async_tx: add support for asynchronous RAID6 recovery operations

 async_raid6_2data_recov() recovers two data disk failures

 async_raid6_datap_recov() recovers a data disk and the P disk

These routines are a port of the synchronous versions found in
drivers/md/raid6recov.c.  The primary difference is breaking out the xor
operations into separate calls to async_xor.  Two helper routines are
introduced to perform scalar multiplication where needed.
async_sum_product() multiplies two sources by scalar coefficients and
then sums (xor) the result.  async_mult() simply multiplies a single
source by a scalar.

This implemention also includes, in contrast to the original
synchronous-only code, special case handling for the 4-disk and 5-disk
array cases.  In these situations the default N-disk algorithm will
present 0-source or 1-source operations to dma devices.  To cover for
dma devices where the minimum source count is 2 we implement 4-disk and
5-disk handling in the recovery code.

[ Impact: asynchronous raid6 recovery routines for 2data and datap cases ]

Cc: Yuri Tikhonov <yur@emcraft.com>
Cc: Ilya Yanok <yanok@emcraft.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>


diff --git a/Documentation/crypto/async-tx-api.txt b/Documentation/crypto/async-tx-api.txt
index 0e48e054..ba046b8 100644
--- a/Documentation/crypto/async-tx-api.txt
+++ b/Documentation/crypto/async-tx-api.txt
@@ -67,6 +67,10 @@
 pq	- generate the p+q (raid6 syndrome) from a series of source buffers
 pq_val  - validate that a p and or q buffer are in sync with a given series of
 	  sources
+datap	- (raid6_datap_recov) recover a raid6 data block and the p block
+	  from the given sources
+2data	- (raid6_2data_recov) recover 2 raid6 data blocks from the given
+	  sources
 
 3.3 Descriptor management:
 The return value is non-NULL and points to a 'descriptor' when the operation