Christoffer Dall | 749cf76c | 2013-01-20 18:28:06 -0500 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2012 - Virtual Open Systems and Columbia University |
| 3 | * Author: Christoffer Dall <c.dall@virtualopensystems.com> |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify |
| 6 | * it under the terms of the GNU General Public License, version 2, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | * GNU General Public License for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License |
| 15 | * along with this program; if not, write to the Free Software |
| 16 | * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. |
| 17 | */ |
Christoffer Dall | 342cd0a | 2013-01-20 18:28:06 -0500 | [diff] [blame] | 18 | |
| 19 | #include <linux/mman.h> |
| 20 | #include <linux/kvm_host.h> |
| 21 | #include <linux/io.h> |
| 22 | #include <asm/idmap.h> |
| 23 | #include <asm/pgalloc.h> |
Christoffer Dall | 94f8e64 | 2013-01-20 18:28:12 -0500 | [diff] [blame^] | 24 | #include <asm/cacheflush.h> |
Christoffer Dall | 342cd0a | 2013-01-20 18:28:06 -0500 | [diff] [blame] | 25 | #include <asm/kvm_arm.h> |
| 26 | #include <asm/kvm_mmu.h> |
Christoffer Dall | d5d8184 | 2013-01-20 18:28:07 -0500 | [diff] [blame] | 27 | #include <asm/kvm_asm.h> |
Christoffer Dall | 94f8e64 | 2013-01-20 18:28:12 -0500 | [diff] [blame^] | 28 | #include <asm/kvm_emulate.h> |
Christoffer Dall | 342cd0a | 2013-01-20 18:28:06 -0500 | [diff] [blame] | 29 | #include <asm/mach/map.h> |
Christoffer Dall | d5d8184 | 2013-01-20 18:28:07 -0500 | [diff] [blame] | 30 | #include <trace/events/kvm.h> |
| 31 | |
| 32 | #include "trace.h" |
Christoffer Dall | 342cd0a | 2013-01-20 18:28:06 -0500 | [diff] [blame] | 33 | |
| 34 | extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[]; |
| 35 | |
| 36 | static DEFINE_MUTEX(kvm_hyp_pgd_mutex); |
| 37 | |
Christoffer Dall | d5d8184 | 2013-01-20 18:28:07 -0500 | [diff] [blame] | 38 | static void kvm_tlb_flush_vmid(struct kvm *kvm) |
| 39 | { |
| 40 | kvm_call_hyp(__kvm_tlb_flush_vmid, kvm); |
| 41 | } |
| 42 | |
Christoffer Dall | 342cd0a | 2013-01-20 18:28:06 -0500 | [diff] [blame] | 43 | static void kvm_set_pte(pte_t *pte, pte_t new_pte) |
| 44 | { |
| 45 | pte_val(*pte) = new_pte; |
| 46 | /* |
| 47 | * flush_pmd_entry just takes a void pointer and cleans the necessary |
| 48 | * cache entries, so we can reuse the function for ptes. |
| 49 | */ |
| 50 | flush_pmd_entry(pte); |
| 51 | } |
| 52 | |
Christoffer Dall | d5d8184 | 2013-01-20 18:28:07 -0500 | [diff] [blame] | 53 | static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, |
| 54 | int min, int max) |
| 55 | { |
| 56 | void *page; |
| 57 | |
| 58 | BUG_ON(max > KVM_NR_MEM_OBJS); |
| 59 | if (cache->nobjs >= min) |
| 60 | return 0; |
| 61 | while (cache->nobjs < max) { |
| 62 | page = (void *)__get_free_page(PGALLOC_GFP); |
| 63 | if (!page) |
| 64 | return -ENOMEM; |
| 65 | cache->objects[cache->nobjs++] = page; |
| 66 | } |
| 67 | return 0; |
| 68 | } |
| 69 | |
| 70 | static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) |
| 71 | { |
| 72 | while (mc->nobjs) |
| 73 | free_page((unsigned long)mc->objects[--mc->nobjs]); |
| 74 | } |
| 75 | |
| 76 | static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) |
| 77 | { |
| 78 | void *p; |
| 79 | |
| 80 | BUG_ON(!mc || !mc->nobjs); |
| 81 | p = mc->objects[--mc->nobjs]; |
| 82 | return p; |
| 83 | } |
| 84 | |
Christoffer Dall | 342cd0a | 2013-01-20 18:28:06 -0500 | [diff] [blame] | 85 | static void free_ptes(pmd_t *pmd, unsigned long addr) |
| 86 | { |
| 87 | pte_t *pte; |
| 88 | unsigned int i; |
| 89 | |
| 90 | for (i = 0; i < PTRS_PER_PMD; i++, addr += PMD_SIZE) { |
| 91 | if (!pmd_none(*pmd) && pmd_table(*pmd)) { |
| 92 | pte = pte_offset_kernel(pmd, addr); |
| 93 | pte_free_kernel(NULL, pte); |
| 94 | } |
| 95 | pmd++; |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | /** |
| 100 | * free_hyp_pmds - free a Hyp-mode level-2 tables and child level-3 tables |
| 101 | * |
| 102 | * Assumes this is a page table used strictly in Hyp-mode and therefore contains |
| 103 | * only mappings in the kernel memory area, which is above PAGE_OFFSET. |
| 104 | */ |
| 105 | void free_hyp_pmds(void) |
| 106 | { |
| 107 | pgd_t *pgd; |
| 108 | pud_t *pud; |
| 109 | pmd_t *pmd; |
| 110 | unsigned long addr; |
| 111 | |
| 112 | mutex_lock(&kvm_hyp_pgd_mutex); |
| 113 | for (addr = PAGE_OFFSET; addr != 0; addr += PGDIR_SIZE) { |
| 114 | pgd = hyp_pgd + pgd_index(addr); |
| 115 | pud = pud_offset(pgd, addr); |
| 116 | |
| 117 | if (pud_none(*pud)) |
| 118 | continue; |
| 119 | BUG_ON(pud_bad(*pud)); |
| 120 | |
| 121 | pmd = pmd_offset(pud, addr); |
| 122 | free_ptes(pmd, addr); |
| 123 | pmd_free(NULL, pmd); |
| 124 | pud_clear(pud); |
| 125 | } |
| 126 | mutex_unlock(&kvm_hyp_pgd_mutex); |
| 127 | } |
| 128 | |
| 129 | static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start, |
| 130 | unsigned long end) |
| 131 | { |
| 132 | pte_t *pte; |
| 133 | unsigned long addr; |
| 134 | struct page *page; |
| 135 | |
| 136 | for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { |
| 137 | pte = pte_offset_kernel(pmd, addr); |
| 138 | BUG_ON(!virt_addr_valid(addr)); |
| 139 | page = virt_to_page(addr); |
| 140 | kvm_set_pte(pte, mk_pte(page, PAGE_HYP)); |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | static void create_hyp_io_pte_mappings(pmd_t *pmd, unsigned long start, |
| 145 | unsigned long end, |
| 146 | unsigned long *pfn_base) |
| 147 | { |
| 148 | pte_t *pte; |
| 149 | unsigned long addr; |
| 150 | |
| 151 | for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { |
| 152 | pte = pte_offset_kernel(pmd, addr); |
| 153 | BUG_ON(pfn_valid(*pfn_base)); |
| 154 | kvm_set_pte(pte, pfn_pte(*pfn_base, PAGE_HYP_DEVICE)); |
| 155 | (*pfn_base)++; |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start, |
| 160 | unsigned long end, unsigned long *pfn_base) |
| 161 | { |
| 162 | pmd_t *pmd; |
| 163 | pte_t *pte; |
| 164 | unsigned long addr, next; |
| 165 | |
| 166 | for (addr = start; addr < end; addr = next) { |
| 167 | pmd = pmd_offset(pud, addr); |
| 168 | |
| 169 | BUG_ON(pmd_sect(*pmd)); |
| 170 | |
| 171 | if (pmd_none(*pmd)) { |
| 172 | pte = pte_alloc_one_kernel(NULL, addr); |
| 173 | if (!pte) { |
| 174 | kvm_err("Cannot allocate Hyp pte\n"); |
| 175 | return -ENOMEM; |
| 176 | } |
| 177 | pmd_populate_kernel(NULL, pmd, pte); |
| 178 | } |
| 179 | |
| 180 | next = pmd_addr_end(addr, end); |
| 181 | |
| 182 | /* |
| 183 | * If pfn_base is NULL, we map kernel pages into HYP with the |
| 184 | * virtual address. Otherwise, this is considered an I/O |
| 185 | * mapping and we map the physical region starting at |
| 186 | * *pfn_base to [start, end[. |
| 187 | */ |
| 188 | if (!pfn_base) |
| 189 | create_hyp_pte_mappings(pmd, addr, next); |
| 190 | else |
| 191 | create_hyp_io_pte_mappings(pmd, addr, next, pfn_base); |
| 192 | } |
| 193 | |
| 194 | return 0; |
| 195 | } |
| 196 | |
| 197 | static int __create_hyp_mappings(void *from, void *to, unsigned long *pfn_base) |
| 198 | { |
| 199 | unsigned long start = (unsigned long)from; |
| 200 | unsigned long end = (unsigned long)to; |
| 201 | pgd_t *pgd; |
| 202 | pud_t *pud; |
| 203 | pmd_t *pmd; |
| 204 | unsigned long addr, next; |
| 205 | int err = 0; |
| 206 | |
| 207 | BUG_ON(start > end); |
| 208 | if (start < PAGE_OFFSET) |
| 209 | return -EINVAL; |
| 210 | |
| 211 | mutex_lock(&kvm_hyp_pgd_mutex); |
| 212 | for (addr = start; addr < end; addr = next) { |
| 213 | pgd = hyp_pgd + pgd_index(addr); |
| 214 | pud = pud_offset(pgd, addr); |
| 215 | |
| 216 | if (pud_none_or_clear_bad(pud)) { |
| 217 | pmd = pmd_alloc_one(NULL, addr); |
| 218 | if (!pmd) { |
| 219 | kvm_err("Cannot allocate Hyp pmd\n"); |
| 220 | err = -ENOMEM; |
| 221 | goto out; |
| 222 | } |
| 223 | pud_populate(NULL, pud, pmd); |
| 224 | } |
| 225 | |
| 226 | next = pgd_addr_end(addr, end); |
| 227 | err = create_hyp_pmd_mappings(pud, addr, next, pfn_base); |
| 228 | if (err) |
| 229 | goto out; |
| 230 | } |
| 231 | out: |
| 232 | mutex_unlock(&kvm_hyp_pgd_mutex); |
| 233 | return err; |
| 234 | } |
| 235 | |
| 236 | /** |
| 237 | * create_hyp_mappings - map a kernel virtual address range in Hyp mode |
| 238 | * @from: The virtual kernel start address of the range |
| 239 | * @to: The virtual kernel end address of the range (exclusive) |
| 240 | * |
| 241 | * The same virtual address as the kernel virtual address is also used in |
| 242 | * Hyp-mode mapping to the same underlying physical pages. |
| 243 | * |
| 244 | * Note: Wrapping around zero in the "to" address is not supported. |
| 245 | */ |
| 246 | int create_hyp_mappings(void *from, void *to) |
| 247 | { |
| 248 | return __create_hyp_mappings(from, to, NULL); |
| 249 | } |
| 250 | |
| 251 | /** |
| 252 | * create_hyp_io_mappings - map a physical IO range in Hyp mode |
| 253 | * @from: The virtual HYP start address of the range |
| 254 | * @to: The virtual HYP end address of the range (exclusive) |
| 255 | * @addr: The physical start address which gets mapped |
| 256 | */ |
| 257 | int create_hyp_io_mappings(void *from, void *to, phys_addr_t addr) |
| 258 | { |
| 259 | unsigned long pfn = __phys_to_pfn(addr); |
| 260 | return __create_hyp_mappings(from, to, &pfn); |
| 261 | } |
| 262 | |
Christoffer Dall | d5d8184 | 2013-01-20 18:28:07 -0500 | [diff] [blame] | 263 | /** |
| 264 | * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation. |
| 265 | * @kvm: The KVM struct pointer for the VM. |
| 266 | * |
| 267 | * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can |
| 268 | * support either full 40-bit input addresses or limited to 32-bit input |
| 269 | * addresses). Clears the allocated pages. |
| 270 | * |
| 271 | * Note we don't need locking here as this is only called when the VM is |
| 272 | * created, which can only be done once. |
| 273 | */ |
| 274 | int kvm_alloc_stage2_pgd(struct kvm *kvm) |
| 275 | { |
| 276 | pgd_t *pgd; |
| 277 | |
| 278 | if (kvm->arch.pgd != NULL) { |
| 279 | kvm_err("kvm_arch already initialized?\n"); |
| 280 | return -EINVAL; |
| 281 | } |
| 282 | |
| 283 | pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, S2_PGD_ORDER); |
| 284 | if (!pgd) |
| 285 | return -ENOMEM; |
| 286 | |
| 287 | /* stage-2 pgd must be aligned to its size */ |
| 288 | VM_BUG_ON((unsigned long)pgd & (S2_PGD_SIZE - 1)); |
| 289 | |
| 290 | memset(pgd, 0, PTRS_PER_S2_PGD * sizeof(pgd_t)); |
| 291 | clean_dcache_area(pgd, PTRS_PER_S2_PGD * sizeof(pgd_t)); |
| 292 | kvm->arch.pgd = pgd; |
| 293 | |
| 294 | return 0; |
| 295 | } |
| 296 | |
| 297 | static void clear_pud_entry(pud_t *pud) |
| 298 | { |
| 299 | pmd_t *pmd_table = pmd_offset(pud, 0); |
| 300 | pud_clear(pud); |
| 301 | pmd_free(NULL, pmd_table); |
| 302 | put_page(virt_to_page(pud)); |
| 303 | } |
| 304 | |
| 305 | static void clear_pmd_entry(pmd_t *pmd) |
| 306 | { |
| 307 | pte_t *pte_table = pte_offset_kernel(pmd, 0); |
| 308 | pmd_clear(pmd); |
| 309 | pte_free_kernel(NULL, pte_table); |
| 310 | put_page(virt_to_page(pmd)); |
| 311 | } |
| 312 | |
| 313 | static bool pmd_empty(pmd_t *pmd) |
| 314 | { |
| 315 | struct page *pmd_page = virt_to_page(pmd); |
| 316 | return page_count(pmd_page) == 1; |
| 317 | } |
| 318 | |
| 319 | static void clear_pte_entry(pte_t *pte) |
| 320 | { |
| 321 | if (pte_present(*pte)) { |
| 322 | kvm_set_pte(pte, __pte(0)); |
| 323 | put_page(virt_to_page(pte)); |
| 324 | } |
| 325 | } |
| 326 | |
| 327 | static bool pte_empty(pte_t *pte) |
| 328 | { |
| 329 | struct page *pte_page = virt_to_page(pte); |
| 330 | return page_count(pte_page) == 1; |
| 331 | } |
| 332 | |
| 333 | /** |
| 334 | * unmap_stage2_range -- Clear stage2 page table entries to unmap a range |
| 335 | * @kvm: The VM pointer |
| 336 | * @start: The intermediate physical base address of the range to unmap |
| 337 | * @size: The size of the area to unmap |
| 338 | * |
| 339 | * Clear a range of stage-2 mappings, lowering the various ref-counts. Must |
| 340 | * be called while holding mmu_lock (unless for freeing the stage2 pgd before |
| 341 | * destroying the VM), otherwise another faulting VCPU may come in and mess |
| 342 | * with things behind our backs. |
| 343 | */ |
| 344 | static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size) |
| 345 | { |
| 346 | pgd_t *pgd; |
| 347 | pud_t *pud; |
| 348 | pmd_t *pmd; |
| 349 | pte_t *pte; |
| 350 | phys_addr_t addr = start, end = start + size; |
| 351 | u64 range; |
| 352 | |
| 353 | while (addr < end) { |
| 354 | pgd = kvm->arch.pgd + pgd_index(addr); |
| 355 | pud = pud_offset(pgd, addr); |
| 356 | if (pud_none(*pud)) { |
| 357 | addr += PUD_SIZE; |
| 358 | continue; |
| 359 | } |
| 360 | |
| 361 | pmd = pmd_offset(pud, addr); |
| 362 | if (pmd_none(*pmd)) { |
| 363 | addr += PMD_SIZE; |
| 364 | continue; |
| 365 | } |
| 366 | |
| 367 | pte = pte_offset_kernel(pmd, addr); |
| 368 | clear_pte_entry(pte); |
| 369 | range = PAGE_SIZE; |
| 370 | |
| 371 | /* If we emptied the pte, walk back up the ladder */ |
| 372 | if (pte_empty(pte)) { |
| 373 | clear_pmd_entry(pmd); |
| 374 | range = PMD_SIZE; |
| 375 | if (pmd_empty(pmd)) { |
| 376 | clear_pud_entry(pud); |
| 377 | range = PUD_SIZE; |
| 378 | } |
| 379 | } |
| 380 | |
| 381 | addr += range; |
| 382 | } |
| 383 | } |
| 384 | |
| 385 | /** |
| 386 | * kvm_free_stage2_pgd - free all stage-2 tables |
| 387 | * @kvm: The KVM struct pointer for the VM. |
| 388 | * |
| 389 | * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all |
| 390 | * underlying level-2 and level-3 tables before freeing the actual level-1 table |
| 391 | * and setting the struct pointer to NULL. |
| 392 | * |
| 393 | * Note we don't need locking here as this is only called when the VM is |
| 394 | * destroyed, which can only be done once. |
| 395 | */ |
| 396 | void kvm_free_stage2_pgd(struct kvm *kvm) |
| 397 | { |
| 398 | if (kvm->arch.pgd == NULL) |
| 399 | return; |
| 400 | |
| 401 | unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE); |
| 402 | free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER); |
| 403 | kvm->arch.pgd = NULL; |
| 404 | } |
| 405 | |
| 406 | |
| 407 | static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, |
| 408 | phys_addr_t addr, const pte_t *new_pte, bool iomap) |
| 409 | { |
| 410 | pgd_t *pgd; |
| 411 | pud_t *pud; |
| 412 | pmd_t *pmd; |
| 413 | pte_t *pte, old_pte; |
| 414 | |
| 415 | /* Create 2nd stage page table mapping - Level 1 */ |
| 416 | pgd = kvm->arch.pgd + pgd_index(addr); |
| 417 | pud = pud_offset(pgd, addr); |
| 418 | if (pud_none(*pud)) { |
| 419 | if (!cache) |
| 420 | return 0; /* ignore calls from kvm_set_spte_hva */ |
| 421 | pmd = mmu_memory_cache_alloc(cache); |
| 422 | pud_populate(NULL, pud, pmd); |
| 423 | pmd += pmd_index(addr); |
| 424 | get_page(virt_to_page(pud)); |
| 425 | } else |
| 426 | pmd = pmd_offset(pud, addr); |
| 427 | |
| 428 | /* Create 2nd stage page table mapping - Level 2 */ |
| 429 | if (pmd_none(*pmd)) { |
| 430 | if (!cache) |
| 431 | return 0; /* ignore calls from kvm_set_spte_hva */ |
| 432 | pte = mmu_memory_cache_alloc(cache); |
| 433 | clean_pte_table(pte); |
| 434 | pmd_populate_kernel(NULL, pmd, pte); |
| 435 | pte += pte_index(addr); |
| 436 | get_page(virt_to_page(pmd)); |
| 437 | } else |
| 438 | pte = pte_offset_kernel(pmd, addr); |
| 439 | |
| 440 | if (iomap && pte_present(*pte)) |
| 441 | return -EFAULT; |
| 442 | |
| 443 | /* Create 2nd stage page table mapping - Level 3 */ |
| 444 | old_pte = *pte; |
| 445 | kvm_set_pte(pte, *new_pte); |
| 446 | if (pte_present(old_pte)) |
| 447 | kvm_tlb_flush_vmid(kvm); |
| 448 | else |
| 449 | get_page(virt_to_page(pte)); |
| 450 | |
| 451 | return 0; |
| 452 | } |
| 453 | |
| 454 | /** |
| 455 | * kvm_phys_addr_ioremap - map a device range to guest IPA |
| 456 | * |
| 457 | * @kvm: The KVM pointer |
| 458 | * @guest_ipa: The IPA at which to insert the mapping |
| 459 | * @pa: The physical address of the device |
| 460 | * @size: The size of the mapping |
| 461 | */ |
| 462 | int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, |
| 463 | phys_addr_t pa, unsigned long size) |
| 464 | { |
| 465 | phys_addr_t addr, end; |
| 466 | int ret = 0; |
| 467 | unsigned long pfn; |
| 468 | struct kvm_mmu_memory_cache cache = { 0, }; |
| 469 | |
| 470 | end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK; |
| 471 | pfn = __phys_to_pfn(pa); |
| 472 | |
| 473 | for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) { |
| 474 | pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE | L_PTE_S2_RDWR); |
| 475 | |
| 476 | ret = mmu_topup_memory_cache(&cache, 2, 2); |
| 477 | if (ret) |
| 478 | goto out; |
| 479 | spin_lock(&kvm->mmu_lock); |
| 480 | ret = stage2_set_pte(kvm, &cache, addr, &pte, true); |
| 481 | spin_unlock(&kvm->mmu_lock); |
| 482 | if (ret) |
| 483 | goto out; |
| 484 | |
| 485 | pfn++; |
| 486 | } |
| 487 | |
| 488 | out: |
| 489 | mmu_free_memory_cache(&cache); |
| 490 | return ret; |
| 491 | } |
| 492 | |
Christoffer Dall | 94f8e64 | 2013-01-20 18:28:12 -0500 | [diff] [blame^] | 493 | static void coherent_icache_guest_page(struct kvm *kvm, gfn_t gfn) |
| 494 | { |
| 495 | /* |
| 496 | * If we are going to insert an instruction page and the icache is |
| 497 | * either VIPT or PIPT, there is a potential problem where the host |
| 498 | * (or another VM) may have used the same page as this guest, and we |
| 499 | * read incorrect data from the icache. If we're using a PIPT cache, |
| 500 | * we can invalidate just that page, but if we are using a VIPT cache |
| 501 | * we need to invalidate the entire icache - damn shame - as written |
| 502 | * in the ARM ARM (DDI 0406C.b - Page B3-1393). |
| 503 | * |
| 504 | * VIVT caches are tagged using both the ASID and the VMID and doesn't |
| 505 | * need any kind of flushing (DDI 0406C.b - Page B3-1392). |
| 506 | */ |
| 507 | if (icache_is_pipt()) { |
| 508 | unsigned long hva = gfn_to_hva(kvm, gfn); |
| 509 | __cpuc_coherent_user_range(hva, hva + PAGE_SIZE); |
| 510 | } else if (!icache_is_vivt_asid_tagged()) { |
| 511 | /* any kind of VIPT cache */ |
| 512 | __flush_icache_all(); |
| 513 | } |
| 514 | } |
| 515 | |
| 516 | static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, |
| 517 | gfn_t gfn, struct kvm_memory_slot *memslot, |
| 518 | unsigned long fault_status) |
| 519 | { |
| 520 | pte_t new_pte; |
| 521 | pfn_t pfn; |
| 522 | int ret; |
| 523 | bool write_fault, writable; |
| 524 | unsigned long mmu_seq; |
| 525 | struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; |
| 526 | |
| 527 | write_fault = kvm_is_write_fault(vcpu->arch.hsr); |
| 528 | if (fault_status == FSC_PERM && !write_fault) { |
| 529 | kvm_err("Unexpected L2 read permission error\n"); |
| 530 | return -EFAULT; |
| 531 | } |
| 532 | |
| 533 | /* We need minimum second+third level pages */ |
| 534 | ret = mmu_topup_memory_cache(memcache, 2, KVM_NR_MEM_OBJS); |
| 535 | if (ret) |
| 536 | return ret; |
| 537 | |
| 538 | mmu_seq = vcpu->kvm->mmu_notifier_seq; |
| 539 | /* |
| 540 | * Ensure the read of mmu_notifier_seq happens before we call |
| 541 | * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk |
| 542 | * the page we just got a reference to gets unmapped before we have a |
| 543 | * chance to grab the mmu_lock, which ensure that if the page gets |
| 544 | * unmapped afterwards, the call to kvm_unmap_hva will take it away |
| 545 | * from us again properly. This smp_rmb() interacts with the smp_wmb() |
| 546 | * in kvm_mmu_notifier_invalidate_<page|range_end>. |
| 547 | */ |
| 548 | smp_rmb(); |
| 549 | |
| 550 | pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write_fault, &writable); |
| 551 | if (is_error_pfn(pfn)) |
| 552 | return -EFAULT; |
| 553 | |
| 554 | new_pte = pfn_pte(pfn, PAGE_S2); |
| 555 | coherent_icache_guest_page(vcpu->kvm, gfn); |
| 556 | |
| 557 | spin_lock(&vcpu->kvm->mmu_lock); |
| 558 | if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) |
| 559 | goto out_unlock; |
| 560 | if (writable) { |
| 561 | pte_val(new_pte) |= L_PTE_S2_RDWR; |
| 562 | kvm_set_pfn_dirty(pfn); |
| 563 | } |
| 564 | stage2_set_pte(vcpu->kvm, memcache, fault_ipa, &new_pte, false); |
| 565 | |
| 566 | out_unlock: |
| 567 | spin_unlock(&vcpu->kvm->mmu_lock); |
| 568 | kvm_release_pfn_clean(pfn); |
| 569 | return 0; |
| 570 | } |
| 571 | |
| 572 | /** |
| 573 | * kvm_handle_guest_abort - handles all 2nd stage aborts |
| 574 | * @vcpu: the VCPU pointer |
| 575 | * @run: the kvm_run structure |
| 576 | * |
| 577 | * Any abort that gets to the host is almost guaranteed to be caused by a |
| 578 | * missing second stage translation table entry, which can mean that either the |
| 579 | * guest simply needs more memory and we must allocate an appropriate page or it |
| 580 | * can mean that the guest tried to access I/O memory, which is emulated by user |
| 581 | * space. The distinction is based on the IPA causing the fault and whether this |
| 582 | * memory region has been registered as standard RAM by user space. |
| 583 | */ |
Christoffer Dall | 342cd0a | 2013-01-20 18:28:06 -0500 | [diff] [blame] | 584 | int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| 585 | { |
Christoffer Dall | 94f8e64 | 2013-01-20 18:28:12 -0500 | [diff] [blame^] | 586 | unsigned long hsr_ec; |
| 587 | unsigned long fault_status; |
| 588 | phys_addr_t fault_ipa; |
| 589 | struct kvm_memory_slot *memslot; |
| 590 | bool is_iabt; |
| 591 | gfn_t gfn; |
| 592 | int ret, idx; |
| 593 | |
| 594 | hsr_ec = vcpu->arch.hsr >> HSR_EC_SHIFT; |
| 595 | is_iabt = (hsr_ec == HSR_EC_IABT); |
| 596 | fault_ipa = ((phys_addr_t)vcpu->arch.hpfar & HPFAR_MASK) << 8; |
| 597 | |
| 598 | trace_kvm_guest_fault(*vcpu_pc(vcpu), vcpu->arch.hsr, |
| 599 | vcpu->arch.hxfar, fault_ipa); |
| 600 | |
| 601 | /* Check the stage-2 fault is trans. fault or write fault */ |
| 602 | fault_status = (vcpu->arch.hsr & HSR_FSC_TYPE); |
| 603 | if (fault_status != FSC_FAULT && fault_status != FSC_PERM) { |
| 604 | kvm_err("Unsupported fault status: EC=%#lx DFCS=%#lx\n", |
| 605 | hsr_ec, fault_status); |
| 606 | return -EFAULT; |
| 607 | } |
| 608 | |
| 609 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
| 610 | |
| 611 | gfn = fault_ipa >> PAGE_SHIFT; |
| 612 | if (!kvm_is_visible_gfn(vcpu->kvm, gfn)) { |
| 613 | if (is_iabt) { |
| 614 | /* Prefetch Abort on I/O address */ |
| 615 | kvm_inject_pabt(vcpu, vcpu->arch.hxfar); |
| 616 | ret = 1; |
| 617 | goto out_unlock; |
| 618 | } |
| 619 | |
| 620 | if (fault_status != FSC_FAULT) { |
| 621 | kvm_err("Unsupported fault status on io memory: %#lx\n", |
| 622 | fault_status); |
| 623 | ret = -EFAULT; |
| 624 | goto out_unlock; |
| 625 | } |
| 626 | |
| 627 | kvm_pr_unimpl("I/O address abort..."); |
| 628 | ret = 0; |
| 629 | goto out_unlock; |
| 630 | } |
| 631 | |
| 632 | memslot = gfn_to_memslot(vcpu->kvm, gfn); |
| 633 | if (!memslot->user_alloc) { |
| 634 | kvm_err("non user-alloc memslots not supported\n"); |
| 635 | ret = -EINVAL; |
| 636 | goto out_unlock; |
| 637 | } |
| 638 | |
| 639 | ret = user_mem_abort(vcpu, fault_ipa, gfn, memslot, fault_status); |
| 640 | if (ret == 0) |
| 641 | ret = 1; |
| 642 | out_unlock: |
| 643 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| 644 | return ret; |
Christoffer Dall | 342cd0a | 2013-01-20 18:28:06 -0500 | [diff] [blame] | 645 | } |
| 646 | |
Christoffer Dall | d5d8184 | 2013-01-20 18:28:07 -0500 | [diff] [blame] | 647 | static void handle_hva_to_gpa(struct kvm *kvm, |
| 648 | unsigned long start, |
| 649 | unsigned long end, |
| 650 | void (*handler)(struct kvm *kvm, |
| 651 | gpa_t gpa, void *data), |
| 652 | void *data) |
| 653 | { |
| 654 | struct kvm_memslots *slots; |
| 655 | struct kvm_memory_slot *memslot; |
| 656 | |
| 657 | slots = kvm_memslots(kvm); |
| 658 | |
| 659 | /* we only care about the pages that the guest sees */ |
| 660 | kvm_for_each_memslot(memslot, slots) { |
| 661 | unsigned long hva_start, hva_end; |
| 662 | gfn_t gfn, gfn_end; |
| 663 | |
| 664 | hva_start = max(start, memslot->userspace_addr); |
| 665 | hva_end = min(end, memslot->userspace_addr + |
| 666 | (memslot->npages << PAGE_SHIFT)); |
| 667 | if (hva_start >= hva_end) |
| 668 | continue; |
| 669 | |
| 670 | /* |
| 671 | * {gfn(page) | page intersects with [hva_start, hva_end)} = |
| 672 | * {gfn_start, gfn_start+1, ..., gfn_end-1}. |
| 673 | */ |
| 674 | gfn = hva_to_gfn_memslot(hva_start, memslot); |
| 675 | gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); |
| 676 | |
| 677 | for (; gfn < gfn_end; ++gfn) { |
| 678 | gpa_t gpa = gfn << PAGE_SHIFT; |
| 679 | handler(kvm, gpa, data); |
| 680 | } |
| 681 | } |
| 682 | } |
| 683 | |
| 684 | static void kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data) |
| 685 | { |
| 686 | unmap_stage2_range(kvm, gpa, PAGE_SIZE); |
| 687 | kvm_tlb_flush_vmid(kvm); |
| 688 | } |
| 689 | |
| 690 | int kvm_unmap_hva(struct kvm *kvm, unsigned long hva) |
| 691 | { |
| 692 | unsigned long end = hva + PAGE_SIZE; |
| 693 | |
| 694 | if (!kvm->arch.pgd) |
| 695 | return 0; |
| 696 | |
| 697 | trace_kvm_unmap_hva(hva); |
| 698 | handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL); |
| 699 | return 0; |
| 700 | } |
| 701 | |
| 702 | int kvm_unmap_hva_range(struct kvm *kvm, |
| 703 | unsigned long start, unsigned long end) |
| 704 | { |
| 705 | if (!kvm->arch.pgd) |
| 706 | return 0; |
| 707 | |
| 708 | trace_kvm_unmap_hva_range(start, end); |
| 709 | handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL); |
| 710 | return 0; |
| 711 | } |
| 712 | |
| 713 | static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data) |
| 714 | { |
| 715 | pte_t *pte = (pte_t *)data; |
| 716 | |
| 717 | stage2_set_pte(kvm, NULL, gpa, pte, false); |
| 718 | } |
| 719 | |
| 720 | |
| 721 | void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) |
| 722 | { |
| 723 | unsigned long end = hva + PAGE_SIZE; |
| 724 | pte_t stage2_pte; |
| 725 | |
| 726 | if (!kvm->arch.pgd) |
| 727 | return; |
| 728 | |
| 729 | trace_kvm_set_spte_hva(hva); |
| 730 | stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2); |
| 731 | handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte); |
| 732 | } |
| 733 | |
| 734 | void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu) |
| 735 | { |
| 736 | mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); |
| 737 | } |
| 738 | |
Christoffer Dall | 342cd0a | 2013-01-20 18:28:06 -0500 | [diff] [blame] | 739 | phys_addr_t kvm_mmu_get_httbr(void) |
| 740 | { |
| 741 | VM_BUG_ON(!virt_addr_valid(hyp_pgd)); |
| 742 | return virt_to_phys(hyp_pgd); |
| 743 | } |
| 744 | |
| 745 | int kvm_mmu_init(void) |
| 746 | { |
Christoffer Dall | d5d8184 | 2013-01-20 18:28:07 -0500 | [diff] [blame] | 747 | if (!hyp_pgd) { |
| 748 | kvm_err("Hyp mode PGD not allocated\n"); |
| 749 | return -ENOMEM; |
| 750 | } |
| 751 | |
| 752 | return 0; |
Christoffer Dall | 342cd0a | 2013-01-20 18:28:06 -0500 | [diff] [blame] | 753 | } |
| 754 | |
| 755 | /** |
| 756 | * kvm_clear_idmap - remove all idmaps from the hyp pgd |
| 757 | * |
| 758 | * Free the underlying pmds for all pgds in range and clear the pgds (but |
| 759 | * don't free them) afterwards. |
| 760 | */ |
| 761 | void kvm_clear_hyp_idmap(void) |
| 762 | { |
| 763 | unsigned long addr, end; |
| 764 | unsigned long next; |
| 765 | pgd_t *pgd = hyp_pgd; |
| 766 | pud_t *pud; |
| 767 | pmd_t *pmd; |
| 768 | |
| 769 | addr = virt_to_phys(__hyp_idmap_text_start); |
| 770 | end = virt_to_phys(__hyp_idmap_text_end); |
| 771 | |
| 772 | pgd += pgd_index(addr); |
| 773 | do { |
| 774 | next = pgd_addr_end(addr, end); |
| 775 | if (pgd_none_or_clear_bad(pgd)) |
| 776 | continue; |
| 777 | pud = pud_offset(pgd, addr); |
| 778 | pmd = pmd_offset(pud, addr); |
| 779 | |
| 780 | pud_clear(pud); |
| 781 | clean_pmd_entry(pmd); |
| 782 | pmd_free(NULL, (pmd_t *)((unsigned long)pmd & PAGE_MASK)); |
| 783 | } while (pgd++, addr = next, addr < end); |
| 784 | } |