Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * linux/arch/arm/mach-omap/time.c |
| 3 | * |
| 4 | * OMAP Timers |
| 5 | * |
| 6 | * Copyright (C) 2004 Nokia Corporation |
Tony Lindgren | b3402cf | 2005-06-29 19:59:48 +0100 | [diff] [blame^] | 7 | * Partial timer rewrite and additional dynamic tick timer support by |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 8 | * Tony Lindgen <tony@atomide.com> and |
| 9 | * Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com> |
| 10 | * |
| 11 | * MPU timer code based on the older MPU timer code for OMAP |
| 12 | * Copyright (C) 2000 RidgeRun, Inc. |
| 13 | * Author: Greg Lonnon <glonnon@ridgerun.com> |
| 14 | * |
| 15 | * This program is free software; you can redistribute it and/or modify it |
| 16 | * under the terms of the GNU General Public License as published by the |
| 17 | * Free Software Foundation; either version 2 of the License, or (at your |
| 18 | * option) any later version. |
| 19 | * |
| 20 | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED |
| 21 | * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
| 22 | * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN |
| 23 | * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
| 24 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 25 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF |
| 26 | * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON |
| 27 | * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 28 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| 29 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 | * |
| 31 | * You should have received a copy of the GNU General Public License along |
| 32 | * with this program; if not, write to the Free Software Foundation, Inc., |
| 33 | * 675 Mass Ave, Cambridge, MA 02139, USA. |
| 34 | */ |
| 35 | |
| 36 | #include <linux/config.h> |
| 37 | #include <linux/kernel.h> |
| 38 | #include <linux/init.h> |
| 39 | #include <linux/delay.h> |
| 40 | #include <linux/interrupt.h> |
| 41 | #include <linux/sched.h> |
| 42 | #include <linux/spinlock.h> |
| 43 | |
| 44 | #include <asm/system.h> |
| 45 | #include <asm/hardware.h> |
| 46 | #include <asm/io.h> |
| 47 | #include <asm/leds.h> |
| 48 | #include <asm/irq.h> |
| 49 | #include <asm/mach/irq.h> |
| 50 | #include <asm/mach/time.h> |
| 51 | |
| 52 | struct sys_timer omap_timer; |
| 53 | |
| 54 | #ifdef CONFIG_OMAP_MPU_TIMER |
| 55 | |
| 56 | /* |
| 57 | * --------------------------------------------------------------------------- |
| 58 | * MPU timer |
| 59 | * --------------------------------------------------------------------------- |
| 60 | */ |
| 61 | #define OMAP_MPU_TIMER1_BASE (0xfffec500) |
| 62 | #define OMAP_MPU_TIMER2_BASE (0xfffec600) |
| 63 | #define OMAP_MPU_TIMER3_BASE (0xfffec700) |
| 64 | #define OMAP_MPU_TIMER_BASE OMAP_MPU_TIMER1_BASE |
| 65 | #define OMAP_MPU_TIMER_OFFSET 0x100 |
| 66 | |
| 67 | #define MPU_TIMER_FREE (1 << 6) |
| 68 | #define MPU_TIMER_CLOCK_ENABLE (1 << 5) |
| 69 | #define MPU_TIMER_AR (1 << 1) |
| 70 | #define MPU_TIMER_ST (1 << 0) |
| 71 | |
| 72 | /* cycles to nsec conversions taken from arch/i386/kernel/timers/timer_tsc.c, |
| 73 | * converted to use kHz by Kevin Hilman */ |
| 74 | /* convert from cycles(64bits) => nanoseconds (64bits) |
| 75 | * basic equation: |
| 76 | * ns = cycles / (freq / ns_per_sec) |
| 77 | * ns = cycles * (ns_per_sec / freq) |
| 78 | * ns = cycles * (10^9 / (cpu_khz * 10^3)) |
| 79 | * ns = cycles * (10^6 / cpu_khz) |
| 80 | * |
| 81 | * Then we use scaling math (suggested by george at mvista.com) to get: |
| 82 | * ns = cycles * (10^6 * SC / cpu_khz / SC |
| 83 | * ns = cycles * cyc2ns_scale / SC |
| 84 | * |
| 85 | * And since SC is a constant power of two, we can convert the div |
| 86 | * into a shift. |
| 87 | * -johnstul at us.ibm.com "math is hard, lets go shopping!" |
| 88 | */ |
| 89 | static unsigned long cyc2ns_scale; |
| 90 | #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */ |
| 91 | |
| 92 | static inline void set_cyc2ns_scale(unsigned long cpu_khz) |
| 93 | { |
| 94 | cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR)/cpu_khz; |
| 95 | } |
| 96 | |
| 97 | static inline unsigned long long cycles_2_ns(unsigned long long cyc) |
| 98 | { |
| 99 | return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR; |
| 100 | } |
| 101 | |
| 102 | /* |
| 103 | * MPU_TICKS_PER_SEC must be an even number, otherwise machinecycles_to_usecs |
| 104 | * will break. On P2, the timer count rate is 6.5 MHz after programming PTV |
| 105 | * with 0. This divides the 13MHz input by 2, and is undocumented. |
| 106 | */ |
| 107 | #ifdef CONFIG_MACH_OMAP_PERSEUS2 |
| 108 | /* REVISIT: This ifdef construct should be replaced by a query to clock |
| 109 | * framework to see if timer base frequency is 12.0, 13.0 or 19.2 MHz. |
| 110 | */ |
| 111 | #define MPU_TICKS_PER_SEC (13000000 / 2) |
| 112 | #else |
| 113 | #define MPU_TICKS_PER_SEC (12000000 / 2) |
| 114 | #endif |
| 115 | |
| 116 | #define MPU_TIMER_TICK_PERIOD ((MPU_TICKS_PER_SEC / HZ) - 1) |
| 117 | |
| 118 | typedef struct { |
| 119 | u32 cntl; /* CNTL_TIMER, R/W */ |
| 120 | u32 load_tim; /* LOAD_TIM, W */ |
| 121 | u32 read_tim; /* READ_TIM, R */ |
| 122 | } omap_mpu_timer_regs_t; |
| 123 | |
| 124 | #define omap_mpu_timer_base(n) \ |
| 125 | ((volatile omap_mpu_timer_regs_t*)IO_ADDRESS(OMAP_MPU_TIMER_BASE + \ |
| 126 | (n)*OMAP_MPU_TIMER_OFFSET)) |
| 127 | |
| 128 | static inline unsigned long omap_mpu_timer_read(int nr) |
| 129 | { |
| 130 | volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr); |
| 131 | return timer->read_tim; |
| 132 | } |
| 133 | |
| 134 | static inline void omap_mpu_timer_start(int nr, unsigned long load_val) |
| 135 | { |
| 136 | volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr); |
| 137 | |
| 138 | timer->cntl = MPU_TIMER_CLOCK_ENABLE; |
| 139 | udelay(1); |
| 140 | timer->load_tim = load_val; |
| 141 | udelay(1); |
| 142 | timer->cntl = (MPU_TIMER_CLOCK_ENABLE | MPU_TIMER_AR | MPU_TIMER_ST); |
| 143 | } |
| 144 | |
| 145 | unsigned long omap_mpu_timer_ticks_to_usecs(unsigned long nr_ticks) |
| 146 | { |
| 147 | unsigned long long nsec; |
| 148 | |
| 149 | nsec = cycles_2_ns((unsigned long long)nr_ticks); |
| 150 | return (unsigned long)nsec / 1000; |
| 151 | } |
| 152 | |
| 153 | /* |
| 154 | * Last processed system timer interrupt |
| 155 | */ |
| 156 | static unsigned long omap_mpu_timer_last = 0; |
| 157 | |
| 158 | /* |
| 159 | * Returns elapsed usecs since last system timer interrupt |
| 160 | */ |
| 161 | static unsigned long omap_mpu_timer_gettimeoffset(void) |
| 162 | { |
| 163 | unsigned long now = 0 - omap_mpu_timer_read(0); |
| 164 | unsigned long elapsed = now - omap_mpu_timer_last; |
| 165 | |
| 166 | return omap_mpu_timer_ticks_to_usecs(elapsed); |
| 167 | } |
| 168 | |
| 169 | /* |
| 170 | * Elapsed time between interrupts is calculated using timer0. |
| 171 | * Latency during the interrupt is calculated using timer1. |
| 172 | * Both timer0 and timer1 are counting at 6MHz (P2 6.5MHz). |
| 173 | */ |
| 174 | static irqreturn_t omap_mpu_timer_interrupt(int irq, void *dev_id, |
| 175 | struct pt_regs *regs) |
| 176 | { |
| 177 | unsigned long now, latency; |
| 178 | |
| 179 | write_seqlock(&xtime_lock); |
| 180 | now = 0 - omap_mpu_timer_read(0); |
| 181 | latency = MPU_TICKS_PER_SEC / HZ - omap_mpu_timer_read(1); |
| 182 | omap_mpu_timer_last = now - latency; |
| 183 | timer_tick(regs); |
| 184 | write_sequnlock(&xtime_lock); |
| 185 | |
| 186 | return IRQ_HANDLED; |
| 187 | } |
| 188 | |
| 189 | static struct irqaction omap_mpu_timer_irq = { |
| 190 | .name = "mpu timer", |
Russell King | 09b8b5f | 2005-06-26 17:06:36 +0100 | [diff] [blame] | 191 | .flags = SA_INTERRUPT | SA_TIMER, |
| 192 | .handler = omap_mpu_timer_interrupt, |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 193 | }; |
| 194 | |
| 195 | static unsigned long omap_mpu_timer1_overflows; |
| 196 | static irqreturn_t omap_mpu_timer1_interrupt(int irq, void *dev_id, |
| 197 | struct pt_regs *regs) |
| 198 | { |
| 199 | omap_mpu_timer1_overflows++; |
| 200 | return IRQ_HANDLED; |
| 201 | } |
| 202 | |
| 203 | static struct irqaction omap_mpu_timer1_irq = { |
| 204 | .name = "mpu timer1 overflow", |
| 205 | .flags = SA_INTERRUPT, |
Russell King | 09b8b5f | 2005-06-26 17:06:36 +0100 | [diff] [blame] | 206 | .handler = omap_mpu_timer1_interrupt, |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 207 | }; |
| 208 | |
| 209 | static __init void omap_init_mpu_timer(void) |
| 210 | { |
| 211 | set_cyc2ns_scale(MPU_TICKS_PER_SEC / 1000); |
| 212 | omap_timer.offset = omap_mpu_timer_gettimeoffset; |
| 213 | setup_irq(INT_TIMER1, &omap_mpu_timer1_irq); |
| 214 | setup_irq(INT_TIMER2, &omap_mpu_timer_irq); |
| 215 | omap_mpu_timer_start(0, 0xffffffff); |
| 216 | omap_mpu_timer_start(1, MPU_TIMER_TICK_PERIOD); |
| 217 | } |
| 218 | |
| 219 | /* |
| 220 | * Scheduler clock - returns current time in nanosec units. |
| 221 | */ |
| 222 | unsigned long long sched_clock(void) |
| 223 | { |
| 224 | unsigned long ticks = 0 - omap_mpu_timer_read(0); |
| 225 | unsigned long long ticks64; |
| 226 | |
| 227 | ticks64 = omap_mpu_timer1_overflows; |
| 228 | ticks64 <<= 32; |
| 229 | ticks64 |= ticks; |
| 230 | |
| 231 | return cycles_2_ns(ticks64); |
| 232 | } |
| 233 | #endif /* CONFIG_OMAP_MPU_TIMER */ |
| 234 | |
| 235 | #ifdef CONFIG_OMAP_32K_TIMER |
| 236 | |
| 237 | #ifdef CONFIG_ARCH_OMAP1510 |
| 238 | #error OMAP 32KHz timer does not currently work on 1510! |
| 239 | #endif |
| 240 | |
| 241 | /* |
| 242 | * --------------------------------------------------------------------------- |
| 243 | * 32KHz OS timer |
| 244 | * |
| 245 | * This currently works only on 16xx, as 1510 does not have the continuous |
| 246 | * 32KHz synchronous timer. The 32KHz synchronous timer is used to keep track |
| 247 | * of time in addition to the 32KHz OS timer. Using only the 32KHz OS timer |
| 248 | * on 1510 would be possible, but the timer would not be as accurate as |
| 249 | * with the 32KHz synchronized timer. |
| 250 | * --------------------------------------------------------------------------- |
| 251 | */ |
| 252 | #define OMAP_32K_TIMER_BASE 0xfffb9000 |
| 253 | #define OMAP_32K_TIMER_CR 0x08 |
| 254 | #define OMAP_32K_TIMER_TVR 0x00 |
| 255 | #define OMAP_32K_TIMER_TCR 0x04 |
| 256 | |
| 257 | #define OMAP_32K_TICKS_PER_HZ (32768 / HZ) |
| 258 | |
| 259 | /* |
| 260 | * TRM says 1 / HZ = ( TVR + 1) / 32768, so TRV = (32768 / HZ) - 1 |
| 261 | * so with HZ = 100, TVR = 327.68. |
| 262 | */ |
| 263 | #define OMAP_32K_TIMER_TICK_PERIOD ((32768 / HZ) - 1) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 264 | #define TIMER_32K_SYNCHRONIZED 0xfffbc410 |
| 265 | |
| 266 | #define JIFFIES_TO_HW_TICKS(nr_jiffies, clock_rate) \ |
| 267 | (((nr_jiffies) * (clock_rate)) / HZ) |
| 268 | |
| 269 | static inline void omap_32k_timer_write(int val, int reg) |
| 270 | { |
| 271 | omap_writew(val, reg + OMAP_32K_TIMER_BASE); |
| 272 | } |
| 273 | |
| 274 | static inline unsigned long omap_32k_timer_read(int reg) |
| 275 | { |
| 276 | return omap_readl(reg + OMAP_32K_TIMER_BASE) & 0xffffff; |
| 277 | } |
| 278 | |
| 279 | /* |
| 280 | * The 32KHz synchronized timer is an additional timer on 16xx. |
| 281 | * It is always running. |
| 282 | */ |
| 283 | static inline unsigned long omap_32k_sync_timer_read(void) |
| 284 | { |
| 285 | return omap_readl(TIMER_32K_SYNCHRONIZED); |
| 286 | } |
| 287 | |
| 288 | static inline void omap_32k_timer_start(unsigned long load_val) |
| 289 | { |
| 290 | omap_32k_timer_write(load_val, OMAP_32K_TIMER_TVR); |
| 291 | omap_32k_timer_write(0x0f, OMAP_32K_TIMER_CR); |
| 292 | } |
| 293 | |
| 294 | static inline void omap_32k_timer_stop(void) |
| 295 | { |
| 296 | omap_32k_timer_write(0x0, OMAP_32K_TIMER_CR); |
| 297 | } |
| 298 | |
| 299 | /* |
| 300 | * Rounds down to nearest usec |
| 301 | */ |
| 302 | static inline unsigned long omap_32k_ticks_to_usecs(unsigned long ticks_32k) |
| 303 | { |
| 304 | return (ticks_32k * 5*5*5*5*5*5) >> 9; |
| 305 | } |
| 306 | |
| 307 | static unsigned long omap_32k_last_tick = 0; |
| 308 | |
| 309 | /* |
| 310 | * Returns elapsed usecs since last 32k timer interrupt |
| 311 | */ |
| 312 | static unsigned long omap_32k_timer_gettimeoffset(void) |
| 313 | { |
| 314 | unsigned long now = omap_32k_sync_timer_read(); |
| 315 | return omap_32k_ticks_to_usecs(now - omap_32k_last_tick); |
| 316 | } |
| 317 | |
| 318 | /* |
| 319 | * Timer interrupt for 32KHz timer. When dynamic tick is enabled, this |
| 320 | * function is also called from other interrupts to remove latency |
| 321 | * issues with dynamic tick. In the dynamic tick case, we need to lock |
| 322 | * with irqsave. |
| 323 | */ |
| 324 | static irqreturn_t omap_32k_timer_interrupt(int irq, void *dev_id, |
| 325 | struct pt_regs *regs) |
| 326 | { |
| 327 | unsigned long flags; |
| 328 | unsigned long now; |
| 329 | |
| 330 | write_seqlock_irqsave(&xtime_lock, flags); |
| 331 | now = omap_32k_sync_timer_read(); |
| 332 | |
| 333 | while (now - omap_32k_last_tick >= OMAP_32K_TICKS_PER_HZ) { |
| 334 | omap_32k_last_tick += OMAP_32K_TICKS_PER_HZ; |
| 335 | timer_tick(regs); |
| 336 | } |
| 337 | |
| 338 | /* Restart timer so we don't drift off due to modulo or dynamic tick. |
| 339 | * By default we program the next timer to be continuous to avoid |
| 340 | * latencies during high system load. During dynamic tick operation the |
| 341 | * continuous timer can be overridden from pm_idle to be longer. |
| 342 | */ |
| 343 | omap_32k_timer_start(omap_32k_last_tick + OMAP_32K_TICKS_PER_HZ - now); |
| 344 | write_sequnlock_irqrestore(&xtime_lock, flags); |
| 345 | |
| 346 | return IRQ_HANDLED; |
| 347 | } |
| 348 | |
Tony Lindgren | b3402cf | 2005-06-29 19:59:48 +0100 | [diff] [blame^] | 349 | #ifdef CONFIG_NO_IDLE_HZ |
| 350 | /* |
| 351 | * Programs the next timer interrupt needed. Called when dynamic tick is |
| 352 | * enabled, and to reprogram the ticks to skip from pm_idle. Note that |
| 353 | * we can keep the timer continuous, and don't need to set it to run in |
| 354 | * one-shot mode. This is because the timer will get reprogrammed again |
| 355 | * after next interrupt. |
| 356 | */ |
| 357 | void omap_32k_timer_reprogram(unsigned long next_tick) |
| 358 | { |
| 359 | omap_32k_timer_start(JIFFIES_TO_HW_TICKS(next_tick, 32768) + 1); |
| 360 | } |
| 361 | |
| 362 | static struct irqaction omap_32k_timer_irq; |
| 363 | extern struct timer_update_handler timer_update; |
| 364 | |
| 365 | static int omap_32k_timer_enable_dyn_tick(void) |
| 366 | { |
| 367 | /* No need to reprogram timer, just use the next interrupt */ |
| 368 | return 0; |
| 369 | } |
| 370 | |
| 371 | static int omap_32k_timer_disable_dyn_tick(void) |
| 372 | { |
| 373 | omap_32k_timer_start(OMAP_32K_TIMER_TICK_PERIOD); |
| 374 | return 0; |
| 375 | } |
| 376 | |
| 377 | static struct dyn_tick_timer omap_dyn_tick_timer = { |
| 378 | .enable = omap_32k_timer_enable_dyn_tick, |
| 379 | .disable = omap_32k_timer_disable_dyn_tick, |
| 380 | .reprogram = omap_32k_timer_reprogram, |
| 381 | .handler = omap_32k_timer_interrupt, |
| 382 | }; |
| 383 | #endif /* CONFIG_NO_IDLE_HZ */ |
| 384 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 385 | static struct irqaction omap_32k_timer_irq = { |
| 386 | .name = "32KHz timer", |
Russell King | 09b8b5f | 2005-06-26 17:06:36 +0100 | [diff] [blame] | 387 | .flags = SA_INTERRUPT | SA_TIMER, |
| 388 | .handler = omap_32k_timer_interrupt, |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 389 | }; |
| 390 | |
| 391 | static __init void omap_init_32k_timer(void) |
| 392 | { |
Tony Lindgren | b3402cf | 2005-06-29 19:59:48 +0100 | [diff] [blame^] | 393 | |
| 394 | #ifdef CONFIG_NO_IDLE_HZ |
| 395 | omap_timer.dyn_tick = &omap_dyn_tick_timer; |
| 396 | #endif |
| 397 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 398 | setup_irq(INT_OS_TIMER, &omap_32k_timer_irq); |
| 399 | omap_timer.offset = omap_32k_timer_gettimeoffset; |
| 400 | omap_32k_last_tick = omap_32k_sync_timer_read(); |
| 401 | omap_32k_timer_start(OMAP_32K_TIMER_TICK_PERIOD); |
| 402 | } |
| 403 | #endif /* CONFIG_OMAP_32K_TIMER */ |
| 404 | |
| 405 | /* |
| 406 | * --------------------------------------------------------------------------- |
| 407 | * Timer initialization |
| 408 | * --------------------------------------------------------------------------- |
| 409 | */ |
| 410 | void __init omap_timer_init(void) |
| 411 | { |
| 412 | #if defined(CONFIG_OMAP_MPU_TIMER) |
| 413 | omap_init_mpu_timer(); |
| 414 | #elif defined(CONFIG_OMAP_32K_TIMER) |
| 415 | omap_init_32k_timer(); |
| 416 | #else |
| 417 | #error No system timer selected in Kconfig! |
| 418 | #endif |
| 419 | } |
| 420 | |
| 421 | struct sys_timer omap_timer = { |
| 422 | .init = omap_timer_init, |
| 423 | .offset = NULL, /* Initialized later */ |
| 424 | }; |