Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * linux/drivers/net/irda/sa1100_ir.c |
| 3 | * |
| 4 | * Copyright (C) 2000-2001 Russell King |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU General Public License version 2 as |
| 8 | * published by the Free Software Foundation. |
| 9 | * |
| 10 | * Infra-red driver for the StrongARM SA1100 embedded microprocessor |
| 11 | * |
| 12 | * Note that we don't have to worry about the SA1111's DMA bugs in here, |
| 13 | * so we use the straight forward dma_map_* functions with a null pointer. |
| 14 | * |
| 15 | * This driver takes one kernel command line parameter, sa1100ir=, with |
| 16 | * the following options: |
| 17 | * max_rate:baudrate - set the maximum baud rate |
| 18 | * power_leve:level - set the transmitter power level |
| 19 | * tx_lpm:0|1 - set transmit low power mode |
| 20 | */ |
| 21 | #include <linux/config.h> |
| 22 | #include <linux/module.h> |
| 23 | #include <linux/moduleparam.h> |
| 24 | #include <linux/types.h> |
| 25 | #include <linux/init.h> |
| 26 | #include <linux/errno.h> |
| 27 | #include <linux/netdevice.h> |
| 28 | #include <linux/slab.h> |
| 29 | #include <linux/rtnetlink.h> |
| 30 | #include <linux/interrupt.h> |
| 31 | #include <linux/delay.h> |
Russell King | d052d1b | 2005-10-29 19:07:23 +0100 | [diff] [blame^] | 32 | #include <linux/platform_device.h> |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 33 | #include <linux/dma-mapping.h> |
| 34 | |
| 35 | #include <net/irda/irda.h> |
| 36 | #include <net/irda/wrapper.h> |
| 37 | #include <net/irda/irda_device.h> |
| 38 | |
| 39 | #include <asm/irq.h> |
| 40 | #include <asm/dma.h> |
| 41 | #include <asm/hardware.h> |
| 42 | #include <asm/mach/irda.h> |
| 43 | |
| 44 | static int power_level = 3; |
| 45 | static int tx_lpm; |
| 46 | static int max_rate = 4000000; |
| 47 | |
| 48 | struct sa1100_irda { |
| 49 | unsigned char hscr0; |
| 50 | unsigned char utcr4; |
| 51 | unsigned char power; |
| 52 | unsigned char open; |
| 53 | |
| 54 | int speed; |
| 55 | int newspeed; |
| 56 | |
| 57 | struct sk_buff *txskb; |
| 58 | struct sk_buff *rxskb; |
| 59 | dma_addr_t txbuf_dma; |
| 60 | dma_addr_t rxbuf_dma; |
| 61 | dma_regs_t *txdma; |
| 62 | dma_regs_t *rxdma; |
| 63 | |
| 64 | struct net_device_stats stats; |
| 65 | struct device *dev; |
| 66 | struct irda_platform_data *pdata; |
| 67 | struct irlap_cb *irlap; |
| 68 | struct qos_info qos; |
| 69 | |
| 70 | iobuff_t tx_buff; |
| 71 | iobuff_t rx_buff; |
| 72 | }; |
| 73 | |
| 74 | #define IS_FIR(si) ((si)->speed >= 4000000) |
| 75 | |
| 76 | #define HPSIR_MAX_RXLEN 2047 |
| 77 | |
| 78 | /* |
| 79 | * Allocate and map the receive buffer, unless it is already allocated. |
| 80 | */ |
| 81 | static int sa1100_irda_rx_alloc(struct sa1100_irda *si) |
| 82 | { |
| 83 | if (si->rxskb) |
| 84 | return 0; |
| 85 | |
| 86 | si->rxskb = alloc_skb(HPSIR_MAX_RXLEN + 1, GFP_ATOMIC); |
| 87 | |
| 88 | if (!si->rxskb) { |
| 89 | printk(KERN_ERR "sa1100_ir: out of memory for RX SKB\n"); |
| 90 | return -ENOMEM; |
| 91 | } |
| 92 | |
| 93 | /* |
| 94 | * Align any IP headers that may be contained |
| 95 | * within the frame. |
| 96 | */ |
| 97 | skb_reserve(si->rxskb, 1); |
| 98 | |
| 99 | si->rxbuf_dma = dma_map_single(si->dev, si->rxskb->data, |
| 100 | HPSIR_MAX_RXLEN, |
| 101 | DMA_FROM_DEVICE); |
| 102 | return 0; |
| 103 | } |
| 104 | |
| 105 | /* |
| 106 | * We want to get here as soon as possible, and get the receiver setup. |
| 107 | * We use the existing buffer. |
| 108 | */ |
| 109 | static void sa1100_irda_rx_dma_start(struct sa1100_irda *si) |
| 110 | { |
| 111 | if (!si->rxskb) { |
| 112 | printk(KERN_ERR "sa1100_ir: rx buffer went missing\n"); |
| 113 | return; |
| 114 | } |
| 115 | |
| 116 | /* |
| 117 | * First empty receive FIFO |
| 118 | */ |
| 119 | Ser2HSCR0 = si->hscr0 | HSCR0_HSSP; |
| 120 | |
| 121 | /* |
| 122 | * Enable the DMA, receiver and receive interrupt. |
| 123 | */ |
| 124 | sa1100_clear_dma(si->rxdma); |
| 125 | sa1100_start_dma(si->rxdma, si->rxbuf_dma, HPSIR_MAX_RXLEN); |
| 126 | Ser2HSCR0 = si->hscr0 | HSCR0_HSSP | HSCR0_RXE; |
| 127 | } |
| 128 | |
| 129 | /* |
| 130 | * Set the IrDA communications speed. |
| 131 | */ |
| 132 | static int sa1100_irda_set_speed(struct sa1100_irda *si, int speed) |
| 133 | { |
| 134 | unsigned long flags; |
| 135 | int brd, ret = -EINVAL; |
| 136 | |
| 137 | switch (speed) { |
| 138 | case 9600: case 19200: case 38400: |
| 139 | case 57600: case 115200: |
| 140 | brd = 3686400 / (16 * speed) - 1; |
| 141 | |
| 142 | /* |
| 143 | * Stop the receive DMA. |
| 144 | */ |
| 145 | if (IS_FIR(si)) |
| 146 | sa1100_stop_dma(si->rxdma); |
| 147 | |
| 148 | local_irq_save(flags); |
| 149 | |
| 150 | Ser2UTCR3 = 0; |
| 151 | Ser2HSCR0 = HSCR0_UART; |
| 152 | |
| 153 | Ser2UTCR1 = brd >> 8; |
| 154 | Ser2UTCR2 = brd; |
| 155 | |
| 156 | /* |
| 157 | * Clear status register |
| 158 | */ |
| 159 | Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID; |
| 160 | Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE; |
| 161 | |
| 162 | if (si->pdata->set_speed) |
| 163 | si->pdata->set_speed(si->dev, speed); |
| 164 | |
| 165 | si->speed = speed; |
| 166 | |
| 167 | local_irq_restore(flags); |
| 168 | ret = 0; |
| 169 | break; |
| 170 | |
| 171 | case 4000000: |
| 172 | local_irq_save(flags); |
| 173 | |
| 174 | si->hscr0 = 0; |
| 175 | |
| 176 | Ser2HSSR0 = 0xff; |
| 177 | Ser2HSCR0 = si->hscr0 | HSCR0_HSSP; |
| 178 | Ser2UTCR3 = 0; |
| 179 | |
| 180 | si->speed = speed; |
| 181 | |
| 182 | if (si->pdata->set_speed) |
| 183 | si->pdata->set_speed(si->dev, speed); |
| 184 | |
| 185 | sa1100_irda_rx_alloc(si); |
| 186 | sa1100_irda_rx_dma_start(si); |
| 187 | |
| 188 | local_irq_restore(flags); |
| 189 | |
| 190 | break; |
| 191 | |
| 192 | default: |
| 193 | break; |
| 194 | } |
| 195 | |
| 196 | return ret; |
| 197 | } |
| 198 | |
| 199 | /* |
| 200 | * Control the power state of the IrDA transmitter. |
| 201 | * State: |
| 202 | * 0 - off |
| 203 | * 1 - short range, lowest power |
| 204 | * 2 - medium range, medium power |
| 205 | * 3 - maximum range, high power |
| 206 | * |
| 207 | * Currently, only assabet is known to support this. |
| 208 | */ |
| 209 | static int |
| 210 | __sa1100_irda_set_power(struct sa1100_irda *si, unsigned int state) |
| 211 | { |
| 212 | int ret = 0; |
| 213 | if (si->pdata->set_power) |
| 214 | ret = si->pdata->set_power(si->dev, state); |
| 215 | return ret; |
| 216 | } |
| 217 | |
| 218 | static inline int |
| 219 | sa1100_set_power(struct sa1100_irda *si, unsigned int state) |
| 220 | { |
| 221 | int ret; |
| 222 | |
| 223 | ret = __sa1100_irda_set_power(si, state); |
| 224 | if (ret == 0) |
| 225 | si->power = state; |
| 226 | |
| 227 | return ret; |
| 228 | } |
| 229 | |
| 230 | static int sa1100_irda_startup(struct sa1100_irda *si) |
| 231 | { |
| 232 | int ret; |
| 233 | |
| 234 | /* |
| 235 | * Ensure that the ports for this device are setup correctly. |
| 236 | */ |
| 237 | if (si->pdata->startup) |
| 238 | si->pdata->startup(si->dev); |
| 239 | |
| 240 | /* |
| 241 | * Configure PPC for IRDA - we want to drive TXD2 low. |
| 242 | * We also want to drive this pin low during sleep. |
| 243 | */ |
| 244 | PPSR &= ~PPC_TXD2; |
| 245 | PSDR &= ~PPC_TXD2; |
| 246 | PPDR |= PPC_TXD2; |
| 247 | |
| 248 | /* |
| 249 | * Enable HP-SIR modulation, and ensure that the port is disabled. |
| 250 | */ |
| 251 | Ser2UTCR3 = 0; |
| 252 | Ser2HSCR0 = HSCR0_UART; |
| 253 | Ser2UTCR4 = si->utcr4; |
| 254 | Ser2UTCR0 = UTCR0_8BitData; |
| 255 | Ser2HSCR2 = HSCR2_TrDataH | HSCR2_RcDataL; |
| 256 | |
| 257 | /* |
| 258 | * Clear status register |
| 259 | */ |
| 260 | Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID; |
| 261 | |
| 262 | ret = sa1100_irda_set_speed(si, si->speed = 9600); |
| 263 | if (ret) { |
| 264 | Ser2UTCR3 = 0; |
| 265 | Ser2HSCR0 = 0; |
| 266 | |
| 267 | if (si->pdata->shutdown) |
| 268 | si->pdata->shutdown(si->dev); |
| 269 | } |
| 270 | |
| 271 | return ret; |
| 272 | } |
| 273 | |
| 274 | static void sa1100_irda_shutdown(struct sa1100_irda *si) |
| 275 | { |
| 276 | /* |
| 277 | * Stop all DMA activity. |
| 278 | */ |
| 279 | sa1100_stop_dma(si->rxdma); |
| 280 | sa1100_stop_dma(si->txdma); |
| 281 | |
| 282 | /* Disable the port. */ |
| 283 | Ser2UTCR3 = 0; |
| 284 | Ser2HSCR0 = 0; |
| 285 | |
| 286 | if (si->pdata->shutdown) |
| 287 | si->pdata->shutdown(si->dev); |
| 288 | } |
| 289 | |
| 290 | #ifdef CONFIG_PM |
| 291 | /* |
| 292 | * Suspend the IrDA interface. |
| 293 | */ |
Russell King | 9480e30 | 2005-10-28 09:52:56 -0700 | [diff] [blame] | 294 | static int sa1100_irda_suspend(struct device *_dev, pm_message_t state) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 295 | { |
| 296 | struct net_device *dev = dev_get_drvdata(_dev); |
| 297 | struct sa1100_irda *si; |
| 298 | |
Russell King | 9480e30 | 2005-10-28 09:52:56 -0700 | [diff] [blame] | 299 | if (!dev) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 300 | return 0; |
| 301 | |
| 302 | si = dev->priv; |
| 303 | if (si->open) { |
| 304 | /* |
| 305 | * Stop the transmit queue |
| 306 | */ |
| 307 | netif_device_detach(dev); |
| 308 | disable_irq(dev->irq); |
| 309 | sa1100_irda_shutdown(si); |
| 310 | __sa1100_irda_set_power(si, 0); |
| 311 | } |
| 312 | |
| 313 | return 0; |
| 314 | } |
| 315 | |
| 316 | /* |
| 317 | * Resume the IrDA interface. |
| 318 | */ |
Russell King | 9480e30 | 2005-10-28 09:52:56 -0700 | [diff] [blame] | 319 | static int sa1100_irda_resume(struct device *_dev) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 320 | { |
| 321 | struct net_device *dev = dev_get_drvdata(_dev); |
| 322 | struct sa1100_irda *si; |
| 323 | |
Russell King | 9480e30 | 2005-10-28 09:52:56 -0700 | [diff] [blame] | 324 | if (!dev) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 325 | return 0; |
| 326 | |
| 327 | si = dev->priv; |
| 328 | if (si->open) { |
| 329 | /* |
| 330 | * If we missed a speed change, initialise at the new speed |
| 331 | * directly. It is debatable whether this is actually |
| 332 | * required, but in the interests of continuing from where |
| 333 | * we left off it is desireable. The converse argument is |
| 334 | * that we should re-negotiate at 9600 baud again. |
| 335 | */ |
| 336 | if (si->newspeed) { |
| 337 | si->speed = si->newspeed; |
| 338 | si->newspeed = 0; |
| 339 | } |
| 340 | |
| 341 | sa1100_irda_startup(si); |
| 342 | __sa1100_irda_set_power(si, si->power); |
| 343 | enable_irq(dev->irq); |
| 344 | |
| 345 | /* |
| 346 | * This automatically wakes up the queue |
| 347 | */ |
| 348 | netif_device_attach(dev); |
| 349 | } |
| 350 | |
| 351 | return 0; |
| 352 | } |
| 353 | #else |
| 354 | #define sa1100_irda_suspend NULL |
| 355 | #define sa1100_irda_resume NULL |
| 356 | #endif |
| 357 | |
| 358 | /* |
| 359 | * HP-SIR format interrupt service routines. |
| 360 | */ |
| 361 | static void sa1100_irda_hpsir_irq(struct net_device *dev) |
| 362 | { |
| 363 | struct sa1100_irda *si = dev->priv; |
| 364 | int status; |
| 365 | |
| 366 | status = Ser2UTSR0; |
| 367 | |
| 368 | /* |
| 369 | * Deal with any receive errors first. The bytes in error may be |
| 370 | * the only bytes in the receive FIFO, so we do this first. |
| 371 | */ |
| 372 | while (status & UTSR0_EIF) { |
| 373 | int stat, data; |
| 374 | |
| 375 | stat = Ser2UTSR1; |
| 376 | data = Ser2UTDR; |
| 377 | |
| 378 | if (stat & (UTSR1_FRE | UTSR1_ROR)) { |
| 379 | si->stats.rx_errors++; |
| 380 | if (stat & UTSR1_FRE) |
| 381 | si->stats.rx_frame_errors++; |
| 382 | if (stat & UTSR1_ROR) |
| 383 | si->stats.rx_fifo_errors++; |
| 384 | } else |
| 385 | async_unwrap_char(dev, &si->stats, &si->rx_buff, data); |
| 386 | |
| 387 | status = Ser2UTSR0; |
| 388 | } |
| 389 | |
| 390 | /* |
| 391 | * We must clear certain bits. |
| 392 | */ |
| 393 | Ser2UTSR0 = status & (UTSR0_RID | UTSR0_RBB | UTSR0_REB); |
| 394 | |
| 395 | if (status & UTSR0_RFS) { |
| 396 | /* |
| 397 | * There are at least 4 bytes in the FIFO. Read 3 bytes |
| 398 | * and leave the rest to the block below. |
| 399 | */ |
| 400 | async_unwrap_char(dev, &si->stats, &si->rx_buff, Ser2UTDR); |
| 401 | async_unwrap_char(dev, &si->stats, &si->rx_buff, Ser2UTDR); |
| 402 | async_unwrap_char(dev, &si->stats, &si->rx_buff, Ser2UTDR); |
| 403 | } |
| 404 | |
| 405 | if (status & (UTSR0_RFS | UTSR0_RID)) { |
| 406 | /* |
| 407 | * Fifo contains more than 1 character. |
| 408 | */ |
| 409 | do { |
| 410 | async_unwrap_char(dev, &si->stats, &si->rx_buff, |
| 411 | Ser2UTDR); |
| 412 | } while (Ser2UTSR1 & UTSR1_RNE); |
| 413 | |
| 414 | dev->last_rx = jiffies; |
| 415 | } |
| 416 | |
| 417 | if (status & UTSR0_TFS && si->tx_buff.len) { |
| 418 | /* |
| 419 | * Transmitter FIFO is not full |
| 420 | */ |
| 421 | do { |
| 422 | Ser2UTDR = *si->tx_buff.data++; |
| 423 | si->tx_buff.len -= 1; |
| 424 | } while (Ser2UTSR1 & UTSR1_TNF && si->tx_buff.len); |
| 425 | |
| 426 | if (si->tx_buff.len == 0) { |
| 427 | si->stats.tx_packets++; |
| 428 | si->stats.tx_bytes += si->tx_buff.data - |
| 429 | si->tx_buff.head; |
| 430 | |
| 431 | /* |
| 432 | * We need to ensure that the transmitter has |
| 433 | * finished. |
| 434 | */ |
| 435 | do |
| 436 | rmb(); |
| 437 | while (Ser2UTSR1 & UTSR1_TBY); |
| 438 | |
| 439 | /* |
| 440 | * Ok, we've finished transmitting. Now enable |
| 441 | * the receiver. Sometimes we get a receive IRQ |
| 442 | * immediately after a transmit... |
| 443 | */ |
| 444 | Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID; |
| 445 | Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE; |
| 446 | |
| 447 | if (si->newspeed) { |
| 448 | sa1100_irda_set_speed(si, si->newspeed); |
| 449 | si->newspeed = 0; |
| 450 | } |
| 451 | |
| 452 | /* I'm hungry! */ |
| 453 | netif_wake_queue(dev); |
| 454 | } |
| 455 | } |
| 456 | } |
| 457 | |
| 458 | static void sa1100_irda_fir_error(struct sa1100_irda *si, struct net_device *dev) |
| 459 | { |
| 460 | struct sk_buff *skb = si->rxskb; |
| 461 | dma_addr_t dma_addr; |
| 462 | unsigned int len, stat, data; |
| 463 | |
| 464 | if (!skb) { |
| 465 | printk(KERN_ERR "sa1100_ir: SKB is NULL!\n"); |
| 466 | return; |
| 467 | } |
| 468 | |
| 469 | /* |
| 470 | * Get the current data position. |
| 471 | */ |
| 472 | dma_addr = sa1100_get_dma_pos(si->rxdma); |
| 473 | len = dma_addr - si->rxbuf_dma; |
| 474 | if (len > HPSIR_MAX_RXLEN) |
| 475 | len = HPSIR_MAX_RXLEN; |
| 476 | dma_unmap_single(si->dev, si->rxbuf_dma, len, DMA_FROM_DEVICE); |
| 477 | |
| 478 | do { |
| 479 | /* |
| 480 | * Read Status, and then Data. |
| 481 | */ |
| 482 | stat = Ser2HSSR1; |
| 483 | rmb(); |
| 484 | data = Ser2HSDR; |
| 485 | |
| 486 | if (stat & (HSSR1_CRE | HSSR1_ROR)) { |
| 487 | si->stats.rx_errors++; |
| 488 | if (stat & HSSR1_CRE) |
| 489 | si->stats.rx_crc_errors++; |
| 490 | if (stat & HSSR1_ROR) |
| 491 | si->stats.rx_frame_errors++; |
| 492 | } else |
| 493 | skb->data[len++] = data; |
| 494 | |
| 495 | /* |
| 496 | * If we hit the end of frame, there's |
| 497 | * no point in continuing. |
| 498 | */ |
| 499 | if (stat & HSSR1_EOF) |
| 500 | break; |
| 501 | } while (Ser2HSSR0 & HSSR0_EIF); |
| 502 | |
| 503 | if (stat & HSSR1_EOF) { |
| 504 | si->rxskb = NULL; |
| 505 | |
| 506 | skb_put(skb, len); |
| 507 | skb->dev = dev; |
| 508 | skb->mac.raw = skb->data; |
| 509 | skb->protocol = htons(ETH_P_IRDA); |
| 510 | si->stats.rx_packets++; |
| 511 | si->stats.rx_bytes += len; |
| 512 | |
| 513 | /* |
| 514 | * Before we pass the buffer up, allocate a new one. |
| 515 | */ |
| 516 | sa1100_irda_rx_alloc(si); |
| 517 | |
| 518 | netif_rx(skb); |
| 519 | dev->last_rx = jiffies; |
| 520 | } else { |
| 521 | /* |
| 522 | * Remap the buffer. |
| 523 | */ |
| 524 | si->rxbuf_dma = dma_map_single(si->dev, si->rxskb->data, |
| 525 | HPSIR_MAX_RXLEN, |
| 526 | DMA_FROM_DEVICE); |
| 527 | } |
| 528 | } |
| 529 | |
| 530 | /* |
| 531 | * FIR format interrupt service routine. We only have to |
| 532 | * handle RX events; transmit events go via the TX DMA handler. |
| 533 | * |
| 534 | * No matter what, we disable RX, process, and the restart RX. |
| 535 | */ |
| 536 | static void sa1100_irda_fir_irq(struct net_device *dev) |
| 537 | { |
| 538 | struct sa1100_irda *si = dev->priv; |
| 539 | |
| 540 | /* |
| 541 | * Stop RX DMA |
| 542 | */ |
| 543 | sa1100_stop_dma(si->rxdma); |
| 544 | |
| 545 | /* |
| 546 | * Framing error - we throw away the packet completely. |
| 547 | * Clearing RXE flushes the error conditions and data |
| 548 | * from the fifo. |
| 549 | */ |
| 550 | if (Ser2HSSR0 & (HSSR0_FRE | HSSR0_RAB)) { |
| 551 | si->stats.rx_errors++; |
| 552 | |
| 553 | if (Ser2HSSR0 & HSSR0_FRE) |
| 554 | si->stats.rx_frame_errors++; |
| 555 | |
| 556 | /* |
| 557 | * Clear out the DMA... |
| 558 | */ |
| 559 | Ser2HSCR0 = si->hscr0 | HSCR0_HSSP; |
| 560 | |
| 561 | /* |
| 562 | * Clear selected status bits now, so we |
| 563 | * don't miss them next time around. |
| 564 | */ |
| 565 | Ser2HSSR0 = HSSR0_FRE | HSSR0_RAB; |
| 566 | } |
| 567 | |
| 568 | /* |
| 569 | * Deal with any receive errors. The any of the lowest |
| 570 | * 8 bytes in the FIFO may contain an error. We must read |
| 571 | * them one by one. The "error" could even be the end of |
| 572 | * packet! |
| 573 | */ |
| 574 | if (Ser2HSSR0 & HSSR0_EIF) |
| 575 | sa1100_irda_fir_error(si, dev); |
| 576 | |
| 577 | /* |
| 578 | * No matter what happens, we must restart reception. |
| 579 | */ |
| 580 | sa1100_irda_rx_dma_start(si); |
| 581 | } |
| 582 | |
| 583 | static irqreturn_t sa1100_irda_irq(int irq, void *dev_id, struct pt_regs *regs) |
| 584 | { |
| 585 | struct net_device *dev = dev_id; |
| 586 | if (IS_FIR(((struct sa1100_irda *)dev->priv))) |
| 587 | sa1100_irda_fir_irq(dev); |
| 588 | else |
| 589 | sa1100_irda_hpsir_irq(dev); |
| 590 | return IRQ_HANDLED; |
| 591 | } |
| 592 | |
| 593 | /* |
| 594 | * TX DMA completion handler. |
| 595 | */ |
| 596 | static void sa1100_irda_txdma_irq(void *id) |
| 597 | { |
| 598 | struct net_device *dev = id; |
| 599 | struct sa1100_irda *si = dev->priv; |
| 600 | struct sk_buff *skb = si->txskb; |
| 601 | |
| 602 | si->txskb = NULL; |
| 603 | |
| 604 | /* |
| 605 | * Wait for the transmission to complete. Unfortunately, |
| 606 | * the hardware doesn't give us an interrupt to indicate |
| 607 | * "end of frame". |
| 608 | */ |
| 609 | do |
| 610 | rmb(); |
| 611 | while (!(Ser2HSSR0 & HSSR0_TUR) || Ser2HSSR1 & HSSR1_TBY); |
| 612 | |
| 613 | /* |
| 614 | * Clear the transmit underrun bit. |
| 615 | */ |
| 616 | Ser2HSSR0 = HSSR0_TUR; |
| 617 | |
| 618 | /* |
| 619 | * Do we need to change speed? Note that we're lazy |
| 620 | * here - we don't free the old rxskb. We don't need |
| 621 | * to allocate a buffer either. |
| 622 | */ |
| 623 | if (si->newspeed) { |
| 624 | sa1100_irda_set_speed(si, si->newspeed); |
| 625 | si->newspeed = 0; |
| 626 | } |
| 627 | |
| 628 | /* |
| 629 | * Start reception. This disables the transmitter for |
| 630 | * us. This will be using the existing RX buffer. |
| 631 | */ |
| 632 | sa1100_irda_rx_dma_start(si); |
| 633 | |
| 634 | /* |
| 635 | * Account and free the packet. |
| 636 | */ |
| 637 | if (skb) { |
| 638 | dma_unmap_single(si->dev, si->txbuf_dma, skb->len, DMA_TO_DEVICE); |
| 639 | si->stats.tx_packets ++; |
| 640 | si->stats.tx_bytes += skb->len; |
| 641 | dev_kfree_skb_irq(skb); |
| 642 | } |
| 643 | |
| 644 | /* |
| 645 | * Make sure that the TX queue is available for sending |
| 646 | * (for retries). TX has priority over RX at all times. |
| 647 | */ |
| 648 | netif_wake_queue(dev); |
| 649 | } |
| 650 | |
| 651 | static int sa1100_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev) |
| 652 | { |
| 653 | struct sa1100_irda *si = dev->priv; |
| 654 | int speed = irda_get_next_speed(skb); |
| 655 | |
| 656 | /* |
| 657 | * Does this packet contain a request to change the interface |
| 658 | * speed? If so, remember it until we complete the transmission |
| 659 | * of this frame. |
| 660 | */ |
| 661 | if (speed != si->speed && speed != -1) |
| 662 | si->newspeed = speed; |
| 663 | |
| 664 | /* |
| 665 | * If this is an empty frame, we can bypass a lot. |
| 666 | */ |
| 667 | if (skb->len == 0) { |
| 668 | if (si->newspeed) { |
| 669 | si->newspeed = 0; |
| 670 | sa1100_irda_set_speed(si, speed); |
| 671 | } |
| 672 | dev_kfree_skb(skb); |
| 673 | return 0; |
| 674 | } |
| 675 | |
| 676 | if (!IS_FIR(si)) { |
| 677 | netif_stop_queue(dev); |
| 678 | |
| 679 | si->tx_buff.data = si->tx_buff.head; |
| 680 | si->tx_buff.len = async_wrap_skb(skb, si->tx_buff.data, |
| 681 | si->tx_buff.truesize); |
| 682 | |
| 683 | /* |
| 684 | * Set the transmit interrupt enable. This will fire |
| 685 | * off an interrupt immediately. Note that we disable |
| 686 | * the receiver so we won't get spurious characteres |
| 687 | * received. |
| 688 | */ |
| 689 | Ser2UTCR3 = UTCR3_TIE | UTCR3_TXE; |
| 690 | |
| 691 | dev_kfree_skb(skb); |
| 692 | } else { |
| 693 | int mtt = irda_get_mtt(skb); |
| 694 | |
| 695 | /* |
| 696 | * We must not be transmitting... |
| 697 | */ |
| 698 | if (si->txskb) |
| 699 | BUG(); |
| 700 | |
| 701 | netif_stop_queue(dev); |
| 702 | |
| 703 | si->txskb = skb; |
| 704 | si->txbuf_dma = dma_map_single(si->dev, skb->data, |
| 705 | skb->len, DMA_TO_DEVICE); |
| 706 | |
| 707 | sa1100_start_dma(si->txdma, si->txbuf_dma, skb->len); |
| 708 | |
| 709 | /* |
| 710 | * If we have a mean turn-around time, impose the specified |
| 711 | * specified delay. We could shorten this by timing from |
| 712 | * the point we received the packet. |
| 713 | */ |
| 714 | if (mtt) |
| 715 | udelay(mtt); |
| 716 | |
| 717 | Ser2HSCR0 = si->hscr0 | HSCR0_HSSP | HSCR0_TXE; |
| 718 | } |
| 719 | |
| 720 | dev->trans_start = jiffies; |
| 721 | |
| 722 | return 0; |
| 723 | } |
| 724 | |
| 725 | static int |
| 726 | sa1100_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd) |
| 727 | { |
| 728 | struct if_irda_req *rq = (struct if_irda_req *)ifreq; |
| 729 | struct sa1100_irda *si = dev->priv; |
| 730 | int ret = -EOPNOTSUPP; |
| 731 | |
| 732 | switch (cmd) { |
| 733 | case SIOCSBANDWIDTH: |
| 734 | if (capable(CAP_NET_ADMIN)) { |
| 735 | /* |
| 736 | * We are unable to set the speed if the |
| 737 | * device is not running. |
| 738 | */ |
| 739 | if (si->open) { |
| 740 | ret = sa1100_irda_set_speed(si, |
| 741 | rq->ifr_baudrate); |
| 742 | } else { |
| 743 | printk("sa1100_irda_ioctl: SIOCSBANDWIDTH: !netif_running\n"); |
| 744 | ret = 0; |
| 745 | } |
| 746 | } |
| 747 | break; |
| 748 | |
| 749 | case SIOCSMEDIABUSY: |
| 750 | ret = -EPERM; |
| 751 | if (capable(CAP_NET_ADMIN)) { |
| 752 | irda_device_set_media_busy(dev, TRUE); |
| 753 | ret = 0; |
| 754 | } |
| 755 | break; |
| 756 | |
| 757 | case SIOCGRECEIVING: |
| 758 | rq->ifr_receiving = IS_FIR(si) ? 0 |
| 759 | : si->rx_buff.state != OUTSIDE_FRAME; |
| 760 | break; |
| 761 | |
| 762 | default: |
| 763 | break; |
| 764 | } |
| 765 | |
| 766 | return ret; |
| 767 | } |
| 768 | |
| 769 | static struct net_device_stats *sa1100_irda_stats(struct net_device *dev) |
| 770 | { |
| 771 | struct sa1100_irda *si = dev->priv; |
| 772 | return &si->stats; |
| 773 | } |
| 774 | |
| 775 | static int sa1100_irda_start(struct net_device *dev) |
| 776 | { |
| 777 | struct sa1100_irda *si = dev->priv; |
| 778 | int err; |
| 779 | |
| 780 | si->speed = 9600; |
| 781 | |
| 782 | err = request_irq(dev->irq, sa1100_irda_irq, 0, dev->name, dev); |
| 783 | if (err) |
| 784 | goto err_irq; |
| 785 | |
| 786 | err = sa1100_request_dma(DMA_Ser2HSSPRd, "IrDA receive", |
| 787 | NULL, NULL, &si->rxdma); |
| 788 | if (err) |
| 789 | goto err_rx_dma; |
| 790 | |
| 791 | err = sa1100_request_dma(DMA_Ser2HSSPWr, "IrDA transmit", |
| 792 | sa1100_irda_txdma_irq, dev, &si->txdma); |
| 793 | if (err) |
| 794 | goto err_tx_dma; |
| 795 | |
| 796 | /* |
| 797 | * The interrupt must remain disabled for now. |
| 798 | */ |
| 799 | disable_irq(dev->irq); |
| 800 | |
| 801 | /* |
| 802 | * Setup the serial port for the specified speed. |
| 803 | */ |
| 804 | err = sa1100_irda_startup(si); |
| 805 | if (err) |
| 806 | goto err_startup; |
| 807 | |
| 808 | /* |
| 809 | * Open a new IrLAP layer instance. |
| 810 | */ |
| 811 | si->irlap = irlap_open(dev, &si->qos, "sa1100"); |
| 812 | err = -ENOMEM; |
| 813 | if (!si->irlap) |
| 814 | goto err_irlap; |
| 815 | |
| 816 | /* |
| 817 | * Now enable the interrupt and start the queue |
| 818 | */ |
| 819 | si->open = 1; |
| 820 | sa1100_set_power(si, power_level); /* low power mode */ |
| 821 | enable_irq(dev->irq); |
| 822 | netif_start_queue(dev); |
| 823 | return 0; |
| 824 | |
| 825 | err_irlap: |
| 826 | si->open = 0; |
| 827 | sa1100_irda_shutdown(si); |
| 828 | err_startup: |
| 829 | sa1100_free_dma(si->txdma); |
| 830 | err_tx_dma: |
| 831 | sa1100_free_dma(si->rxdma); |
| 832 | err_rx_dma: |
| 833 | free_irq(dev->irq, dev); |
| 834 | err_irq: |
| 835 | return err; |
| 836 | } |
| 837 | |
| 838 | static int sa1100_irda_stop(struct net_device *dev) |
| 839 | { |
| 840 | struct sa1100_irda *si = dev->priv; |
| 841 | |
| 842 | disable_irq(dev->irq); |
| 843 | sa1100_irda_shutdown(si); |
| 844 | |
| 845 | /* |
| 846 | * If we have been doing DMA receive, make sure we |
| 847 | * tidy that up cleanly. |
| 848 | */ |
| 849 | if (si->rxskb) { |
| 850 | dma_unmap_single(si->dev, si->rxbuf_dma, HPSIR_MAX_RXLEN, |
| 851 | DMA_FROM_DEVICE); |
| 852 | dev_kfree_skb(si->rxskb); |
| 853 | si->rxskb = NULL; |
| 854 | } |
| 855 | |
| 856 | /* Stop IrLAP */ |
| 857 | if (si->irlap) { |
| 858 | irlap_close(si->irlap); |
| 859 | si->irlap = NULL; |
| 860 | } |
| 861 | |
| 862 | netif_stop_queue(dev); |
| 863 | si->open = 0; |
| 864 | |
| 865 | /* |
| 866 | * Free resources |
| 867 | */ |
| 868 | sa1100_free_dma(si->txdma); |
| 869 | sa1100_free_dma(si->rxdma); |
| 870 | free_irq(dev->irq, dev); |
| 871 | |
| 872 | sa1100_set_power(si, 0); |
| 873 | |
| 874 | return 0; |
| 875 | } |
| 876 | |
| 877 | static int sa1100_irda_init_iobuf(iobuff_t *io, int size) |
| 878 | { |
| 879 | io->head = kmalloc(size, GFP_KERNEL | GFP_DMA); |
| 880 | if (io->head != NULL) { |
| 881 | io->truesize = size; |
| 882 | io->in_frame = FALSE; |
| 883 | io->state = OUTSIDE_FRAME; |
| 884 | io->data = io->head; |
| 885 | } |
| 886 | return io->head ? 0 : -ENOMEM; |
| 887 | } |
| 888 | |
| 889 | static int sa1100_irda_probe(struct device *_dev) |
| 890 | { |
| 891 | struct platform_device *pdev = to_platform_device(_dev); |
| 892 | struct net_device *dev; |
| 893 | struct sa1100_irda *si; |
| 894 | unsigned int baudrate_mask; |
| 895 | int err; |
| 896 | |
| 897 | if (!pdev->dev.platform_data) |
| 898 | return -EINVAL; |
| 899 | |
| 900 | err = request_mem_region(__PREG(Ser2UTCR0), 0x24, "IrDA") ? 0 : -EBUSY; |
| 901 | if (err) |
| 902 | goto err_mem_1; |
| 903 | err = request_mem_region(__PREG(Ser2HSCR0), 0x1c, "IrDA") ? 0 : -EBUSY; |
| 904 | if (err) |
| 905 | goto err_mem_2; |
| 906 | err = request_mem_region(__PREG(Ser2HSCR2), 0x04, "IrDA") ? 0 : -EBUSY; |
| 907 | if (err) |
| 908 | goto err_mem_3; |
| 909 | |
| 910 | dev = alloc_irdadev(sizeof(struct sa1100_irda)); |
| 911 | if (!dev) |
| 912 | goto err_mem_4; |
| 913 | |
| 914 | si = dev->priv; |
| 915 | si->dev = &pdev->dev; |
| 916 | si->pdata = pdev->dev.platform_data; |
| 917 | |
| 918 | /* |
| 919 | * Initialise the HP-SIR buffers |
| 920 | */ |
| 921 | err = sa1100_irda_init_iobuf(&si->rx_buff, 14384); |
| 922 | if (err) |
| 923 | goto err_mem_5; |
| 924 | err = sa1100_irda_init_iobuf(&si->tx_buff, 4000); |
| 925 | if (err) |
| 926 | goto err_mem_5; |
| 927 | |
| 928 | dev->hard_start_xmit = sa1100_irda_hard_xmit; |
| 929 | dev->open = sa1100_irda_start; |
| 930 | dev->stop = sa1100_irda_stop; |
| 931 | dev->do_ioctl = sa1100_irda_ioctl; |
| 932 | dev->get_stats = sa1100_irda_stats; |
| 933 | dev->irq = IRQ_Ser2ICP; |
| 934 | |
| 935 | irda_init_max_qos_capabilies(&si->qos); |
| 936 | |
| 937 | /* |
| 938 | * We support original IRDA up to 115k2. (we don't currently |
| 939 | * support 4Mbps). Min Turn Time set to 1ms or greater. |
| 940 | */ |
| 941 | baudrate_mask = IR_9600; |
| 942 | |
| 943 | switch (max_rate) { |
| 944 | case 4000000: baudrate_mask |= IR_4000000 << 8; |
| 945 | case 115200: baudrate_mask |= IR_115200; |
| 946 | case 57600: baudrate_mask |= IR_57600; |
| 947 | case 38400: baudrate_mask |= IR_38400; |
| 948 | case 19200: baudrate_mask |= IR_19200; |
| 949 | } |
| 950 | |
| 951 | si->qos.baud_rate.bits &= baudrate_mask; |
| 952 | si->qos.min_turn_time.bits = 7; |
| 953 | |
| 954 | irda_qos_bits_to_value(&si->qos); |
| 955 | |
| 956 | si->utcr4 = UTCR4_HPSIR; |
| 957 | if (tx_lpm) |
| 958 | si->utcr4 |= UTCR4_Z1_6us; |
| 959 | |
| 960 | /* |
| 961 | * Initially enable HP-SIR modulation, and ensure that the port |
| 962 | * is disabled. |
| 963 | */ |
| 964 | Ser2UTCR3 = 0; |
| 965 | Ser2UTCR4 = si->utcr4; |
| 966 | Ser2HSCR0 = HSCR0_UART; |
| 967 | |
| 968 | err = register_netdev(dev); |
| 969 | if (err == 0) |
| 970 | dev_set_drvdata(&pdev->dev, dev); |
| 971 | |
| 972 | if (err) { |
| 973 | err_mem_5: |
| 974 | kfree(si->tx_buff.head); |
| 975 | kfree(si->rx_buff.head); |
| 976 | free_netdev(dev); |
| 977 | err_mem_4: |
| 978 | release_mem_region(__PREG(Ser2HSCR2), 0x04); |
| 979 | err_mem_3: |
| 980 | release_mem_region(__PREG(Ser2HSCR0), 0x1c); |
| 981 | err_mem_2: |
| 982 | release_mem_region(__PREG(Ser2UTCR0), 0x24); |
| 983 | } |
| 984 | err_mem_1: |
| 985 | return err; |
| 986 | } |
| 987 | |
| 988 | static int sa1100_irda_remove(struct device *_dev) |
| 989 | { |
| 990 | struct net_device *dev = dev_get_drvdata(_dev); |
| 991 | |
| 992 | if (dev) { |
| 993 | struct sa1100_irda *si = dev->priv; |
| 994 | unregister_netdev(dev); |
| 995 | kfree(si->tx_buff.head); |
| 996 | kfree(si->rx_buff.head); |
| 997 | free_netdev(dev); |
| 998 | } |
| 999 | |
| 1000 | release_mem_region(__PREG(Ser2HSCR2), 0x04); |
| 1001 | release_mem_region(__PREG(Ser2HSCR0), 0x1c); |
| 1002 | release_mem_region(__PREG(Ser2UTCR0), 0x24); |
| 1003 | |
| 1004 | return 0; |
| 1005 | } |
| 1006 | |
| 1007 | static struct device_driver sa1100ir_driver = { |
| 1008 | .name = "sa11x0-ir", |
| 1009 | .bus = &platform_bus_type, |
| 1010 | .probe = sa1100_irda_probe, |
| 1011 | .remove = sa1100_irda_remove, |
| 1012 | .suspend = sa1100_irda_suspend, |
| 1013 | .resume = sa1100_irda_resume, |
| 1014 | }; |
| 1015 | |
| 1016 | static int __init sa1100_irda_init(void) |
| 1017 | { |
| 1018 | /* |
| 1019 | * Limit power level a sensible range. |
| 1020 | */ |
| 1021 | if (power_level < 1) |
| 1022 | power_level = 1; |
| 1023 | if (power_level > 3) |
| 1024 | power_level = 3; |
| 1025 | |
| 1026 | return driver_register(&sa1100ir_driver); |
| 1027 | } |
| 1028 | |
| 1029 | static void __exit sa1100_irda_exit(void) |
| 1030 | { |
| 1031 | driver_unregister(&sa1100ir_driver); |
| 1032 | } |
| 1033 | |
| 1034 | module_init(sa1100_irda_init); |
| 1035 | module_exit(sa1100_irda_exit); |
| 1036 | module_param(power_level, int, 0); |
| 1037 | module_param(tx_lpm, int, 0); |
| 1038 | module_param(max_rate, int, 0); |
| 1039 | |
| 1040 | MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>"); |
| 1041 | MODULE_DESCRIPTION("StrongARM SA1100 IrDA driver"); |
| 1042 | MODULE_LICENSE("GPL"); |
| 1043 | MODULE_PARM_DESC(power_level, "IrDA power level, 1 (low) to 3 (high)"); |
| 1044 | MODULE_PARM_DESC(tx_lpm, "Enable transmitter low power (1.6us) mode"); |
| 1045 | MODULE_PARM_DESC(max_rate, "Maximum baud rate (4000000, 115200, 57600, 38400, 19200, 9600)"); |