Btrfs: introduce a tree for items that map UUIDs to something

Mapping UUIDs to subvolume IDs is an operation with a high effort
today. Today, the algorithm even has quadratic effort (based on the
number of existing subvolumes), which means, that it takes minutes
to send/receive a single subvolume if 10,000 subvolumes exist. But
even linear effort would be too much since it is a waste. And these
data structures to allow mapping UUIDs to subvolume IDs are created
every time a btrfs send/receive instance is started.

It is much more efficient to maintain a searchable persistent data
structure in the filesystem, one that is updated whenever a
subvolume/snapshot is created and deleted, and when the received
subvolume UUID is set by the btrfs-receive tool.

Therefore kernel code is added with this commit that is able to
maintain data structures in the filesystem that allow to quickly
search for a given UUID and to retrieve data that is assigned to
this UUID, like which subvolume ID is related to this UUID.

This commit adds a new tree to hold UUID-to-data mapping items. The
key of the items is the full UUID plus the key type BTRFS_UUID_KEY.
Multiple data blocks can be stored for a given UUID, a type/length/
value scheme is used.

Now follows the lengthy justification, why a new tree was added
instead of using the existing root tree:

The first approach was to not create another tree that holds UUID
items. Instead, the items should just go into the top root tree.
Unfortunately this confused the algorithm to assign the objectid
of subvolumes and snapshots. The reason is that
btrfs_find_free_objectid() calls btrfs_find_highest_objectid() for
the first created subvol or snapshot after mounting a filesystem,
and this function simply searches for the largest used objectid in
the root tree keys to pick the next objectid to assign. Of course,
the UUID keys have always been the ones with the highest offset
value, and the next assigned subvol ID was wastefully huge.

To use any other existing tree did not look proper. To apply a
workaround such as setting the objectid to zero in the UUID item
key and to implement collision handling would either add
limitations (in case of a btrfs_extend_item() approach to handle
the collisions) or a lot of complexity and source code (in case a
key would be looked up that is free of collisions). Adding new code
that introduces limitations is not good, and adding code that is
complex and lengthy for no good reason is also not good. That's the
justification why a completely new tree was introduced.

Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
diff --git a/fs/btrfs/ctree.h b/fs/btrfs/ctree.h
index f697d00..429c54a 100644
--- a/fs/btrfs/ctree.h
+++ b/fs/btrfs/ctree.h
@@ -91,6 +91,9 @@
 /* holds quota configuration and tracking */
 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
 
+/* for storing items that use the BTRFS_UUID_KEY* types */
+#define BTRFS_UUID_TREE_OBJECTID 9ULL
+
 /* for storing balance parameters in the root tree */
 #define BTRFS_BALANCE_OBJECTID -4ULL
 
@@ -1943,6 +1946,19 @@
 #define BTRFS_DEV_REPLACE_KEY	250
 
 /*
+ * Stores items that allow to quickly map UUIDs to something else.
+ * These items are part of the filesystem UUID tree.
+ * The key is built like this:
+ * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
+ */
+#if BTRFS_UUID_SIZE != 16
+#error "UUID items require BTRFS_UUID_SIZE == 16!"
+#endif
+#define BTRFS_UUID_KEY_SUBVOL	251	/* for UUIDs assigned to subvols */
+#define BTRFS_UUID_KEY_RECEIVED_SUBVOL	252	/* for UUIDs assigned to
+						 * received subvols */
+
+/*
  * string items are for debugging.  They just store a short string of
  * data in the FS
  */
@@ -3481,6 +3497,14 @@
 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
 			     struct btrfs_root *root);
 
+/* uuid-tree.c */
+int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans,
+			struct btrfs_root *uuid_root, u8 *uuid, u8 type,
+			u64 subid);
+int btrfs_uuid_tree_rem(struct btrfs_trans_handle *trans,
+			struct btrfs_root *uuid_root, u8 *uuid, u8 type,
+			u64 subid);
+
 /* dir-item.c */
 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
 			  const char *name, int name_len);