
| 284 | static inline int __thread_has_fpu(struct task_struct *tsk) |
| 285 | { |
| 286 | return tsk->thread.fpu.has_fpu; |
| 287 | } |
| 288 | |
| 289 | /* Must be paired with an 'stts' after! */ |
| 290 | static inline void __thread_clear_has_fpu(struct task_struct *tsk) |
| 291 | { |
| 292 | tsk->thread.fpu.has_fpu = 0; |
| 293 | percpu_write(fpu_owner_task, NULL); |
| 294 | } |
| 295 | |
| 296 | /* Must be paired with a 'clts' before! */ |
| 297 | static inline void __thread_set_has_fpu(struct task_struct *tsk) |
| 298 | { |
| 299 | tsk->thread.fpu.has_fpu = 1; |
| 300 | percpu_write(fpu_owner_task, tsk); |
| 301 | } |
| 302 | |
| 303 | /* |
| 304 | * Encapsulate the CR0.TS handling together with the |
| 305 | * software flag. |
| 306 | * |
| 307 | * These generally need preemption protection to work, |
| 308 | * do try to avoid using these on their own. |
| 309 | */ |
| 310 | static inline void __thread_fpu_end(struct task_struct *tsk) |
| 311 | { |
| 312 | __thread_clear_has_fpu(tsk); |
| 313 | stts(); |
| 314 | } |
| 315 | |
| 316 | static inline void __thread_fpu_begin(struct task_struct *tsk) |
| 317 | { |
| 318 | clts(); |
| 319 | __thread_set_has_fpu(tsk); |
| 320 | } |
| 321 | |
| 322 | /* |
| 323 | * FPU state switching for scheduling. |
| 324 | * |
| 325 | * This is a two-stage process: |
| 326 | * |
| 327 | * - switch_fpu_prepare() saves the old state and |
| 328 | * sets the new state of the CR0.TS bit. This is |
| 329 | * done within the context of the old process. |
| 330 | * |
| 331 | * - switch_fpu_finish() restores the new state as |
| 332 | * necessary. |
| 333 | */ |
| 334 | typedef struct { int preload; } fpu_switch_t; |
| 335 | |
| 336 | /* |
| 337 | * FIXME! We could do a totally lazy restore, but we need to |
| 338 | * add a per-cpu "this was the task that last touched the FPU |
| 339 | * on this CPU" variable, and the task needs to have a "I last |
| 340 | * touched the FPU on this CPU" and check them. |
| 341 | * |
| 342 | * We don't do that yet, so "fpu_lazy_restore()" always returns |
| 343 | * false, but some day.. |
| 344 | */ |
| 345 | static inline int fpu_lazy_restore(struct task_struct *new, unsigned int cpu) |
| 346 | { |
| 347 | return new == percpu_read_stable(fpu_owner_task) && |
| 348 | cpu == new->thread.fpu.last_cpu; |
| 349 | } |
| 350 | |
| 351 | static inline fpu_switch_t switch_fpu_prepare(struct task_struct *old, struct task_struct *new, int cpu) |
| 352 | { |
| 353 | fpu_switch_t fpu; |
| 354 | |
| 355 | fpu.preload = tsk_used_math(new) && new->fpu_counter > 5; |
| 356 | if (__thread_has_fpu(old)) { |
| 357 | if (!__save_init_fpu(old)) |
| 358 | cpu = ~0; |
| 359 | old->thread.fpu.last_cpu = cpu; |
| 360 | old->thread.fpu.has_fpu = 0; /* But leave fpu_owner_task! */ |
| 361 | |
| 362 | /* Don't change CR0.TS if we just switch! */ |
| 363 | if (fpu.preload) { |
| 364 | new->fpu_counter++; |
| 365 | __thread_set_has_fpu(new); |
| 366 | prefetch(new->thread.fpu.state); |
| 367 | } else |
| 368 | stts(); |
| 369 | } else { |
| 370 | old->fpu_counter = 0; |
| 371 | old->thread.fpu.last_cpu = ~0; |
| 372 | if (fpu.preload) { |
| 373 | new->fpu_counter++; |
| 374 | if (fpu_lazy_restore(new, cpu)) |
| 375 | fpu.preload = 0; |
| 376 | else |
| 377 | prefetch(new->thread.fpu.state); |
| 378 | __thread_fpu_begin(new); |
| 379 | } |
| 380 | } |
| 381 | return fpu; |
| 382 | } |
| 383 | |
| 384 | /* |
| 385 | * By the time this gets called, we've already cleared CR0.TS and |
| 386 | * given the process the FPU if we are going to preload the FPU |
| 387 | * state - all we need to do is to conditionally restore the register |
| 388 | * state itself. |
| 389 | */ |
| 390 | static inline void switch_fpu_finish(struct task_struct *new, fpu_switch_t fpu) |
| 391 | { |
| 392 | if (fpu.preload) { |
| 393 | if (unlikely(restore_fpu_checking(new))) |
| 394 | __thread_fpu_end(new); |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | /* |
| 399 | * Signal frame handlers... |
| 400 | */ |
| 401 | extern int save_i387_xstate(void __user *buf); |
| 402 | extern int restore_i387_xstate(void __user *buf); |
| 403 | |
| 404 | static inline void __clear_fpu(struct task_struct *tsk) |
| 405 | { |
| 406 | if (__thread_has_fpu(tsk)) { |
| 407 | /* Ignore delayed exceptions from user space */ |
| 408 | asm volatile("1: fwait\n" |
| 409 | "2:\n" |
| 410 | _ASM_EXTABLE(1b, 2b)); |
| 411 | __thread_fpu_end(tsk); |
| 412 | } |
| 413 | } |
| 414 | |
| 415 | /* |
| 416 | * The actual user_fpu_begin/end() functions |
| 417 | * need to be preemption-safe. |
| 418 | * |
| 419 | * NOTE! user_fpu_end() must be used only after you |
| 420 | * have saved the FP state, and user_fpu_begin() must |
| 421 | * be used only immediately before restoring it. |
| 422 | * These functions do not do any save/restore on |
| 423 | * their own. |
| 424 | */ |
| 425 | static inline void user_fpu_end(void) |
| 426 | { |
| 427 | preempt_disable(); |
| 428 | __thread_fpu_end(current); |
| 429 | preempt_enable(); |
| 430 | } |
| 431 | |
| 432 | static inline void user_fpu_begin(void) |
| 433 | { |
| 434 | preempt_disable(); |
| 435 | if (!user_has_fpu()) |
| 436 | __thread_fpu_begin(current); |
| 437 | preempt_enable(); |
| 438 | } |
| 439 | |
| 440 | /* |
| 441 | * These disable preemption on their own and are safe |
| 442 | */ |
| 443 | static inline void save_init_fpu(struct task_struct *tsk) |
| 444 | { |
| 445 | WARN_ON_ONCE(!__thread_has_fpu(tsk)); |
| 446 | preempt_disable(); |
| 447 | __save_init_fpu(tsk); |
| 448 | __thread_fpu_end(tsk); |
| 449 | preempt_enable(); |
| 450 | } |
| 451 | |
| 452 | static inline void clear_fpu(struct task_struct *tsk) |
| 453 | { |
| 454 | preempt_disable(); |
| 455 | __clear_fpu(tsk); |
| 456 | preempt_enable(); |
| 457 | } |
| 458 | |
| 459 | /* |
| 460 | * i387 state interaction |
| 461 | */ |
| 462 | static inline unsigned short get_fpu_cwd(struct task_struct *tsk) |
| 463 | { |
| 464 | if (cpu_has_fxsr) { |
| 465 | return tsk->thread.fpu.state->fxsave.cwd; |
| 466 | } else { |
| 467 | return (unsigned short)tsk->thread.fpu.state->fsave.cwd; |
| 468 | } |
| 469 | } |
| 470 | |
| 471 | static inline unsigned short get_fpu_swd(struct task_struct *tsk) |
| 472 | { |
| 473 | if (cpu_has_fxsr) { |
| 474 | return tsk->thread.fpu.state->fxsave.swd; |
| 475 | } else { |
| 476 | return (unsigned short)tsk->thread.fpu.state->fsave.swd; |
| 477 | } |
| 478 | } |
| 479 | |
| 480 | static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk) |
| 481 | { |
| 482 | if (cpu_has_xmm) { |
| 483 | return tsk->thread.fpu.state->fxsave.mxcsr; |
| 484 | } else { |
| 485 | return MXCSR_DEFAULT; |
| 486 | } |
| 487 | } |
| 488 | |
| 489 | static bool fpu_allocated(struct fpu *fpu) |
| 490 | { |
| 491 | return fpu->state != NULL; |
| 492 | } |
| 493 | |
| 494 | static inline int fpu_alloc(struct fpu *fpu) |
| 495 | { |
| 496 | if (fpu_allocated(fpu)) |
| 497 | return 0; |
| 498 | fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL); |
| 499 | if (!fpu->state) |
| 500 | return -ENOMEM; |
| 501 | WARN_ON((unsigned long)fpu->state & 15); |
| 502 | return 0; |
| 503 | } |
| 504 | |
| 505 | static inline void fpu_free(struct fpu *fpu) |
| 506 | { |
| 507 | if (fpu->state) { |
| 508 | kmem_cache_free(task_xstate_cachep, fpu->state); |
| 509 | fpu->state = NULL; |
| 510 | } |
| 511 | } |
| 512 | |
| 513 | static inline void fpu_copy(struct fpu *dst, struct fpu *src) |
| 514 | { |
| 515 | memcpy(dst->state, src->state, xstate_size); |
| 516 | } |
| 517 | |
| 518 | extern void fpu_finit(struct fpu *fpu); |
| 519 | |
| 520 | #endif |