Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * linux/fs/mbcache.c |
| 3 | * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org> |
| 4 | */ |
| 5 | |
| 6 | /* |
| 7 | * Filesystem Meta Information Block Cache (mbcache) |
| 8 | * |
| 9 | * The mbcache caches blocks of block devices that need to be located |
| 10 | * by their device/block number, as well as by other criteria (such |
| 11 | * as the block's contents). |
| 12 | * |
| 13 | * There can only be one cache entry in a cache per device and block number. |
| 14 | * Additional indexes need not be unique in this sense. The number of |
| 15 | * additional indexes (=other criteria) can be hardwired at compile time |
| 16 | * or specified at cache create time. |
| 17 | * |
| 18 | * Each cache entry is of fixed size. An entry may be `valid' or `invalid' |
| 19 | * in the cache. A valid entry is in the main hash tables of the cache, |
| 20 | * and may also be in the lru list. An invalid entry is not in any hashes |
| 21 | * or lists. |
| 22 | * |
| 23 | * A valid cache entry is only in the lru list if no handles refer to it. |
| 24 | * Invalid cache entries will be freed when the last handle to the cache |
| 25 | * entry is released. Entries that cannot be freed immediately are put |
| 26 | * back on the lru list. |
| 27 | */ |
| 28 | |
| 29 | #include <linux/kernel.h> |
| 30 | #include <linux/module.h> |
| 31 | |
| 32 | #include <linux/hash.h> |
| 33 | #include <linux/fs.h> |
| 34 | #include <linux/mm.h> |
| 35 | #include <linux/slab.h> |
| 36 | #include <linux/sched.h> |
| 37 | #include <linux/init.h> |
| 38 | #include <linux/mbcache.h> |
| 39 | |
| 40 | |
| 41 | #ifdef MB_CACHE_DEBUG |
| 42 | # define mb_debug(f...) do { \ |
| 43 | printk(KERN_DEBUG f); \ |
| 44 | printk("\n"); \ |
| 45 | } while (0) |
| 46 | #define mb_assert(c) do { if (!(c)) \ |
| 47 | printk(KERN_ERR "assertion " #c " failed\n"); \ |
| 48 | } while(0) |
| 49 | #else |
| 50 | # define mb_debug(f...) do { } while(0) |
| 51 | # define mb_assert(c) do { } while(0) |
| 52 | #endif |
| 53 | #define mb_error(f...) do { \ |
| 54 | printk(KERN_ERR f); \ |
| 55 | printk("\n"); \ |
| 56 | } while(0) |
| 57 | |
| 58 | #define MB_CACHE_WRITER ((unsigned short)~0U >> 1) |
| 59 | |
| 60 | DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue); |
| 61 | |
| 62 | MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>"); |
| 63 | MODULE_DESCRIPTION("Meta block cache (for extended attributes)"); |
| 64 | MODULE_LICENSE("GPL"); |
| 65 | |
| 66 | EXPORT_SYMBOL(mb_cache_create); |
| 67 | EXPORT_SYMBOL(mb_cache_shrink); |
| 68 | EXPORT_SYMBOL(mb_cache_destroy); |
| 69 | EXPORT_SYMBOL(mb_cache_entry_alloc); |
| 70 | EXPORT_SYMBOL(mb_cache_entry_insert); |
| 71 | EXPORT_SYMBOL(mb_cache_entry_release); |
| 72 | EXPORT_SYMBOL(mb_cache_entry_free); |
| 73 | EXPORT_SYMBOL(mb_cache_entry_get); |
| 74 | #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) |
| 75 | EXPORT_SYMBOL(mb_cache_entry_find_first); |
| 76 | EXPORT_SYMBOL(mb_cache_entry_find_next); |
| 77 | #endif |
| 78 | |
| 79 | struct mb_cache { |
| 80 | struct list_head c_cache_list; |
| 81 | const char *c_name; |
| 82 | struct mb_cache_op c_op; |
| 83 | atomic_t c_entry_count; |
| 84 | int c_bucket_bits; |
| 85 | #ifndef MB_CACHE_INDEXES_COUNT |
| 86 | int c_indexes_count; |
| 87 | #endif |
| 88 | kmem_cache_t *c_entry_cache; |
| 89 | struct list_head *c_block_hash; |
| 90 | struct list_head *c_indexes_hash[0]; |
| 91 | }; |
| 92 | |
| 93 | |
| 94 | /* |
| 95 | * Global data: list of all mbcache's, lru list, and a spinlock for |
| 96 | * accessing cache data structures on SMP machines. The lru list is |
| 97 | * global across all mbcaches. |
| 98 | */ |
| 99 | |
| 100 | static LIST_HEAD(mb_cache_list); |
| 101 | static LIST_HEAD(mb_cache_lru_list); |
| 102 | static DEFINE_SPINLOCK(mb_cache_spinlock); |
| 103 | static struct shrinker *mb_shrinker; |
| 104 | |
| 105 | static inline int |
| 106 | mb_cache_indexes(struct mb_cache *cache) |
| 107 | { |
| 108 | #ifdef MB_CACHE_INDEXES_COUNT |
| 109 | return MB_CACHE_INDEXES_COUNT; |
| 110 | #else |
| 111 | return cache->c_indexes_count; |
| 112 | #endif |
| 113 | } |
| 114 | |
| 115 | /* |
| 116 | * What the mbcache registers as to get shrunk dynamically. |
| 117 | */ |
| 118 | |
| 119 | static int mb_cache_shrink_fn(int nr_to_scan, unsigned int gfp_mask); |
| 120 | |
| 121 | |
| 122 | static inline int |
| 123 | __mb_cache_entry_is_hashed(struct mb_cache_entry *ce) |
| 124 | { |
| 125 | return !list_empty(&ce->e_block_list); |
| 126 | } |
| 127 | |
| 128 | |
| 129 | static inline void |
| 130 | __mb_cache_entry_unhash(struct mb_cache_entry *ce) |
| 131 | { |
| 132 | int n; |
| 133 | |
| 134 | if (__mb_cache_entry_is_hashed(ce)) { |
| 135 | list_del_init(&ce->e_block_list); |
| 136 | for (n=0; n<mb_cache_indexes(ce->e_cache); n++) |
| 137 | list_del(&ce->e_indexes[n].o_list); |
| 138 | } |
| 139 | } |
| 140 | |
| 141 | |
| 142 | static inline void |
| 143 | __mb_cache_entry_forget(struct mb_cache_entry *ce, int gfp_mask) |
| 144 | { |
| 145 | struct mb_cache *cache = ce->e_cache; |
| 146 | |
| 147 | mb_assert(!(ce->e_used || ce->e_queued)); |
| 148 | if (cache->c_op.free && cache->c_op.free(ce, gfp_mask)) { |
| 149 | /* free failed -- put back on the lru list |
| 150 | for freeing later. */ |
| 151 | spin_lock(&mb_cache_spinlock); |
| 152 | list_add(&ce->e_lru_list, &mb_cache_lru_list); |
| 153 | spin_unlock(&mb_cache_spinlock); |
| 154 | } else { |
| 155 | kmem_cache_free(cache->c_entry_cache, ce); |
| 156 | atomic_dec(&cache->c_entry_count); |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | |
| 161 | static inline void |
| 162 | __mb_cache_entry_release_unlock(struct mb_cache_entry *ce) |
| 163 | { |
| 164 | /* Wake up all processes queuing for this cache entry. */ |
| 165 | if (ce->e_queued) |
| 166 | wake_up_all(&mb_cache_queue); |
| 167 | if (ce->e_used >= MB_CACHE_WRITER) |
| 168 | ce->e_used -= MB_CACHE_WRITER; |
| 169 | ce->e_used--; |
| 170 | if (!(ce->e_used || ce->e_queued)) { |
| 171 | if (!__mb_cache_entry_is_hashed(ce)) |
| 172 | goto forget; |
| 173 | mb_assert(list_empty(&ce->e_lru_list)); |
| 174 | list_add_tail(&ce->e_lru_list, &mb_cache_lru_list); |
| 175 | } |
| 176 | spin_unlock(&mb_cache_spinlock); |
| 177 | return; |
| 178 | forget: |
| 179 | spin_unlock(&mb_cache_spinlock); |
| 180 | __mb_cache_entry_forget(ce, GFP_KERNEL); |
| 181 | } |
| 182 | |
| 183 | |
| 184 | /* |
| 185 | * mb_cache_shrink_fn() memory pressure callback |
| 186 | * |
| 187 | * This function is called by the kernel memory management when memory |
| 188 | * gets low. |
| 189 | * |
| 190 | * @nr_to_scan: Number of objects to scan |
| 191 | * @gfp_mask: (ignored) |
| 192 | * |
| 193 | * Returns the number of objects which are present in the cache. |
| 194 | */ |
| 195 | static int |
| 196 | mb_cache_shrink_fn(int nr_to_scan, unsigned int gfp_mask) |
| 197 | { |
| 198 | LIST_HEAD(free_list); |
| 199 | struct list_head *l, *ltmp; |
| 200 | int count = 0; |
| 201 | |
| 202 | spin_lock(&mb_cache_spinlock); |
| 203 | list_for_each(l, &mb_cache_list) { |
| 204 | struct mb_cache *cache = |
| 205 | list_entry(l, struct mb_cache, c_cache_list); |
| 206 | mb_debug("cache %s (%d)", cache->c_name, |
| 207 | atomic_read(&cache->c_entry_count)); |
| 208 | count += atomic_read(&cache->c_entry_count); |
| 209 | } |
| 210 | mb_debug("trying to free %d entries", nr_to_scan); |
| 211 | if (nr_to_scan == 0) { |
| 212 | spin_unlock(&mb_cache_spinlock); |
| 213 | goto out; |
| 214 | } |
| 215 | while (nr_to_scan-- && !list_empty(&mb_cache_lru_list)) { |
| 216 | struct mb_cache_entry *ce = |
| 217 | list_entry(mb_cache_lru_list.next, |
| 218 | struct mb_cache_entry, e_lru_list); |
| 219 | list_move_tail(&ce->e_lru_list, &free_list); |
| 220 | __mb_cache_entry_unhash(ce); |
| 221 | } |
| 222 | spin_unlock(&mb_cache_spinlock); |
| 223 | list_for_each_safe(l, ltmp, &free_list) { |
| 224 | __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry, |
| 225 | e_lru_list), gfp_mask); |
| 226 | } |
| 227 | out: |
| 228 | return (count / 100) * sysctl_vfs_cache_pressure; |
| 229 | } |
| 230 | |
| 231 | |
| 232 | /* |
| 233 | * mb_cache_create() create a new cache |
| 234 | * |
| 235 | * All entries in one cache are equal size. Cache entries may be from |
| 236 | * multiple devices. If this is the first mbcache created, registers |
| 237 | * the cache with kernel memory management. Returns NULL if no more |
| 238 | * memory was available. |
| 239 | * |
| 240 | * @name: name of the cache (informal) |
| 241 | * @cache_op: contains the callback called when freeing a cache entry |
| 242 | * @entry_size: The size of a cache entry, including |
| 243 | * struct mb_cache_entry |
| 244 | * @indexes_count: number of additional indexes in the cache. Must equal |
| 245 | * MB_CACHE_INDEXES_COUNT if the number of indexes is |
| 246 | * hardwired. |
| 247 | * @bucket_bits: log2(number of hash buckets) |
| 248 | */ |
| 249 | struct mb_cache * |
| 250 | mb_cache_create(const char *name, struct mb_cache_op *cache_op, |
| 251 | size_t entry_size, int indexes_count, int bucket_bits) |
| 252 | { |
| 253 | int m=0, n, bucket_count = 1 << bucket_bits; |
| 254 | struct mb_cache *cache = NULL; |
| 255 | |
| 256 | if(entry_size < sizeof(struct mb_cache_entry) + |
| 257 | indexes_count * sizeof(((struct mb_cache_entry *) 0)->e_indexes[0])) |
| 258 | return NULL; |
| 259 | |
| 260 | cache = kmalloc(sizeof(struct mb_cache) + |
| 261 | indexes_count * sizeof(struct list_head), GFP_KERNEL); |
| 262 | if (!cache) |
| 263 | goto fail; |
| 264 | cache->c_name = name; |
| 265 | cache->c_op.free = NULL; |
| 266 | if (cache_op) |
| 267 | cache->c_op.free = cache_op->free; |
| 268 | atomic_set(&cache->c_entry_count, 0); |
| 269 | cache->c_bucket_bits = bucket_bits; |
| 270 | #ifdef MB_CACHE_INDEXES_COUNT |
| 271 | mb_assert(indexes_count == MB_CACHE_INDEXES_COUNT); |
| 272 | #else |
| 273 | cache->c_indexes_count = indexes_count; |
| 274 | #endif |
| 275 | cache->c_block_hash = kmalloc(bucket_count * sizeof(struct list_head), |
| 276 | GFP_KERNEL); |
| 277 | if (!cache->c_block_hash) |
| 278 | goto fail; |
| 279 | for (n=0; n<bucket_count; n++) |
| 280 | INIT_LIST_HEAD(&cache->c_block_hash[n]); |
| 281 | for (m=0; m<indexes_count; m++) { |
| 282 | cache->c_indexes_hash[m] = kmalloc(bucket_count * |
| 283 | sizeof(struct list_head), |
| 284 | GFP_KERNEL); |
| 285 | if (!cache->c_indexes_hash[m]) |
| 286 | goto fail; |
| 287 | for (n=0; n<bucket_count; n++) |
| 288 | INIT_LIST_HEAD(&cache->c_indexes_hash[m][n]); |
| 289 | } |
| 290 | cache->c_entry_cache = kmem_cache_create(name, entry_size, 0, |
| 291 | SLAB_RECLAIM_ACCOUNT, NULL, NULL); |
| 292 | if (!cache->c_entry_cache) |
| 293 | goto fail; |
| 294 | |
| 295 | spin_lock(&mb_cache_spinlock); |
| 296 | list_add(&cache->c_cache_list, &mb_cache_list); |
| 297 | spin_unlock(&mb_cache_spinlock); |
| 298 | return cache; |
| 299 | |
| 300 | fail: |
| 301 | if (cache) { |
| 302 | while (--m >= 0) |
| 303 | kfree(cache->c_indexes_hash[m]); |
| 304 | if (cache->c_block_hash) |
| 305 | kfree(cache->c_block_hash); |
| 306 | kfree(cache); |
| 307 | } |
| 308 | return NULL; |
| 309 | } |
| 310 | |
| 311 | |
| 312 | /* |
| 313 | * mb_cache_shrink() |
| 314 | * |
| 315 | * Removes all cache entires of a device from the cache. All cache entries |
| 316 | * currently in use cannot be freed, and thus remain in the cache. All others |
| 317 | * are freed. |
| 318 | * |
| 319 | * @cache: which cache to shrink |
| 320 | * @bdev: which device's cache entries to shrink |
| 321 | */ |
| 322 | void |
| 323 | mb_cache_shrink(struct mb_cache *cache, struct block_device *bdev) |
| 324 | { |
| 325 | LIST_HEAD(free_list); |
| 326 | struct list_head *l, *ltmp; |
| 327 | |
| 328 | spin_lock(&mb_cache_spinlock); |
| 329 | list_for_each_safe(l, ltmp, &mb_cache_lru_list) { |
| 330 | struct mb_cache_entry *ce = |
| 331 | list_entry(l, struct mb_cache_entry, e_lru_list); |
| 332 | if (ce->e_bdev == bdev) { |
| 333 | list_move_tail(&ce->e_lru_list, &free_list); |
| 334 | __mb_cache_entry_unhash(ce); |
| 335 | } |
| 336 | } |
| 337 | spin_unlock(&mb_cache_spinlock); |
| 338 | list_for_each_safe(l, ltmp, &free_list) { |
| 339 | __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry, |
| 340 | e_lru_list), GFP_KERNEL); |
| 341 | } |
| 342 | } |
| 343 | |
| 344 | |
| 345 | /* |
| 346 | * mb_cache_destroy() |
| 347 | * |
| 348 | * Shrinks the cache to its minimum possible size (hopefully 0 entries), |
| 349 | * and then destroys it. If this was the last mbcache, un-registers the |
| 350 | * mbcache from kernel memory management. |
| 351 | */ |
| 352 | void |
| 353 | mb_cache_destroy(struct mb_cache *cache) |
| 354 | { |
| 355 | LIST_HEAD(free_list); |
| 356 | struct list_head *l, *ltmp; |
| 357 | int n; |
| 358 | |
| 359 | spin_lock(&mb_cache_spinlock); |
| 360 | list_for_each_safe(l, ltmp, &mb_cache_lru_list) { |
| 361 | struct mb_cache_entry *ce = |
| 362 | list_entry(l, struct mb_cache_entry, e_lru_list); |
| 363 | if (ce->e_cache == cache) { |
| 364 | list_move_tail(&ce->e_lru_list, &free_list); |
| 365 | __mb_cache_entry_unhash(ce); |
| 366 | } |
| 367 | } |
| 368 | list_del(&cache->c_cache_list); |
| 369 | spin_unlock(&mb_cache_spinlock); |
| 370 | |
| 371 | list_for_each_safe(l, ltmp, &free_list) { |
| 372 | __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry, |
| 373 | e_lru_list), GFP_KERNEL); |
| 374 | } |
| 375 | |
| 376 | if (atomic_read(&cache->c_entry_count) > 0) { |
| 377 | mb_error("cache %s: %d orphaned entries", |
| 378 | cache->c_name, |
| 379 | atomic_read(&cache->c_entry_count)); |
| 380 | } |
| 381 | |
| 382 | kmem_cache_destroy(cache->c_entry_cache); |
| 383 | |
| 384 | for (n=0; n < mb_cache_indexes(cache); n++) |
| 385 | kfree(cache->c_indexes_hash[n]); |
| 386 | kfree(cache->c_block_hash); |
| 387 | kfree(cache); |
| 388 | } |
| 389 | |
| 390 | |
| 391 | /* |
| 392 | * mb_cache_entry_alloc() |
| 393 | * |
| 394 | * Allocates a new cache entry. The new entry will not be valid initially, |
| 395 | * and thus cannot be looked up yet. It should be filled with data, and |
| 396 | * then inserted into the cache using mb_cache_entry_insert(). Returns NULL |
| 397 | * if no more memory was available. |
| 398 | */ |
| 399 | struct mb_cache_entry * |
| 400 | mb_cache_entry_alloc(struct mb_cache *cache) |
| 401 | { |
| 402 | struct mb_cache_entry *ce; |
| 403 | |
| 404 | atomic_inc(&cache->c_entry_count); |
| 405 | ce = kmem_cache_alloc(cache->c_entry_cache, GFP_KERNEL); |
| 406 | if (ce) { |
| 407 | INIT_LIST_HEAD(&ce->e_lru_list); |
| 408 | INIT_LIST_HEAD(&ce->e_block_list); |
| 409 | ce->e_cache = cache; |
| 410 | ce->e_used = 1 + MB_CACHE_WRITER; |
| 411 | ce->e_queued = 0; |
| 412 | } |
| 413 | return ce; |
| 414 | } |
| 415 | |
| 416 | |
| 417 | /* |
| 418 | * mb_cache_entry_insert() |
| 419 | * |
| 420 | * Inserts an entry that was allocated using mb_cache_entry_alloc() into |
| 421 | * the cache. After this, the cache entry can be looked up, but is not yet |
| 422 | * in the lru list as the caller still holds a handle to it. Returns 0 on |
| 423 | * success, or -EBUSY if a cache entry for that device + inode exists |
| 424 | * already (this may happen after a failed lookup, but when another process |
| 425 | * has inserted the same cache entry in the meantime). |
| 426 | * |
| 427 | * @bdev: device the cache entry belongs to |
| 428 | * @block: block number |
| 429 | * @keys: array of additional keys. There must be indexes_count entries |
| 430 | * in the array (as specified when creating the cache). |
| 431 | */ |
| 432 | int |
| 433 | mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev, |
| 434 | sector_t block, unsigned int keys[]) |
| 435 | { |
| 436 | struct mb_cache *cache = ce->e_cache; |
| 437 | unsigned int bucket; |
| 438 | struct list_head *l; |
| 439 | int error = -EBUSY, n; |
| 440 | |
| 441 | bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), |
| 442 | cache->c_bucket_bits); |
| 443 | spin_lock(&mb_cache_spinlock); |
| 444 | list_for_each_prev(l, &cache->c_block_hash[bucket]) { |
| 445 | struct mb_cache_entry *ce = |
| 446 | list_entry(l, struct mb_cache_entry, e_block_list); |
| 447 | if (ce->e_bdev == bdev && ce->e_block == block) |
| 448 | goto out; |
| 449 | } |
| 450 | __mb_cache_entry_unhash(ce); |
| 451 | ce->e_bdev = bdev; |
| 452 | ce->e_block = block; |
| 453 | list_add(&ce->e_block_list, &cache->c_block_hash[bucket]); |
| 454 | for (n=0; n<mb_cache_indexes(cache); n++) { |
| 455 | ce->e_indexes[n].o_key = keys[n]; |
| 456 | bucket = hash_long(keys[n], cache->c_bucket_bits); |
| 457 | list_add(&ce->e_indexes[n].o_list, |
| 458 | &cache->c_indexes_hash[n][bucket]); |
| 459 | } |
| 460 | error = 0; |
| 461 | out: |
| 462 | spin_unlock(&mb_cache_spinlock); |
| 463 | return error; |
| 464 | } |
| 465 | |
| 466 | |
| 467 | /* |
| 468 | * mb_cache_entry_release() |
| 469 | * |
| 470 | * Release a handle to a cache entry. When the last handle to a cache entry |
| 471 | * is released it is either freed (if it is invalid) or otherwise inserted |
| 472 | * in to the lru list. |
| 473 | */ |
| 474 | void |
| 475 | mb_cache_entry_release(struct mb_cache_entry *ce) |
| 476 | { |
| 477 | spin_lock(&mb_cache_spinlock); |
| 478 | __mb_cache_entry_release_unlock(ce); |
| 479 | } |
| 480 | |
| 481 | |
| 482 | /* |
| 483 | * mb_cache_entry_free() |
| 484 | * |
| 485 | * This is equivalent to the sequence mb_cache_entry_takeout() -- |
| 486 | * mb_cache_entry_release(). |
| 487 | */ |
| 488 | void |
| 489 | mb_cache_entry_free(struct mb_cache_entry *ce) |
| 490 | { |
| 491 | spin_lock(&mb_cache_spinlock); |
| 492 | mb_assert(list_empty(&ce->e_lru_list)); |
| 493 | __mb_cache_entry_unhash(ce); |
| 494 | __mb_cache_entry_release_unlock(ce); |
| 495 | } |
| 496 | |
| 497 | |
| 498 | /* |
| 499 | * mb_cache_entry_get() |
| 500 | * |
| 501 | * Get a cache entry by device / block number. (There can only be one entry |
| 502 | * in the cache per device and block.) Returns NULL if no such cache entry |
| 503 | * exists. The returned cache entry is locked for exclusive access ("single |
| 504 | * writer"). |
| 505 | */ |
| 506 | struct mb_cache_entry * |
| 507 | mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev, |
| 508 | sector_t block) |
| 509 | { |
| 510 | unsigned int bucket; |
| 511 | struct list_head *l; |
| 512 | struct mb_cache_entry *ce; |
| 513 | |
| 514 | bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), |
| 515 | cache->c_bucket_bits); |
| 516 | spin_lock(&mb_cache_spinlock); |
| 517 | list_for_each(l, &cache->c_block_hash[bucket]) { |
| 518 | ce = list_entry(l, struct mb_cache_entry, e_block_list); |
| 519 | if (ce->e_bdev == bdev && ce->e_block == block) { |
| 520 | DEFINE_WAIT(wait); |
| 521 | |
| 522 | if (!list_empty(&ce->e_lru_list)) |
| 523 | list_del_init(&ce->e_lru_list); |
| 524 | |
| 525 | while (ce->e_used > 0) { |
| 526 | ce->e_queued++; |
| 527 | prepare_to_wait(&mb_cache_queue, &wait, |
| 528 | TASK_UNINTERRUPTIBLE); |
| 529 | spin_unlock(&mb_cache_spinlock); |
| 530 | schedule(); |
| 531 | spin_lock(&mb_cache_spinlock); |
| 532 | ce->e_queued--; |
| 533 | } |
| 534 | finish_wait(&mb_cache_queue, &wait); |
| 535 | ce->e_used += 1 + MB_CACHE_WRITER; |
| 536 | |
| 537 | if (!__mb_cache_entry_is_hashed(ce)) { |
| 538 | __mb_cache_entry_release_unlock(ce); |
| 539 | return NULL; |
| 540 | } |
| 541 | goto cleanup; |
| 542 | } |
| 543 | } |
| 544 | ce = NULL; |
| 545 | |
| 546 | cleanup: |
| 547 | spin_unlock(&mb_cache_spinlock); |
| 548 | return ce; |
| 549 | } |
| 550 | |
| 551 | #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) |
| 552 | |
| 553 | static struct mb_cache_entry * |
| 554 | __mb_cache_entry_find(struct list_head *l, struct list_head *head, |
| 555 | int index, struct block_device *bdev, unsigned int key) |
| 556 | { |
| 557 | while (l != head) { |
| 558 | struct mb_cache_entry *ce = |
| 559 | list_entry(l, struct mb_cache_entry, |
| 560 | e_indexes[index].o_list); |
| 561 | if (ce->e_bdev == bdev && ce->e_indexes[index].o_key == key) { |
| 562 | DEFINE_WAIT(wait); |
| 563 | |
| 564 | if (!list_empty(&ce->e_lru_list)) |
| 565 | list_del_init(&ce->e_lru_list); |
| 566 | |
| 567 | /* Incrementing before holding the lock gives readers |
| 568 | priority over writers. */ |
| 569 | ce->e_used++; |
| 570 | while (ce->e_used >= MB_CACHE_WRITER) { |
| 571 | ce->e_queued++; |
| 572 | prepare_to_wait(&mb_cache_queue, &wait, |
| 573 | TASK_UNINTERRUPTIBLE); |
| 574 | spin_unlock(&mb_cache_spinlock); |
| 575 | schedule(); |
| 576 | spin_lock(&mb_cache_spinlock); |
| 577 | ce->e_queued--; |
| 578 | } |
| 579 | finish_wait(&mb_cache_queue, &wait); |
| 580 | |
| 581 | if (!__mb_cache_entry_is_hashed(ce)) { |
| 582 | __mb_cache_entry_release_unlock(ce); |
| 583 | spin_lock(&mb_cache_spinlock); |
| 584 | return ERR_PTR(-EAGAIN); |
| 585 | } |
| 586 | return ce; |
| 587 | } |
| 588 | l = l->next; |
| 589 | } |
| 590 | return NULL; |
| 591 | } |
| 592 | |
| 593 | |
| 594 | /* |
| 595 | * mb_cache_entry_find_first() |
| 596 | * |
| 597 | * Find the first cache entry on a given device with a certain key in |
| 598 | * an additional index. Additonal matches can be found with |
| 599 | * mb_cache_entry_find_next(). Returns NULL if no match was found. The |
| 600 | * returned cache entry is locked for shared access ("multiple readers"). |
| 601 | * |
| 602 | * @cache: the cache to search |
| 603 | * @index: the number of the additonal index to search (0<=index<indexes_count) |
| 604 | * @bdev: the device the cache entry should belong to |
| 605 | * @key: the key in the index |
| 606 | */ |
| 607 | struct mb_cache_entry * |
| 608 | mb_cache_entry_find_first(struct mb_cache *cache, int index, |
| 609 | struct block_device *bdev, unsigned int key) |
| 610 | { |
| 611 | unsigned int bucket = hash_long(key, cache->c_bucket_bits); |
| 612 | struct list_head *l; |
| 613 | struct mb_cache_entry *ce; |
| 614 | |
| 615 | mb_assert(index < mb_cache_indexes(cache)); |
| 616 | spin_lock(&mb_cache_spinlock); |
| 617 | l = cache->c_indexes_hash[index][bucket].next; |
| 618 | ce = __mb_cache_entry_find(l, &cache->c_indexes_hash[index][bucket], |
| 619 | index, bdev, key); |
| 620 | spin_unlock(&mb_cache_spinlock); |
| 621 | return ce; |
| 622 | } |
| 623 | |
| 624 | |
| 625 | /* |
| 626 | * mb_cache_entry_find_next() |
| 627 | * |
| 628 | * Find the next cache entry on a given device with a certain key in an |
| 629 | * additional index. Returns NULL if no match could be found. The previous |
| 630 | * entry is atomatically released, so that mb_cache_entry_find_next() can |
| 631 | * be called like this: |
| 632 | * |
| 633 | * entry = mb_cache_entry_find_first(); |
| 634 | * while (entry) { |
| 635 | * ... |
| 636 | * entry = mb_cache_entry_find_next(entry, ...); |
| 637 | * } |
| 638 | * |
| 639 | * @prev: The previous match |
| 640 | * @index: the number of the additonal index to search (0<=index<indexes_count) |
| 641 | * @bdev: the device the cache entry should belong to |
| 642 | * @key: the key in the index |
| 643 | */ |
| 644 | struct mb_cache_entry * |
| 645 | mb_cache_entry_find_next(struct mb_cache_entry *prev, int index, |
| 646 | struct block_device *bdev, unsigned int key) |
| 647 | { |
| 648 | struct mb_cache *cache = prev->e_cache; |
| 649 | unsigned int bucket = hash_long(key, cache->c_bucket_bits); |
| 650 | struct list_head *l; |
| 651 | struct mb_cache_entry *ce; |
| 652 | |
| 653 | mb_assert(index < mb_cache_indexes(cache)); |
| 654 | spin_lock(&mb_cache_spinlock); |
| 655 | l = prev->e_indexes[index].o_list.next; |
| 656 | ce = __mb_cache_entry_find(l, &cache->c_indexes_hash[index][bucket], |
| 657 | index, bdev, key); |
| 658 | __mb_cache_entry_release_unlock(prev); |
| 659 | return ce; |
| 660 | } |
| 661 | |
| 662 | #endif /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */ |
| 663 | |
| 664 | static int __init init_mbcache(void) |
| 665 | { |
| 666 | mb_shrinker = set_shrinker(DEFAULT_SEEKS, mb_cache_shrink_fn); |
| 667 | return 0; |
| 668 | } |
| 669 | |
| 670 | static void __exit exit_mbcache(void) |
| 671 | { |
| 672 | remove_shrinker(mb_shrinker); |
| 673 | } |
| 674 | |
| 675 | module_init(init_mbcache) |
| 676 | module_exit(exit_mbcache) |
| 677 | |