blob: 0660deecc2c9a77f88e4eb9a0dbe02a68d0fec86 [file] [log] [blame]
Raghu Vatsavayif21fb3e2015-06-09 18:15:23 -07001/**********************************************************************
2* Author: Cavium, Inc.
3*
4* Contact: support@cavium.com
5* Please include "LiquidIO" in the subject.
6*
7* Copyright (c) 2003-2015 Cavium, Inc.
8*
9* This file is free software; you can redistribute it and/or modify
10* it under the terms of the GNU General Public License, Version 2, as
11* published by the Free Software Foundation.
12*
13* This file is distributed in the hope that it will be useful, but
14* AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16* NONINFRINGEMENT. See the GNU General Public License for more
17* details.
18*
19* This file may also be available under a different license from Cavium.
20* Contact Cavium, Inc. for more information
21**********************************************************************/
22#include <linux/version.h>
23#include <linux/module.h>
24#include <linux/crc32.h>
25#include <linux/dma-mapping.h>
26#include <linux/pci.h>
27#include <linux/pci_ids.h>
28#include <linux/ip.h>
Raghu Vatsavayi5b173cf2015-06-12 18:11:50 -070029#include <net/ip.h>
Raghu Vatsavayif21fb3e2015-06-09 18:15:23 -070030#include <linux/ipv6.h>
31#include <linux/net_tstamp.h>
32#include <linux/if_vlan.h>
33#include <linux/firmware.h>
34#include <linux/ethtool.h>
35#include <linux/ptp_clock_kernel.h>
36#include <linux/types.h>
37#include <linux/list.h>
38#include <linux/workqueue.h>
39#include <linux/interrupt.h>
40#include "octeon_config.h"
41#include "liquidio_common.h"
42#include "octeon_droq.h"
43#include "octeon_iq.h"
44#include "response_manager.h"
45#include "octeon_device.h"
46#include "octeon_nic.h"
47#include "octeon_main.h"
48#include "octeon_network.h"
49#include "cn66xx_regs.h"
50#include "cn66xx_device.h"
51#include "cn68xx_regs.h"
52#include "cn68xx_device.h"
53#include "liquidio_image.h"
54
55MODULE_AUTHOR("Cavium Networks, <support@cavium.com>");
56MODULE_DESCRIPTION("Cavium LiquidIO Intelligent Server Adapter Driver");
57MODULE_LICENSE("GPL");
58MODULE_VERSION(LIQUIDIO_VERSION);
59MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210SV_NAME LIO_FW_NAME_SUFFIX);
60MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210NV_NAME LIO_FW_NAME_SUFFIX);
61MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_410NV_NAME LIO_FW_NAME_SUFFIX);
62
63static int ddr_timeout = 10000;
64module_param(ddr_timeout, int, 0644);
65MODULE_PARM_DESC(ddr_timeout,
66 "Number of milliseconds to wait for DDR initialization. 0 waits for ddr_timeout to be set to non-zero value before starting to check");
67
68static u32 console_bitmask;
69module_param(console_bitmask, int, 0644);
70MODULE_PARM_DESC(console_bitmask,
71 "Bitmask indicating which consoles have debug output redirected to syslog.");
72
73#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
74
75static int debug = -1;
76module_param(debug, int, 0644);
77MODULE_PARM_DESC(debug, "NETIF_MSG debug bits");
78
79static char fw_type[LIO_MAX_FW_TYPE_LEN];
80module_param_string(fw_type, fw_type, sizeof(fw_type), 0000);
81MODULE_PARM_DESC(fw_type, "Type of firmware to be loaded. Default \"nic\"");
82
83static int conf_type;
84module_param(conf_type, int, 0);
85MODULE_PARM_DESC(conf_type, "select octeon configuration 0 default 1 ovs");
86
87/* Bit mask values for lio->ifstate */
88#define LIO_IFSTATE_DROQ_OPS 0x01
89#define LIO_IFSTATE_REGISTERED 0x02
90#define LIO_IFSTATE_RUNNING 0x04
91#define LIO_IFSTATE_RX_TIMESTAMP_ENABLED 0x08
92
93/* Polling interval for determining when NIC application is alive */
94#define LIQUIDIO_STARTER_POLL_INTERVAL_MS 100
95
96/* runtime link query interval */
97#define LIQUIDIO_LINK_QUERY_INTERVAL_MS 1000
98
99struct liquidio_if_cfg_context {
100 int octeon_id;
101
102 wait_queue_head_t wc;
103
104 int cond;
105};
106
107struct liquidio_if_cfg_resp {
108 u64 rh;
109 struct liquidio_if_cfg_info cfg_info;
110 u64 status;
111};
112
113struct oct_link_status_resp {
114 u64 rh;
115 struct oct_link_info link_info;
116 u64 status;
117};
118
119struct oct_timestamp_resp {
120 u64 rh;
121 u64 timestamp;
122 u64 status;
123};
124
125#define OCT_TIMESTAMP_RESP_SIZE (sizeof(struct oct_timestamp_resp))
126
127union tx_info {
128 u64 u64;
129 struct {
130#ifdef __BIG_ENDIAN_BITFIELD
131 u16 gso_size;
132 u16 gso_segs;
133 u32 reserved;
134#else
135 u32 reserved;
136 u16 gso_segs;
137 u16 gso_size;
138#endif
139 } s;
140};
141
142/** Octeon device properties to be used by the NIC module.
143 * Each octeon device in the system will be represented
144 * by this structure in the NIC module.
145 */
146
147#define OCTNIC_MAX_SG (MAX_SKB_FRAGS)
148
149#define OCTNIC_GSO_MAX_HEADER_SIZE 128
150#define OCTNIC_GSO_MAX_SIZE (GSO_MAX_SIZE - OCTNIC_GSO_MAX_HEADER_SIZE)
151
152/** Structure of a node in list of gather components maintained by
153 * NIC driver for each network device.
154 */
155struct octnic_gather {
156 /** List manipulation. Next and prev pointers. */
157 struct list_head list;
158
159 /** Size of the gather component at sg in bytes. */
160 int sg_size;
161
162 /** Number of bytes that sg was adjusted to make it 8B-aligned. */
163 int adjust;
164
165 /** Gather component that can accommodate max sized fragment list
166 * received from the IP layer.
167 */
168 struct octeon_sg_entry *sg;
169};
170
171/** This structure is used by NIC driver to store information required
172 * to free the sk_buff when the packet has been fetched by Octeon.
173 * Bytes offset below assume worst-case of a 64-bit system.
174 */
175struct octnet_buf_free_info {
176 /** Bytes 1-8. Pointer to network device private structure. */
177 struct lio *lio;
178
179 /** Bytes 9-16. Pointer to sk_buff. */
180 struct sk_buff *skb;
181
182 /** Bytes 17-24. Pointer to gather list. */
183 struct octnic_gather *g;
184
185 /** Bytes 25-32. Physical address of skb->data or gather list. */
186 u64 dptr;
187
188 /** Bytes 33-47. Piggybacked soft command, if any */
189 struct octeon_soft_command *sc;
190};
191
192struct handshake {
193 struct completion init;
194 struct completion started;
195 struct pci_dev *pci_dev;
196 int init_ok;
197 int started_ok;
198};
199
200struct octeon_device_priv {
201 /** Tasklet structures for this device. */
202 struct tasklet_struct droq_tasklet;
203 unsigned long napi_mask;
204};
205
206static int octeon_device_init(struct octeon_device *);
207static void liquidio_remove(struct pci_dev *pdev);
208static int liquidio_probe(struct pci_dev *pdev,
209 const struct pci_device_id *ent);
210
211static struct handshake handshake[MAX_OCTEON_DEVICES];
212static struct completion first_stage;
213
Raghu Vatsavayi5b173cf2015-06-12 18:11:50 -0700214static void octeon_droq_bh(unsigned long pdev)
Raghu Vatsavayif21fb3e2015-06-09 18:15:23 -0700215{
216 int q_no;
217 int reschedule = 0;
218 struct octeon_device *oct = (struct octeon_device *)pdev;
219 struct octeon_device_priv *oct_priv =
220 (struct octeon_device_priv *)oct->priv;
221
222 /* for (q_no = 0; q_no < oct->num_oqs; q_no++) { */
223 for (q_no = 0; q_no < MAX_OCTEON_OUTPUT_QUEUES; q_no++) {
224 if (!(oct->io_qmask.oq & (1UL << q_no)))
225 continue;
226 reschedule |= octeon_droq_process_packets(oct, oct->droq[q_no],
227 MAX_PACKET_BUDGET);
228 }
229
230 if (reschedule)
231 tasklet_schedule(&oct_priv->droq_tasklet);
232}
233
Raghu Vatsavayi5b173cf2015-06-12 18:11:50 -0700234static int lio_wait_for_oq_pkts(struct octeon_device *oct)
Raghu Vatsavayif21fb3e2015-06-09 18:15:23 -0700235{
236 struct octeon_device_priv *oct_priv =
237 (struct octeon_device_priv *)oct->priv;
238 int retry = 100, pkt_cnt = 0, pending_pkts = 0;
239 int i;
240
241 do {
242 pending_pkts = 0;
243
244 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES; i++) {
245 if (!(oct->io_qmask.oq & (1UL << i)))
246 continue;
247 pkt_cnt += octeon_droq_check_hw_for_pkts(oct,
248 oct->droq[i]);
249 }
250 if (pkt_cnt > 0) {
251 pending_pkts += pkt_cnt;
252 tasklet_schedule(&oct_priv->droq_tasklet);
253 }
254 pkt_cnt = 0;
255 schedule_timeout_uninterruptible(1);
256
257 } while (retry-- && pending_pkts);
258
259 return pkt_cnt;
260}
261
262void octeon_report_tx_completion_to_bql(void *txq, unsigned int pkts_compl,
263 unsigned int bytes_compl)
264{
265 struct netdev_queue *netdev_queue = txq;
266
267 netdev_tx_completed_queue(netdev_queue, pkts_compl, bytes_compl);
268}
269
270void octeon_update_tx_completion_counters(void *buf, int reqtype,
271 unsigned int *pkts_compl,
272 unsigned int *bytes_compl)
273{
274 struct octnet_buf_free_info *finfo;
275 struct sk_buff *skb = NULL;
276 struct octeon_soft_command *sc;
277
278 switch (reqtype) {
279 case REQTYPE_NORESP_NET:
280 case REQTYPE_NORESP_NET_SG:
281 finfo = buf;
282 skb = finfo->skb;
283 break;
284
285 case REQTYPE_RESP_NET_SG:
286 case REQTYPE_RESP_NET:
287 sc = buf;
288 skb = sc->callback_arg;
289 break;
290
291 default:
292 return;
293 }
294
295 (*pkts_compl)++;
296 *bytes_compl += skb->len;
297}
298
299void octeon_report_sent_bytes_to_bql(void *buf, int reqtype)
300{
301 struct octnet_buf_free_info *finfo;
302 struct sk_buff *skb;
303 struct octeon_soft_command *sc;
304 struct netdev_queue *txq;
305
306 switch (reqtype) {
307 case REQTYPE_NORESP_NET:
308 case REQTYPE_NORESP_NET_SG:
309 finfo = buf;
310 skb = finfo->skb;
311 break;
312
313 case REQTYPE_RESP_NET_SG:
314 case REQTYPE_RESP_NET:
315 sc = buf;
316 skb = sc->callback_arg;
317 break;
318
319 default:
320 return;
321 }
322
323 txq = netdev_get_tx_queue(skb->dev, skb_get_queue_mapping(skb));
324 netdev_tx_sent_queue(txq, skb->len);
325}
326
327int octeon_console_debug_enabled(u32 console)
328{
329 return (console_bitmask >> (console)) & 0x1;
330}
331
332/**
333 * \brief Forces all IO queues off on a given device
334 * @param oct Pointer to Octeon device
335 */
336static void force_io_queues_off(struct octeon_device *oct)
337{
338 if ((oct->chip_id == OCTEON_CN66XX) ||
339 (oct->chip_id == OCTEON_CN68XX)) {
340 /* Reset the Enable bits for Input Queues. */
341 octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, 0);
342
343 /* Reset the Enable bits for Output Queues. */
344 octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, 0);
345 }
346}
347
348/**
349 * \brief wait for all pending requests to complete
350 * @param oct Pointer to Octeon device
351 *
352 * Called during shutdown sequence
353 */
354static int wait_for_pending_requests(struct octeon_device *oct)
355{
356 int i, pcount = 0;
357
358 for (i = 0; i < 100; i++) {
359 pcount =
360 atomic_read(&oct->response_list
361 [OCTEON_ORDERED_SC_LIST].pending_req_count);
362 if (pcount)
363 schedule_timeout_uninterruptible(HZ / 10);
364 else
365 break;
366 }
367
368 if (pcount)
369 return 1;
370
371 return 0;
372}
373
374/**
375 * \brief Cause device to go quiet so it can be safely removed/reset/etc
376 * @param oct Pointer to Octeon device
377 */
378static inline void pcierror_quiesce_device(struct octeon_device *oct)
379{
380 int i;
381
382 /* Disable the input and output queues now. No more packets will
383 * arrive from Octeon, but we should wait for all packet processing
384 * to finish.
385 */
386 force_io_queues_off(oct);
387
388 /* To allow for in-flight requests */
389 schedule_timeout_uninterruptible(100);
390
391 if (wait_for_pending_requests(oct))
392 dev_err(&oct->pci_dev->dev, "There were pending requests\n");
393
394 /* Force all requests waiting to be fetched by OCTEON to complete. */
395 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES; i++) {
396 struct octeon_instr_queue *iq;
397
398 if (!(oct->io_qmask.iq & (1UL << i)))
399 continue;
400 iq = oct->instr_queue[i];
401
402 if (atomic_read(&iq->instr_pending)) {
403 spin_lock_bh(&iq->lock);
404 iq->fill_cnt = 0;
405 iq->octeon_read_index = iq->host_write_index;
406 iq->stats.instr_processed +=
407 atomic_read(&iq->instr_pending);
408 lio_process_iq_request_list(oct, iq);
409 spin_unlock_bh(&iq->lock);
410 }
411 }
412
413 /* Force all pending ordered list requests to time out. */
414 lio_process_ordered_list(oct, 1);
415
416 /* We do not need to wait for output queue packets to be processed. */
417}
418
419/**
420 * \brief Cleanup PCI AER uncorrectable error status
421 * @param dev Pointer to PCI device
422 */
423static void cleanup_aer_uncorrect_error_status(struct pci_dev *dev)
424{
425 int pos = 0x100;
426 u32 status, mask;
427
428 pr_info("%s :\n", __func__);
429
430 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, &status);
431 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_SEVER, &mask);
432 if (dev->error_state == pci_channel_io_normal)
433 status &= ~mask; /* Clear corresponding nonfatal bits */
434 else
435 status &= mask; /* Clear corresponding fatal bits */
436 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, status);
437}
438
439/**
440 * \brief Stop all PCI IO to a given device
441 * @param dev Pointer to Octeon device
442 */
443static void stop_pci_io(struct octeon_device *oct)
444{
445 /* No more instructions will be forwarded. */
446 atomic_set(&oct->status, OCT_DEV_IN_RESET);
447
448 pci_disable_device(oct->pci_dev);
449
450 /* Disable interrupts */
451 oct->fn_list.disable_interrupt(oct->chip);
452
453 pcierror_quiesce_device(oct);
454
455 /* Release the interrupt line */
456 free_irq(oct->pci_dev->irq, oct);
457
458 if (oct->flags & LIO_FLAG_MSI_ENABLED)
459 pci_disable_msi(oct->pci_dev);
460
461 dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
462 lio_get_state_string(&oct->status));
463
464 /* cn63xx_cleanup_aer_uncorrect_error_status(oct->pci_dev); */
465 /* making it a common function for all OCTEON models */
466 cleanup_aer_uncorrect_error_status(oct->pci_dev);
467}
468
469/**
470 * \brief called when PCI error is detected
471 * @param pdev Pointer to PCI device
472 * @param state The current pci connection state
473 *
474 * This function is called after a PCI bus error affecting
475 * this device has been detected.
476 */
477static pci_ers_result_t liquidio_pcie_error_detected(struct pci_dev *pdev,
478 pci_channel_state_t state)
479{
480 struct octeon_device *oct = pci_get_drvdata(pdev);
481
482 /* Non-correctable Non-fatal errors */
483 if (state == pci_channel_io_normal) {
484 dev_err(&oct->pci_dev->dev, "Non-correctable non-fatal error reported:\n");
485 cleanup_aer_uncorrect_error_status(oct->pci_dev);
486 return PCI_ERS_RESULT_CAN_RECOVER;
487 }
488
489 /* Non-correctable Fatal errors */
490 dev_err(&oct->pci_dev->dev, "Non-correctable FATAL reported by PCI AER driver\n");
491 stop_pci_io(oct);
492
493 /* Always return a DISCONNECT. There is no support for recovery but only
494 * for a clean shutdown.
495 */
496 return PCI_ERS_RESULT_DISCONNECT;
497}
498
499/**
500 * \brief mmio handler
501 * @param pdev Pointer to PCI device
502 */
503static pci_ers_result_t liquidio_pcie_mmio_enabled(struct pci_dev *pdev)
504{
505 /* We should never hit this since we never ask for a reset for a Fatal
506 * Error. We always return DISCONNECT in io_error above.
507 * But play safe and return RECOVERED for now.
508 */
509 return PCI_ERS_RESULT_RECOVERED;
510}
511
512/**
513 * \brief called after the pci bus has been reset.
514 * @param pdev Pointer to PCI device
515 *
516 * Restart the card from scratch, as if from a cold-boot. Implementation
517 * resembles the first-half of the octeon_resume routine.
518 */
519static pci_ers_result_t liquidio_pcie_slot_reset(struct pci_dev *pdev)
520{
521 /* We should never hit this since we never ask for a reset for a Fatal
522 * Error. We always return DISCONNECT in io_error above.
523 * But play safe and return RECOVERED for now.
524 */
525 return PCI_ERS_RESULT_RECOVERED;
526}
527
528/**
529 * \brief called when traffic can start flowing again.
530 * @param pdev Pointer to PCI device
531 *
532 * This callback is called when the error recovery driver tells us that
533 * its OK to resume normal operation. Implementation resembles the
534 * second-half of the octeon_resume routine.
535 */
536static void liquidio_pcie_resume(struct pci_dev *pdev)
537{
538 /* Nothing to be done here. */
539}
540
541#ifdef CONFIG_PM
542/**
543 * \brief called when suspending
544 * @param pdev Pointer to PCI device
545 * @param state state to suspend to
546 */
547static int liquidio_suspend(struct pci_dev *pdev, pm_message_t state)
548{
549 return 0;
550}
551
552/**
553 * \brief called when resuming
554 * @param pdev Pointer to PCI device
555 */
556static int liquidio_resume(struct pci_dev *pdev)
557{
558 return 0;
559}
560#endif
561
562/* For PCI-E Advanced Error Recovery (AER) Interface */
563static struct pci_error_handlers liquidio_err_handler = {
564 .error_detected = liquidio_pcie_error_detected,
565 .mmio_enabled = liquidio_pcie_mmio_enabled,
566 .slot_reset = liquidio_pcie_slot_reset,
567 .resume = liquidio_pcie_resume,
568};
569
570static const struct pci_device_id liquidio_pci_tbl[] = {
571 { /* 68xx */
572 PCI_VENDOR_ID_CAVIUM, 0x91, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
573 },
574 { /* 66xx */
575 PCI_VENDOR_ID_CAVIUM, 0x92, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
576 },
577 {
578 0, 0, 0, 0, 0, 0, 0
579 }
580};
581MODULE_DEVICE_TABLE(pci, liquidio_pci_tbl);
582
583static struct pci_driver liquidio_pci_driver = {
584 .name = "LiquidIO",
585 .id_table = liquidio_pci_tbl,
586 .probe = liquidio_probe,
587 .remove = liquidio_remove,
588 .err_handler = &liquidio_err_handler, /* For AER */
589
590#ifdef CONFIG_PM
591 .suspend = liquidio_suspend,
592 .resume = liquidio_resume,
593#endif
594
595};
596
597/**
598 * \brief register PCI driver
599 */
600static int liquidio_init_pci(void)
601{
602 return pci_register_driver(&liquidio_pci_driver);
603}
604
605/**
606 * \brief unregister PCI driver
607 */
608static void liquidio_deinit_pci(void)
609{
610 pci_unregister_driver(&liquidio_pci_driver);
611}
612
613/**
614 * \brief check interface state
615 * @param lio per-network private data
616 * @param state_flag flag state to check
617 */
618static inline int ifstate_check(struct lio *lio, int state_flag)
619{
620 return atomic_read(&lio->ifstate) & state_flag;
621}
622
623/**
624 * \brief set interface state
625 * @param lio per-network private data
626 * @param state_flag flag state to set
627 */
628static inline void ifstate_set(struct lio *lio, int state_flag)
629{
630 atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) | state_flag));
631}
632
633/**
634 * \brief clear interface state
635 * @param lio per-network private data
636 * @param state_flag flag state to clear
637 */
638static inline void ifstate_reset(struct lio *lio, int state_flag)
639{
640 atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) & ~(state_flag)));
641}
642
643/**
644 * \brief Stop Tx queues
645 * @param netdev network device
646 */
647static inline void txqs_stop(struct net_device *netdev)
648{
649 if (netif_is_multiqueue(netdev)) {
650 int i;
651
652 for (i = 0; i < netdev->num_tx_queues; i++)
653 netif_stop_subqueue(netdev, i);
654 } else {
655 netif_stop_queue(netdev);
656 }
657}
658
659/**
660 * \brief Start Tx queues
661 * @param netdev network device
662 */
663static inline void txqs_start(struct net_device *netdev)
664{
665 if (netif_is_multiqueue(netdev)) {
666 int i;
667
668 for (i = 0; i < netdev->num_tx_queues; i++)
669 netif_start_subqueue(netdev, i);
670 } else {
671 netif_start_queue(netdev);
672 }
673}
674
675/**
676 * \brief Wake Tx queues
677 * @param netdev network device
678 */
679static inline void txqs_wake(struct net_device *netdev)
680{
681 if (netif_is_multiqueue(netdev)) {
682 int i;
683
684 for (i = 0; i < netdev->num_tx_queues; i++)
685 netif_wake_subqueue(netdev, i);
686 } else {
687 netif_wake_queue(netdev);
688 }
689}
690
691/**
692 * \brief Stop Tx queue
693 * @param netdev network device
694 */
695static void stop_txq(struct net_device *netdev)
696{
697 txqs_stop(netdev);
698}
699
700/**
701 * \brief Start Tx queue
702 * @param netdev network device
703 */
704static void start_txq(struct net_device *netdev)
705{
706 struct lio *lio = GET_LIO(netdev);
707
708 if (lio->linfo.link.s.status) {
709 txqs_start(netdev);
710 return;
711 }
712}
713
714/**
715 * \brief Wake a queue
716 * @param netdev network device
717 * @param q which queue to wake
718 */
719static inline void wake_q(struct net_device *netdev, int q)
720{
721 if (netif_is_multiqueue(netdev))
722 netif_wake_subqueue(netdev, q);
723 else
724 netif_wake_queue(netdev);
725}
726
727/**
728 * \brief Stop a queue
729 * @param netdev network device
730 * @param q which queue to stop
731 */
732static inline void stop_q(struct net_device *netdev, int q)
733{
734 if (netif_is_multiqueue(netdev))
735 netif_stop_subqueue(netdev, q);
736 else
737 netif_stop_queue(netdev);
738}
739
740/**
741 * \brief Check Tx queue status, and take appropriate action
742 * @param lio per-network private data
743 * @returns 0 if full, number of queues woken up otherwise
744 */
745static inline int check_txq_status(struct lio *lio)
746{
747 int ret_val = 0;
748
749 if (netif_is_multiqueue(lio->netdev)) {
750 int numqs = lio->netdev->num_tx_queues;
751 int q, iq = 0;
752
753 /* check each sub-queue state */
754 for (q = 0; q < numqs; q++) {
755 iq = lio->linfo.txpciq[q & (lio->linfo.num_txpciq - 1)];
756 if (octnet_iq_is_full(lio->oct_dev, iq))
757 continue;
758 wake_q(lio->netdev, q);
759 ret_val++;
760 }
761 } else {
762 if (octnet_iq_is_full(lio->oct_dev, lio->txq))
763 return 0;
764 wake_q(lio->netdev, lio->txq);
765 ret_val = 1;
766 }
767 return ret_val;
768}
769
770/**
771 * Remove the node at the head of the list. The list would be empty at
772 * the end of this call if there are no more nodes in the list.
773 */
774static inline struct list_head *list_delete_head(struct list_head *root)
775{
776 struct list_head *node;
777
778 if ((root->prev == root) && (root->next == root))
779 node = NULL;
780 else
781 node = root->next;
782
783 if (node)
784 list_del(node);
785
786 return node;
787}
788
789/**
790 * \brief Delete gather list
791 * @param lio per-network private data
792 */
793static void delete_glist(struct lio *lio)
794{
795 struct octnic_gather *g;
796
797 do {
798 g = (struct octnic_gather *)
799 list_delete_head(&lio->glist);
800 if (g) {
801 if (g->sg)
802 kfree((void *)((unsigned long)g->sg -
803 g->adjust));
804 kfree(g);
805 }
806 } while (g);
807}
808
809/**
810 * \brief Setup gather list
811 * @param lio per-network private data
812 */
813static int setup_glist(struct lio *lio)
814{
815 int i;
816 struct octnic_gather *g;
817
818 INIT_LIST_HEAD(&lio->glist);
819
820 for (i = 0; i < lio->tx_qsize; i++) {
821 g = kmalloc(sizeof(*g), GFP_KERNEL);
822 if (!g)
823 break;
824 memset(g, 0, sizeof(struct octnic_gather));
825
826 g->sg_size =
827 ((ROUNDUP4(OCTNIC_MAX_SG) >> 2) * OCT_SG_ENTRY_SIZE);
828
829 g->sg = kmalloc(g->sg_size + 8, GFP_KERNEL);
830 if (!g->sg) {
831 kfree(g);
832 break;
833 }
834
835 /* The gather component should be aligned on 64-bit boundary */
836 if (((unsigned long)g->sg) & 7) {
837 g->adjust = 8 - (((unsigned long)g->sg) & 7);
838 g->sg = (struct octeon_sg_entry *)
839 ((unsigned long)g->sg + g->adjust);
840 }
841 list_add_tail(&g->list, &lio->glist);
842 }
843
844 if (i == lio->tx_qsize)
845 return 0;
846
847 delete_glist(lio);
848 return 1;
849}
850
851/**
852 * \brief Print link information
853 * @param netdev network device
854 */
855static void print_link_info(struct net_device *netdev)
856{
857 struct lio *lio = GET_LIO(netdev);
858
859 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED) {
860 struct oct_link_info *linfo = &lio->linfo;
861
862 if (linfo->link.s.status) {
863 netif_info(lio, link, lio->netdev, "%d Mbps %s Duplex UP\n",
864 linfo->link.s.speed,
865 (linfo->link.s.duplex) ? "Full" : "Half");
866 } else {
867 netif_info(lio, link, lio->netdev, "Link Down\n");
868 }
869 }
870}
871
872/**
873 * \brief Update link status
874 * @param netdev network device
875 * @param ls link status structure
876 *
877 * Called on receipt of a link status response from the core application to
878 * update each interface's link status.
879 */
880static inline void update_link_status(struct net_device *netdev,
881 union oct_link_status *ls)
882{
883 struct lio *lio = GET_LIO(netdev);
884
885 if ((lio->intf_open) && (lio->linfo.link.u64 != ls->u64)) {
886 lio->linfo.link.u64 = ls->u64;
887
888 print_link_info(netdev);
889
890 if (lio->linfo.link.s.status) {
891 netif_carrier_on(netdev);
892 /* start_txq(netdev); */
893 txqs_wake(netdev);
894 } else {
895 netif_carrier_off(netdev);
896 stop_txq(netdev);
897 }
898 }
899}
900
901/**
902 * \brief Droq packet processor sceduler
903 * @param oct octeon device
904 */
905static
906void liquidio_schedule_droq_pkt_handlers(struct octeon_device *oct)
907{
908 struct octeon_device_priv *oct_priv =
909 (struct octeon_device_priv *)oct->priv;
910 u64 oq_no;
911 struct octeon_droq *droq;
912
913 if (oct->int_status & OCT_DEV_INTR_PKT_DATA) {
914 for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES; oq_no++) {
915 if (!(oct->droq_intr & (1 << oq_no)))
916 continue;
917
918 droq = oct->droq[oq_no];
919
920 if (droq->ops.poll_mode) {
921 droq->ops.napi_fn(droq);
922 oct_priv->napi_mask |= (1 << oq_no);
923 } else {
924 tasklet_schedule(&oct_priv->droq_tasklet);
925 }
926 }
927 }
928}
929
930/**
931 * \brief Interrupt handler for octeon
932 * @param irq unused
933 * @param dev octeon device
934 */
935static
936irqreturn_t liquidio_intr_handler(int irq __attribute__((unused)), void *dev)
937{
938 struct octeon_device *oct = (struct octeon_device *)dev;
939 irqreturn_t ret;
940
941 /* Disable our interrupts for the duration of ISR */
942 oct->fn_list.disable_interrupt(oct->chip);
943
944 ret = oct->fn_list.process_interrupt_regs(oct);
945
946 if (ret == IRQ_HANDLED)
947 liquidio_schedule_droq_pkt_handlers(oct);
948
949 /* Re-enable our interrupts */
950 if (!(atomic_read(&oct->status) == OCT_DEV_IN_RESET))
951 oct->fn_list.enable_interrupt(oct->chip);
952
953 return ret;
954}
955
956/**
957 * \brief Setup interrupt for octeon device
958 * @param oct octeon device
959 *
960 * Enable interrupt in Octeon device as given in the PCI interrupt mask.
961 */
962static int octeon_setup_interrupt(struct octeon_device *oct)
963{
964 int irqret, err;
965
966 err = pci_enable_msi(oct->pci_dev);
967 if (err)
968 dev_warn(&oct->pci_dev->dev, "Reverting to legacy interrupts. Error: %d\n",
969 err);
970 else
971 oct->flags |= LIO_FLAG_MSI_ENABLED;
972
973 irqret = request_irq(oct->pci_dev->irq, liquidio_intr_handler,
974 IRQF_SHARED, "octeon", oct);
975 if (irqret) {
976 if (oct->flags & LIO_FLAG_MSI_ENABLED)
977 pci_disable_msi(oct->pci_dev);
978 dev_err(&oct->pci_dev->dev, "Request IRQ failed with code: %d\n",
979 irqret);
980 return 1;
981 }
982
983 return 0;
984}
985
986/**
987 * \brief PCI probe handler
988 * @param pdev PCI device structure
989 * @param ent unused
990 */
991static int liquidio_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
992{
993 struct octeon_device *oct_dev = NULL;
994 struct handshake *hs;
995
996 oct_dev = octeon_allocate_device(pdev->device,
997 sizeof(struct octeon_device_priv));
998 if (!oct_dev) {
999 dev_err(&pdev->dev, "Unable to allocate device\n");
1000 return -ENOMEM;
1001 }
1002
1003 dev_info(&pdev->dev, "Initializing device %x:%x.\n",
1004 (u32)pdev->vendor, (u32)pdev->device);
1005
1006 /* Assign octeon_device for this device to the private data area. */
1007 pci_set_drvdata(pdev, oct_dev);
1008
1009 /* set linux specific device pointer */
1010 oct_dev->pci_dev = (void *)pdev;
1011
1012 hs = &handshake[oct_dev->octeon_id];
1013 init_completion(&hs->init);
1014 init_completion(&hs->started);
1015 hs->pci_dev = pdev;
1016
1017 if (oct_dev->octeon_id == 0)
1018 /* first LiquidIO NIC is detected */
1019 complete(&first_stage);
1020
1021 if (octeon_device_init(oct_dev)) {
1022 liquidio_remove(pdev);
1023 return -ENOMEM;
1024 }
1025
1026 dev_dbg(&oct_dev->pci_dev->dev, "Device is ready\n");
1027
1028 return 0;
1029}
1030
1031/**
1032 *\brief Destroy resources associated with octeon device
1033 * @param pdev PCI device structure
1034 * @param ent unused
1035 */
1036static void octeon_destroy_resources(struct octeon_device *oct)
1037{
1038 int i;
1039 struct octeon_device_priv *oct_priv =
1040 (struct octeon_device_priv *)oct->priv;
1041
1042 struct handshake *hs;
1043
1044 switch (atomic_read(&oct->status)) {
1045 case OCT_DEV_RUNNING:
1046 case OCT_DEV_CORE_OK:
1047
1048 /* No more instructions will be forwarded. */
1049 atomic_set(&oct->status, OCT_DEV_IN_RESET);
1050
1051 oct->app_mode = CVM_DRV_INVALID_APP;
1052 dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
1053 lio_get_state_string(&oct->status));
1054
1055 schedule_timeout_uninterruptible(HZ / 10);
1056
1057 /* fallthrough */
1058 case OCT_DEV_HOST_OK:
1059
1060 /* fallthrough */
1061 case OCT_DEV_CONSOLE_INIT_DONE:
1062 /* Remove any consoles */
1063 octeon_remove_consoles(oct);
1064
1065 /* fallthrough */
1066 case OCT_DEV_IO_QUEUES_DONE:
1067 if (wait_for_pending_requests(oct))
1068 dev_err(&oct->pci_dev->dev, "There were pending requests\n");
1069
1070 if (lio_wait_for_instr_fetch(oct))
1071 dev_err(&oct->pci_dev->dev, "IQ had pending instructions\n");
1072
1073 /* Disable the input and output queues now. No more packets will
1074 * arrive from Octeon, but we should wait for all packet
1075 * processing to finish.
1076 */
1077 oct->fn_list.disable_io_queues(oct);
1078
1079 if (lio_wait_for_oq_pkts(oct))
1080 dev_err(&oct->pci_dev->dev, "OQ had pending packets\n");
1081
1082 /* Disable interrupts */
1083 oct->fn_list.disable_interrupt(oct->chip);
1084
1085 /* Release the interrupt line */
1086 free_irq(oct->pci_dev->irq, oct);
1087
1088 if (oct->flags & LIO_FLAG_MSI_ENABLED)
1089 pci_disable_msi(oct->pci_dev);
1090
1091 /* Soft reset the octeon device before exiting */
1092 oct->fn_list.soft_reset(oct);
1093
1094 /* Disable the device, releasing the PCI INT */
1095 pci_disable_device(oct->pci_dev);
1096
1097 /* fallthrough */
1098 case OCT_DEV_IN_RESET:
1099 case OCT_DEV_DROQ_INIT_DONE:
1100 /*atomic_set(&oct->status, OCT_DEV_DROQ_INIT_DONE);*/
1101 mdelay(100);
1102 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES; i++) {
1103 if (!(oct->io_qmask.oq & (1UL << i)))
1104 continue;
1105 octeon_delete_droq(oct, i);
1106 }
1107
1108 /* Force any pending handshakes to complete */
1109 for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
1110 hs = &handshake[i];
1111
1112 if (hs->pci_dev) {
1113 handshake[oct->octeon_id].init_ok = 0;
1114 complete(&handshake[oct->octeon_id].init);
1115 handshake[oct->octeon_id].started_ok = 0;
1116 complete(&handshake[oct->octeon_id].started);
1117 }
1118 }
1119
1120 /* fallthrough */
1121 case OCT_DEV_RESP_LIST_INIT_DONE:
1122 octeon_delete_response_list(oct);
1123
1124 /* fallthrough */
1125 case OCT_DEV_SC_BUFF_POOL_INIT_DONE:
1126 octeon_free_sc_buffer_pool(oct);
1127
1128 /* fallthrough */
1129 case OCT_DEV_INSTR_QUEUE_INIT_DONE:
1130 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES; i++) {
1131 if (!(oct->io_qmask.iq & (1UL << i)))
1132 continue;
1133 octeon_delete_instr_queue(oct, i);
1134 }
1135
1136 /* fallthrough */
1137 case OCT_DEV_DISPATCH_INIT_DONE:
1138 octeon_delete_dispatch_list(oct);
1139 cancel_delayed_work_sync(&oct->nic_poll_work.work);
1140
1141 /* fallthrough */
1142 case OCT_DEV_PCI_MAP_DONE:
1143 octeon_unmap_pci_barx(oct, 0);
1144 octeon_unmap_pci_barx(oct, 1);
1145
1146 /* fallthrough */
1147 case OCT_DEV_BEGIN_STATE:
1148 /* Nothing to be done here either */
1149 break;
1150 } /* end switch(oct->status) */
1151
1152 tasklet_kill(&oct_priv->droq_tasklet);
1153}
1154
1155/**
1156 * \brief Send Rx control command
1157 * @param lio per-network private data
1158 * @param start_stop whether to start or stop
1159 */
1160static void send_rx_ctrl_cmd(struct lio *lio, int start_stop)
1161{
1162 struct octnic_ctrl_pkt nctrl;
1163 struct octnic_ctrl_params nparams;
1164
1165 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
1166
1167 nctrl.ncmd.s.cmd = OCTNET_CMD_RX_CTL;
1168 nctrl.ncmd.s.param1 = lio->linfo.ifidx;
1169 nctrl.ncmd.s.param2 = start_stop;
1170 nctrl.netpndev = (u64)lio->netdev;
1171
1172 nparams.resp_order = OCTEON_RESP_NORESPONSE;
1173
1174 if (octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams) < 0)
1175 netif_info(lio, rx_err, lio->netdev, "Failed to send RX Control message\n");
1176}
1177
1178/**
1179 * \brief Destroy NIC device interface
1180 * @param oct octeon device
1181 * @param ifidx which interface to destroy
1182 *
1183 * Cleanup associated with each interface for an Octeon device when NIC
1184 * module is being unloaded or if initialization fails during load.
1185 */
1186static void liquidio_destroy_nic_device(struct octeon_device *oct, int ifidx)
1187{
1188 struct net_device *netdev = oct->props[ifidx].netdev;
1189 struct lio *lio;
1190
1191 if (!netdev) {
1192 dev_err(&oct->pci_dev->dev, "%s No netdevice ptr for index %d\n",
1193 __func__, ifidx);
1194 return;
1195 }
1196
1197 lio = GET_LIO(netdev);
1198
1199 dev_dbg(&oct->pci_dev->dev, "NIC device cleanup\n");
1200
1201 send_rx_ctrl_cmd(lio, 0);
1202
1203 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING)
1204 txqs_stop(netdev);
1205
1206 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED)
1207 unregister_netdev(netdev);
1208
1209 delete_glist(lio);
1210
1211 free_netdev(netdev);
1212
1213 oct->props[ifidx].netdev = NULL;
1214}
1215
1216/**
1217 * \brief Stop complete NIC functionality
1218 * @param oct octeon device
1219 */
1220static int liquidio_stop_nic_module(struct octeon_device *oct)
1221{
1222 int i, j;
1223 struct lio *lio;
1224
1225 dev_dbg(&oct->pci_dev->dev, "Stopping network interfaces\n");
1226 if (!oct->ifcount) {
1227 dev_err(&oct->pci_dev->dev, "Init for Octeon was not completed\n");
1228 return 1;
1229 }
1230
1231 for (i = 0; i < oct->ifcount; i++) {
1232 lio = GET_LIO(oct->props[i].netdev);
1233 for (j = 0; j < lio->linfo.num_rxpciq; j++)
1234 octeon_unregister_droq_ops(oct, lio->linfo.rxpciq[j]);
1235 }
1236
1237 for (i = 0; i < oct->ifcount; i++)
1238 liquidio_destroy_nic_device(oct, i);
1239
1240 dev_dbg(&oct->pci_dev->dev, "Network interfaces stopped\n");
1241 return 0;
1242}
1243
1244/**
1245 * \brief Cleans up resources at unload time
1246 * @param pdev PCI device structure
1247 */
1248static void liquidio_remove(struct pci_dev *pdev)
1249{
1250 struct octeon_device *oct_dev = pci_get_drvdata(pdev);
1251
1252 dev_dbg(&oct_dev->pci_dev->dev, "Stopping device\n");
1253
1254 if (oct_dev->app_mode && (oct_dev->app_mode == CVM_DRV_NIC_APP))
1255 liquidio_stop_nic_module(oct_dev);
1256
1257 /* Reset the octeon device and cleanup all memory allocated for
1258 * the octeon device by driver.
1259 */
1260 octeon_destroy_resources(oct_dev);
1261
1262 dev_info(&oct_dev->pci_dev->dev, "Device removed\n");
1263
1264 /* This octeon device has been removed. Update the global
1265 * data structure to reflect this. Free the device structure.
1266 */
1267 octeon_free_device_mem(oct_dev);
1268}
1269
1270/**
1271 * \brief Identify the Octeon device and to map the BAR address space
1272 * @param oct octeon device
1273 */
1274static int octeon_chip_specific_setup(struct octeon_device *oct)
1275{
1276 u32 dev_id, rev_id;
1277 int ret = 1;
1278
1279 pci_read_config_dword(oct->pci_dev, 0, &dev_id);
1280 pci_read_config_dword(oct->pci_dev, 8, &rev_id);
1281 oct->rev_id = rev_id & 0xff;
1282
1283 switch (dev_id) {
1284 case OCTEON_CN68XX_PCIID:
1285 oct->chip_id = OCTEON_CN68XX;
1286 ret = lio_setup_cn68xx_octeon_device(oct);
1287 break;
1288
1289 case OCTEON_CN66XX_PCIID:
1290 oct->chip_id = OCTEON_CN66XX;
1291 ret = lio_setup_cn66xx_octeon_device(oct);
1292 break;
1293 default:
1294 dev_err(&oct->pci_dev->dev, "Unknown device found (dev_id: %x)\n",
1295 dev_id);
1296 }
1297
1298 if (!ret)
1299 dev_info(&oct->pci_dev->dev, "CN68XX PASS%d.%d %s\n",
1300 OCTEON_MAJOR_REV(oct),
1301 OCTEON_MINOR_REV(oct),
1302 octeon_get_conf(oct)->card_name);
1303
1304 return ret;
1305}
1306
1307/**
1308 * \brief PCI initialization for each Octeon device.
1309 * @param oct octeon device
1310 */
1311static int octeon_pci_os_setup(struct octeon_device *oct)
1312{
1313 /* setup PCI stuff first */
1314 if (pci_enable_device(oct->pci_dev)) {
1315 dev_err(&oct->pci_dev->dev, "pci_enable_device failed\n");
1316 return 1;
1317 }
1318
1319 if (dma_set_mask_and_coherent(&oct->pci_dev->dev, DMA_BIT_MASK(64))) {
1320 dev_err(&oct->pci_dev->dev, "Unexpected DMA device capability\n");
1321 return 1;
1322 }
1323
1324 /* Enable PCI DMA Master. */
1325 pci_set_master(oct->pci_dev);
1326
1327 return 0;
1328}
1329
1330/**
1331 * \brief Check Tx queue state for a given network buffer
1332 * @param lio per-network private data
1333 * @param skb network buffer
1334 */
1335static inline int check_txq_state(struct lio *lio, struct sk_buff *skb)
1336{
1337 int q = 0, iq = 0;
1338
1339 if (netif_is_multiqueue(lio->netdev)) {
1340 q = skb->queue_mapping;
1341 iq = lio->linfo.txpciq[(q & (lio->linfo.num_txpciq - 1))];
1342 } else {
1343 iq = lio->txq;
1344 }
1345
1346 if (octnet_iq_is_full(lio->oct_dev, iq))
1347 return 0;
1348 wake_q(lio->netdev, q);
1349 return 1;
1350}
1351
1352/**
1353 * \brief Unmap and free network buffer
1354 * @param buf buffer
1355 */
1356static void free_netbuf(void *buf)
1357{
1358 struct sk_buff *skb;
1359 struct octnet_buf_free_info *finfo;
1360 struct lio *lio;
1361
1362 finfo = (struct octnet_buf_free_info *)buf;
1363 skb = finfo->skb;
1364 lio = finfo->lio;
1365
1366 dma_unmap_single(&lio->oct_dev->pci_dev->dev, finfo->dptr, skb->len,
1367 DMA_TO_DEVICE);
1368
1369 check_txq_state(lio, skb);
1370
1371 recv_buffer_free((struct sk_buff *)skb);
1372}
1373
1374/**
1375 * \brief Unmap and free gather buffer
1376 * @param buf buffer
1377 */
1378static void free_netsgbuf(void *buf)
1379{
1380 struct octnet_buf_free_info *finfo;
1381 struct sk_buff *skb;
1382 struct lio *lio;
1383 struct octnic_gather *g;
1384 int i, frags;
1385
1386 finfo = (struct octnet_buf_free_info *)buf;
1387 skb = finfo->skb;
1388 lio = finfo->lio;
1389 g = finfo->g;
1390 frags = skb_shinfo(skb)->nr_frags;
1391
1392 dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1393 g->sg[0].ptr[0], (skb->len - skb->data_len),
1394 DMA_TO_DEVICE);
1395
1396 i = 1;
1397 while (frags--) {
1398 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1399
1400 pci_unmap_page((lio->oct_dev)->pci_dev,
1401 g->sg[(i >> 2)].ptr[(i & 3)],
1402 frag->size, DMA_TO_DEVICE);
1403 i++;
1404 }
1405
1406 dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1407 finfo->dptr, g->sg_size,
1408 DMA_TO_DEVICE);
1409
1410 spin_lock(&lio->lock);
1411 list_add_tail(&g->list, &lio->glist);
1412 spin_unlock(&lio->lock);
1413
1414 check_txq_state(lio, skb); /* mq support: sub-queue state check */
1415
1416 recv_buffer_free((struct sk_buff *)skb);
1417}
1418
1419/**
1420 * \brief Unmap and free gather buffer with response
1421 * @param buf buffer
1422 */
1423static void free_netsgbuf_with_resp(void *buf)
1424{
1425 struct octeon_soft_command *sc;
1426 struct octnet_buf_free_info *finfo;
1427 struct sk_buff *skb;
1428 struct lio *lio;
1429 struct octnic_gather *g;
1430 int i, frags;
1431
1432 sc = (struct octeon_soft_command *)buf;
1433 skb = (struct sk_buff *)sc->callback_arg;
1434 finfo = (struct octnet_buf_free_info *)&skb->cb;
1435
1436 lio = finfo->lio;
1437 g = finfo->g;
1438 frags = skb_shinfo(skb)->nr_frags;
1439
1440 dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1441 g->sg[0].ptr[0], (skb->len - skb->data_len),
1442 DMA_TO_DEVICE);
1443
1444 i = 1;
1445 while (frags--) {
1446 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1447
1448 pci_unmap_page((lio->oct_dev)->pci_dev,
1449 g->sg[(i >> 2)].ptr[(i & 3)],
1450 frag->size, DMA_TO_DEVICE);
1451 i++;
1452 }
1453
1454 dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1455 finfo->dptr, g->sg_size,
1456 DMA_TO_DEVICE);
1457
1458 spin_lock(&lio->lock);
1459 list_add_tail(&g->list, &lio->glist);
1460 spin_unlock(&lio->lock);
1461
1462 /* Don't free the skb yet */
1463
1464 check_txq_state(lio, skb);
1465}
1466
1467/**
1468 * \brief Adjust ptp frequency
1469 * @param ptp PTP clock info
1470 * @param ppb how much to adjust by, in parts-per-billion
1471 */
1472static int liquidio_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
1473{
1474 struct lio *lio = container_of(ptp, struct lio, ptp_info);
1475 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1476 u64 comp, delta;
1477 unsigned long flags;
1478 bool neg_adj = false;
1479
1480 if (ppb < 0) {
1481 neg_adj = true;
1482 ppb = -ppb;
1483 }
1484
1485 /* The hardware adds the clock compensation value to the
1486 * PTP clock on every coprocessor clock cycle, so we
1487 * compute the delta in terms of coprocessor clocks.
1488 */
1489 delta = (u64)ppb << 32;
1490 do_div(delta, oct->coproc_clock_rate);
1491
1492 spin_lock_irqsave(&lio->ptp_lock, flags);
1493 comp = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_COMP);
1494 if (neg_adj)
1495 comp -= delta;
1496 else
1497 comp += delta;
1498 lio_pci_writeq(oct, comp, CN6XXX_MIO_PTP_CLOCK_COMP);
1499 spin_unlock_irqrestore(&lio->ptp_lock, flags);
1500
1501 return 0;
1502}
1503
1504/**
1505 * \brief Adjust ptp time
1506 * @param ptp PTP clock info
1507 * @param delta how much to adjust by, in nanosecs
1508 */
1509static int liquidio_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
1510{
1511 unsigned long flags;
1512 struct lio *lio = container_of(ptp, struct lio, ptp_info);
1513
1514 spin_lock_irqsave(&lio->ptp_lock, flags);
1515 lio->ptp_adjust += delta;
1516 spin_unlock_irqrestore(&lio->ptp_lock, flags);
1517
1518 return 0;
1519}
1520
1521/**
1522 * \brief Get hardware clock time, including any adjustment
1523 * @param ptp PTP clock info
1524 * @param ts timespec
1525 */
1526static int liquidio_ptp_gettime(struct ptp_clock_info *ptp,
1527 struct timespec64 *ts)
1528{
1529 u64 ns;
1530 u32 remainder;
1531 unsigned long flags;
1532 struct lio *lio = container_of(ptp, struct lio, ptp_info);
1533 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1534
1535 spin_lock_irqsave(&lio->ptp_lock, flags);
1536 ns = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_HI);
1537 ns += lio->ptp_adjust;
1538 spin_unlock_irqrestore(&lio->ptp_lock, flags);
1539
1540 ts->tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder);
1541 ts->tv_nsec = remainder;
1542
1543 return 0;
1544}
1545
1546/**
1547 * \brief Set hardware clock time. Reset adjustment
1548 * @param ptp PTP clock info
1549 * @param ts timespec
1550 */
1551static int liquidio_ptp_settime(struct ptp_clock_info *ptp,
1552 const struct timespec64 *ts)
1553{
1554 u64 ns;
1555 unsigned long flags;
1556 struct lio *lio = container_of(ptp, struct lio, ptp_info);
1557 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1558
1559 ns = timespec_to_ns(ts);
1560
1561 spin_lock_irqsave(&lio->ptp_lock, flags);
1562 lio_pci_writeq(oct, ns, CN6XXX_MIO_PTP_CLOCK_HI);
1563 lio->ptp_adjust = 0;
1564 spin_unlock_irqrestore(&lio->ptp_lock, flags);
1565
1566 return 0;
1567}
1568
1569/**
1570 * \brief Check if PTP is enabled
1571 * @param ptp PTP clock info
1572 * @param rq request
1573 * @param on is it on
1574 */
1575static int liquidio_ptp_enable(struct ptp_clock_info *ptp,
1576 struct ptp_clock_request *rq, int on)
1577{
1578 return -EOPNOTSUPP;
1579}
1580
1581/**
1582 * \brief Open PTP clock source
1583 * @param netdev network device
1584 */
1585static void oct_ptp_open(struct net_device *netdev)
1586{
1587 struct lio *lio = GET_LIO(netdev);
1588 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1589
1590 spin_lock_init(&lio->ptp_lock);
1591
1592 snprintf(lio->ptp_info.name, 16, "%s", netdev->name);
1593 lio->ptp_info.owner = THIS_MODULE;
1594 lio->ptp_info.max_adj = 250000000;
1595 lio->ptp_info.n_alarm = 0;
1596 lio->ptp_info.n_ext_ts = 0;
1597 lio->ptp_info.n_per_out = 0;
1598 lio->ptp_info.pps = 0;
1599 lio->ptp_info.adjfreq = liquidio_ptp_adjfreq;
1600 lio->ptp_info.adjtime = liquidio_ptp_adjtime;
1601 lio->ptp_info.gettime64 = liquidio_ptp_gettime;
1602 lio->ptp_info.settime64 = liquidio_ptp_settime;
1603 lio->ptp_info.enable = liquidio_ptp_enable;
1604
1605 lio->ptp_adjust = 0;
1606
1607 lio->ptp_clock = ptp_clock_register(&lio->ptp_info,
1608 &oct->pci_dev->dev);
1609
1610 if (IS_ERR(lio->ptp_clock))
1611 lio->ptp_clock = NULL;
1612}
1613
1614/**
1615 * \brief Init PTP clock
1616 * @param oct octeon device
1617 */
1618static void liquidio_ptp_init(struct octeon_device *oct)
1619{
1620 u64 clock_comp, cfg;
1621
1622 clock_comp = (u64)NSEC_PER_SEC << 32;
1623 do_div(clock_comp, oct->coproc_clock_rate);
1624 lio_pci_writeq(oct, clock_comp, CN6XXX_MIO_PTP_CLOCK_COMP);
1625
1626 /* Enable */
1627 cfg = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_CFG);
1628 lio_pci_writeq(oct, cfg | 0x01, CN6XXX_MIO_PTP_CLOCK_CFG);
1629}
1630
1631/**
1632 * \brief Load firmware to device
1633 * @param oct octeon device
1634 *
1635 * Maps device to firmware filename, requests firmware, and downloads it
1636 */
1637static int load_firmware(struct octeon_device *oct)
1638{
1639 int ret = 0;
1640 const struct firmware *fw;
1641 char fw_name[LIO_MAX_FW_FILENAME_LEN];
1642 char *tmp_fw_type;
1643
1644 if (strncmp(fw_type, LIO_FW_NAME_TYPE_NONE,
1645 sizeof(LIO_FW_NAME_TYPE_NONE)) == 0) {
1646 dev_info(&oct->pci_dev->dev, "Skipping firmware load\n");
1647 return ret;
1648 }
1649
1650 if (fw_type[0] == '\0')
1651 tmp_fw_type = LIO_FW_NAME_TYPE_NIC;
1652 else
1653 tmp_fw_type = fw_type;
1654
1655 sprintf(fw_name, "%s%s%s_%s%s", LIO_FW_DIR, LIO_FW_BASE_NAME,
1656 octeon_get_conf(oct)->card_name, tmp_fw_type,
1657 LIO_FW_NAME_SUFFIX);
1658
1659 ret = request_firmware(&fw, fw_name, &oct->pci_dev->dev);
1660 if (ret) {
1661 dev_err(&oct->pci_dev->dev, "Request firmware failed. Could not find file %s.\n.",
1662 fw_name);
1663 return ret;
1664 }
1665
1666 ret = octeon_download_firmware(oct, fw->data, fw->size);
1667
1668 release_firmware(fw);
1669
1670 return ret;
1671}
1672
1673/**
1674 * \brief Setup output queue
1675 * @param oct octeon device
1676 * @param q_no which queue
1677 * @param num_descs how many descriptors
1678 * @param desc_size size of each descriptor
1679 * @param app_ctx application context
1680 */
1681static int octeon_setup_droq(struct octeon_device *oct, int q_no, int num_descs,
1682 int desc_size, void *app_ctx)
1683{
1684 int ret_val = 0;
1685
1686 dev_dbg(&oct->pci_dev->dev, "Creating Droq: %d\n", q_no);
1687 /* droq creation and local register settings. */
1688 ret_val = octeon_create_droq(oct, q_no, num_descs, desc_size, app_ctx);
1689 if (ret_val == -1)
1690 return ret_val;
1691
1692 if (ret_val == 1) {
1693 dev_dbg(&oct->pci_dev->dev, "Using default droq %d\n", q_no);
1694 return 0;
1695 }
1696 /* tasklet creation for the droq */
1697
1698 /* Enable the droq queues */
1699 octeon_set_droq_pkt_op(oct, q_no, 1);
1700
1701 /* Send Credit for Octeon Output queues. Credits are always
1702 * sent after the output queue is enabled.
1703 */
1704 writel(oct->droq[q_no]->max_count,
1705 oct->droq[q_no]->pkts_credit_reg);
1706
1707 return ret_val;
1708}
1709
1710/**
1711 * \brief Callback for getting interface configuration
1712 * @param status status of request
1713 * @param buf pointer to resp structure
1714 */
1715static void if_cfg_callback(struct octeon_device *oct,
1716 u32 status,
1717 void *buf)
1718{
1719 struct octeon_soft_command *sc = (struct octeon_soft_command *)buf;
1720 struct liquidio_if_cfg_resp *resp;
1721 struct liquidio_if_cfg_context *ctx;
1722
1723 resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
1724 ctx = (struct liquidio_if_cfg_context *)sc->ctxptr;
1725
1726 oct = lio_get_device(ctx->octeon_id);
1727 if (resp->status)
1728 dev_err(&oct->pci_dev->dev, "nic if cfg instruction failed. Status: %llx\n",
1729 CVM_CAST64(resp->status));
1730 ACCESS_ONCE(ctx->cond) = 1;
1731
1732 /* This barrier is required to be sure that the response has been
1733 * written fully before waking up the handler
1734 */
1735 wmb();
1736
1737 wake_up_interruptible(&ctx->wc);
1738}
1739
1740/**
1741 * \brief Select queue based on hash
1742 * @param dev Net device
1743 * @param skb sk_buff structure
1744 * @returns selected queue number
1745 */
1746static u16 select_q(struct net_device *dev, struct sk_buff *skb,
1747 void *accel_priv, select_queue_fallback_t fallback)
1748{
1749 int qindex;
1750 struct lio *lio;
1751
1752 lio = GET_LIO(dev);
1753 /* select queue on chosen queue_mapping or core */
1754 qindex = skb_rx_queue_recorded(skb) ?
1755 skb_get_rx_queue(skb) : smp_processor_id();
1756 return (u16)(qindex & (lio->linfo.num_txpciq - 1));
1757}
1758
1759/** Routine to push packets arriving on Octeon interface upto network layer.
1760 * @param oct_id - octeon device id.
1761 * @param skbuff - skbuff struct to be passed to network layer.
1762 * @param len - size of total data received.
1763 * @param rh - Control header associated with the packet
1764 * @param param - additional control data with the packet
1765 */
1766static void
1767liquidio_push_packet(u32 octeon_id,
1768 void *skbuff,
1769 u32 len,
1770 union octeon_rh *rh,
1771 void *param)
1772{
1773 struct napi_struct *napi = param;
1774 struct octeon_device *oct = lio_get_device(octeon_id);
1775 struct sk_buff *skb = (struct sk_buff *)skbuff;
1776 struct skb_shared_hwtstamps *shhwtstamps;
1777 u64 ns;
1778 struct net_device *netdev =
1779 (struct net_device *)oct->props[rh->r_dh.link].netdev;
1780 struct octeon_droq *droq = container_of(param, struct octeon_droq,
1781 napi);
1782 if (netdev) {
1783 int packet_was_received;
1784 struct lio *lio = GET_LIO(netdev);
1785
1786 /* Do not proceed if the interface is not in RUNNING state. */
1787 if (!ifstate_check(lio, LIO_IFSTATE_RUNNING)) {
1788 recv_buffer_free(skb);
1789 droq->stats.rx_dropped++;
1790 return;
1791 }
1792
1793 skb->dev = netdev;
1794
1795 if (rh->r_dh.has_hwtstamp) {
1796 /* timestamp is included from the hardware at the
1797 * beginning of the packet.
1798 */
1799 if (ifstate_check(lio,
1800 LIO_IFSTATE_RX_TIMESTAMP_ENABLED)) {
1801 /* Nanoseconds are in the first 64-bits
1802 * of the packet.
1803 */
1804 memcpy(&ns, (skb->data), sizeof(ns));
1805 shhwtstamps = skb_hwtstamps(skb);
1806 shhwtstamps->hwtstamp =
1807 ns_to_ktime(ns + lio->ptp_adjust);
1808 }
1809 skb_pull(skb, sizeof(ns));
1810 }
1811
1812 skb->protocol = eth_type_trans(skb, skb->dev);
1813
1814 if ((netdev->features & NETIF_F_RXCSUM) &&
1815 (rh->r_dh.csum_verified == CNNIC_CSUM_VERIFIED))
1816 /* checksum has already been verified */
1817 skb->ip_summed = CHECKSUM_UNNECESSARY;
1818 else
1819 skb->ip_summed = CHECKSUM_NONE;
1820
1821 packet_was_received = napi_gro_receive(napi, skb) != GRO_DROP;
1822
1823 if (packet_was_received) {
1824 droq->stats.rx_bytes_received += len;
1825 droq->stats.rx_pkts_received++;
1826 netdev->last_rx = jiffies;
1827 } else {
1828 droq->stats.rx_dropped++;
1829 netif_info(lio, rx_err, lio->netdev,
1830 "droq:%d error rx_dropped:%llu\n",
1831 droq->q_no, droq->stats.rx_dropped);
1832 }
1833
1834 } else {
1835 recv_buffer_free(skb);
1836 }
1837}
1838
1839/**
1840 * \brief wrapper for calling napi_schedule
1841 * @param param parameters to pass to napi_schedule
1842 *
1843 * Used when scheduling on different CPUs
1844 */
1845static void napi_schedule_wrapper(void *param)
1846{
1847 struct napi_struct *napi = param;
1848
1849 napi_schedule(napi);
1850}
1851
1852/**
1853 * \brief callback when receive interrupt occurs and we are in NAPI mode
1854 * @param arg pointer to octeon output queue
1855 */
1856static void liquidio_napi_drv_callback(void *arg)
1857{
1858 struct octeon_droq *droq = arg;
1859 int this_cpu = smp_processor_id();
1860
1861 if (droq->cpu_id == this_cpu) {
1862 napi_schedule(&droq->napi);
1863 } else {
1864 struct call_single_data *csd = &droq->csd;
1865
1866 csd->func = napi_schedule_wrapper;
1867 csd->info = &droq->napi;
1868 csd->flags = 0;
1869
1870 smp_call_function_single_async(droq->cpu_id, csd);
1871 }
1872}
1873
1874/**
1875 * \brief Main NAPI poll function
1876 * @param droq octeon output queue
1877 * @param budget maximum number of items to process
1878 */
1879static int liquidio_napi_do_rx(struct octeon_droq *droq, int budget)
1880{
1881 int work_done;
1882 struct lio *lio = GET_LIO(droq->napi.dev);
1883 struct octeon_device *oct = lio->oct_dev;
1884
1885 work_done = octeon_process_droq_poll_cmd(oct, droq->q_no,
1886 POLL_EVENT_PROCESS_PKTS,
1887 budget);
1888 if (work_done < 0) {
1889 netif_info(lio, rx_err, lio->netdev,
1890 "Receive work_done < 0, rxq:%d\n", droq->q_no);
1891 goto octnet_napi_finish;
1892 }
1893
1894 if (work_done > budget)
1895 dev_err(&oct->pci_dev->dev, ">>>> %s work_done: %d budget: %d\n",
1896 __func__, work_done, budget);
1897
1898 return work_done;
1899
1900octnet_napi_finish:
1901 napi_complete(&droq->napi);
1902 octeon_process_droq_poll_cmd(oct, droq->q_no, POLL_EVENT_ENABLE_INTR,
1903 0);
1904 return 0;
1905}
1906
1907/**
1908 * \brief Entry point for NAPI polling
1909 * @param napi NAPI structure
1910 * @param budget maximum number of items to process
1911 */
1912static int liquidio_napi_poll(struct napi_struct *napi, int budget)
1913{
1914 struct octeon_droq *droq;
1915 int work_done;
1916
1917 droq = container_of(napi, struct octeon_droq, napi);
1918
1919 work_done = liquidio_napi_do_rx(droq, budget);
1920
1921 if (work_done < budget) {
1922 napi_complete(napi);
1923 octeon_process_droq_poll_cmd(droq->oct_dev, droq->q_no,
1924 POLL_EVENT_ENABLE_INTR, 0);
1925 return 0;
1926 }
1927
1928 return work_done;
1929}
1930
1931/**
1932 * \brief Setup input and output queues
1933 * @param octeon_dev octeon device
1934 * @param net_device Net device
1935 *
1936 * Note: Queues are with respect to the octeon device. Thus
1937 * an input queue is for egress packets, and output queues
1938 * are for ingress packets.
1939 */
1940static inline int setup_io_queues(struct octeon_device *octeon_dev,
1941 struct net_device *net_device)
1942{
1943 static int first_time = 1;
1944 static struct octeon_droq_ops droq_ops;
1945 static int cpu_id;
1946 static int cpu_id_modulus;
1947 struct octeon_droq *droq;
1948 struct napi_struct *napi;
1949 int q, q_no, retval = 0;
1950 struct lio *lio;
1951 int num_tx_descs;
1952
1953 lio = GET_LIO(net_device);
1954 if (first_time) {
1955 first_time = 0;
1956 memset(&droq_ops, 0, sizeof(struct octeon_droq_ops));
1957
1958 droq_ops.fptr = liquidio_push_packet;
1959
1960 droq_ops.poll_mode = 1;
1961 droq_ops.napi_fn = liquidio_napi_drv_callback;
1962 cpu_id = 0;
1963 cpu_id_modulus = num_present_cpus();
1964 }
1965
1966 /* set up DROQs. */
1967 for (q = 0; q < lio->linfo.num_rxpciq; q++) {
1968 q_no = lio->linfo.rxpciq[q];
1969
1970 retval = octeon_setup_droq(octeon_dev, q_no,
1971 CFG_GET_NUM_RX_DESCS_NIC_IF
1972 (octeon_get_conf(octeon_dev),
1973 lio->ifidx),
1974 CFG_GET_NUM_RX_BUF_SIZE_NIC_IF
1975 (octeon_get_conf(octeon_dev),
1976 lio->ifidx), NULL);
1977 if (retval) {
1978 dev_err(&octeon_dev->pci_dev->dev,
1979 " %s : Runtime DROQ(RxQ) creation failed.\n",
1980 __func__);
1981 return 1;
1982 }
1983
1984 droq = octeon_dev->droq[q_no];
1985 napi = &droq->napi;
1986 netif_napi_add(net_device, napi, liquidio_napi_poll, 64);
1987
1988 /* designate a CPU for this droq */
1989 droq->cpu_id = cpu_id;
1990 cpu_id++;
1991 if (cpu_id >= cpu_id_modulus)
1992 cpu_id = 0;
1993
1994 octeon_register_droq_ops(octeon_dev, q_no, &droq_ops);
1995 }
1996
1997 /* set up IQs. */
1998 for (q = 0; q < lio->linfo.num_txpciq; q++) {
1999 num_tx_descs = CFG_GET_NUM_TX_DESCS_NIC_IF(octeon_get_conf
2000 (octeon_dev),
2001 lio->ifidx);
2002 retval = octeon_setup_iq(octeon_dev, lio->linfo.txpciq[q],
2003 num_tx_descs,
2004 netdev_get_tx_queue(net_device, q));
2005 if (retval) {
2006 dev_err(&octeon_dev->pci_dev->dev,
2007 " %s : Runtime IQ(TxQ) creation failed.\n",
2008 __func__);
2009 return 1;
2010 }
2011 }
2012
2013 return 0;
2014}
2015
2016/**
2017 * \brief Poll routine for checking transmit queue status
2018 * @param work work_struct data structure
2019 */
2020static void octnet_poll_check_txq_status(struct work_struct *work)
2021{
2022 struct cavium_wk *wk = (struct cavium_wk *)work;
2023 struct lio *lio = (struct lio *)wk->ctxptr;
2024
2025 if (!ifstate_check(lio, LIO_IFSTATE_RUNNING))
2026 return;
2027
2028 check_txq_status(lio);
2029 queue_delayed_work(lio->txq_status_wq.wq,
2030 &lio->txq_status_wq.wk.work, msecs_to_jiffies(1));
2031}
2032
2033/**
2034 * \brief Sets up the txq poll check
2035 * @param netdev network device
2036 */
2037static inline void setup_tx_poll_fn(struct net_device *netdev)
2038{
2039 struct lio *lio = GET_LIO(netdev);
2040 struct octeon_device *oct = lio->oct_dev;
2041
2042 lio->txq_status_wq.wq = create_workqueue("txq-status");
2043 if (!lio->txq_status_wq.wq) {
2044 dev_err(&oct->pci_dev->dev, "unable to create cavium txq status wq\n");
2045 return;
2046 }
2047 INIT_DELAYED_WORK(&lio->txq_status_wq.wk.work,
2048 octnet_poll_check_txq_status);
2049 lio->txq_status_wq.wk.ctxptr = lio;
2050 queue_delayed_work(lio->txq_status_wq.wq,
2051 &lio->txq_status_wq.wk.work, msecs_to_jiffies(1));
2052}
2053
2054/**
2055 * \brief Net device open for LiquidIO
2056 * @param netdev network device
2057 */
2058static int liquidio_open(struct net_device *netdev)
2059{
2060 struct lio *lio = GET_LIO(netdev);
2061 struct octeon_device *oct = lio->oct_dev;
2062 struct napi_struct *napi, *n;
2063
2064 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
2065 napi_enable(napi);
2066
2067 oct_ptp_open(netdev);
2068
2069 ifstate_set(lio, LIO_IFSTATE_RUNNING);
2070 setup_tx_poll_fn(netdev);
2071 start_txq(netdev);
2072
2073 netif_info(lio, ifup, lio->netdev, "Interface Open, ready for traffic\n");
2074 try_module_get(THIS_MODULE);
2075
2076 /* tell Octeon to start forwarding packets to host */
2077 send_rx_ctrl_cmd(lio, 1);
2078
2079 /* Ready for link status updates */
2080 lio->intf_open = 1;
2081
2082 dev_info(&oct->pci_dev->dev, "%s interface is opened\n",
2083 netdev->name);
2084
2085 return 0;
2086}
2087
2088/**
2089 * \brief Net device stop for LiquidIO
2090 * @param netdev network device
2091 */
2092static int liquidio_stop(struct net_device *netdev)
2093{
2094 struct napi_struct *napi, *n;
2095 struct lio *lio = GET_LIO(netdev);
2096 struct octeon_device *oct = lio->oct_dev;
2097
2098 netif_info(lio, ifdown, lio->netdev, "Stopping interface!\n");
2099 /* Inform that netif carrier is down */
2100 lio->intf_open = 0;
2101 lio->linfo.link.s.status = 0;
2102
2103 netif_carrier_off(netdev);
2104
2105 /* tell Octeon to stop forwarding packets to host */
2106 send_rx_ctrl_cmd(lio, 0);
2107
2108 cancel_delayed_work_sync(&lio->txq_status_wq.wk.work);
2109 flush_workqueue(lio->txq_status_wq.wq);
2110 destroy_workqueue(lio->txq_status_wq.wq);
2111
2112 if (lio->ptp_clock) {
2113 ptp_clock_unregister(lio->ptp_clock);
2114 lio->ptp_clock = NULL;
2115 }
2116
2117 ifstate_reset(lio, LIO_IFSTATE_RUNNING);
2118
2119 /* This is a hack that allows DHCP to continue working. */
2120 set_bit(__LINK_STATE_START, &lio->netdev->state);
2121
2122 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
2123 napi_disable(napi);
2124
2125 txqs_stop(netdev);
2126
2127 dev_info(&oct->pci_dev->dev, "%s interface is stopped\n", netdev->name);
2128 module_put(THIS_MODULE);
2129
2130 return 0;
2131}
2132
2133void liquidio_link_ctrl_cmd_completion(void *nctrl_ptr)
2134{
2135 struct octnic_ctrl_pkt *nctrl = (struct octnic_ctrl_pkt *)nctrl_ptr;
2136 struct net_device *netdev = (struct net_device *)nctrl->netpndev;
2137 struct lio *lio = GET_LIO(netdev);
2138 struct octeon_device *oct = lio->oct_dev;
2139
2140 switch (nctrl->ncmd.s.cmd) {
2141 case OCTNET_CMD_CHANGE_DEVFLAGS:
2142 case OCTNET_CMD_SET_MULTI_LIST:
2143 break;
2144
2145 case OCTNET_CMD_CHANGE_MACADDR:
2146 /* If command is successful, change the MACADDR. */
2147 netif_info(lio, probe, lio->netdev, " MACAddr changed to 0x%llx\n",
2148 CVM_CAST64(nctrl->udd[0]));
2149 dev_info(&oct->pci_dev->dev, "%s MACAddr changed to 0x%llx\n",
2150 netdev->name, CVM_CAST64(nctrl->udd[0]));
2151 memcpy(netdev->dev_addr, ((u8 *)&nctrl->udd[0]) + 2, ETH_ALEN);
2152 break;
2153
2154 case OCTNET_CMD_CHANGE_MTU:
2155 /* If command is successful, change the MTU. */
2156 netif_info(lio, probe, lio->netdev, " MTU Changed from %d to %d\n",
2157 netdev->mtu, nctrl->ncmd.s.param2);
2158 dev_info(&oct->pci_dev->dev, "%s MTU Changed from %d to %d\n",
2159 netdev->name, netdev->mtu,
2160 nctrl->ncmd.s.param2);
2161 netdev->mtu = nctrl->ncmd.s.param2;
2162 break;
2163
2164 case OCTNET_CMD_GPIO_ACCESS:
2165 netif_info(lio, probe, lio->netdev, "LED Flashing visual identification\n");
2166
2167 break;
2168
2169 case OCTNET_CMD_LRO_ENABLE:
2170 dev_info(&oct->pci_dev->dev, "%s LRO Enabled\n", netdev->name);
2171 break;
2172
2173 case OCTNET_CMD_LRO_DISABLE:
2174 dev_info(&oct->pci_dev->dev, "%s LRO Disabled\n",
2175 netdev->name);
2176 break;
2177
2178 case OCTNET_CMD_VERBOSE_ENABLE:
2179 dev_info(&oct->pci_dev->dev, "%s LRO Enabled\n", netdev->name);
2180 break;
2181
2182 case OCTNET_CMD_VERBOSE_DISABLE:
2183 dev_info(&oct->pci_dev->dev, "%s LRO Disabled\n",
2184 netdev->name);
2185 break;
2186
2187 case OCTNET_CMD_SET_SETTINGS:
2188 dev_info(&oct->pci_dev->dev, "%s settings changed\n",
2189 netdev->name);
2190
2191 break;
2192
2193 default:
2194 dev_err(&oct->pci_dev->dev, "%s Unknown cmd %d\n", __func__,
2195 nctrl->ncmd.s.cmd);
2196 }
2197}
2198
2199/**
2200 * \brief Converts a mask based on net device flags
2201 * @param netdev network device
2202 *
2203 * This routine generates a octnet_ifflags mask from the net device flags
2204 * received from the OS.
2205 */
2206static inline enum octnet_ifflags get_new_flags(struct net_device *netdev)
2207{
2208 enum octnet_ifflags f = OCTNET_IFFLAG_UNICAST;
2209
2210 if (netdev->flags & IFF_PROMISC)
2211 f |= OCTNET_IFFLAG_PROMISC;
2212
2213 if (netdev->flags & IFF_ALLMULTI)
2214 f |= OCTNET_IFFLAG_ALLMULTI;
2215
2216 if (netdev->flags & IFF_MULTICAST) {
2217 f |= OCTNET_IFFLAG_MULTICAST;
2218
2219 /* Accept all multicast addresses if there are more than we
2220 * can handle
2221 */
2222 if (netdev_mc_count(netdev) > MAX_OCTEON_MULTICAST_ADDR)
2223 f |= OCTNET_IFFLAG_ALLMULTI;
2224 }
2225
2226 if (netdev->flags & IFF_BROADCAST)
2227 f |= OCTNET_IFFLAG_BROADCAST;
2228
2229 return f;
2230}
2231
2232/**
2233 * \brief Net device set_multicast_list
2234 * @param netdev network device
2235 */
2236static void liquidio_set_mcast_list(struct net_device *netdev)
2237{
2238 struct lio *lio = GET_LIO(netdev);
2239 struct octeon_device *oct = lio->oct_dev;
2240 struct octnic_ctrl_pkt nctrl;
2241 struct octnic_ctrl_params nparams;
2242 struct netdev_hw_addr *ha;
2243 u64 *mc;
2244 int ret, i;
2245 int mc_count = min(netdev_mc_count(netdev), MAX_OCTEON_MULTICAST_ADDR);
2246
2247 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2248
2249 /* Create a ctrl pkt command to be sent to core app. */
2250 nctrl.ncmd.u64 = 0;
2251 nctrl.ncmd.s.cmd = OCTNET_CMD_SET_MULTI_LIST;
2252 nctrl.ncmd.s.param1 = lio->linfo.ifidx;
2253 nctrl.ncmd.s.param2 = get_new_flags(netdev);
2254 nctrl.ncmd.s.param3 = mc_count;
2255 nctrl.ncmd.s.more = mc_count;
2256 nctrl.netpndev = (u64)netdev;
2257 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2258
2259 /* copy all the addresses into the udd */
2260 i = 0;
2261 mc = &nctrl.udd[0];
2262 netdev_for_each_mc_addr(ha, netdev) {
2263 *mc = 0;
2264 memcpy(((u8 *)mc) + 2, ha->addr, ETH_ALEN);
2265 /* no need to swap bytes */
2266
2267 if (++mc > &nctrl.udd[mc_count])
2268 break;
2269 }
2270
2271 /* Apparently, any activity in this call from the kernel has to
2272 * be atomic. So we won't wait for response.
2273 */
2274 nctrl.wait_time = 0;
2275
2276 nparams.resp_order = OCTEON_RESP_NORESPONSE;
2277
2278 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams);
2279 if (ret < 0) {
2280 dev_err(&oct->pci_dev->dev, "DEVFLAGS change failed in core (ret: 0x%x)\n",
2281 ret);
2282 }
2283}
2284
2285/**
2286 * \brief Net device set_mac_address
2287 * @param netdev network device
2288 */
2289static int liquidio_set_mac(struct net_device *netdev, void *p)
2290{
2291 int ret = 0;
2292 struct lio *lio = GET_LIO(netdev);
2293 struct octeon_device *oct = lio->oct_dev;
2294 struct sockaddr *addr = (struct sockaddr *)p;
2295 struct octnic_ctrl_pkt nctrl;
2296 struct octnic_ctrl_params nparams;
2297
2298 if ((!is_valid_ether_addr(addr->sa_data)) ||
2299 (ifstate_check(lio, LIO_IFSTATE_RUNNING)))
2300 return -EADDRNOTAVAIL;
2301
2302 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2303
2304 nctrl.ncmd.u64 = 0;
2305 nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR;
2306 nctrl.ncmd.s.param1 = lio->linfo.ifidx;
2307 nctrl.ncmd.s.param2 = 0;
2308 nctrl.ncmd.s.more = 1;
2309 nctrl.netpndev = (u64)netdev;
2310 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2311 nctrl.wait_time = 100;
2312
2313 nctrl.udd[0] = 0;
2314 /* The MAC Address is presented in network byte order. */
2315 memcpy((u8 *)&nctrl.udd[0] + 2, addr->sa_data, ETH_ALEN);
2316
2317 nparams.resp_order = OCTEON_RESP_ORDERED;
2318
2319 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams);
2320 if (ret < 0) {
2321 dev_err(&oct->pci_dev->dev, "MAC Address change failed\n");
2322 return -ENOMEM;
2323 }
2324 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2325 memcpy(((u8 *)&lio->linfo.hw_addr) + 2, addr->sa_data, ETH_ALEN);
2326
2327 return 0;
2328}
2329
2330/**
2331 * \brief Net device get_stats
2332 * @param netdev network device
2333 */
2334static struct net_device_stats *liquidio_get_stats(struct net_device *netdev)
2335{
2336 struct lio *lio = GET_LIO(netdev);
2337 struct net_device_stats *stats = &netdev->stats;
2338 struct octeon_device *oct;
2339 u64 pkts = 0, drop = 0, bytes = 0;
2340 struct oct_droq_stats *oq_stats;
2341 struct oct_iq_stats *iq_stats;
2342 int i, iq_no, oq_no;
2343
2344 oct = lio->oct_dev;
2345
2346 for (i = 0; i < lio->linfo.num_txpciq; i++) {
2347 iq_no = lio->linfo.txpciq[i];
2348 iq_stats = &oct->instr_queue[iq_no]->stats;
2349 pkts += iq_stats->tx_done;
2350 drop += iq_stats->tx_dropped;
2351 bytes += iq_stats->tx_tot_bytes;
2352 }
2353
2354 stats->tx_packets = pkts;
2355 stats->tx_bytes = bytes;
2356 stats->tx_dropped = drop;
2357
2358 pkts = 0;
2359 drop = 0;
2360 bytes = 0;
2361
2362 for (i = 0; i < lio->linfo.num_rxpciq; i++) {
2363 oq_no = lio->linfo.rxpciq[i];
2364 oq_stats = &oct->droq[oq_no]->stats;
2365 pkts += oq_stats->rx_pkts_received;
2366 drop += (oq_stats->rx_dropped +
2367 oq_stats->dropped_nodispatch +
2368 oq_stats->dropped_toomany +
2369 oq_stats->dropped_nomem);
2370 bytes += oq_stats->rx_bytes_received;
2371 }
2372
2373 stats->rx_bytes = bytes;
2374 stats->rx_packets = pkts;
2375 stats->rx_dropped = drop;
2376
2377 return stats;
2378}
2379
2380/**
2381 * \brief Net device change_mtu
2382 * @param netdev network device
2383 */
2384static int liquidio_change_mtu(struct net_device *netdev, int new_mtu)
2385{
2386 struct lio *lio = GET_LIO(netdev);
2387 struct octeon_device *oct = lio->oct_dev;
2388 struct octnic_ctrl_pkt nctrl;
2389 struct octnic_ctrl_params nparams;
2390 int max_frm_size = new_mtu + OCTNET_FRM_HEADER_SIZE;
2391 int ret = 0;
2392
2393 /* Limit the MTU to make sure the ethernet packets are between 64 bytes
2394 * and 65535 bytes
2395 */
2396 if ((max_frm_size < OCTNET_MIN_FRM_SIZE) ||
2397 (max_frm_size > OCTNET_MAX_FRM_SIZE)) {
2398 dev_err(&oct->pci_dev->dev, "Invalid MTU: %d\n", new_mtu);
2399 dev_err(&oct->pci_dev->dev, "Valid range %d and %d\n",
2400 (OCTNET_MIN_FRM_SIZE - OCTNET_FRM_HEADER_SIZE),
2401 (OCTNET_MAX_FRM_SIZE - OCTNET_FRM_HEADER_SIZE));
2402 return -EINVAL;
2403 }
2404
2405 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2406
2407 nctrl.ncmd.u64 = 0;
2408 nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MTU;
2409 nctrl.ncmd.s.param1 = lio->linfo.ifidx;
2410 nctrl.ncmd.s.param2 = new_mtu;
2411 nctrl.wait_time = 100;
2412 nctrl.netpndev = (u64)netdev;
2413 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2414
2415 nparams.resp_order = OCTEON_RESP_ORDERED;
2416
2417 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams);
2418 if (ret < 0) {
2419 dev_err(&oct->pci_dev->dev, "Failed to set MTU\n");
2420 return -1;
2421 }
2422
2423 lio->mtu = new_mtu;
2424
2425 return 0;
2426}
2427
2428/**
2429 * \brief Handler for SIOCSHWTSTAMP ioctl
2430 * @param netdev network device
2431 * @param ifr interface request
2432 * @param cmd command
2433 */
2434static int hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2435{
2436 struct hwtstamp_config conf;
2437 struct lio *lio = GET_LIO(netdev);
2438
2439 if (copy_from_user(&conf, ifr->ifr_data, sizeof(conf)))
2440 return -EFAULT;
2441
2442 if (conf.flags)
2443 return -EINVAL;
2444
2445 switch (conf.tx_type) {
2446 case HWTSTAMP_TX_ON:
2447 case HWTSTAMP_TX_OFF:
2448 break;
2449 default:
2450 return -ERANGE;
2451 }
2452
2453 switch (conf.rx_filter) {
2454 case HWTSTAMP_FILTER_NONE:
2455 break;
2456 case HWTSTAMP_FILTER_ALL:
2457 case HWTSTAMP_FILTER_SOME:
2458 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2459 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2460 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2461 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2462 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2463 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2464 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2465 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2466 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2467 case HWTSTAMP_FILTER_PTP_V2_EVENT:
2468 case HWTSTAMP_FILTER_PTP_V2_SYNC:
2469 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2470 conf.rx_filter = HWTSTAMP_FILTER_ALL;
2471 break;
2472 default:
2473 return -ERANGE;
2474 }
2475
2476 if (conf.rx_filter == HWTSTAMP_FILTER_ALL)
2477 ifstate_set(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
2478
2479 else
2480 ifstate_reset(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
2481
2482 return copy_to_user(ifr->ifr_data, &conf, sizeof(conf)) ? -EFAULT : 0;
2483}
2484
2485/**
2486 * \brief ioctl handler
2487 * @param netdev network device
2488 * @param ifr interface request
2489 * @param cmd command
2490 */
2491static int liquidio_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2492{
2493 switch (cmd) {
2494 case SIOCSHWTSTAMP:
2495 return hwtstamp_ioctl(netdev, ifr, cmd);
2496 default:
2497 return -EOPNOTSUPP;
2498 }
2499}
2500
2501/**
2502 * \brief handle a Tx timestamp response
2503 * @param status response status
2504 * @param buf pointer to skb
2505 */
2506static void handle_timestamp(struct octeon_device *oct,
2507 u32 status,
2508 void *buf)
2509{
2510 struct octnet_buf_free_info *finfo;
2511 struct octeon_soft_command *sc;
2512 struct oct_timestamp_resp *resp;
2513 struct lio *lio;
2514 struct sk_buff *skb = (struct sk_buff *)buf;
2515
2516 finfo = (struct octnet_buf_free_info *)skb->cb;
2517 lio = finfo->lio;
2518 sc = finfo->sc;
2519 oct = lio->oct_dev;
2520 resp = (struct oct_timestamp_resp *)sc->virtrptr;
2521
2522 if (status != OCTEON_REQUEST_DONE) {
2523 dev_err(&oct->pci_dev->dev, "Tx timestamp instruction failed. Status: %llx\n",
2524 CVM_CAST64(status));
2525 resp->timestamp = 0;
2526 }
2527
2528 octeon_swap_8B_data(&resp->timestamp, 1);
2529
2530 if (unlikely((skb_shinfo(skb)->tx_flags | SKBTX_IN_PROGRESS) != 0)) {
2531 struct skb_shared_hwtstamps ts;
2532 u64 ns = resp->timestamp;
2533
2534 netif_info(lio, tx_done, lio->netdev,
2535 "Got resulting SKBTX_HW_TSTAMP skb=%p ns=%016llu\n",
2536 skb, (unsigned long long)ns);
2537 ts.hwtstamp = ns_to_ktime(ns + lio->ptp_adjust);
2538 skb_tstamp_tx(skb, &ts);
2539 }
2540
2541 octeon_free_soft_command(oct, sc);
2542 recv_buffer_free(skb);
2543}
2544
2545/* \brief Send a data packet that will be timestamped
2546 * @param oct octeon device
2547 * @param ndata pointer to network data
2548 * @param finfo pointer to private network data
2549 */
2550static inline int send_nic_timestamp_pkt(struct octeon_device *oct,
2551 struct octnic_data_pkt *ndata,
2552 struct octnet_buf_free_info *finfo,
2553 int xmit_more)
2554{
2555 int retval;
2556 struct octeon_soft_command *sc;
2557 struct octeon_instr_ih *ih;
2558 struct octeon_instr_rdp *rdp;
2559 struct lio *lio;
2560 int ring_doorbell;
2561
2562 lio = finfo->lio;
2563
2564 sc = octeon_alloc_soft_command_resp(oct, &ndata->cmd,
2565 sizeof(struct oct_timestamp_resp));
2566 finfo->sc = sc;
2567
2568 if (!sc) {
2569 dev_err(&oct->pci_dev->dev, "No memory for timestamped data packet\n");
2570 return IQ_SEND_FAILED;
2571 }
2572
2573 if (ndata->reqtype == REQTYPE_NORESP_NET)
2574 ndata->reqtype = REQTYPE_RESP_NET;
2575 else if (ndata->reqtype == REQTYPE_NORESP_NET_SG)
2576 ndata->reqtype = REQTYPE_RESP_NET_SG;
2577
2578 sc->callback = handle_timestamp;
2579 sc->callback_arg = finfo->skb;
2580 sc->iq_no = ndata->q_no;
2581
2582 ih = (struct octeon_instr_ih *)&sc->cmd.ih;
2583 rdp = (struct octeon_instr_rdp *)&sc->cmd.rdp;
2584
2585 ring_doorbell = !xmit_more;
2586 retval = octeon_send_command(oct, sc->iq_no, ring_doorbell, &sc->cmd,
2587 sc, ih->dlengsz, ndata->reqtype);
2588
2589 if (retval) {
2590 dev_err(&oct->pci_dev->dev, "timestamp data packet failed status: %x\n",
2591 retval);
2592 octeon_free_soft_command(oct, sc);
2593 } else {
2594 netif_info(lio, tx_queued, lio->netdev, "Queued timestamp packet\n");
2595 }
2596
2597 return retval;
2598}
2599
2600static inline int is_ipv4(struct sk_buff *skb)
2601{
2602 return (skb->protocol == htons(ETH_P_IP)) &&
2603 (ip_hdr(skb)->version == 4);
2604}
2605
2606static inline int is_vlan(struct sk_buff *skb)
2607{
2608 return skb->protocol == htons(ETH_P_8021Q);
2609}
2610
2611static inline int is_ip_fragmented(struct sk_buff *skb)
2612{
2613 /* The Don't fragment and Reserved flag fields are ignored.
2614 * IP is fragmented if
2615 * - the More fragments bit is set (indicating this IP is a fragment
2616 * with more to follow; the current offset could be 0 ).
2617 * - ths offset field is non-zero.
2618 */
Raghu Vatsavayi5b173cf2015-06-12 18:11:50 -07002619 return (ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET)) ? 1 : 0;
Raghu Vatsavayif21fb3e2015-06-09 18:15:23 -07002620}
2621
2622static inline int is_ipv6(struct sk_buff *skb)
2623{
2624 return (skb->protocol == htons(ETH_P_IPV6)) &&
2625 (ipv6_hdr(skb)->version == 6);
2626}
2627
2628static inline int is_with_extn_hdr(struct sk_buff *skb)
2629{
2630 return (ipv6_hdr(skb)->nexthdr != IPPROTO_TCP) &&
2631 (ipv6_hdr(skb)->nexthdr != IPPROTO_UDP);
2632}
2633
2634static inline int is_tcpudp(struct sk_buff *skb)
2635{
2636 return (ip_hdr(skb)->protocol == IPPROTO_TCP) ||
2637 (ip_hdr(skb)->protocol == IPPROTO_UDP);
2638}
2639
2640static inline u32 get_ipv4_5tuple_tag(struct sk_buff *skb)
2641{
2642 u32 tag;
2643 struct iphdr *iphdr = ip_hdr(skb);
2644
2645 tag = crc32(0, &iphdr->protocol, 1);
2646 tag = crc32(tag, (u8 *)&iphdr->saddr, 8);
2647 tag = crc32(tag, skb_transport_header(skb), 4);
2648 return tag;
2649}
2650
2651static inline u32 get_ipv6_5tuple_tag(struct sk_buff *skb)
2652{
2653 u32 tag;
2654 struct ipv6hdr *ipv6hdr = ipv6_hdr(skb);
2655
2656 tag = crc32(0, &ipv6hdr->nexthdr, 1);
2657 tag = crc32(tag, (u8 *)&ipv6hdr->saddr, 32);
2658 tag = crc32(tag, skb_transport_header(skb), 4);
2659 return tag;
2660}
2661
2662/** \brief Transmit networks packets to the Octeon interface
2663 * @param skbuff skbuff struct to be passed to network layer.
2664 * @param netdev pointer to network device
2665 * @returns whether the packet was transmitted to the device okay or not
2666 * (NETDEV_TX_OK or NETDEV_TX_BUSY)
2667 */
2668static int liquidio_xmit(struct sk_buff *skb, struct net_device *netdev)
2669{
2670 struct lio *lio;
2671 struct octnet_buf_free_info *finfo;
2672 union octnic_cmd_setup cmdsetup;
2673 struct octnic_data_pkt ndata;
2674 struct octeon_device *oct;
2675 struct oct_iq_stats *stats;
2676 int cpu = 0, status = 0;
2677 int q_idx = 0, iq_no = 0;
2678 int xmit_more;
2679 u32 tag = 0;
2680
2681 lio = GET_LIO(netdev);
2682 oct = lio->oct_dev;
2683
2684 if (netif_is_multiqueue(netdev)) {
2685 cpu = skb->queue_mapping;
2686 q_idx = (cpu & (lio->linfo.num_txpciq - 1));
2687 iq_no = lio->linfo.txpciq[q_idx];
2688 } else {
2689 iq_no = lio->txq;
2690 }
2691
2692 stats = &oct->instr_queue[iq_no]->stats;
2693
2694 /* Check for all conditions in which the current packet cannot be
2695 * transmitted.
2696 */
2697 if (!(atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING) ||
2698 (!lio->linfo.link.s.status) ||
2699 (skb->len <= 0)) {
2700 netif_info(lio, tx_err, lio->netdev,
2701 "Transmit failed link_status : %d\n",
2702 lio->linfo.link.s.status);
2703 goto lio_xmit_failed;
2704 }
2705
2706 /* Use space in skb->cb to store info used to unmap and
2707 * free the buffers.
2708 */
2709 finfo = (struct octnet_buf_free_info *)skb->cb;
2710 finfo->lio = lio;
2711 finfo->skb = skb;
2712 finfo->sc = NULL;
2713
2714 /* Prepare the attributes for the data to be passed to OSI. */
2715 memset(&ndata, 0, sizeof(struct octnic_data_pkt));
2716
2717 ndata.buf = (void *)finfo;
2718
2719 ndata.q_no = iq_no;
2720
2721 if (netif_is_multiqueue(netdev)) {
2722 if (octnet_iq_is_full(oct, ndata.q_no)) {
2723 /* defer sending if queue is full */
2724 netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
2725 ndata.q_no);
2726 stats->tx_iq_busy++;
2727 return NETDEV_TX_BUSY;
2728 }
2729 } else {
2730 if (octnet_iq_is_full(oct, lio->txq)) {
2731 /* defer sending if queue is full */
2732 stats->tx_iq_busy++;
2733 netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
2734 ndata.q_no);
2735 return NETDEV_TX_BUSY;
2736 }
2737 }
2738 /* pr_info(" XMIT - valid Qs: %d, 1st Q no: %d, cpu: %d, q_no:%d\n",
2739 * lio->linfo.num_txpciq, lio->txq, cpu, ndata.q_no );
2740 */
2741
2742 ndata.datasize = skb->len;
2743
2744 cmdsetup.u64 = 0;
2745 cmdsetup.s.ifidx = lio->linfo.ifidx;
2746
2747 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2748 if (is_ipv4(skb) && !is_ip_fragmented(skb) && is_tcpudp(skb)) {
2749 tag = get_ipv4_5tuple_tag(skb);
2750
2751 cmdsetup.s.cksum_offset = sizeof(struct ethhdr) + 1;
2752
2753 if (ip_hdr(skb)->ihl > 5)
2754 cmdsetup.s.ipv4opts_ipv6exthdr =
2755 OCT_PKT_PARAM_IPV4OPTS;
2756
2757 } else if (is_ipv6(skb)) {
2758 tag = get_ipv6_5tuple_tag(skb);
2759
2760 cmdsetup.s.cksum_offset = sizeof(struct ethhdr) + 1;
2761
2762 if (is_with_extn_hdr(skb))
2763 cmdsetup.s.ipv4opts_ipv6exthdr =
2764 OCT_PKT_PARAM_IPV6EXTHDR;
2765
2766 } else if (is_vlan(skb)) {
2767 if (vlan_eth_hdr(skb)->h_vlan_encapsulated_proto
2768 == htons(ETH_P_IP) &&
2769 !is_ip_fragmented(skb) && is_tcpudp(skb)) {
2770 tag = get_ipv4_5tuple_tag(skb);
2771
2772 cmdsetup.s.cksum_offset =
2773 sizeof(struct vlan_ethhdr) + 1;
2774
2775 if (ip_hdr(skb)->ihl > 5)
2776 cmdsetup.s.ipv4opts_ipv6exthdr =
2777 OCT_PKT_PARAM_IPV4OPTS;
2778
2779 } else if (vlan_eth_hdr(skb)->h_vlan_encapsulated_proto
2780 == htons(ETH_P_IPV6)) {
2781 tag = get_ipv6_5tuple_tag(skb);
2782
2783 cmdsetup.s.cksum_offset =
2784 sizeof(struct vlan_ethhdr) + 1;
2785
2786 if (is_with_extn_hdr(skb))
2787 cmdsetup.s.ipv4opts_ipv6exthdr =
2788 OCT_PKT_PARAM_IPV6EXTHDR;
2789 }
2790 }
2791 }
2792 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
2793 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2794 cmdsetup.s.timestamp = 1;
2795 }
2796
2797 if (skb_shinfo(skb)->nr_frags == 0) {
2798 cmdsetup.s.u.datasize = skb->len;
2799 octnet_prepare_pci_cmd(&ndata.cmd, &cmdsetup, tag);
2800 /* Offload checksum calculation for TCP/UDP packets */
2801 ndata.cmd.dptr = dma_map_single(&oct->pci_dev->dev,
2802 skb->data,
2803 skb->len,
2804 DMA_TO_DEVICE);
2805 if (dma_mapping_error(&oct->pci_dev->dev, ndata.cmd.dptr)) {
2806 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 1\n",
2807 __func__);
2808 return NETDEV_TX_BUSY;
2809 }
2810
2811 finfo->dptr = ndata.cmd.dptr;
2812
2813 ndata.reqtype = REQTYPE_NORESP_NET;
2814
2815 } else {
2816 int i, frags;
2817 struct skb_frag_struct *frag;
2818 struct octnic_gather *g;
2819
2820 spin_lock(&lio->lock);
2821 g = (struct octnic_gather *)list_delete_head(&lio->glist);
2822 spin_unlock(&lio->lock);
2823
2824 if (!g) {
2825 netif_info(lio, tx_err, lio->netdev,
2826 "Transmit scatter gather: glist null!\n");
2827 goto lio_xmit_failed;
2828 }
2829
2830 cmdsetup.s.gather = 1;
2831 cmdsetup.s.u.gatherptrs = (skb_shinfo(skb)->nr_frags + 1);
2832 octnet_prepare_pci_cmd(&ndata.cmd, &cmdsetup, tag);
2833
2834 memset(g->sg, 0, g->sg_size);
2835
2836 g->sg[0].ptr[0] = dma_map_single(&oct->pci_dev->dev,
2837 skb->data,
2838 (skb->len - skb->data_len),
2839 DMA_TO_DEVICE);
2840 if (dma_mapping_error(&oct->pci_dev->dev, g->sg[0].ptr[0])) {
2841 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 2\n",
2842 __func__);
2843 return NETDEV_TX_BUSY;
2844 }
2845 add_sg_size(&g->sg[0], (skb->len - skb->data_len), 0);
2846
2847 frags = skb_shinfo(skb)->nr_frags;
2848 i = 1;
2849 while (frags--) {
2850 frag = &skb_shinfo(skb)->frags[i - 1];
2851
2852 g->sg[(i >> 2)].ptr[(i & 3)] =
2853 dma_map_page(&oct->pci_dev->dev,
2854 frag->page.p,
2855 frag->page_offset,
2856 frag->size,
2857 DMA_TO_DEVICE);
2858
2859 add_sg_size(&g->sg[(i >> 2)], frag->size, (i & 3));
2860 i++;
2861 }
2862
2863 ndata.cmd.dptr = dma_map_single(&oct->pci_dev->dev,
2864 g->sg, g->sg_size,
2865 DMA_TO_DEVICE);
2866 if (dma_mapping_error(&oct->pci_dev->dev, ndata.cmd.dptr)) {
2867 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 3\n",
2868 __func__);
2869 dma_unmap_single(&oct->pci_dev->dev, g->sg[0].ptr[0],
2870 skb->len - skb->data_len,
2871 DMA_TO_DEVICE);
2872 return NETDEV_TX_BUSY;
2873 }
2874
2875 finfo->dptr = ndata.cmd.dptr;
2876 finfo->g = g;
2877
2878 ndata.reqtype = REQTYPE_NORESP_NET_SG;
2879 }
2880
2881 if (skb_shinfo(skb)->gso_size) {
2882 struct octeon_instr_irh *irh =
2883 (struct octeon_instr_irh *)&ndata.cmd.irh;
2884 union tx_info *tx_info = (union tx_info *)&ndata.cmd.ossp[0];
2885
2886 irh->len = 1; /* to indicate that ossp[0] contains tx_info */
2887 tx_info->s.gso_size = skb_shinfo(skb)->gso_size;
2888 tx_info->s.gso_segs = skb_shinfo(skb)->gso_segs;
2889 }
2890
2891 xmit_more = skb->xmit_more;
2892
2893 if (unlikely(cmdsetup.s.timestamp))
2894 status = send_nic_timestamp_pkt(oct, &ndata, finfo, xmit_more);
2895 else
2896 status = octnet_send_nic_data_pkt(oct, &ndata, xmit_more);
2897 if (status == IQ_SEND_FAILED)
2898 goto lio_xmit_failed;
2899
2900 netif_info(lio, tx_queued, lio->netdev, "Transmit queued successfully\n");
2901
2902 if (status == IQ_SEND_STOP)
2903 stop_q(lio->netdev, q_idx);
2904
2905 netdev->trans_start = jiffies;
2906
2907 stats->tx_done++;
2908 stats->tx_tot_bytes += skb->len;
2909
2910 return NETDEV_TX_OK;
2911
2912lio_xmit_failed:
2913 stats->tx_dropped++;
2914 netif_info(lio, tx_err, lio->netdev, "IQ%d Transmit dropped:%llu\n",
2915 iq_no, stats->tx_dropped);
2916 dma_unmap_single(&oct->pci_dev->dev, ndata.cmd.dptr,
2917 ndata.datasize, DMA_TO_DEVICE);
2918 recv_buffer_free(skb);
2919 return NETDEV_TX_OK;
2920}
2921
2922/** \brief Network device Tx timeout
2923 * @param netdev pointer to network device
2924 */
2925static void liquidio_tx_timeout(struct net_device *netdev)
2926{
2927 struct lio *lio;
2928
2929 lio = GET_LIO(netdev);
2930
2931 netif_info(lio, tx_err, lio->netdev,
2932 "Transmit timeout tx_dropped:%ld, waking up queues now!!\n",
2933 netdev->stats.tx_dropped);
2934 netdev->trans_start = jiffies;
2935 txqs_wake(netdev);
2936}
2937
2938int liquidio_set_feature(struct net_device *netdev, int cmd)
2939{
2940 struct lio *lio = GET_LIO(netdev);
2941 struct octeon_device *oct = lio->oct_dev;
2942 struct octnic_ctrl_pkt nctrl;
2943 struct octnic_ctrl_params nparams;
2944 int ret = 0;
2945
2946 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2947
2948 nctrl.ncmd.u64 = 0;
2949 nctrl.ncmd.s.cmd = cmd;
2950 nctrl.ncmd.s.param1 = lio->linfo.ifidx;
2951 nctrl.ncmd.s.param2 = OCTNIC_LROIPV4 | OCTNIC_LROIPV6;
2952 nctrl.wait_time = 100;
2953 nctrl.netpndev = (u64)netdev;
2954 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2955
2956 nparams.resp_order = OCTEON_RESP_NORESPONSE;
2957
2958 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams);
2959 if (ret < 0) {
2960 dev_err(&oct->pci_dev->dev, "Feature change failed in core (ret: 0x%x)\n",
2961 ret);
2962 }
2963 return ret;
2964}
2965
2966/** \brief Net device fix features
2967 * @param netdev pointer to network device
2968 * @param request features requested
2969 * @returns updated features list
2970 */
2971static netdev_features_t liquidio_fix_features(struct net_device *netdev,
2972 netdev_features_t request)
2973{
2974 struct lio *lio = netdev_priv(netdev);
2975
2976 if ((request & NETIF_F_RXCSUM) &&
2977 !(lio->dev_capability & NETIF_F_RXCSUM))
2978 request &= ~NETIF_F_RXCSUM;
2979
2980 if ((request & NETIF_F_HW_CSUM) &&
2981 !(lio->dev_capability & NETIF_F_HW_CSUM))
2982 request &= ~NETIF_F_HW_CSUM;
2983
2984 if ((request & NETIF_F_TSO) && !(lio->dev_capability & NETIF_F_TSO))
2985 request &= ~NETIF_F_TSO;
2986
2987 if ((request & NETIF_F_TSO6) && !(lio->dev_capability & NETIF_F_TSO6))
2988 request &= ~NETIF_F_TSO6;
2989
2990 if ((request & NETIF_F_LRO) && !(lio->dev_capability & NETIF_F_LRO))
2991 request &= ~NETIF_F_LRO;
2992
2993 /*Disable LRO if RXCSUM is off */
2994 if (!(request & NETIF_F_RXCSUM) && (netdev->features & NETIF_F_LRO) &&
2995 (lio->dev_capability & NETIF_F_LRO))
2996 request &= ~NETIF_F_LRO;
2997
2998 return request;
2999}
3000
3001/** \brief Net device set features
3002 * @param netdev pointer to network device
3003 * @param features features to enable/disable
3004 */
3005static int liquidio_set_features(struct net_device *netdev,
3006 netdev_features_t features)
3007{
3008 struct lio *lio = netdev_priv(netdev);
3009
3010 if (!((netdev->features ^ features) & NETIF_F_LRO))
3011 return 0;
3012
3013 if ((features & NETIF_F_LRO) && (lio->dev_capability & NETIF_F_LRO))
3014 liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE);
3015 else if (!(features & NETIF_F_LRO) &&
3016 (lio->dev_capability & NETIF_F_LRO))
3017 liquidio_set_feature(netdev, OCTNET_CMD_LRO_DISABLE);
3018
3019 return 0;
3020}
3021
3022static struct net_device_ops lionetdevops = {
3023 .ndo_open = liquidio_open,
3024 .ndo_stop = liquidio_stop,
3025 .ndo_start_xmit = liquidio_xmit,
3026 .ndo_get_stats = liquidio_get_stats,
3027 .ndo_set_mac_address = liquidio_set_mac,
3028 .ndo_set_rx_mode = liquidio_set_mcast_list,
3029 .ndo_tx_timeout = liquidio_tx_timeout,
3030 .ndo_change_mtu = liquidio_change_mtu,
3031 .ndo_do_ioctl = liquidio_ioctl,
3032 .ndo_fix_features = liquidio_fix_features,
3033 .ndo_set_features = liquidio_set_features,
3034};
3035
3036/** \brief Entry point for the liquidio module
3037 */
3038static int __init liquidio_init(void)
3039{
3040 int i;
3041 struct handshake *hs;
3042
3043 init_completion(&first_stage);
3044
3045 octeon_init_device_list(conf_type);
3046
3047 if (liquidio_init_pci())
3048 return -EINVAL;
3049
3050 wait_for_completion_timeout(&first_stage, msecs_to_jiffies(1000));
3051
3052 for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
3053 hs = &handshake[i];
3054 if (hs->pci_dev) {
3055 wait_for_completion(&hs->init);
3056 if (!hs->init_ok) {
3057 /* init handshake failed */
3058 dev_err(&hs->pci_dev->dev,
3059 "Failed to init device\n");
3060 liquidio_deinit_pci();
3061 return -EIO;
3062 }
3063 }
3064 }
3065
3066 for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
3067 hs = &handshake[i];
3068 if (hs->pci_dev) {
3069 wait_for_completion_timeout(&hs->started,
3070 msecs_to_jiffies(30000));
3071 if (!hs->started_ok) {
3072 /* starter handshake failed */
3073 dev_err(&hs->pci_dev->dev,
3074 "Firmware failed to start\n");
3075 liquidio_deinit_pci();
3076 return -EIO;
3077 }
3078 }
3079 }
3080
3081 return 0;
3082}
3083
Raghu Vatsavayi5b173cf2015-06-12 18:11:50 -07003084static int lio_nic_info(struct octeon_recv_info *recv_info, void *buf)
Raghu Vatsavayif21fb3e2015-06-09 18:15:23 -07003085{
3086 struct octeon_device *oct = (struct octeon_device *)buf;
3087 struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt;
3088 int ifidx = 0;
3089 union oct_link_status *ls;
3090 int i;
3091
3092 if ((recv_pkt->buffer_size[0] != sizeof(*ls)) ||
3093 (recv_pkt->rh.r_nic_info.ifidx > oct->ifcount)) {
3094 dev_err(&oct->pci_dev->dev, "Malformed NIC_INFO, len=%d, ifidx=%d\n",
3095 recv_pkt->buffer_size[0],
3096 recv_pkt->rh.r_nic_info.ifidx);
3097 goto nic_info_err;
3098 }
3099
3100 ifidx = recv_pkt->rh.r_nic_info.ifidx;
3101 ls = (union oct_link_status *)get_rbd(recv_pkt->buffer_ptr[0]);
3102
3103 octeon_swap_8B_data((u64 *)ls, (sizeof(union oct_link_status)) >> 3);
3104
3105 update_link_status(oct->props[ifidx].netdev, ls);
3106
3107nic_info_err:
3108 for (i = 0; i < recv_pkt->buffer_count; i++)
3109 recv_buffer_free(recv_pkt->buffer_ptr[i]);
3110 octeon_free_recv_info(recv_info);
3111 return 0;
3112}
3113
3114/**
3115 * \brief Setup network interfaces
3116 * @param octeon_dev octeon device
3117 *
3118 * Called during init time for each device. It assumes the NIC
3119 * is already up and running. The link information for each
3120 * interface is passed in link_info.
3121 */
3122static int setup_nic_devices(struct octeon_device *octeon_dev)
3123{
3124 struct lio *lio = NULL;
3125 struct net_device *netdev;
3126 u8 mac[6], i, j;
3127 struct octeon_soft_command *sc;
3128 struct liquidio_if_cfg_context *ctx;
3129 struct liquidio_if_cfg_resp *resp;
3130 struct octdev_props *props;
3131 int retval, num_iqueues, num_oqueues, q_no;
3132 u64 q_mask;
3133 int num_cpus = num_online_cpus();
3134 union oct_nic_if_cfg if_cfg;
3135 unsigned int base_queue;
3136 unsigned int gmx_port_id;
3137 u32 resp_size, ctx_size;
3138
3139 /* This is to handle link status changes */
3140 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
3141 OPCODE_NIC_INFO,
3142 lio_nic_info, octeon_dev);
3143
3144 /* REQTYPE_RESP_NET and REQTYPE_SOFT_COMMAND do not have free functions.
3145 * They are handled directly.
3146 */
3147 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET,
3148 free_netbuf);
3149
3150 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET_SG,
3151 free_netsgbuf);
3152
3153 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_RESP_NET_SG,
3154 free_netsgbuf_with_resp);
3155
3156 for (i = 0; i < octeon_dev->ifcount; i++) {
3157 resp_size = sizeof(struct liquidio_if_cfg_resp);
3158 ctx_size = sizeof(struct liquidio_if_cfg_context);
3159 sc = (struct octeon_soft_command *)
3160 octeon_alloc_soft_command(octeon_dev, 0,
3161 resp_size, ctx_size);
3162 resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
3163 ctx = (struct liquidio_if_cfg_context *)sc->ctxptr;
3164
3165 num_iqueues =
3166 CFG_GET_NUM_TXQS_NIC_IF(octeon_get_conf(octeon_dev), i);
3167 num_oqueues =
3168 CFG_GET_NUM_RXQS_NIC_IF(octeon_get_conf(octeon_dev), i);
3169 base_queue =
3170 CFG_GET_BASE_QUE_NIC_IF(octeon_get_conf(octeon_dev), i);
3171 gmx_port_id =
3172 CFG_GET_GMXID_NIC_IF(octeon_get_conf(octeon_dev), i);
3173 if (num_iqueues > num_cpus)
3174 num_iqueues = num_cpus;
3175 if (num_oqueues > num_cpus)
3176 num_oqueues = num_cpus;
3177 dev_dbg(&octeon_dev->pci_dev->dev,
3178 "requesting config for interface %d, iqs %d, oqs %d\n",
3179 i, num_iqueues, num_oqueues);
3180 ACCESS_ONCE(ctx->cond) = 0;
3181 ctx->octeon_id = lio_get_device_id(octeon_dev);
3182 init_waitqueue_head(&ctx->wc);
3183
3184 if_cfg.u64 = 0;
3185 if_cfg.s.num_iqueues = num_iqueues;
3186 if_cfg.s.num_oqueues = num_oqueues;
3187 if_cfg.s.base_queue = base_queue;
3188 if_cfg.s.gmx_port_id = gmx_port_id;
3189 octeon_prepare_soft_command(octeon_dev, sc, OPCODE_NIC,
3190 OPCODE_NIC_IF_CFG, i,
3191 if_cfg.u64, 0);
3192
3193 sc->callback = if_cfg_callback;
3194 sc->callback_arg = sc;
3195 sc->wait_time = 1000;
3196
3197 retval = octeon_send_soft_command(octeon_dev, sc);
3198 if (retval) {
3199 dev_err(&octeon_dev->pci_dev->dev,
3200 "iq/oq config failed status: %x\n",
3201 retval);
3202 /* Soft instr is freed by driver in case of failure. */
3203 goto setup_nic_dev_fail;
3204 }
3205
3206 /* Sleep on a wait queue till the cond flag indicates that the
3207 * response arrived or timed-out.
3208 */
3209 sleep_cond(&ctx->wc, &ctx->cond);
3210 retval = resp->status;
3211 if (retval) {
3212 dev_err(&octeon_dev->pci_dev->dev, "iq/oq config failed\n");
3213 goto setup_nic_dev_fail;
3214 }
3215
3216 octeon_swap_8B_data((u64 *)(&resp->cfg_info),
3217 (sizeof(struct liquidio_if_cfg_info)) >> 3);
3218
3219 num_iqueues = hweight64(resp->cfg_info.iqmask);
3220 num_oqueues = hweight64(resp->cfg_info.oqmask);
3221
3222 if (!(num_iqueues) || !(num_oqueues)) {
3223 dev_err(&octeon_dev->pci_dev->dev,
3224 "Got bad iqueues (%016llx) or oqueues (%016llx) from firmware.\n",
3225 resp->cfg_info.iqmask,
3226 resp->cfg_info.oqmask);
3227 goto setup_nic_dev_fail;
3228 }
3229 dev_dbg(&octeon_dev->pci_dev->dev,
3230 "interface %d, iqmask %016llx, oqmask %016llx, numiqueues %d, numoqueues %d\n",
3231 i, resp->cfg_info.iqmask, resp->cfg_info.oqmask,
3232 num_iqueues, num_oqueues);
3233 netdev = alloc_etherdev_mq(LIO_SIZE, num_iqueues);
3234
3235 if (!netdev) {
3236 dev_err(&octeon_dev->pci_dev->dev, "Device allocation failed\n");
3237 goto setup_nic_dev_fail;
3238 }
3239
3240 props = &octeon_dev->props[i];
3241 props->netdev = netdev;
3242
3243 if (num_iqueues > 1)
3244 lionetdevops.ndo_select_queue = select_q;
3245
3246 /* Associate the routines that will handle different
3247 * netdev tasks.
3248 */
3249 netdev->netdev_ops = &lionetdevops;
3250
3251 lio = GET_LIO(netdev);
3252
3253 memset(lio, 0, sizeof(struct lio));
3254
3255 lio->linfo.ifidx = resp->cfg_info.ifidx;
3256 lio->ifidx = resp->cfg_info.ifidx;
3257
3258 lio->linfo.num_rxpciq = num_oqueues;
3259 lio->linfo.num_txpciq = num_iqueues;
3260 q_mask = resp->cfg_info.oqmask;
3261 /* q_mask is 0-based and already verified mask is nonzero */
3262 for (j = 0; j < num_oqueues; j++) {
3263 q_no = __ffs64(q_mask);
3264 q_mask &= (~(1UL << q_no));
3265 lio->linfo.rxpciq[j] = q_no;
3266 }
3267 q_mask = resp->cfg_info.iqmask;
3268 for (j = 0; j < num_iqueues; j++) {
3269 q_no = __ffs64(q_mask);
3270 q_mask &= (~(1UL << q_no));
3271 lio->linfo.txpciq[j] = q_no;
3272 }
3273 lio->linfo.hw_addr = resp->cfg_info.linfo.hw_addr;
3274 lio->linfo.gmxport = resp->cfg_info.linfo.gmxport;
3275 lio->linfo.link.u64 = resp->cfg_info.linfo.link.u64;
3276
3277 lio->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3278
3279 lio->dev_capability = NETIF_F_HIGHDMA
3280 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3281 | NETIF_F_SG | NETIF_F_RXCSUM
3282 | NETIF_F_TSO | NETIF_F_TSO6
3283 | NETIF_F_LRO;
3284 netif_set_gso_max_size(netdev, OCTNIC_GSO_MAX_SIZE);
3285
3286 netdev->features = lio->dev_capability;
3287 netdev->vlan_features = lio->dev_capability;
3288
3289 netdev->hw_features = lio->dev_capability;
3290
3291 /* Point to the properties for octeon device to which this
3292 * interface belongs.
3293 */
3294 lio->oct_dev = octeon_dev;
3295 lio->octprops = props;
3296 lio->netdev = netdev;
3297 spin_lock_init(&lio->lock);
3298
3299 dev_dbg(&octeon_dev->pci_dev->dev,
3300 "if%d gmx: %d hw_addr: 0x%llx\n", i,
3301 lio->linfo.gmxport, CVM_CAST64(lio->linfo.hw_addr));
3302
3303 /* 64-bit swap required on LE machines */
3304 octeon_swap_8B_data(&lio->linfo.hw_addr, 1);
3305 for (j = 0; j < 6; j++)
3306 mac[j] = *((u8 *)(((u8 *)&lio->linfo.hw_addr) + 2 + j));
3307
3308 /* Copy MAC Address to OS network device structure */
3309
3310 ether_addr_copy(netdev->dev_addr, mac);
3311
3312 if (setup_io_queues(octeon_dev, netdev)) {
3313 dev_err(&octeon_dev->pci_dev->dev, "I/O queues creation failed\n");
3314 goto setup_nic_dev_fail;
3315 }
3316
3317 ifstate_set(lio, LIO_IFSTATE_DROQ_OPS);
3318
3319 /* By default all interfaces on a single Octeon uses the same
3320 * tx and rx queues
3321 */
3322 lio->txq = lio->linfo.txpciq[0];
3323 lio->rxq = lio->linfo.rxpciq[0];
3324
3325 lio->tx_qsize = octeon_get_tx_qsize(octeon_dev, lio->txq);
3326 lio->rx_qsize = octeon_get_rx_qsize(octeon_dev, lio->rxq);
3327
3328 if (setup_glist(lio)) {
3329 dev_err(&octeon_dev->pci_dev->dev,
3330 "Gather list allocation failed\n");
3331 goto setup_nic_dev_fail;
3332 }
3333
3334 /* Register ethtool support */
3335 liquidio_set_ethtool_ops(netdev);
3336
3337 liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE);
3338
3339 if ((debug != -1) && (debug & NETIF_MSG_HW))
3340 liquidio_set_feature(netdev, OCTNET_CMD_VERBOSE_ENABLE);
3341
3342 /* Register the network device with the OS */
3343 if (register_netdev(netdev)) {
3344 dev_err(&octeon_dev->pci_dev->dev, "Device registration failed\n");
3345 goto setup_nic_dev_fail;
3346 }
3347
3348 dev_dbg(&octeon_dev->pci_dev->dev,
3349 "Setup NIC ifidx:%d mac:%02x%02x%02x%02x%02x%02x\n",
3350 i, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
3351 netif_carrier_off(netdev);
3352
3353 if (lio->linfo.link.s.status) {
3354 netif_carrier_on(netdev);
3355 start_txq(netdev);
3356 } else {
3357 netif_carrier_off(netdev);
3358 }
3359
3360 ifstate_set(lio, LIO_IFSTATE_REGISTERED);
3361
3362 dev_dbg(&octeon_dev->pci_dev->dev,
3363 "NIC ifidx:%d Setup successful\n", i);
3364
3365 octeon_free_soft_command(octeon_dev, sc);
3366 }
3367
3368 return 0;
3369
3370setup_nic_dev_fail:
3371
3372 octeon_free_soft_command(octeon_dev, sc);
3373
3374 while (i--) {
3375 dev_err(&octeon_dev->pci_dev->dev,
3376 "NIC ifidx:%d Setup failed\n", i);
3377 liquidio_destroy_nic_device(octeon_dev, i);
3378 }
3379 return -ENODEV;
3380}
3381
3382/**
3383 * \brief initialize the NIC
3384 * @param oct octeon device
3385 *
3386 * This initialization routine is called once the Octeon device application is
3387 * up and running
3388 */
3389static int liquidio_init_nic_module(struct octeon_device *oct)
3390{
3391 struct oct_intrmod_cfg *intrmod_cfg;
3392 int retval = 0;
3393 int num_nic_ports = CFG_GET_NUM_NIC_PORTS(octeon_get_conf(oct));
3394
3395 dev_dbg(&oct->pci_dev->dev, "Initializing network interfaces\n");
3396
3397 /* only default iq and oq were initialized
3398 * initialize the rest as well
3399 */
3400 /* run port_config command for each port */
3401 oct->ifcount = num_nic_ports;
3402
3403 memset(oct->props, 0,
3404 sizeof(struct octdev_props) * num_nic_ports);
3405
3406 retval = setup_nic_devices(oct);
3407 if (retval) {
3408 dev_err(&oct->pci_dev->dev, "Setup NIC devices failed\n");
3409 goto octnet_init_failure;
3410 }
3411
3412 liquidio_ptp_init(oct);
3413
3414 /* Initialize interrupt moderation params */
3415 intrmod_cfg = &((struct octeon_device *)oct)->intrmod;
3416 intrmod_cfg->intrmod_enable = 1;
3417 intrmod_cfg->intrmod_check_intrvl = LIO_INTRMOD_CHECK_INTERVAL;
3418 intrmod_cfg->intrmod_maxpkt_ratethr = LIO_INTRMOD_MAXPKT_RATETHR;
3419 intrmod_cfg->intrmod_minpkt_ratethr = LIO_INTRMOD_MINPKT_RATETHR;
3420 intrmod_cfg->intrmod_maxcnt_trigger = LIO_INTRMOD_MAXCNT_TRIGGER;
3421 intrmod_cfg->intrmod_maxtmr_trigger = LIO_INTRMOD_MAXTMR_TRIGGER;
3422 intrmod_cfg->intrmod_mintmr_trigger = LIO_INTRMOD_MINTMR_TRIGGER;
3423 intrmod_cfg->intrmod_mincnt_trigger = LIO_INTRMOD_MINCNT_TRIGGER;
3424
3425 dev_dbg(&oct->pci_dev->dev, "Network interfaces ready\n");
3426
3427 return retval;
3428
3429octnet_init_failure:
3430
3431 oct->ifcount = 0;
3432
3433 return retval;
3434}
3435
3436/**
3437 * \brief starter callback that invokes the remaining initialization work after
3438 * the NIC is up and running.
3439 * @param octptr work struct work_struct
3440 */
3441static void nic_starter(struct work_struct *work)
3442{
3443 struct octeon_device *oct;
3444 struct cavium_wk *wk = (struct cavium_wk *)work;
3445
3446 oct = (struct octeon_device *)wk->ctxptr;
3447
3448 if (atomic_read(&oct->status) == OCT_DEV_RUNNING)
3449 return;
3450
3451 /* If the status of the device is CORE_OK, the core
3452 * application has reported its application type. Call
3453 * any registered handlers now and move to the RUNNING
3454 * state.
3455 */
3456 if (atomic_read(&oct->status) != OCT_DEV_CORE_OK) {
3457 schedule_delayed_work(&oct->nic_poll_work.work,
3458 LIQUIDIO_STARTER_POLL_INTERVAL_MS);
3459 return;
3460 }
3461
3462 atomic_set(&oct->status, OCT_DEV_RUNNING);
3463
3464 if (oct->app_mode && oct->app_mode == CVM_DRV_NIC_APP) {
3465 dev_dbg(&oct->pci_dev->dev, "Starting NIC module\n");
3466
3467 if (liquidio_init_nic_module(oct))
3468 dev_err(&oct->pci_dev->dev, "NIC initialization failed\n");
3469 else
3470 handshake[oct->octeon_id].started_ok = 1;
3471 } else {
3472 dev_err(&oct->pci_dev->dev,
3473 "Unexpected application running on NIC (%d). Check firmware.\n",
3474 oct->app_mode);
3475 }
3476
3477 complete(&handshake[oct->octeon_id].started);
3478}
3479
3480/**
3481 * \brief Device initialization for each Octeon device that is probed
3482 * @param octeon_dev octeon device
3483 */
3484static int octeon_device_init(struct octeon_device *octeon_dev)
3485{
3486 int j, ret;
3487 struct octeon_device_priv *oct_priv =
3488 (struct octeon_device_priv *)octeon_dev->priv;
3489 atomic_set(&octeon_dev->status, OCT_DEV_BEGIN_STATE);
3490
3491 /* Enable access to the octeon device and make its DMA capability
3492 * known to the OS.
3493 */
3494 if (octeon_pci_os_setup(octeon_dev))
3495 return 1;
3496
3497 /* Identify the Octeon type and map the BAR address space. */
3498 if (octeon_chip_specific_setup(octeon_dev)) {
3499 dev_err(&octeon_dev->pci_dev->dev, "Chip specific setup failed\n");
3500 return 1;
3501 }
3502
3503 atomic_set(&octeon_dev->status, OCT_DEV_PCI_MAP_DONE);
3504
3505 octeon_dev->app_mode = CVM_DRV_INVALID_APP;
3506
3507 /* Do a soft reset of the Octeon device. */
3508 if (octeon_dev->fn_list.soft_reset(octeon_dev))
3509 return 1;
3510
3511 /* Initialize the dispatch mechanism used to push packets arriving on
3512 * Octeon Output queues.
3513 */
3514 if (octeon_init_dispatch_list(octeon_dev))
3515 return 1;
3516
3517 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
3518 OPCODE_NIC_CORE_DRV_ACTIVE,
3519 octeon_core_drv_init,
3520 octeon_dev);
3521
3522 INIT_DELAYED_WORK(&octeon_dev->nic_poll_work.work, nic_starter);
3523 octeon_dev->nic_poll_work.ctxptr = (void *)octeon_dev;
3524 schedule_delayed_work(&octeon_dev->nic_poll_work.work,
3525 LIQUIDIO_STARTER_POLL_INTERVAL_MS);
3526
3527 atomic_set(&octeon_dev->status, OCT_DEV_DISPATCH_INIT_DONE);
3528
3529 octeon_set_io_queues_off(octeon_dev);
3530
3531 /* Setup the data structures that manage this Octeon's Input queues. */
3532 if (octeon_setup_instr_queues(octeon_dev)) {
3533 dev_err(&octeon_dev->pci_dev->dev,
3534 "instruction queue initialization failed\n");
3535 /* On error, release any previously allocated queues */
3536 for (j = 0; j < octeon_dev->num_iqs; j++)
3537 octeon_delete_instr_queue(octeon_dev, j);
3538 return 1;
3539 }
3540 atomic_set(&octeon_dev->status, OCT_DEV_INSTR_QUEUE_INIT_DONE);
3541
3542 /* Initialize soft command buffer pool
3543 */
3544 if (octeon_setup_sc_buffer_pool(octeon_dev)) {
3545 dev_err(&octeon_dev->pci_dev->dev, "sc buffer pool allocation failed\n");
3546 return 1;
3547 }
3548 atomic_set(&octeon_dev->status, OCT_DEV_SC_BUFF_POOL_INIT_DONE);
3549
3550 /* Initialize lists to manage the requests of different types that
3551 * arrive from user & kernel applications for this octeon device.
3552 */
3553 if (octeon_setup_response_list(octeon_dev)) {
3554 dev_err(&octeon_dev->pci_dev->dev, "Response list allocation failed\n");
3555 return 1;
3556 }
3557 atomic_set(&octeon_dev->status, OCT_DEV_RESP_LIST_INIT_DONE);
3558
3559 if (octeon_setup_output_queues(octeon_dev)) {
3560 dev_err(&octeon_dev->pci_dev->dev, "Output queue initialization failed\n");
3561 /* Release any previously allocated queues */
3562 for (j = 0; j < octeon_dev->num_oqs; j++)
3563 octeon_delete_droq(octeon_dev, j);
3564 }
3565
3566 atomic_set(&octeon_dev->status, OCT_DEV_DROQ_INIT_DONE);
3567
3568 /* The input and output queue registers were setup earlier (the queues
3569 * were not enabled). Any additional registers that need to be
3570 * programmed should be done now.
3571 */
3572 ret = octeon_dev->fn_list.setup_device_regs(octeon_dev);
3573 if (ret) {
3574 dev_err(&octeon_dev->pci_dev->dev,
3575 "Failed to configure device registers\n");
3576 return ret;
3577 }
3578
3579 /* Initialize the tasklet that handles output queue packet processing.*/
3580 dev_dbg(&octeon_dev->pci_dev->dev, "Initializing droq tasklet\n");
3581 tasklet_init(&oct_priv->droq_tasklet, octeon_droq_bh,
3582 (unsigned long)octeon_dev);
3583
3584 /* Setup the interrupt handler and record the INT SUM register address
3585 */
3586 octeon_setup_interrupt(octeon_dev);
3587
3588 /* Enable Octeon device interrupts */
3589 octeon_dev->fn_list.enable_interrupt(octeon_dev->chip);
3590
3591 /* Enable the input and output queues for this Octeon device */
3592 octeon_dev->fn_list.enable_io_queues(octeon_dev);
3593
3594 atomic_set(&octeon_dev->status, OCT_DEV_IO_QUEUES_DONE);
3595
3596 dev_dbg(&octeon_dev->pci_dev->dev, "Waiting for DDR initialization...\n");
3597
3598 if (ddr_timeout == 0) {
3599 dev_info(&octeon_dev->pci_dev->dev,
3600 "WAITING. Set ddr_timeout to non-zero value to proceed with initialization.\n");
3601 }
3602
3603 schedule_timeout_uninterruptible(HZ * LIO_RESET_SECS);
3604
3605 /* Wait for the octeon to initialize DDR after the soft-reset. */
3606 ret = octeon_wait_for_ddr_init(octeon_dev, &ddr_timeout);
3607 if (ret) {
3608 dev_err(&octeon_dev->pci_dev->dev,
3609 "DDR not initialized. Please confirm that board is configured to boot from Flash, ret: %d\n",
3610 ret);
3611 return 1;
3612 }
3613
3614 if (octeon_wait_for_bootloader(octeon_dev, 1000) != 0) {
3615 dev_err(&octeon_dev->pci_dev->dev, "Board not responding\n");
3616 return 1;
3617 }
3618
3619 dev_dbg(&octeon_dev->pci_dev->dev, "Initializing consoles\n");
3620 ret = octeon_init_consoles(octeon_dev);
3621 if (ret) {
3622 dev_err(&octeon_dev->pci_dev->dev, "Could not access board consoles\n");
3623 return 1;
3624 }
3625 ret = octeon_add_console(octeon_dev, 0);
3626 if (ret) {
3627 dev_err(&octeon_dev->pci_dev->dev, "Could not access board console\n");
3628 return 1;
3629 }
3630
3631 atomic_set(&octeon_dev->status, OCT_DEV_CONSOLE_INIT_DONE);
3632
3633 dev_dbg(&octeon_dev->pci_dev->dev, "Loading firmware\n");
3634 ret = load_firmware(octeon_dev);
3635 if (ret) {
3636 dev_err(&octeon_dev->pci_dev->dev, "Could not load firmware to board\n");
3637 return 1;
3638 }
3639
3640 handshake[octeon_dev->octeon_id].init_ok = 1;
3641 complete(&handshake[octeon_dev->octeon_id].init);
3642
3643 atomic_set(&octeon_dev->status, OCT_DEV_HOST_OK);
3644
3645 /* Send Credit for Octeon Output queues. Credits are always sent after
3646 * the output queue is enabled.
3647 */
3648 for (j = 0; j < octeon_dev->num_oqs; j++)
3649 writel(octeon_dev->droq[j]->max_count,
3650 octeon_dev->droq[j]->pkts_credit_reg);
3651
3652 /* Packets can start arriving on the output queues from this point. */
3653
3654 return 0;
3655}
3656
3657/**
3658 * \brief Exits the module
3659 */
3660static void __exit liquidio_exit(void)
3661{
3662 liquidio_deinit_pci();
3663
3664 pr_info("LiquidIO network module is now unloaded\n");
3665}
3666
3667module_init(liquidio_init);
3668module_exit(liquidio_exit);