Mark Brown | f8beab2 | 2011-10-28 23:50:49 +0200 | [diff] [blame^] | 1 | /* |
| 2 | * regmap based irq_chip |
| 3 | * |
| 4 | * Copyright 2011 Wolfson Microelectronics plc |
| 5 | * |
| 6 | * Author: Mark Brown <broonie@opensource.wolfsonmicro.com> |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or modify |
| 9 | * it under the terms of the GNU General Public License version 2 as |
| 10 | * published by the Free Software Foundation. |
| 11 | */ |
| 12 | |
| 13 | #include <linux/export.h> |
| 14 | #include <linux/regmap.h> |
| 15 | #include <linux/irq.h> |
| 16 | #include <linux/interrupt.h> |
| 17 | #include <linux/slab.h> |
| 18 | |
| 19 | #include "internal.h" |
| 20 | |
| 21 | struct regmap_irq_chip_data { |
| 22 | struct mutex lock; |
| 23 | |
| 24 | struct regmap *map; |
| 25 | struct regmap_irq_chip *chip; |
| 26 | |
| 27 | int irq_base; |
| 28 | |
| 29 | void *status_reg_buf; |
| 30 | unsigned int *status_buf; |
| 31 | unsigned int *mask_buf; |
| 32 | unsigned int *mask_buf_def; |
| 33 | }; |
| 34 | |
| 35 | static inline const |
| 36 | struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data, |
| 37 | int irq) |
| 38 | { |
| 39 | return &data->chip->irqs[irq - data->irq_base]; |
| 40 | } |
| 41 | |
| 42 | static void regmap_irq_lock(struct irq_data *data) |
| 43 | { |
| 44 | struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); |
| 45 | |
| 46 | mutex_lock(&d->lock); |
| 47 | } |
| 48 | |
| 49 | static void regmap_irq_sync_unlock(struct irq_data *data) |
| 50 | { |
| 51 | struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); |
| 52 | int i, ret; |
| 53 | |
| 54 | /* |
| 55 | * If there's been a change in the mask write it back to the |
| 56 | * hardware. We rely on the use of the regmap core cache to |
| 57 | * suppress pointless writes. |
| 58 | */ |
| 59 | for (i = 0; i < d->chip->num_regs; i++) { |
| 60 | ret = regmap_update_bits(d->map, d->chip->mask_base + i, |
| 61 | d->mask_buf_def[i], d->mask_buf[i]); |
| 62 | if (ret != 0) |
| 63 | dev_err(d->map->dev, "Failed to sync masks in %x\n", |
| 64 | d->chip->mask_base + i); |
| 65 | } |
| 66 | |
| 67 | mutex_unlock(&d->lock); |
| 68 | } |
| 69 | |
| 70 | static void regmap_irq_enable(struct irq_data *data) |
| 71 | { |
| 72 | struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); |
| 73 | const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->irq); |
| 74 | |
| 75 | d->mask_buf[irq_data->reg_offset] &= ~irq_data->mask; |
| 76 | } |
| 77 | |
| 78 | static void regmap_irq_disable(struct irq_data *data) |
| 79 | { |
| 80 | struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); |
| 81 | const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->irq); |
| 82 | |
| 83 | d->mask_buf[irq_data->reg_offset] |= irq_data->mask; |
| 84 | } |
| 85 | |
| 86 | static struct irq_chip regmap_irq_chip = { |
| 87 | .name = "regmap", |
| 88 | .irq_bus_lock = regmap_irq_lock, |
| 89 | .irq_bus_sync_unlock = regmap_irq_sync_unlock, |
| 90 | .irq_disable = regmap_irq_disable, |
| 91 | .irq_enable = regmap_irq_enable, |
| 92 | }; |
| 93 | |
| 94 | static irqreturn_t regmap_irq_thread(int irq, void *d) |
| 95 | { |
| 96 | struct regmap_irq_chip_data *data = d; |
| 97 | struct regmap_irq_chip *chip = data->chip; |
| 98 | struct regmap *map = data->map; |
| 99 | int ret, i; |
| 100 | u8 *buf8 = data->status_reg_buf; |
| 101 | u16 *buf16 = data->status_reg_buf; |
| 102 | u32 *buf32 = data->status_reg_buf; |
| 103 | |
| 104 | ret = regmap_bulk_read(map, chip->status_base, data->status_reg_buf, |
| 105 | chip->num_regs); |
| 106 | if (ret != 0) { |
| 107 | dev_err(map->dev, "Failed to read IRQ status: %d\n", ret); |
| 108 | return IRQ_NONE; |
| 109 | } |
| 110 | |
| 111 | /* |
| 112 | * Ignore masked IRQs and ack if we need to; we ack early so |
| 113 | * there is no race between handling and acknowleding the |
| 114 | * interrupt. We assume that typically few of the interrupts |
| 115 | * will fire simultaneously so don't worry about overhead from |
| 116 | * doing a write per register. |
| 117 | */ |
| 118 | for (i = 0; i < data->chip->num_regs; i++) { |
| 119 | switch (map->format.val_bytes) { |
| 120 | case 1: |
| 121 | data->status_buf[i] = buf8[i]; |
| 122 | break; |
| 123 | case 2: |
| 124 | data->status_buf[i] = buf16[i]; |
| 125 | break; |
| 126 | case 4: |
| 127 | data->status_buf[i] = buf32[i]; |
| 128 | break; |
| 129 | default: |
| 130 | BUG(); |
| 131 | return IRQ_NONE; |
| 132 | } |
| 133 | |
| 134 | data->status_buf[i] &= ~data->mask_buf[i]; |
| 135 | |
| 136 | if (data->status_buf[i] && chip->ack_base) { |
| 137 | ret = regmap_write(map, chip->ack_base + i, |
| 138 | data->status_buf[i]); |
| 139 | if (ret != 0) |
| 140 | dev_err(map->dev, "Failed to ack 0x%x: %d\n", |
| 141 | chip->ack_base + i, ret); |
| 142 | } |
| 143 | } |
| 144 | |
| 145 | for (i = 0; i < chip->num_irqs; i++) { |
| 146 | if (data->status_buf[chip->irqs[i].reg_offset] & |
| 147 | chip->irqs[i].mask) { |
| 148 | handle_nested_irq(data->irq_base + i); |
| 149 | } |
| 150 | } |
| 151 | |
| 152 | return IRQ_HANDLED; |
| 153 | } |
| 154 | |
| 155 | /** |
| 156 | * regmap_add_irq_chip(): Use standard regmap IRQ controller handling |
| 157 | * |
| 158 | * map: The regmap for the device. |
| 159 | * irq: The IRQ the device uses to signal interrupts |
| 160 | * irq_flags: The IRQF_ flags to use for the primary interrupt. |
| 161 | * chip: Configuration for the interrupt controller. |
| 162 | * data: Runtime data structure for the controller, allocated on success |
| 163 | * |
| 164 | * Returns 0 on success or an errno on failure. |
| 165 | * |
| 166 | * In order for this to be efficient the chip really should use a |
| 167 | * register cache. The chip driver is responsible for restoring the |
| 168 | * register values used by the IRQ controller over suspend and resume. |
| 169 | */ |
| 170 | int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags, |
| 171 | int irq_base, struct regmap_irq_chip *chip, |
| 172 | struct regmap_irq_chip_data **data) |
| 173 | { |
| 174 | struct regmap_irq_chip_data *d; |
| 175 | int cur_irq, i; |
| 176 | int ret = -ENOMEM; |
| 177 | |
| 178 | irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0); |
| 179 | if (irq_base < 0) { |
| 180 | dev_warn(map->dev, "Failed to allocate IRQs: %d\n", |
| 181 | irq_base); |
| 182 | return irq_base; |
| 183 | } |
| 184 | |
| 185 | d = kzalloc(sizeof(*d), GFP_KERNEL); |
| 186 | if (!d) |
| 187 | return -ENOMEM; |
| 188 | |
| 189 | d->status_buf = kzalloc(sizeof(unsigned int) * chip->num_regs, |
| 190 | GFP_KERNEL); |
| 191 | if (!d->status_buf) |
| 192 | goto err_alloc; |
| 193 | |
| 194 | d->status_reg_buf = kzalloc(map->format.val_bytes * chip->num_regs, |
| 195 | GFP_KERNEL); |
| 196 | if (!d->status_reg_buf) |
| 197 | goto err_alloc; |
| 198 | |
| 199 | d->mask_buf = kzalloc(sizeof(unsigned int) * chip->num_regs, |
| 200 | GFP_KERNEL); |
| 201 | if (!d->mask_buf) |
| 202 | goto err_alloc; |
| 203 | |
| 204 | d->mask_buf_def = kzalloc(sizeof(unsigned int) * chip->num_regs, |
| 205 | GFP_KERNEL); |
| 206 | if (!d->mask_buf_def) |
| 207 | goto err_alloc; |
| 208 | |
| 209 | d->map = map; |
| 210 | d->chip = chip; |
| 211 | d->irq_base = irq_base; |
| 212 | mutex_init(&d->lock); |
| 213 | |
| 214 | for (i = 0; i < chip->num_irqs; i++) |
| 215 | d->mask_buf_def[chip->irqs[i].reg_offset] |
| 216 | |= chip->irqs[i].mask; |
| 217 | |
| 218 | /* Mask all the interrupts by default */ |
| 219 | for (i = 0; i < chip->num_regs; i++) { |
| 220 | d->mask_buf[i] = d->mask_buf_def[i]; |
| 221 | ret = regmap_write(map, chip->mask_base + i, d->mask_buf[i]); |
| 222 | if (ret != 0) { |
| 223 | dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", |
| 224 | chip->mask_base + i, ret); |
| 225 | goto err_alloc; |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | /* Register them with genirq */ |
| 230 | for (cur_irq = irq_base; |
| 231 | cur_irq < chip->num_irqs + irq_base; |
| 232 | cur_irq++) { |
| 233 | irq_set_chip_data(cur_irq, d); |
| 234 | irq_set_chip_and_handler(cur_irq, ®map_irq_chip, |
| 235 | handle_edge_irq); |
| 236 | irq_set_nested_thread(cur_irq, 1); |
| 237 | |
| 238 | /* ARM needs us to explicitly flag the IRQ as valid |
| 239 | * and will set them noprobe when we do so. */ |
| 240 | #ifdef CONFIG_ARM |
| 241 | set_irq_flags(cur_irq, IRQF_VALID); |
| 242 | #else |
| 243 | irq_set_noprobe(cur_irq); |
| 244 | #endif |
| 245 | } |
| 246 | |
| 247 | ret = request_threaded_irq(irq, NULL, regmap_irq_thread, irq_flags, |
| 248 | chip->name, d); |
| 249 | if (ret != 0) { |
| 250 | dev_err(map->dev, "Failed to request IRQ %d: %d\n", irq, ret); |
| 251 | goto err_alloc; |
| 252 | } |
| 253 | |
| 254 | return 0; |
| 255 | |
| 256 | err_alloc: |
| 257 | kfree(d->mask_buf_def); |
| 258 | kfree(d->mask_buf); |
| 259 | kfree(d->status_reg_buf); |
| 260 | kfree(d->status_buf); |
| 261 | kfree(d); |
| 262 | return ret; |
| 263 | } |
| 264 | EXPORT_SYMBOL_GPL(regmap_add_irq_chip); |
| 265 | |
| 266 | /** |
| 267 | * regmap_del_irq_chip(): Stop interrupt handling for a regmap IRQ chip |
| 268 | * |
| 269 | * @irq: Primary IRQ for the device |
| 270 | * @d: regmap_irq_chip_data allocated by regmap_add_irq_chip() |
| 271 | */ |
| 272 | void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d) |
| 273 | { |
| 274 | if (!d) |
| 275 | return; |
| 276 | |
| 277 | free_irq(irq, d); |
| 278 | kfree(d->mask_buf_def); |
| 279 | kfree(d->mask_buf); |
| 280 | kfree(d->status_reg_buf); |
| 281 | kfree(d->status_buf); |
| 282 | kfree(d); |
| 283 | } |
| 284 | EXPORT_SYMBOL_GPL(regmap_del_irq_chip); |