fs: push i_mutex and filemap_write_and_wait down into ->fsync() handlers

Btrfs needs to be able to control how filemap_write_and_wait_range() is called
in fsync to make it less of a painful operation, so push down taking i_mutex and
the calling of filemap_write_and_wait() down into the ->fsync() handlers.  Some
file systems can drop taking the i_mutex altogether it seems, like ext3 and
ocfs2.  For correctness sake I just pushed everything down in all cases to make
sure that we keep the current behavior the same for everybody, and then each
individual fs maintainer can make up their mind about what to do from there.
Thanks,

Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
diff --git a/fs/jffs2/file.c b/fs/jffs2/file.c
index 1c0a08d..3989f7e 100644
--- a/fs/jffs2/file.c
+++ b/fs/jffs2/file.c
@@ -27,13 +27,20 @@
 			struct page **pagep, void **fsdata);
 static int jffs2_readpage (struct file *filp, struct page *pg);
 
-int jffs2_fsync(struct file *filp, int datasync)
+int jffs2_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
 {
 	struct inode *inode = filp->f_mapping->host;
 	struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
+	int ret;
 
+	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
+	if (ret)
+		return ret;
+
+	mutex_lock(&inode->i_mutex);
 	/* Trigger GC to flush any pending writes for this inode */
 	jffs2_flush_wbuf_gc(c, inode->i_ino);
+	mutex_unlock(&inode->i_mutex);
 
 	return 0;
 }