blob: a753a431bb13f186b7587cb0b67c10e76699a7d2 [file] [log] [blame]
/*
* Copyright (c) 2010 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "hw.h"
#include "ar9003_phy.h"
static const int firstep_table[] =
/* level: 0 1 2 3 4 5 6 7 8 */
{ -4, -2, 0, 2, 4, 6, 8, 10, 12 }; /* lvl 0-8, default 2 */
static const int cycpwrThr1_table[] =
/* level: 0 1 2 3 4 5 6 7 8 */
{ -6, -4, -2, 0, 2, 4, 6, 8 }; /* lvl 0-7, default 3 */
/*
* register values to turn OFDM weak signal detection OFF
*/
static const int m1ThreshLow_off = 127;
static const int m2ThreshLow_off = 127;
static const int m1Thresh_off = 127;
static const int m2Thresh_off = 127;
static const int m2CountThr_off = 31;
static const int m2CountThrLow_off = 63;
static const int m1ThreshLowExt_off = 127;
static const int m2ThreshLowExt_off = 127;
static const int m1ThreshExt_off = 127;
static const int m2ThreshExt_off = 127;
/**
* ar9003_hw_set_channel - set channel on single-chip device
* @ah: atheros hardware structure
* @chan:
*
* This is the function to change channel on single-chip devices, that is
* all devices after ar9280.
*
* This function takes the channel value in MHz and sets
* hardware channel value. Assumes writes have been enabled to analog bus.
*
* Actual Expression,
*
* For 2GHz channel,
* Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
* (freq_ref = 40MHz)
*
* For 5GHz channel,
* Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
* (freq_ref = 40MHz/(24>>amodeRefSel))
*
* For 5GHz channels which are 5MHz spaced,
* Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
* (freq_ref = 40MHz)
*/
static int ar9003_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
{
u16 bMode, fracMode = 0, aModeRefSel = 0;
u32 freq, channelSel = 0, reg32 = 0;
struct chan_centers centers;
int loadSynthChannel;
ath9k_hw_get_channel_centers(ah, chan, &centers);
freq = centers.synth_center;
if (freq < 4800) { /* 2 GHz, fractional mode */
channelSel = CHANSEL_2G(freq);
/* Set to 2G mode */
bMode = 1;
} else {
channelSel = CHANSEL_5G(freq);
/* Doubler is ON, so, divide channelSel by 2. */
channelSel >>= 1;
/* Set to 5G mode */
bMode = 0;
}
/* Enable fractional mode for all channels */
fracMode = 1;
aModeRefSel = 0;
loadSynthChannel = 0;
reg32 = (bMode << 29);
REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
/* Enable Long shift Select for Synthesizer */
REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_SYNTH4,
AR_PHY_SYNTH4_LONG_SHIFT_SELECT, 1);
/* Program Synth. setting */
reg32 = (channelSel << 2) | (fracMode << 30) |
(aModeRefSel << 28) | (loadSynthChannel << 31);
REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32);
/* Toggle Load Synth channel bit */
loadSynthChannel = 1;
reg32 = (channelSel << 2) | (fracMode << 30) |
(aModeRefSel << 28) | (loadSynthChannel << 31);
REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32);
ah->curchan = chan;
ah->curchan_rad_index = -1;
return 0;
}
/**
* ar9003_hw_spur_mitigate_mrc_cck - convert baseband spur frequency
* @ah: atheros hardware structure
* @chan:
*
* For single-chip solutions. Converts to baseband spur frequency given the
* input channel frequency and compute register settings below.
*
* Spur mitigation for MRC CCK
*/
static void ar9003_hw_spur_mitigate_mrc_cck(struct ath_hw *ah,
struct ath9k_channel *chan)
{
u32 spur_freq[4] = { 2420, 2440, 2464, 2480 };
int cur_bb_spur, negative = 0, cck_spur_freq;
int i;
/*
* Need to verify range +/- 10 MHz in control channel, otherwise spur
* is out-of-band and can be ignored.
*/
for (i = 0; i < 4; i++) {
negative = 0;
cur_bb_spur = spur_freq[i] - chan->channel;
if (cur_bb_spur < 0) {
negative = 1;
cur_bb_spur = -cur_bb_spur;
}
if (cur_bb_spur < 10) {
cck_spur_freq = (int)((cur_bb_spur << 19) / 11);
if (negative == 1)
cck_spur_freq = -cck_spur_freq;
cck_spur_freq = cck_spur_freq & 0xfffff;
REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_YCOK_MAX, 0x7);
REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
AR_PHY_CCK_SPUR_MIT_SPUR_RSSI_THR, 0x7f);
REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
AR_PHY_CCK_SPUR_MIT_SPUR_FILTER_TYPE,
0x2);
REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT,
0x1);
REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ,
cck_spur_freq);
return;
}
}
REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_YCOK_MAX, 0x5);
REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT, 0x0);
REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, 0x0);
}
/* Clean all spur register fields */
static void ar9003_hw_spur_ofdm_clear(struct ath_hw *ah)
{
REG_RMW_FIELD(ah, AR_PHY_TIMING4,
AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0);
REG_RMW_FIELD(ah, AR_PHY_TIMING11,
AR_PHY_TIMING11_SPUR_FREQ_SD, 0);
REG_RMW_FIELD(ah, AR_PHY_TIMING11,
AR_PHY_TIMING11_SPUR_DELTA_PHASE, 0);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, 0);
REG_RMW_FIELD(ah, AR_PHY_TIMING11,
AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0);
REG_RMW_FIELD(ah, AR_PHY_TIMING11,
AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0);
REG_RMW_FIELD(ah, AR_PHY_TIMING4,
AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0);
REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 0);
REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 0);
REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0);
REG_RMW_FIELD(ah, AR_PHY_TIMING4,
AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0);
REG_RMW_FIELD(ah, AR_PHY_TIMING4,
AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0);
REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, 0);
REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, 0);
REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, 0);
REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0);
REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0);
REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0);
REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0);
}
static void ar9003_hw_spur_ofdm(struct ath_hw *ah,
int freq_offset,
int spur_freq_sd,
int spur_delta_phase,
int spur_subchannel_sd)
{
int mask_index = 0;
/* OFDM Spur mitigation */
REG_RMW_FIELD(ah, AR_PHY_TIMING4,
AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0x1);
REG_RMW_FIELD(ah, AR_PHY_TIMING11,
AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd);
REG_RMW_FIELD(ah, AR_PHY_TIMING11,
AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, spur_subchannel_sd);
REG_RMW_FIELD(ah, AR_PHY_TIMING11,
AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0x1);
REG_RMW_FIELD(ah, AR_PHY_TIMING11,
AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0x1);
REG_RMW_FIELD(ah, AR_PHY_TIMING4,
AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0x1);
REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, 34);
REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 1);
if (REG_READ_FIELD(ah, AR_PHY_MODE,
AR_PHY_MODE_DYNAMIC) == 0x1)
REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 1);
mask_index = (freq_offset << 4) / 5;
if (mask_index < 0)
mask_index = mask_index - 1;
mask_index = mask_index & 0x7f;
REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0x1);
REG_RMW_FIELD(ah, AR_PHY_TIMING4,
AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0x1);
REG_RMW_FIELD(ah, AR_PHY_TIMING4,
AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0x1);
REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, mask_index);
REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, mask_index);
REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, mask_index);
REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0xc);
REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0xc);
REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0xa0);
REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0xff);
}
static void ar9003_hw_spur_ofdm_work(struct ath_hw *ah,
struct ath9k_channel *chan,
int freq_offset)
{
int spur_freq_sd = 0;
int spur_subchannel_sd = 0;
int spur_delta_phase = 0;
if (IS_CHAN_HT40(chan)) {
if (freq_offset < 0) {
if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
spur_subchannel_sd = 1;
else
spur_subchannel_sd = 0;
spur_freq_sd = ((freq_offset + 10) << 9) / 11;
} else {
if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
spur_subchannel_sd = 0;
else
spur_subchannel_sd = 1;
spur_freq_sd = ((freq_offset - 10) << 9) / 11;
}
spur_delta_phase = (freq_offset << 17) / 5;
} else {
spur_subchannel_sd = 0;
spur_freq_sd = (freq_offset << 9) /11;
spur_delta_phase = (freq_offset << 18) / 5;
}
spur_freq_sd = spur_freq_sd & 0x3ff;
spur_delta_phase = spur_delta_phase & 0xfffff;
ar9003_hw_spur_ofdm(ah,
freq_offset,
spur_freq_sd,
spur_delta_phase,
spur_subchannel_sd);
}
/* Spur mitigation for OFDM */
static void ar9003_hw_spur_mitigate_ofdm(struct ath_hw *ah,
struct ath9k_channel *chan)
{
int synth_freq;
int range = 10;
int freq_offset = 0;
int mode;
u8* spurChansPtr;
unsigned int i;
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
if (IS_CHAN_5GHZ(chan)) {
spurChansPtr = &(eep->modalHeader5G.spurChans[0]);
mode = 0;
}
else {
spurChansPtr = &(eep->modalHeader2G.spurChans[0]);
mode = 1;
}
if (spurChansPtr[0] == 0)
return; /* No spur in the mode */
if (IS_CHAN_HT40(chan)) {
range = 19;
if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
synth_freq = chan->channel - 10;
else
synth_freq = chan->channel + 10;
} else {
range = 10;
synth_freq = chan->channel;
}
ar9003_hw_spur_ofdm_clear(ah);
for (i = 0; spurChansPtr[i] && i < 5; i++) {
freq_offset = FBIN2FREQ(spurChansPtr[i], mode) - synth_freq;
if (abs(freq_offset) < range) {
ar9003_hw_spur_ofdm_work(ah, chan, freq_offset);
break;
}
}
}
static void ar9003_hw_spur_mitigate(struct ath_hw *ah,
struct ath9k_channel *chan)
{
ar9003_hw_spur_mitigate_mrc_cck(ah, chan);
ar9003_hw_spur_mitigate_ofdm(ah, chan);
}
static u32 ar9003_hw_compute_pll_control(struct ath_hw *ah,
struct ath9k_channel *chan)
{
u32 pll;
pll = SM(0x5, AR_RTC_9300_PLL_REFDIV);
if (chan && IS_CHAN_HALF_RATE(chan))
pll |= SM(0x1, AR_RTC_9300_PLL_CLKSEL);
else if (chan && IS_CHAN_QUARTER_RATE(chan))
pll |= SM(0x2, AR_RTC_9300_PLL_CLKSEL);
pll |= SM(0x2c, AR_RTC_9300_PLL_DIV);
return pll;
}
static void ar9003_hw_set_channel_regs(struct ath_hw *ah,
struct ath9k_channel *chan)
{
u32 phymode;
u32 enableDacFifo = 0;
enableDacFifo =
(REG_READ(ah, AR_PHY_GEN_CTRL) & AR_PHY_GC_ENABLE_DAC_FIFO);
/* Enable 11n HT, 20 MHz */
phymode = AR_PHY_GC_HT_EN | AR_PHY_GC_SINGLE_HT_LTF1 | AR_PHY_GC_WALSH |
AR_PHY_GC_SHORT_GI_40 | enableDacFifo;
/* Configure baseband for dynamic 20/40 operation */
if (IS_CHAN_HT40(chan)) {
phymode |= AR_PHY_GC_DYN2040_EN;
/* Configure control (primary) channel at +-10MHz */
if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
(chan->chanmode == CHANNEL_G_HT40PLUS))
phymode |= AR_PHY_GC_DYN2040_PRI_CH;
}
/* make sure we preserve INI settings */
phymode |= REG_READ(ah, AR_PHY_GEN_CTRL);
/* turn off Green Field detection for STA for now */
phymode &= ~AR_PHY_GC_GF_DETECT_EN;
REG_WRITE(ah, AR_PHY_GEN_CTRL, phymode);
/* Configure MAC for 20/40 operation */
ath9k_hw_set11nmac2040(ah);
/* global transmit timeout (25 TUs default)*/
REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
/* carrier sense timeout */
REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
}
static void ar9003_hw_init_bb(struct ath_hw *ah,
struct ath9k_channel *chan)
{
u32 synthDelay;
/*
* Wait for the frequency synth to settle (synth goes on
* via AR_PHY_ACTIVE_EN). Read the phy active delay register.
* Value is in 100ns increments.
*/
synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
if (IS_CHAN_B(chan))
synthDelay = (4 * synthDelay) / 22;
else
synthDelay /= 10;
/* Activate the PHY (includes baseband activate + synthesizer on) */
REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
/*
* There is an issue if the AP starts the calibration before
* the base band timeout completes. This could result in the
* rx_clear false triggering. As a workaround we add delay an
* extra BASE_ACTIVATE_DELAY usecs to ensure this condition
* does not happen.
*/
udelay(synthDelay + BASE_ACTIVATE_DELAY);
}
void ar9003_hw_set_chain_masks(struct ath_hw *ah, u8 rx, u8 tx)
{
switch (rx) {
case 0x5:
REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
AR_PHY_SWAP_ALT_CHAIN);
case 0x3:
case 0x1:
case 0x2:
case 0x7:
REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx);
REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx);
break;
default:
break;
}
REG_WRITE(ah, AR_SELFGEN_MASK, tx);
if (tx == 0x5) {
REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
AR_PHY_SWAP_ALT_CHAIN);
}
}
/*
* Override INI values with chip specific configuration.
*/
static void ar9003_hw_override_ini(struct ath_hw *ah)
{
u32 val;
/*
* Set the RX_ABORT and RX_DIS and clear it only after
* RXE is set for MAC. This prevents frames with
* corrupted descriptor status.
*/
REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
/*
* For AR9280 and above, there is a new feature that allows
* Multicast search based on both MAC Address and Key ID. By default,
* this feature is enabled. But since the driver is not using this
* feature, we switch it off; otherwise multicast search based on
* MAC addr only will fail.
*/
val = REG_READ(ah, AR_PCU_MISC_MODE2) & (~AR_ADHOC_MCAST_KEYID_ENABLE);
REG_WRITE(ah, AR_PCU_MISC_MODE2,
val | AR_AGG_WEP_ENABLE_FIX | AR_AGG_WEP_ENABLE);
}
static void ar9003_hw_prog_ini(struct ath_hw *ah,
struct ar5416IniArray *iniArr,
int column)
{
unsigned int i, regWrites = 0;
/* New INI format: Array may be undefined (pre, core, post arrays) */
if (!iniArr->ia_array)
return;
/*
* New INI format: Pre, core, and post arrays for a given subsystem
* may be modal (> 2 columns) or non-modal (2 columns). Determine if
* the array is non-modal and force the column to 1.
*/
if (column >= iniArr->ia_columns)
column = 1;
for (i = 0; i < iniArr->ia_rows; i++) {
u32 reg = INI_RA(iniArr, i, 0);
u32 val = INI_RA(iniArr, i, column);
REG_WRITE(ah, reg, val);
DO_DELAY(regWrites);
}
}
static int ar9003_hw_process_ini(struct ath_hw *ah,
struct ath9k_channel *chan)
{
struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
unsigned int regWrites = 0, i;
struct ieee80211_channel *channel = chan->chan;
u32 modesIndex, freqIndex;
switch (chan->chanmode) {
case CHANNEL_A:
case CHANNEL_A_HT20:
modesIndex = 1;
freqIndex = 1;
break;
case CHANNEL_A_HT40PLUS:
case CHANNEL_A_HT40MINUS:
modesIndex = 2;
freqIndex = 1;
break;
case CHANNEL_G:
case CHANNEL_G_HT20:
case CHANNEL_B:
modesIndex = 4;
freqIndex = 2;
break;
case CHANNEL_G_HT40PLUS:
case CHANNEL_G_HT40MINUS:
modesIndex = 3;
freqIndex = 2;
break;
default:
return -EINVAL;
}
for (i = 0; i < ATH_INI_NUM_SPLIT; i++) {
ar9003_hw_prog_ini(ah, &ah->iniSOC[i], modesIndex);
ar9003_hw_prog_ini(ah, &ah->iniMac[i], modesIndex);
ar9003_hw_prog_ini(ah, &ah->iniBB[i], modesIndex);
ar9003_hw_prog_ini(ah, &ah->iniRadio[i], modesIndex);
}
REG_WRITE_ARRAY(&ah->iniModesRxGain, 1, regWrites);
REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
/*
* For 5GHz channels requiring Fast Clock, apply
* different modal values.
*/
if (IS_CHAN_A_FAST_CLOCK(ah, chan))
REG_WRITE_ARRAY(&ah->iniModesAdditional,
modesIndex, regWrites);
ar9003_hw_override_ini(ah);
ar9003_hw_set_channel_regs(ah, chan);
ar9003_hw_set_chain_masks(ah, ah->rxchainmask, ah->txchainmask);
/* Set TX power */
ah->eep_ops->set_txpower(ah, chan,
ath9k_regd_get_ctl(regulatory, chan),
channel->max_antenna_gain * 2,
channel->max_power * 2,
min((u32) MAX_RATE_POWER,
(u32) regulatory->power_limit));
return 0;
}
static void ar9003_hw_set_rfmode(struct ath_hw *ah,
struct ath9k_channel *chan)
{
u32 rfMode = 0;
if (chan == NULL)
return;
rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
if (IS_CHAN_A_FAST_CLOCK(ah, chan))
rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
REG_WRITE(ah, AR_PHY_MODE, rfMode);
}
static void ar9003_hw_mark_phy_inactive(struct ath_hw *ah)
{
REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
}
static void ar9003_hw_set_delta_slope(struct ath_hw *ah,
struct ath9k_channel *chan)
{
u32 coef_scaled, ds_coef_exp, ds_coef_man;
u32 clockMhzScaled = 0x64000000;
struct chan_centers centers;
/*
* half and quarter rate can divide the scaled clock by 2 or 4
* scale for selected channel bandwidth
*/
if (IS_CHAN_HALF_RATE(chan))
clockMhzScaled = clockMhzScaled >> 1;
else if (IS_CHAN_QUARTER_RATE(chan))
clockMhzScaled = clockMhzScaled >> 2;
/*
* ALGO -> coef = 1e8/fcarrier*fclock/40;
* scaled coef to provide precision for this floating calculation
*/
ath9k_hw_get_channel_centers(ah, chan, &centers);
coef_scaled = clockMhzScaled / centers.synth_center;
ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
&ds_coef_exp);
REG_RMW_FIELD(ah, AR_PHY_TIMING3,
AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
REG_RMW_FIELD(ah, AR_PHY_TIMING3,
AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
/*
* For Short GI,
* scaled coeff is 9/10 that of normal coeff
*/
coef_scaled = (9 * coef_scaled) / 10;
ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
&ds_coef_exp);
/* for short gi */
REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
AR_PHY_SGI_DSC_MAN, ds_coef_man);
REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
AR_PHY_SGI_DSC_EXP, ds_coef_exp);
}
static bool ar9003_hw_rfbus_req(struct ath_hw *ah)
{
REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
}
/*
* Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
* Read the phy active delay register. Value is in 100ns increments.
*/
static void ar9003_hw_rfbus_done(struct ath_hw *ah)
{
u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
if (IS_CHAN_B(ah->curchan))
synthDelay = (4 * synthDelay) / 22;
else
synthDelay /= 10;
udelay(synthDelay + BASE_ACTIVATE_DELAY);
REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
}
/*
* Set the interrupt and GPIO values so the ISR can disable RF
* on a switch signal. Assumes GPIO port and interrupt polarity
* are set prior to call.
*/
static void ar9003_hw_enable_rfkill(struct ath_hw *ah)
{
/* Connect rfsilent_bb_l to baseband */
REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
/* Set input mux for rfsilent_bb_l to GPIO #0 */
REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
AR_GPIO_INPUT_MUX2_RFSILENT);
/*
* Configure the desired GPIO port for input and
* enable baseband rf silence.
*/
ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
}
static void ar9003_hw_set_diversity(struct ath_hw *ah, bool value)
{
u32 v = REG_READ(ah, AR_PHY_CCK_DETECT);
if (value)
v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
else
v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
}
static bool ar9003_hw_ani_control(struct ath_hw *ah,
enum ath9k_ani_cmd cmd, int param)
{
struct ar5416AniState *aniState = ah->curani;
struct ath_common *common = ath9k_hw_common(ah);
struct ath9k_channel *chan = ah->curchan;
s32 value, value2;
switch (cmd & ah->ani_function) {
case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
/*
* on == 1 means ofdm weak signal detection is ON
* on == 1 is the default, for less noise immunity
*
* on == 0 means ofdm weak signal detection is OFF
* on == 0 means more noise imm
*/
u32 on = param ? 1 : 0;
/*
* make register setting for default
* (weak sig detect ON) come from INI file
*/
int m1ThreshLow = on ?
aniState->iniDef.m1ThreshLow : m1ThreshLow_off;
int m2ThreshLow = on ?
aniState->iniDef.m2ThreshLow : m2ThreshLow_off;
int m1Thresh = on ?
aniState->iniDef.m1Thresh : m1Thresh_off;
int m2Thresh = on ?
aniState->iniDef.m2Thresh : m2Thresh_off;
int m2CountThr = on ?
aniState->iniDef.m2CountThr : m2CountThr_off;
int m2CountThrLow = on ?
aniState->iniDef.m2CountThrLow : m2CountThrLow_off;
int m1ThreshLowExt = on ?
aniState->iniDef.m1ThreshLowExt : m1ThreshLowExt_off;
int m2ThreshLowExt = on ?
aniState->iniDef.m2ThreshLowExt : m2ThreshLowExt_off;
int m1ThreshExt = on ?
aniState->iniDef.m1ThreshExt : m1ThreshExt_off;
int m2ThreshExt = on ?
aniState->iniDef.m2ThreshExt : m2ThreshExt_off;
REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
m1ThreshLow);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
m2ThreshLow);
REG_RMW_FIELD(ah, AR_PHY_SFCORR,
AR_PHY_SFCORR_M1_THRESH, m1Thresh);
REG_RMW_FIELD(ah, AR_PHY_SFCORR,
AR_PHY_SFCORR_M2_THRESH, m2Thresh);
REG_RMW_FIELD(ah, AR_PHY_SFCORR,
AR_PHY_SFCORR_M2COUNT_THR, m2CountThr);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
m2CountThrLow);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLowExt);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLowExt);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
AR_PHY_SFCORR_EXT_M1_THRESH, m1ThreshExt);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
AR_PHY_SFCORR_EXT_M2_THRESH, m2ThreshExt);
if (on)
REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
else
REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
if (!on != aniState->ofdmWeakSigDetectOff) {
ath_print(common, ATH_DBG_ANI,
"** ch %d: ofdm weak signal: %s=>%s\n",
chan->channel,
!aniState->ofdmWeakSigDetectOff ?
"on" : "off",
on ? "on" : "off");
if (on)
ah->stats.ast_ani_ofdmon++;
else
ah->stats.ast_ani_ofdmoff++;
aniState->ofdmWeakSigDetectOff = !on;
}
break;
}
case ATH9K_ANI_FIRSTEP_LEVEL:{
u32 level = param;
if (level >= ARRAY_SIZE(firstep_table)) {
ath_print(common, ATH_DBG_ANI,
"ATH9K_ANI_FIRSTEP_LEVEL: level "
"out of range (%u > %u)\n",
level,
(unsigned) ARRAY_SIZE(firstep_table));
return false;
}
/*
* make register setting relative to default
* from INI file & cap value
*/
value = firstep_table[level] -
firstep_table[ATH9K_ANI_FIRSTEP_LVL_NEW] +
aniState->iniDef.firstep;
if (value < ATH9K_SIG_FIRSTEP_SETTING_MIN)
value = ATH9K_SIG_FIRSTEP_SETTING_MIN;
if (value > ATH9K_SIG_FIRSTEP_SETTING_MAX)
value = ATH9K_SIG_FIRSTEP_SETTING_MAX;
REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
AR_PHY_FIND_SIG_FIRSTEP,
value);
/*
* we need to set first step low register too
* make register setting relative to default
* from INI file & cap value
*/
value2 = firstep_table[level] -
firstep_table[ATH9K_ANI_FIRSTEP_LVL_NEW] +
aniState->iniDef.firstepLow;
if (value2 < ATH9K_SIG_FIRSTEP_SETTING_MIN)
value2 = ATH9K_SIG_FIRSTEP_SETTING_MIN;
if (value2 > ATH9K_SIG_FIRSTEP_SETTING_MAX)
value2 = ATH9K_SIG_FIRSTEP_SETTING_MAX;
REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW,
AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW, value2);
if (level != aniState->firstepLevel) {
ath_print(common, ATH_DBG_ANI,
"** ch %d: level %d=>%d[def:%d] "
"firstep[level]=%d ini=%d\n",
chan->channel,
aniState->firstepLevel,
level,
ATH9K_ANI_FIRSTEP_LVL_NEW,
value,
aniState->iniDef.firstep);
ath_print(common, ATH_DBG_ANI,
"** ch %d: level %d=>%d[def:%d] "
"firstep_low[level]=%d ini=%d\n",
chan->channel,
aniState->firstepLevel,
level,
ATH9K_ANI_FIRSTEP_LVL_NEW,
value2,
aniState->iniDef.firstepLow);
if (level > aniState->firstepLevel)
ah->stats.ast_ani_stepup++;
else if (level < aniState->firstepLevel)
ah->stats.ast_ani_stepdown++;
aniState->firstepLevel = level;
}
break;
}
case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
u32 level = param;
if (level >= ARRAY_SIZE(cycpwrThr1_table)) {
ath_print(common, ATH_DBG_ANI,
"ATH9K_ANI_SPUR_IMMUNITY_LEVEL: level "
"out of range (%u > %u)\n",
level,
(unsigned) ARRAY_SIZE(cycpwrThr1_table));
return false;
}
/*
* make register setting relative to default
* from INI file & cap value
*/
value = cycpwrThr1_table[level] -
cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL_NEW] +
aniState->iniDef.cycpwrThr1;
if (value < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
value = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
if (value > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
value = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
REG_RMW_FIELD(ah, AR_PHY_TIMING5,
AR_PHY_TIMING5_CYCPWR_THR1,
value);
/*
* set AR_PHY_EXT_CCA for extension channel
* make register setting relative to default
* from INI file & cap value
*/
value2 = cycpwrThr1_table[level] -
cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL_NEW] +
aniState->iniDef.cycpwrThr1Ext;
if (value2 < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
value2 = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
if (value2 > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
value2 = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
AR_PHY_EXT_CYCPWR_THR1, value2);
if (level != aniState->spurImmunityLevel) {
ath_print(common, ATH_DBG_ANI,
"** ch %d: level %d=>%d[def:%d] "
"cycpwrThr1[level]=%d ini=%d\n",
chan->channel,
aniState->spurImmunityLevel,
level,
ATH9K_ANI_SPUR_IMMUNE_LVL_NEW,
value,
aniState->iniDef.cycpwrThr1);
ath_print(common, ATH_DBG_ANI,
"** ch %d: level %d=>%d[def:%d] "
"cycpwrThr1Ext[level]=%d ini=%d\n",
chan->channel,
aniState->spurImmunityLevel,
level,
ATH9K_ANI_SPUR_IMMUNE_LVL_NEW,
value2,
aniState->iniDef.cycpwrThr1Ext);
if (level > aniState->spurImmunityLevel)
ah->stats.ast_ani_spurup++;
else if (level < aniState->spurImmunityLevel)
ah->stats.ast_ani_spurdown++;
aniState->spurImmunityLevel = level;
}
break;
}
case ATH9K_ANI_MRC_CCK:{
/*
* is_on == 1 means MRC CCK ON (default, less noise imm)
* is_on == 0 means MRC CCK is OFF (more noise imm)
*/
bool is_on = param ? 1 : 0;
REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL,
AR_PHY_MRC_CCK_ENABLE, is_on);
REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL,
AR_PHY_MRC_CCK_MUX_REG, is_on);
if (!is_on != aniState->mrcCCKOff) {
ath_print(common, ATH_DBG_ANI,
"** ch %d: MRC CCK: %s=>%s\n",
chan->channel,
!aniState->mrcCCKOff ? "on" : "off",
is_on ? "on" : "off");
if (is_on)
ah->stats.ast_ani_ccklow++;
else
ah->stats.ast_ani_cckhigh++;
aniState->mrcCCKOff = !is_on;
}
break;
}
case ATH9K_ANI_PRESENT:
break;
default:
ath_print(common, ATH_DBG_ANI,
"invalid cmd %u\n", cmd);
return false;
}
ath_print(common, ATH_DBG_ANI,
"ANI parameters: SI=%d, ofdmWS=%s FS=%d "
"MRCcck=%s listenTime=%d CC=%d listen=%d "
"ofdmErrs=%d cckErrs=%d\n",
aniState->spurImmunityLevel,
!aniState->ofdmWeakSigDetectOff ? "on" : "off",
aniState->firstepLevel,
!aniState->mrcCCKOff ? "on" : "off",
aniState->listenTime,
aniState->cycleCount,
aniState->listenTime,
aniState->ofdmPhyErrCount,
aniState->cckPhyErrCount);
return true;
}
static void ar9003_hw_do_getnf(struct ath_hw *ah,
int16_t nfarray[NUM_NF_READINGS])
{
int16_t nf;
nf = MS(REG_READ(ah, AR_PHY_CCA_0), AR_PHY_MINCCA_PWR);
nfarray[0] = sign_extend(nf, 9);
nf = MS(REG_READ(ah, AR_PHY_CCA_1), AR_PHY_CH1_MINCCA_PWR);
nfarray[1] = sign_extend(nf, 9);
nf = MS(REG_READ(ah, AR_PHY_CCA_2), AR_PHY_CH2_MINCCA_PWR);
nfarray[2] = sign_extend(nf, 9);
if (!IS_CHAN_HT40(ah->curchan))
return;
nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR_PHY_EXT_MINCCA_PWR);
nfarray[3] = sign_extend(nf, 9);
nf = MS(REG_READ(ah, AR_PHY_EXT_CCA_1), AR_PHY_CH1_EXT_MINCCA_PWR);
nfarray[4] = sign_extend(nf, 9);
nf = MS(REG_READ(ah, AR_PHY_EXT_CCA_2), AR_PHY_CH2_EXT_MINCCA_PWR);
nfarray[5] = sign_extend(nf, 9);
}
static void ar9003_hw_set_nf_limits(struct ath_hw *ah)
{
ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_2GHZ;
ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_2GHZ;
ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9300_2GHZ;
ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_5GHZ;
ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_5GHZ;
ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9300_5GHZ;
}
/*
* Initialize the ANI register values with default (ini) values.
* This routine is called during a (full) hardware reset after
* all the registers are initialised from the INI.
*/
static void ar9003_hw_ani_cache_ini_regs(struct ath_hw *ah)
{
struct ar5416AniState *aniState;
struct ath_common *common = ath9k_hw_common(ah);
struct ath9k_channel *chan = ah->curchan;
struct ath9k_ani_default *iniDef;
int index;
u32 val;
index = ath9k_hw_get_ani_channel_idx(ah, chan);
aniState = &ah->ani[index];
ah->curani = aniState;
iniDef = &aniState->iniDef;
ath_print(common, ATH_DBG_ANI,
"ver %d.%d opmode %u chan %d Mhz/0x%x\n",
ah->hw_version.macVersion,
ah->hw_version.macRev,
ah->opmode,
chan->channel,
chan->channelFlags);
val = REG_READ(ah, AR_PHY_SFCORR);
iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH);
iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH);
iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR);
val = REG_READ(ah, AR_PHY_SFCORR_LOW);
iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW);
iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW);
iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW);
val = REG_READ(ah, AR_PHY_SFCORR_EXT);
iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH);
iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH);
iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW);
iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW);
iniDef->firstep = REG_READ_FIELD(ah,
AR_PHY_FIND_SIG,
AR_PHY_FIND_SIG_FIRSTEP);
iniDef->firstepLow = REG_READ_FIELD(ah,
AR_PHY_FIND_SIG_LOW,
AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW);
iniDef->cycpwrThr1 = REG_READ_FIELD(ah,
AR_PHY_TIMING5,
AR_PHY_TIMING5_CYCPWR_THR1);
iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah,
AR_PHY_EXT_CCA,
AR_PHY_EXT_CYCPWR_THR1);
/* these levels just got reset to defaults by the INI */
aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL_NEW;
aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL_NEW;
aniState->ofdmWeakSigDetectOff = !ATH9K_ANI_USE_OFDM_WEAK_SIG;
aniState->mrcCCKOff = !ATH9K_ANI_ENABLE_MRC_CCK;
aniState->cycleCount = 0;
}
void ar9003_hw_attach_phy_ops(struct ath_hw *ah)
{
struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
const u32 ar9300_cca_regs[6] = {
AR_PHY_CCA_0,
AR_PHY_CCA_1,
AR_PHY_CCA_2,
AR_PHY_EXT_CCA,
AR_PHY_EXT_CCA_1,
AR_PHY_EXT_CCA_2,
};
priv_ops->rf_set_freq = ar9003_hw_set_channel;
priv_ops->spur_mitigate_freq = ar9003_hw_spur_mitigate;
priv_ops->compute_pll_control = ar9003_hw_compute_pll_control;
priv_ops->set_channel_regs = ar9003_hw_set_channel_regs;
priv_ops->init_bb = ar9003_hw_init_bb;
priv_ops->process_ini = ar9003_hw_process_ini;
priv_ops->set_rfmode = ar9003_hw_set_rfmode;
priv_ops->mark_phy_inactive = ar9003_hw_mark_phy_inactive;
priv_ops->set_delta_slope = ar9003_hw_set_delta_slope;
priv_ops->rfbus_req = ar9003_hw_rfbus_req;
priv_ops->rfbus_done = ar9003_hw_rfbus_done;
priv_ops->enable_rfkill = ar9003_hw_enable_rfkill;
priv_ops->set_diversity = ar9003_hw_set_diversity;
priv_ops->ani_control = ar9003_hw_ani_control;
priv_ops->do_getnf = ar9003_hw_do_getnf;
priv_ops->ani_cache_ini_regs = ar9003_hw_ani_cache_ini_regs;
ar9003_hw_set_nf_limits(ah);
memcpy(ah->nf_regs, ar9300_cca_regs, sizeof(ah->nf_regs));
}
void ar9003_hw_bb_watchdog_config(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
u32 idle_tmo_ms = ah->bb_watchdog_timeout_ms;
u32 val, idle_count;
if (!idle_tmo_ms) {
/* disable IRQ, disable chip-reset for BB panic */
REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2,
REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) &
~(AR_PHY_WATCHDOG_RST_ENABLE |
AR_PHY_WATCHDOG_IRQ_ENABLE));
/* disable watchdog in non-IDLE mode, disable in IDLE mode */
REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1,
REG_READ(ah, AR_PHY_WATCHDOG_CTL_1) &
~(AR_PHY_WATCHDOG_NON_IDLE_ENABLE |
AR_PHY_WATCHDOG_IDLE_ENABLE));
ath_print(common, ATH_DBG_RESET, "Disabled BB Watchdog\n");
return;
}
/* enable IRQ, disable chip-reset for BB watchdog */
val = REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) & AR_PHY_WATCHDOG_CNTL2_MASK;
REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2,
(val | AR_PHY_WATCHDOG_IRQ_ENABLE) &
~AR_PHY_WATCHDOG_RST_ENABLE);
/* bound limit to 10 secs */
if (idle_tmo_ms > 10000)
idle_tmo_ms = 10000;
/*
* The time unit for watchdog event is 2^15 44/88MHz cycles.
*
* For HT20 we have a time unit of 2^15/44 MHz = .74 ms per tick
* For HT40 we have a time unit of 2^15/88 MHz = .37 ms per tick
*
* Given we use fast clock now in 5 GHz, these time units should
* be common for both 2 GHz and 5 GHz.
*/
idle_count = (100 * idle_tmo_ms) / 74;
if (ah->curchan && IS_CHAN_HT40(ah->curchan))
idle_count = (100 * idle_tmo_ms) / 37;
/*
* enable watchdog in non-IDLE mode, disable in IDLE mode,
* set idle time-out.
*/
REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1,
AR_PHY_WATCHDOG_NON_IDLE_ENABLE |
AR_PHY_WATCHDOG_IDLE_MASK |
(AR_PHY_WATCHDOG_NON_IDLE_MASK & (idle_count << 2)));
ath_print(common, ATH_DBG_RESET,
"Enabled BB Watchdog timeout (%u ms)\n",
idle_tmo_ms);
}
void ar9003_hw_bb_watchdog_read(struct ath_hw *ah)
{
/*
* we want to avoid printing in ISR context so we save the
* watchdog status to be printed later in bottom half context.
*/
ah->bb_watchdog_last_status = REG_READ(ah, AR_PHY_WATCHDOG_STATUS);
/*
* the watchdog timer should reset on status read but to be sure
* sure we write 0 to the watchdog status bit.
*/
REG_WRITE(ah, AR_PHY_WATCHDOG_STATUS,
ah->bb_watchdog_last_status & ~AR_PHY_WATCHDOG_STATUS_CLR);
}
void ar9003_hw_bb_watchdog_dbg_info(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
u32 rxc_pcnt = 0, rxf_pcnt = 0, txf_pcnt = 0, status;
if (likely(!(common->debug_mask & ATH_DBG_RESET)))
return;
status = ah->bb_watchdog_last_status;
ath_print(common, ATH_DBG_RESET,
"\n==== BB update: BB status=0x%08x ====\n", status);
ath_print(common, ATH_DBG_RESET,
"** BB state: wd=%u det=%u rdar=%u rOFDM=%d "
"rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n",
MS(status, AR_PHY_WATCHDOG_INFO),
MS(status, AR_PHY_WATCHDOG_DET_HANG),
MS(status, AR_PHY_WATCHDOG_RADAR_SM),
MS(status, AR_PHY_WATCHDOG_RX_OFDM_SM),
MS(status, AR_PHY_WATCHDOG_RX_CCK_SM),
MS(status, AR_PHY_WATCHDOG_TX_OFDM_SM),
MS(status, AR_PHY_WATCHDOG_TX_CCK_SM),
MS(status, AR_PHY_WATCHDOG_AGC_SM),
MS(status,AR_PHY_WATCHDOG_SRCH_SM));
ath_print(common, ATH_DBG_RESET,
"** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n",
REG_READ(ah, AR_PHY_WATCHDOG_CTL_1),
REG_READ(ah, AR_PHY_WATCHDOG_CTL_2));
ath_print(common, ATH_DBG_RESET,
"** BB mode: BB_gen_controls=0x%08x **\n",
REG_READ(ah, AR_PHY_GEN_CTRL));
if (ath9k_hw_GetMibCycleCountsPct(ah, &rxc_pcnt, &rxf_pcnt, &txf_pcnt))
ath_print(common, ATH_DBG_RESET,
"** BB busy times: rx_clear=%d%%, "
"rx_frame=%d%%, tx_frame=%d%% **\n",
rxc_pcnt, rxf_pcnt, txf_pcnt);
ath_print(common, ATH_DBG_RESET,
"==== BB update: done ====\n\n");
}
EXPORT_SYMBOL(ar9003_hw_bb_watchdog_dbg_info);