fs crypto: move per-file encryption from f2fs tree to fs/crypto

This patch adds the renamed functions moved from the f2fs crypto files.

1. definitions for per-file encryption used by ext4 and f2fs.

2. crypto.c for encrypt/decrypt functions
 a. IO preparation:
  - fscrypt_get_ctx / fscrypt_release_ctx
 b. before IOs:
  - fscrypt_encrypt_page
  - fscrypt_decrypt_page
  - fscrypt_zeroout_range
 c. after IOs:
  - fscrypt_decrypt_bio_pages
  - fscrypt_pullback_bio_page
  - fscrypt_restore_control_page

3. policy.c supporting context management.
 a. For ioctls:
  - fscrypt_process_policy
  - fscrypt_get_policy
 b. For context permission
  - fscrypt_has_permitted_context
  - fscrypt_inherit_context

4. keyinfo.c to handle permissions
  - fscrypt_get_encryption_info
  - fscrypt_free_encryption_info

5. fname.c to support filename encryption
 a. general wrapper functions
  - fscrypt_fname_disk_to_usr
  - fscrypt_fname_usr_to_disk
  - fscrypt_setup_filename
  - fscrypt_free_filename

 b. specific filename handling functions
  - fscrypt_fname_alloc_buffer
  - fscrypt_fname_free_buffer

6. Makefile and Kconfig

Cc: Al Viro <viro@ftp.linux.org.uk>
Signed-off-by: Michael Halcrow <mhalcrow@google.com>
Signed-off-by: Ildar Muslukhov <ildarm@google.com>
Signed-off-by: Uday Savagaonkar <savagaon@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
diff --git a/fs/crypto/Kconfig b/fs/crypto/Kconfig
new file mode 100644
index 0000000..92348fa
--- /dev/null
+++ b/fs/crypto/Kconfig
@@ -0,0 +1,18 @@
+config FS_ENCRYPTION
+	tristate "FS Encryption (Per-file encryption)"
+	depends on BLOCK
+	select CRYPTO
+	select CRYPTO_AES
+	select CRYPTO_CBC
+	select CRYPTO_ECB
+	select CRYPTO_XTS
+	select CRYPTO_CTS
+	select CRYPTO_CTR
+	select CRYPTO_SHA256
+	select KEYS
+	select ENCRYPTED_KEYS
+	help
+	  Enable encryption of files and directories.  This
+	  feature is similar to ecryptfs, but it is more memory
+	  efficient since it avoids caching the encrypted and
+	  decrypted pages in the page cache.
diff --git a/fs/crypto/Makefile b/fs/crypto/Makefile
new file mode 100644
index 0000000..f17684c
--- /dev/null
+++ b/fs/crypto/Makefile
@@ -0,0 +1,3 @@
+obj-$(CONFIG_FS_ENCRYPTION)	+= fscrypto.o
+
+fscrypto-y := crypto.o fname.o policy.o keyinfo.o
diff --git a/fs/crypto/crypto.c b/fs/crypto/crypto.c
new file mode 100644
index 0000000..d45c331
--- /dev/null
+++ b/fs/crypto/crypto.c
@@ -0,0 +1,556 @@
+/*
+ * This contains encryption functions for per-file encryption.
+ *
+ * Copyright (C) 2015, Google, Inc.
+ * Copyright (C) 2015, Motorola Mobility
+ *
+ * Written by Michael Halcrow, 2014.
+ *
+ * Filename encryption additions
+ *	Uday Savagaonkar, 2014
+ * Encryption policy handling additions
+ *	Ildar Muslukhov, 2014
+ * Add fscrypt_pullback_bio_page()
+ *	Jaegeuk Kim, 2015.
+ *
+ * This has not yet undergone a rigorous security audit.
+ *
+ * The usage of AES-XTS should conform to recommendations in NIST
+ * Special Publication 800-38E and IEEE P1619/D16.
+ */
+
+#include <linux/crypto.h>
+#include <linux/ecryptfs.h>
+#include <linux/pagemap.h>
+#include <linux/mempool.h>
+#include <linux/module.h>
+#include <linux/scatterlist.h>
+#include <linux/ratelimit.h>
+#include <linux/bio.h>
+#include <linux/dcache.h>
+#include <linux/fscrypto.h>
+
+static unsigned int num_prealloc_crypto_pages = 32;
+static unsigned int num_prealloc_crypto_ctxs = 128;
+
+module_param(num_prealloc_crypto_pages, uint, 0444);
+MODULE_PARM_DESC(num_prealloc_crypto_pages,
+		"Number of crypto pages to preallocate");
+module_param(num_prealloc_crypto_ctxs, uint, 0444);
+MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
+		"Number of crypto contexts to preallocate");
+
+static mempool_t *fscrypt_bounce_page_pool = NULL;
+
+static LIST_HEAD(fscrypt_free_ctxs);
+static DEFINE_SPINLOCK(fscrypt_ctx_lock);
+
+static struct workqueue_struct *fscrypt_read_workqueue;
+static DEFINE_MUTEX(fscrypt_init_mutex);
+
+static struct kmem_cache *fscrypt_ctx_cachep;
+struct kmem_cache *fscrypt_info_cachep;
+
+/**
+ * fscrypt_release_ctx() - Releases an encryption context
+ * @ctx: The encryption context to release.
+ *
+ * If the encryption context was allocated from the pre-allocated pool, returns
+ * it to that pool. Else, frees it.
+ *
+ * If there's a bounce page in the context, this frees that.
+ */
+void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
+{
+	unsigned long flags;
+
+	if (ctx->flags & FS_WRITE_PATH_FL && ctx->w.bounce_page) {
+		mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
+		ctx->w.bounce_page = NULL;
+	}
+	ctx->w.control_page = NULL;
+	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
+		kmem_cache_free(fscrypt_ctx_cachep, ctx);
+	} else {
+		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
+		list_add(&ctx->free_list, &fscrypt_free_ctxs);
+		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
+	}
+}
+EXPORT_SYMBOL(fscrypt_release_ctx);
+
+/**
+ * fscrypt_get_ctx() - Gets an encryption context
+ * @inode:       The inode for which we are doing the crypto
+ *
+ * Allocates and initializes an encryption context.
+ *
+ * Return: An allocated and initialized encryption context on success; error
+ * value or NULL otherwise.
+ */
+struct fscrypt_ctx *fscrypt_get_ctx(struct inode *inode)
+{
+	struct fscrypt_ctx *ctx = NULL;
+	struct fscrypt_info *ci = inode->i_crypt_info;
+	unsigned long flags;
+
+	if (ci == NULL)
+		return ERR_PTR(-ENOKEY);
+
+	/*
+	 * We first try getting the ctx from a free list because in
+	 * the common case the ctx will have an allocated and
+	 * initialized crypto tfm, so it's probably a worthwhile
+	 * optimization. For the bounce page, we first try getting it
+	 * from the kernel allocator because that's just about as fast
+	 * as getting it from a list and because a cache of free pages
+	 * should generally be a "last resort" option for a filesystem
+	 * to be able to do its job.
+	 */
+	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
+	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
+					struct fscrypt_ctx, free_list);
+	if (ctx)
+		list_del(&ctx->free_list);
+	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
+	if (!ctx) {
+		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
+		if (!ctx)
+			return ERR_PTR(-ENOMEM);
+		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
+	} else {
+		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
+	}
+	ctx->flags &= ~FS_WRITE_PATH_FL;
+	return ctx;
+}
+EXPORT_SYMBOL(fscrypt_get_ctx);
+
+/**
+ * fscrypt_complete() - The completion callback for page encryption
+ * @req: The asynchronous encryption request context
+ * @res: The result of the encryption operation
+ */
+static void fscrypt_complete(struct crypto_async_request *req, int res)
+{
+	struct fscrypt_completion_result *ecr = req->data;
+
+	if (res == -EINPROGRESS)
+		return;
+	ecr->res = res;
+	complete(&ecr->completion);
+}
+
+typedef enum {
+	FS_DECRYPT = 0,
+	FS_ENCRYPT,
+} fscrypt_direction_t;
+
+static int do_page_crypto(struct inode *inode,
+			fscrypt_direction_t rw, pgoff_t index,
+			struct page *src_page, struct page *dest_page)
+{
+	u8 xts_tweak[FS_XTS_TWEAK_SIZE];
+	struct ablkcipher_request *req = NULL;
+	DECLARE_FS_COMPLETION_RESULT(ecr);
+	struct scatterlist dst, src;
+	struct fscrypt_info *ci = inode->i_crypt_info;
+	struct crypto_ablkcipher *tfm = ci->ci_ctfm;
+	int res = 0;
+
+	req = ablkcipher_request_alloc(tfm, GFP_NOFS);
+	if (!req) {
+		printk_ratelimited(KERN_ERR
+				"%s: crypto_request_alloc() failed\n",
+				__func__);
+		return -ENOMEM;
+	}
+
+	ablkcipher_request_set_callback(
+		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
+		fscrypt_complete, &ecr);
+
+	BUILD_BUG_ON(FS_XTS_TWEAK_SIZE < sizeof(index));
+	memcpy(xts_tweak, &inode->i_ino, sizeof(index));
+	memset(&xts_tweak[sizeof(index)], 0,
+			FS_XTS_TWEAK_SIZE - sizeof(index));
+
+	sg_init_table(&dst, 1);
+	sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0);
+	sg_init_table(&src, 1);
+	sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0);
+	ablkcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE,
+					xts_tweak);
+	if (rw == FS_DECRYPT)
+		res = crypto_ablkcipher_decrypt(req);
+	else
+		res = crypto_ablkcipher_encrypt(req);
+	if (res == -EINPROGRESS || res == -EBUSY) {
+		BUG_ON(req->base.data != &ecr);
+		wait_for_completion(&ecr.completion);
+		res = ecr.res;
+	}
+	ablkcipher_request_free(req);
+	if (res) {
+		printk_ratelimited(KERN_ERR
+			"%s: crypto_ablkcipher_encrypt() returned %d\n",
+			__func__, res);
+		return res;
+	}
+	return 0;
+}
+
+static struct page *alloc_bounce_page(struct fscrypt_ctx *ctx)
+{
+	ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool,
+							GFP_NOWAIT);
+	if (ctx->w.bounce_page == NULL)
+		return ERR_PTR(-ENOMEM);
+	ctx->flags |= FS_WRITE_PATH_FL;
+	return ctx->w.bounce_page;
+}
+
+/**
+ * fscypt_encrypt_page() - Encrypts a page
+ * @inode:          The inode for which the encryption should take place
+ * @plaintext_page: The page to encrypt. Must be locked.
+ *
+ * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
+ * encryption context.
+ *
+ * Called on the page write path.  The caller must call
+ * fscrypt_restore_control_page() on the returned ciphertext page to
+ * release the bounce buffer and the encryption context.
+ *
+ * Return: An allocated page with the encrypted content on success. Else, an
+ * error value or NULL.
+ */
+struct page *fscrypt_encrypt_page(struct inode *inode,
+				struct page *plaintext_page)
+{
+	struct fscrypt_ctx *ctx;
+	struct page *ciphertext_page = NULL;
+	int err;
+
+	BUG_ON(!PageLocked(plaintext_page));
+
+	ctx = fscrypt_get_ctx(inode);
+	if (IS_ERR(ctx))
+		return (struct page *)ctx;
+
+	/* The encryption operation will require a bounce page. */
+	ciphertext_page = alloc_bounce_page(ctx);
+	if (IS_ERR(ciphertext_page))
+		goto errout;
+
+	ctx->w.control_page = plaintext_page;
+	err = do_page_crypto(inode, FS_ENCRYPT, plaintext_page->index,
+					plaintext_page, ciphertext_page);
+	if (err) {
+		ciphertext_page = ERR_PTR(err);
+		goto errout;
+	}
+	SetPagePrivate(ciphertext_page);
+	set_page_private(ciphertext_page, (unsigned long)ctx);
+	lock_page(ciphertext_page);
+	return ciphertext_page;
+
+errout:
+	fscrypt_release_ctx(ctx);
+	return ciphertext_page;
+}
+EXPORT_SYMBOL(fscrypt_encrypt_page);
+
+/**
+ * f2crypt_decrypt_page() - Decrypts a page in-place
+ * @page: The page to decrypt. Must be locked.
+ *
+ * Decrypts page in-place using the ctx encryption context.
+ *
+ * Called from the read completion callback.
+ *
+ * Return: Zero on success, non-zero otherwise.
+ */
+int fscrypt_decrypt_page(struct page *page)
+{
+	BUG_ON(!PageLocked(page));
+
+	return do_page_crypto(page->mapping->host,
+			FS_DECRYPT, page->index, page, page);
+}
+EXPORT_SYMBOL(fscrypt_decrypt_page);
+
+int fscrypt_zeroout_range(struct inode *inode, pgoff_t lblk,
+				sector_t pblk, unsigned int len)
+{
+	struct fscrypt_ctx *ctx;
+	struct page *ciphertext_page = NULL;
+	struct bio *bio;
+	int ret, err = 0;
+
+	BUG_ON(inode->i_sb->s_blocksize != PAGE_CACHE_SIZE);
+
+	ctx = fscrypt_get_ctx(inode);
+	if (IS_ERR(ctx))
+		return PTR_ERR(ctx);
+
+	ciphertext_page = alloc_bounce_page(ctx);
+	if (IS_ERR(ciphertext_page)) {
+		err = PTR_ERR(ciphertext_page);
+		goto errout;
+	}
+
+	while (len--) {
+		err = do_page_crypto(inode, FS_ENCRYPT, lblk,
+						ZERO_PAGE(0), ciphertext_page);
+		if (err)
+			goto errout;
+
+		bio = bio_alloc(GFP_KERNEL, 1);
+		if (!bio) {
+			err = -ENOMEM;
+			goto errout;
+		}
+		bio->bi_bdev = inode->i_sb->s_bdev;
+		bio->bi_iter.bi_sector =
+			pblk << (inode->i_sb->s_blocksize_bits - 9);
+		ret = bio_add_page(bio, ciphertext_page,
+					inode->i_sb->s_blocksize, 0);
+		if (ret != inode->i_sb->s_blocksize) {
+			/* should never happen! */
+			WARN_ON(1);
+			bio_put(bio);
+			err = -EIO;
+			goto errout;
+		}
+		err = submit_bio_wait(WRITE, bio);
+		if ((err == 0) && bio->bi_error)
+			err = -EIO;
+		bio_put(bio);
+		if (err)
+			goto errout;
+		lblk++;
+		pblk++;
+	}
+	err = 0;
+errout:
+	fscrypt_release_ctx(ctx);
+	return err;
+}
+EXPORT_SYMBOL(fscrypt_zeroout_range);
+
+/*
+ * Validate dentries for encrypted directories to make sure we aren't
+ * potentially caching stale data after a key has been added or
+ * removed.
+ */
+static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
+{
+	struct inode *dir = d_inode(dentry->d_parent);
+	struct fscrypt_info *ci = dir->i_crypt_info;
+	int dir_has_key, cached_with_key;
+
+	if (!dir->i_sb->s_cop->is_encrypted(dir))
+		return 0;
+
+	if (ci && ci->ci_keyring_key &&
+	    (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
+					  (1 << KEY_FLAG_REVOKED) |
+					  (1 << KEY_FLAG_DEAD))))
+		ci = NULL;
+
+	/* this should eventually be an flag in d_flags */
+	spin_lock(&dentry->d_lock);
+	cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
+	spin_unlock(&dentry->d_lock);
+	dir_has_key = (ci != NULL);
+
+	/*
+	 * If the dentry was cached without the key, and it is a
+	 * negative dentry, it might be a valid name.  We can't check
+	 * if the key has since been made available due to locking
+	 * reasons, so we fail the validation so ext4_lookup() can do
+	 * this check.
+	 *
+	 * We also fail the validation if the dentry was created with
+	 * the key present, but we no longer have the key, or vice versa.
+	 */
+	if ((!cached_with_key && d_is_negative(dentry)) ||
+			(!cached_with_key && dir_has_key) ||
+			(cached_with_key && !dir_has_key))
+		return 0;
+	return 1;
+}
+
+const struct dentry_operations fscrypt_d_ops = {
+	.d_revalidate = fscrypt_d_revalidate,
+};
+EXPORT_SYMBOL(fscrypt_d_ops);
+
+/*
+ * Call fscrypt_decrypt_page on every single page, reusing the encryption
+ * context.
+ */
+static void completion_pages(struct work_struct *work)
+{
+	struct fscrypt_ctx *ctx =
+		container_of(work, struct fscrypt_ctx, r.work);
+	struct bio *bio = ctx->r.bio;
+	struct bio_vec *bv;
+	int i;
+
+	bio_for_each_segment_all(bv, bio, i) {
+		struct page *page = bv->bv_page;
+		int ret = fscrypt_decrypt_page(page);
+
+		if (ret) {
+			WARN_ON_ONCE(1);
+			SetPageError(page);
+		} else {
+			SetPageUptodate(page);
+		}
+		unlock_page(page);
+	}
+	fscrypt_release_ctx(ctx);
+	bio_put(bio);
+}
+
+void fscrypt_decrypt_bio_pages(struct fscrypt_ctx *ctx, struct bio *bio)
+{
+	INIT_WORK(&ctx->r.work, completion_pages);
+	ctx->r.bio = bio;
+	queue_work(fscrypt_read_workqueue, &ctx->r.work);
+}
+EXPORT_SYMBOL(fscrypt_decrypt_bio_pages);
+
+void fscrypt_pullback_bio_page(struct page **page, bool restore)
+{
+	struct fscrypt_ctx *ctx;
+	struct page *bounce_page;
+
+	/* The bounce data pages are unmapped. */
+	if ((*page)->mapping)
+		return;
+
+	/* The bounce data page is unmapped. */
+	bounce_page = *page;
+	ctx = (struct fscrypt_ctx *)page_private(bounce_page);
+
+	/* restore control page */
+	*page = ctx->w.control_page;
+
+	if (restore)
+		fscrypt_restore_control_page(bounce_page);
+}
+EXPORT_SYMBOL(fscrypt_pullback_bio_page);
+
+void fscrypt_restore_control_page(struct page *page)
+{
+	struct fscrypt_ctx *ctx;
+
+	ctx = (struct fscrypt_ctx *)page_private(page);
+	set_page_private(page, (unsigned long)NULL);
+	ClearPagePrivate(page);
+	unlock_page(page);
+	fscrypt_release_ctx(ctx);
+}
+EXPORT_SYMBOL(fscrypt_restore_control_page);
+
+static void fscrypt_destroy(void)
+{
+	struct fscrypt_ctx *pos, *n;
+
+	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
+		kmem_cache_free(fscrypt_ctx_cachep, pos);
+	INIT_LIST_HEAD(&fscrypt_free_ctxs);
+	mempool_destroy(fscrypt_bounce_page_pool);
+	fscrypt_bounce_page_pool = NULL;
+}
+
+/**
+ * fscrypt_initialize() - allocate major buffers for fs encryption.
+ *
+ * We only call this when we start accessing encrypted files, since it
+ * results in memory getting allocated that wouldn't otherwise be used.
+ *
+ * Return: Zero on success, non-zero otherwise.
+ */
+int fscrypt_initialize(void)
+{
+	int i, res = -ENOMEM;
+
+	if (fscrypt_bounce_page_pool)
+		return 0;
+
+	mutex_lock(&fscrypt_init_mutex);
+	if (fscrypt_bounce_page_pool)
+		goto already_initialized;
+
+	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
+		struct fscrypt_ctx *ctx;
+
+		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
+		if (!ctx)
+			goto fail;
+		list_add(&ctx->free_list, &fscrypt_free_ctxs);
+	}
+
+	fscrypt_bounce_page_pool =
+		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
+	if (!fscrypt_bounce_page_pool)
+		goto fail;
+
+already_initialized:
+	mutex_unlock(&fscrypt_init_mutex);
+	return 0;
+fail:
+	fscrypt_destroy();
+	mutex_unlock(&fscrypt_init_mutex);
+	return res;
+}
+EXPORT_SYMBOL(fscrypt_initialize);
+
+/**
+ * fscrypt_init() - Set up for fs encryption.
+ */
+static int __init fscrypt_init(void)
+{
+	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
+							WQ_HIGHPRI, 0);
+	if (!fscrypt_read_workqueue)
+		goto fail;
+
+	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
+	if (!fscrypt_ctx_cachep)
+		goto fail_free_queue;
+
+	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
+	if (!fscrypt_info_cachep)
+		goto fail_free_ctx;
+
+	return 0;
+
+fail_free_ctx:
+	kmem_cache_destroy(fscrypt_ctx_cachep);
+fail_free_queue:
+	destroy_workqueue(fscrypt_read_workqueue);
+fail:
+	return -ENOMEM;
+}
+module_init(fscrypt_init)
+
+/**
+ * fscrypt_exit() - Shutdown the fs encryption system
+ */
+static void __exit fscrypt_exit(void)
+{
+	fscrypt_destroy();
+
+	if (fscrypt_read_workqueue)
+		destroy_workqueue(fscrypt_read_workqueue);
+	kmem_cache_destroy(fscrypt_ctx_cachep);
+	kmem_cache_destroy(fscrypt_info_cachep);
+}
+module_exit(fscrypt_exit);
+
+MODULE_LICENSE("GPL");
diff --git a/fs/crypto/fname.c b/fs/crypto/fname.c
new file mode 100644
index 0000000..5e4ddee
--- /dev/null
+++ b/fs/crypto/fname.c
@@ -0,0 +1,427 @@
+/*
+ * This contains functions for filename crypto management
+ *
+ * Copyright (C) 2015, Google, Inc.
+ * Copyright (C) 2015, Motorola Mobility
+ *
+ * Written by Uday Savagaonkar, 2014.
+ * Modified by Jaegeuk Kim, 2015.
+ *
+ * This has not yet undergone a rigorous security audit.
+ */
+
+#include <crypto/hash.h>
+#include <crypto/sha.h>
+#include <keys/encrypted-type.h>
+#include <keys/user-type.h>
+#include <linux/crypto.h>
+#include <linux/scatterlist.h>
+#include <linux/ratelimit.h>
+#include <linux/fscrypto.h>
+
+static u32 size_round_up(size_t size, size_t blksize)
+{
+	return ((size + blksize - 1) / blksize) * blksize;
+}
+
+/**
+ * dir_crypt_complete() -
+ */
+static void dir_crypt_complete(struct crypto_async_request *req, int res)
+{
+	struct fscrypt_completion_result *ecr = req->data;
+
+	if (res == -EINPROGRESS)
+		return;
+	ecr->res = res;
+	complete(&ecr->completion);
+}
+
+/**
+ * fname_encrypt() -
+ *
+ * This function encrypts the input filename, and returns the length of the
+ * ciphertext. Errors are returned as negative numbers.  We trust the caller to
+ * allocate sufficient memory to oname string.
+ */
+static int fname_encrypt(struct inode *inode,
+			const struct qstr *iname, struct fscrypt_str *oname)
+{
+	u32 ciphertext_len;
+	struct ablkcipher_request *req = NULL;
+	DECLARE_FS_COMPLETION_RESULT(ecr);
+	struct fscrypt_info *ci = inode->i_crypt_info;
+	struct crypto_ablkcipher *tfm = ci->ci_ctfm;
+	int res = 0;
+	char iv[FS_CRYPTO_BLOCK_SIZE];
+	struct scatterlist src_sg, dst_sg;
+	int padding = 4 << (ci->ci_flags & FS_POLICY_FLAGS_PAD_MASK);
+	char *workbuf, buf[32], *alloc_buf = NULL;
+	unsigned lim;
+
+	lim = inode->i_sb->s_cop->max_namelen(inode);
+	if (iname->len <= 0 || iname->len > lim)
+		return -EIO;
+
+	ciphertext_len = (iname->len < FS_CRYPTO_BLOCK_SIZE) ?
+					FS_CRYPTO_BLOCK_SIZE : iname->len;
+	ciphertext_len = size_round_up(ciphertext_len, padding);
+	ciphertext_len = (ciphertext_len > lim) ? lim : ciphertext_len;
+
+	if (ciphertext_len <= sizeof(buf)) {
+		workbuf = buf;
+	} else {
+		alloc_buf = kmalloc(ciphertext_len, GFP_NOFS);
+		if (!alloc_buf)
+			return -ENOMEM;
+		workbuf = alloc_buf;
+	}
+
+	/* Allocate request */
+	req = ablkcipher_request_alloc(tfm, GFP_NOFS);
+	if (!req) {
+		printk_ratelimited(KERN_ERR
+			"%s: crypto_request_alloc() failed\n", __func__);
+		kfree(alloc_buf);
+		return -ENOMEM;
+	}
+	ablkcipher_request_set_callback(req,
+			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
+			dir_crypt_complete, &ecr);
+
+	/* Copy the input */
+	memcpy(workbuf, iname->name, iname->len);
+	if (iname->len < ciphertext_len)
+		memset(workbuf + iname->len, 0, ciphertext_len - iname->len);
+
+	/* Initialize IV */
+	memset(iv, 0, FS_CRYPTO_BLOCK_SIZE);
+
+	/* Create encryption request */
+	sg_init_one(&src_sg, workbuf, ciphertext_len);
+	sg_init_one(&dst_sg, oname->name, ciphertext_len);
+	ablkcipher_request_set_crypt(req, &src_sg, &dst_sg, ciphertext_len, iv);
+	res = crypto_ablkcipher_encrypt(req);
+	if (res == -EINPROGRESS || res == -EBUSY) {
+		wait_for_completion(&ecr.completion);
+		res = ecr.res;
+	}
+	kfree(alloc_buf);
+	ablkcipher_request_free(req);
+	if (res < 0)
+		printk_ratelimited(KERN_ERR
+				"%s: Error (error code %d)\n", __func__, res);
+
+	oname->len = ciphertext_len;
+	return res;
+}
+
+/*
+ * fname_decrypt()
+ *	This function decrypts the input filename, and returns
+ *	the length of the plaintext.
+ *	Errors are returned as negative numbers.
+ *	We trust the caller to allocate sufficient memory to oname string.
+ */
+static int fname_decrypt(struct inode *inode,
+				const struct fscrypt_str *iname,
+				struct fscrypt_str *oname)
+{
+	struct ablkcipher_request *req = NULL;
+	DECLARE_FS_COMPLETION_RESULT(ecr);
+	struct scatterlist src_sg, dst_sg;
+	struct fscrypt_info *ci = inode->i_crypt_info;
+	struct crypto_ablkcipher *tfm = ci->ci_ctfm;
+	int res = 0;
+	char iv[FS_CRYPTO_BLOCK_SIZE];
+	unsigned lim;
+
+	lim = inode->i_sb->s_cop->max_namelen(inode);
+	if (iname->len <= 0 || iname->len > lim)
+		return -EIO;
+
+	/* Allocate request */
+	req = ablkcipher_request_alloc(tfm, GFP_NOFS);
+	if (!req) {
+		printk_ratelimited(KERN_ERR
+			"%s: crypto_request_alloc() failed\n",  __func__);
+		return -ENOMEM;
+	}
+	ablkcipher_request_set_callback(req,
+		CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
+		dir_crypt_complete, &ecr);
+
+	/* Initialize IV */
+	memset(iv, 0, FS_CRYPTO_BLOCK_SIZE);
+
+	/* Create decryption request */
+	sg_init_one(&src_sg, iname->name, iname->len);
+	sg_init_one(&dst_sg, oname->name, oname->len);
+	ablkcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, iv);
+	res = crypto_ablkcipher_decrypt(req);
+	if (res == -EINPROGRESS || res == -EBUSY) {
+		wait_for_completion(&ecr.completion);
+		res = ecr.res;
+	}
+	ablkcipher_request_free(req);
+	if (res < 0) {
+		printk_ratelimited(KERN_ERR
+				"%s: Error (error code %d)\n", __func__, res);
+		return res;
+	}
+
+	oname->len = strnlen(oname->name, iname->len);
+	return oname->len;
+}
+
+static const char *lookup_table =
+	"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,";
+
+/**
+ * digest_encode() -
+ *
+ * Encodes the input digest using characters from the set [a-zA-Z0-9_+].
+ * The encoded string is roughly 4/3 times the size of the input string.
+ */
+static int digest_encode(const char *src, int len, char *dst)
+{
+	int i = 0, bits = 0, ac = 0;
+	char *cp = dst;
+
+	while (i < len) {
+		ac += (((unsigned char) src[i]) << bits);
+		bits += 8;
+		do {
+			*cp++ = lookup_table[ac & 0x3f];
+			ac >>= 6;
+			bits -= 6;
+		} while (bits >= 6);
+		i++;
+	}
+	if (bits)
+		*cp++ = lookup_table[ac & 0x3f];
+	return cp - dst;
+}
+
+static int digest_decode(const char *src, int len, char *dst)
+{
+	int i = 0, bits = 0, ac = 0;
+	const char *p;
+	char *cp = dst;
+
+	while (i < len) {
+		p = strchr(lookup_table, src[i]);
+		if (p == NULL || src[i] == 0)
+			return -2;
+		ac += (p - lookup_table) << bits;
+		bits += 6;
+		if (bits >= 8) {
+			*cp++ = ac & 0xff;
+			ac >>= 8;
+			bits -= 8;
+		}
+		i++;
+	}
+	if (ac)
+		return -1;
+	return cp - dst;
+}
+
+u32 fscrypt_fname_encrypted_size(struct inode *inode, u32 ilen)
+{
+	int padding = 32;
+	struct fscrypt_info *ci = inode->i_crypt_info;
+
+	if (ci)
+		padding = 4 << (ci->ci_flags & FS_POLICY_FLAGS_PAD_MASK);
+	if (ilen < FS_CRYPTO_BLOCK_SIZE)
+		ilen = FS_CRYPTO_BLOCK_SIZE;
+	return size_round_up(ilen, padding);
+}
+EXPORT_SYMBOL(fscrypt_fname_encrypted_size);
+
+/**
+ * fscrypt_fname_crypto_alloc_obuff() -
+ *
+ * Allocates an output buffer that is sufficient for the crypto operation
+ * specified by the context and the direction.
+ */
+int fscrypt_fname_alloc_buffer(struct inode *inode,
+				u32 ilen, struct fscrypt_str *crypto_str)
+{
+	unsigned int olen = fscrypt_fname_encrypted_size(inode, ilen);
+
+	crypto_str->len = olen;
+	if (olen < FS_FNAME_CRYPTO_DIGEST_SIZE * 2)
+		olen = FS_FNAME_CRYPTO_DIGEST_SIZE * 2;
+	/*
+	 * Allocated buffer can hold one more character to null-terminate the
+	 * string
+	 */
+	crypto_str->name = kmalloc(olen + 1, GFP_NOFS);
+	if (!(crypto_str->name))
+		return -ENOMEM;
+	return 0;
+}
+EXPORT_SYMBOL(fscrypt_fname_alloc_buffer);
+
+/**
+ * fscrypt_fname_crypto_free_buffer() -
+ *
+ * Frees the buffer allocated for crypto operation.
+ */
+void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
+{
+	if (!crypto_str)
+		return;
+	kfree(crypto_str->name);
+	crypto_str->name = NULL;
+}
+EXPORT_SYMBOL(fscrypt_fname_free_buffer);
+
+/**
+ * fscrypt_fname_disk_to_usr() - converts a filename from disk space to user
+ * space
+ */
+int fscrypt_fname_disk_to_usr(struct inode *inode,
+			u32 hash, u32 minor_hash,
+			const struct fscrypt_str *iname,
+			struct fscrypt_str *oname)
+{
+	const struct qstr qname = FSTR_TO_QSTR(iname);
+	char buf[24];
+	int ret;
+
+	if (fscrypt_is_dot_dotdot(&qname)) {
+		oname->name[0] = '.';
+		oname->name[iname->len - 1] = '.';
+		oname->len = iname->len;
+		return oname->len;
+	}
+
+	if (iname->len < FS_CRYPTO_BLOCK_SIZE)
+		return -EUCLEAN;
+
+	if (inode->i_crypt_info)
+		return fname_decrypt(inode, iname, oname);
+
+	if (iname->len <= FS_FNAME_CRYPTO_DIGEST_SIZE) {
+		ret = digest_encode(iname->name, iname->len, oname->name);
+		oname->len = ret;
+		return ret;
+	}
+	if (hash) {
+		memcpy(buf, &hash, 4);
+		memcpy(buf + 4, &minor_hash, 4);
+	} else {
+		memset(buf, 0, 8);
+	}
+	memcpy(buf + 8, iname->name + iname->len - 16, 16);
+	oname->name[0] = '_';
+	ret = digest_encode(buf, 24, oname->name + 1);
+	oname->len = ret + 1;
+	return ret + 1;
+}
+EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);
+
+/**
+ * fscrypt_fname_usr_to_disk() - converts a filename from user space to disk
+ * space
+ */
+int fscrypt_fname_usr_to_disk(struct inode *inode,
+			const struct qstr *iname,
+			struct fscrypt_str *oname)
+{
+	if (fscrypt_is_dot_dotdot(iname)) {
+		oname->name[0] = '.';
+		oname->name[iname->len - 1] = '.';
+		oname->len = iname->len;
+		return oname->len;
+	}
+	if (inode->i_crypt_info)
+		return fname_encrypt(inode, iname, oname);
+	/*
+	 * Without a proper key, a user is not allowed to modify the filenames
+	 * in a directory. Consequently, a user space name cannot be mapped to
+	 * a disk-space name
+	 */
+	return -EACCES;
+}
+EXPORT_SYMBOL(fscrypt_fname_usr_to_disk);
+
+int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
+			      int lookup, struct fscrypt_name *fname)
+{
+	int ret = 0, bigname = 0;
+
+	memset(fname, 0, sizeof(struct fscrypt_name));
+	fname->usr_fname = iname;
+
+	if (!dir->i_sb->s_cop->is_encrypted(dir) ||
+				fscrypt_is_dot_dotdot(iname)) {
+		fname->disk_name.name = (unsigned char *)iname->name;
+		fname->disk_name.len = iname->len;
+		return 0;
+	}
+	ret = get_crypt_info(dir);
+	if (ret && ret != -EOPNOTSUPP)
+		return ret;
+
+	if (dir->i_crypt_info) {
+		ret = fscrypt_fname_alloc_buffer(dir, iname->len,
+							&fname->crypto_buf);
+		if (ret < 0)
+			return ret;
+		ret = fname_encrypt(dir, iname, &fname->crypto_buf);
+		if (ret < 0)
+			goto errout;
+		fname->disk_name.name = fname->crypto_buf.name;
+		fname->disk_name.len = fname->crypto_buf.len;
+		return 0;
+	}
+	if (!lookup)
+		return -EACCES;
+
+	/*
+	 * We don't have the key and we are doing a lookup; decode the
+	 * user-supplied name
+	 */
+	if (iname->name[0] == '_')
+		bigname = 1;
+	if ((bigname && (iname->len != 33)) || (!bigname && (iname->len > 43)))
+		return -ENOENT;
+
+	fname->crypto_buf.name = kmalloc(32, GFP_KERNEL);
+	if (fname->crypto_buf.name == NULL)
+		return -ENOMEM;
+
+	ret = digest_decode(iname->name + bigname, iname->len - bigname,
+				fname->crypto_buf.name);
+	if (ret < 0) {
+		ret = -ENOENT;
+		goto errout;
+	}
+	fname->crypto_buf.len = ret;
+	if (bigname) {
+		memcpy(&fname->hash, fname->crypto_buf.name, 4);
+		memcpy(&fname->minor_hash, fname->crypto_buf.name + 4, 4);
+	} else {
+		fname->disk_name.name = fname->crypto_buf.name;
+		fname->disk_name.len = fname->crypto_buf.len;
+	}
+	return 0;
+
+errout:
+	fscrypt_fname_free_buffer(&fname->crypto_buf);
+	return ret;
+}
+EXPORT_SYMBOL(fscrypt_setup_filename);
+
+void fscrypt_free_filename(struct fscrypt_name *fname)
+{
+	kfree(fname->crypto_buf.name);
+	fname->crypto_buf.name = NULL;
+	fname->usr_fname = NULL;
+	fname->disk_name.name = NULL;
+}
+EXPORT_SYMBOL(fscrypt_free_filename);
diff --git a/fs/crypto/keyinfo.c b/fs/crypto/keyinfo.c
new file mode 100644
index 0000000..cb61842
--- /dev/null
+++ b/fs/crypto/keyinfo.c
@@ -0,0 +1,278 @@
+/*
+ * key management facility for FS encryption support.
+ *
+ * Copyright (C) 2015, Google, Inc.
+ *
+ * This contains encryption key functions.
+ *
+ * Written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar, 2015.
+ */
+
+#include <keys/encrypted-type.h>
+#include <keys/user-type.h>
+#include <linux/random.h>
+#include <linux/scatterlist.h>
+#include <uapi/linux/keyctl.h>
+#include <crypto/hash.h>
+#include <linux/fscrypto.h>
+
+static void derive_crypt_complete(struct crypto_async_request *req, int rc)
+{
+	struct fscrypt_completion_result *ecr = req->data;
+
+	if (rc == -EINPROGRESS)
+		return;
+
+	ecr->res = rc;
+	complete(&ecr->completion);
+}
+
+/**
+ * derive_key_aes() - Derive a key using AES-128-ECB
+ * @deriving_key: Encryption key used for derivation.
+ * @source_key:   Source key to which to apply derivation.
+ * @derived_key:  Derived key.
+ *
+ * Return: Zero on success; non-zero otherwise.
+ */
+static int derive_key_aes(u8 deriving_key[FS_AES_128_ECB_KEY_SIZE],
+				u8 source_key[FS_AES_256_XTS_KEY_SIZE],
+				u8 derived_key[FS_AES_256_XTS_KEY_SIZE])
+{
+	int res = 0;
+	struct ablkcipher_request *req = NULL;
+	DECLARE_FS_COMPLETION_RESULT(ecr);
+	struct scatterlist src_sg, dst_sg;
+	struct crypto_ablkcipher *tfm = crypto_alloc_ablkcipher("ecb(aes)", 0,
+								0);
+
+	if (IS_ERR(tfm)) {
+		res = PTR_ERR(tfm);
+		tfm = NULL;
+		goto out;
+	}
+	crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY);
+	req = ablkcipher_request_alloc(tfm, GFP_NOFS);
+	if (!req) {
+		res = -ENOMEM;
+		goto out;
+	}
+	ablkcipher_request_set_callback(req,
+			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
+			derive_crypt_complete, &ecr);
+	res = crypto_ablkcipher_setkey(tfm, deriving_key,
+					FS_AES_128_ECB_KEY_SIZE);
+	if (res < 0)
+		goto out;
+
+	sg_init_one(&src_sg, source_key, FS_AES_256_XTS_KEY_SIZE);
+	sg_init_one(&dst_sg, derived_key, FS_AES_256_XTS_KEY_SIZE);
+	ablkcipher_request_set_crypt(req, &src_sg, &dst_sg,
+					FS_AES_256_XTS_KEY_SIZE, NULL);
+	res = crypto_ablkcipher_encrypt(req);
+	if (res == -EINPROGRESS || res == -EBUSY) {
+		wait_for_completion(&ecr.completion);
+		res = ecr.res;
+	}
+out:
+	if (req)
+		ablkcipher_request_free(req);
+	if (tfm)
+		crypto_free_ablkcipher(tfm);
+	return res;
+}
+
+static void put_crypt_info(struct fscrypt_info *ci)
+{
+	if (!ci)
+		return;
+
+	if (ci->ci_keyring_key)
+		key_put(ci->ci_keyring_key);
+	crypto_free_ablkcipher(ci->ci_ctfm);
+	kmem_cache_free(fscrypt_info_cachep, ci);
+}
+
+int get_crypt_info(struct inode *inode)
+{
+	struct fscrypt_info *crypt_info;
+	u8 full_key_descriptor[FS_KEY_DESC_PREFIX_SIZE +
+				(FS_KEY_DESCRIPTOR_SIZE * 2) + 1];
+	struct key *keyring_key = NULL;
+	struct fscrypt_key *master_key;
+	struct fscrypt_context ctx;
+	const struct user_key_payload *ukp;
+	struct crypto_ablkcipher *ctfm;
+	const char *cipher_str;
+	u8 raw_key[FS_MAX_KEY_SIZE];
+	u8 mode;
+	int res;
+
+	res = fscrypt_initialize();
+	if (res)
+		return res;
+
+	if (!inode->i_sb->s_cop->get_context)
+		return -EOPNOTSUPP;
+retry:
+	crypt_info = ACCESS_ONCE(inode->i_crypt_info);
+	if (crypt_info) {
+		if (!crypt_info->ci_keyring_key ||
+				key_validate(crypt_info->ci_keyring_key) == 0)
+			return 0;
+		fscrypt_put_encryption_info(inode, crypt_info);
+		goto retry;
+	}
+
+	res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
+	if (res < 0) {
+		if (!fscrypt_dummy_context_enabled(inode))
+			return res;
+		ctx.contents_encryption_mode = FS_ENCRYPTION_MODE_AES_256_XTS;
+		ctx.filenames_encryption_mode = FS_ENCRYPTION_MODE_AES_256_CTS;
+		ctx.flags = 0;
+	} else if (res != sizeof(ctx)) {
+		return -EINVAL;
+	}
+	res = 0;
+
+	crypt_info = kmem_cache_alloc(fscrypt_info_cachep, GFP_NOFS);
+	if (!crypt_info)
+		return -ENOMEM;
+
+	crypt_info->ci_flags = ctx.flags;
+	crypt_info->ci_data_mode = ctx.contents_encryption_mode;
+	crypt_info->ci_filename_mode = ctx.filenames_encryption_mode;
+	crypt_info->ci_ctfm = NULL;
+	crypt_info->ci_keyring_key = NULL;
+	memcpy(crypt_info->ci_master_key, ctx.master_key_descriptor,
+				sizeof(crypt_info->ci_master_key));
+	if (S_ISREG(inode->i_mode))
+		mode = crypt_info->ci_data_mode;
+	else if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
+		mode = crypt_info->ci_filename_mode;
+	else
+		BUG();
+
+	switch (mode) {
+	case FS_ENCRYPTION_MODE_AES_256_XTS:
+		cipher_str = "xts(aes)";
+		break;
+	case FS_ENCRYPTION_MODE_AES_256_CTS:
+		cipher_str = "cts(cbc(aes))";
+		break;
+	default:
+		printk_once(KERN_WARNING
+			    "%s: unsupported key mode %d (ino %u)\n",
+			    __func__, mode, (unsigned) inode->i_ino);
+		res = -ENOKEY;
+		goto out;
+	}
+	if (fscrypt_dummy_context_enabled(inode)) {
+		memset(raw_key, 0x42, FS_AES_256_XTS_KEY_SIZE);
+		goto got_key;
+	}
+	memcpy(full_key_descriptor, FS_KEY_DESC_PREFIX,
+					FS_KEY_DESC_PREFIX_SIZE);
+	sprintf(full_key_descriptor + FS_KEY_DESC_PREFIX_SIZE,
+					"%*phN", FS_KEY_DESCRIPTOR_SIZE,
+					ctx.master_key_descriptor);
+	full_key_descriptor[FS_KEY_DESC_PREFIX_SIZE +
+					(2 * FS_KEY_DESCRIPTOR_SIZE)] = '\0';
+	keyring_key = request_key(&key_type_logon, full_key_descriptor, NULL);
+	if (IS_ERR(keyring_key)) {
+		res = PTR_ERR(keyring_key);
+		keyring_key = NULL;
+		goto out;
+	}
+	crypt_info->ci_keyring_key = keyring_key;
+	if (keyring_key->type != &key_type_logon) {
+		printk_once(KERN_WARNING
+				"%s: key type must be logon\n", __func__);
+		res = -ENOKEY;
+		goto out;
+	}
+	down_read(&keyring_key->sem);
+	ukp = user_key_payload(keyring_key);
+	if (ukp->datalen != sizeof(struct fscrypt_key)) {
+		res = -EINVAL;
+		up_read(&keyring_key->sem);
+		goto out;
+	}
+	master_key = (struct fscrypt_key *)ukp->data;
+	BUILD_BUG_ON(FS_AES_128_ECB_KEY_SIZE != FS_KEY_DERIVATION_NONCE_SIZE);
+
+	if (master_key->size != FS_AES_256_XTS_KEY_SIZE) {
+		printk_once(KERN_WARNING
+				"%s: key size incorrect: %d\n",
+				__func__, master_key->size);
+		res = -ENOKEY;
+		up_read(&keyring_key->sem);
+		goto out;
+	}
+	res = derive_key_aes(ctx.nonce, master_key->raw, raw_key);
+	up_read(&keyring_key->sem);
+	if (res)
+		goto out;
+got_key:
+	ctfm = crypto_alloc_ablkcipher(cipher_str, 0, 0);
+	if (!ctfm || IS_ERR(ctfm)) {
+		res = ctfm ? PTR_ERR(ctfm) : -ENOMEM;
+		printk(KERN_DEBUG
+		       "%s: error %d (inode %u) allocating crypto tfm\n",
+		       __func__, res, (unsigned) inode->i_ino);
+		goto out;
+	}
+	crypt_info->ci_ctfm = ctfm;
+	crypto_ablkcipher_clear_flags(ctfm, ~0);
+	crypto_tfm_set_flags(crypto_ablkcipher_tfm(ctfm),
+					CRYPTO_TFM_REQ_WEAK_KEY);
+	res = crypto_ablkcipher_setkey(ctfm, raw_key, fscrypt_key_size(mode));
+	if (res)
+		goto out;
+
+	memzero_explicit(raw_key, sizeof(raw_key));
+	if (cmpxchg(&inode->i_crypt_info, NULL, crypt_info) != NULL) {
+		put_crypt_info(crypt_info);
+		goto retry;
+	}
+	return 0;
+
+out:
+	if (res == -ENOKEY)
+		res = 0;
+	put_crypt_info(crypt_info);
+	memzero_explicit(raw_key, sizeof(raw_key));
+	return res;
+}
+
+void fscrypt_put_encryption_info(struct inode *inode, struct fscrypt_info *ci)
+{
+	struct fscrypt_info *prev;
+
+	if (ci == NULL)
+		ci = ACCESS_ONCE(inode->i_crypt_info);
+	if (ci == NULL)
+		return;
+
+	prev = cmpxchg(&inode->i_crypt_info, ci, NULL);
+	if (prev != ci)
+		return;
+
+	put_crypt_info(ci);
+}
+EXPORT_SYMBOL(fscrypt_put_encryption_info);
+
+int fscrypt_get_encryption_info(struct inode *inode)
+{
+	struct fscrypt_info *ci = inode->i_crypt_info;
+
+	if (!ci ||
+		(ci->ci_keyring_key &&
+		 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
+					       (1 << KEY_FLAG_REVOKED) |
+					       (1 << KEY_FLAG_DEAD)))))
+		return get_crypt_info(inode);
+	return 0;
+}
+EXPORT_SYMBOL(fscrypt_get_encryption_info);
diff --git a/fs/crypto/policy.c b/fs/crypto/policy.c
new file mode 100644
index 0000000..0f9961e
--- /dev/null
+++ b/fs/crypto/policy.c
@@ -0,0 +1,229 @@
+/*
+ * Encryption policy functions for per-file encryption support.
+ *
+ * Copyright (C) 2015, Google, Inc.
+ * Copyright (C) 2015, Motorola Mobility.
+ *
+ * Written by Michael Halcrow, 2015.
+ * Modified by Jaegeuk Kim, 2015.
+ */
+
+#include <linux/random.h>
+#include <linux/string.h>
+#include <linux/fscrypto.h>
+
+static int inode_has_encryption_context(struct inode *inode)
+{
+	if (!inode->i_sb->s_cop->get_context)
+		return 0;
+	return (inode->i_sb->s_cop->get_context(inode, NULL, 0L) > 0);
+}
+
+/*
+ * check whether the policy is consistent with the encryption context
+ * for the inode
+ */
+static int is_encryption_context_consistent_with_policy(struct inode *inode,
+				const struct fscrypt_policy *policy)
+{
+	struct fscrypt_context ctx;
+	int res;
+
+	if (!inode->i_sb->s_cop->get_context)
+		return 0;
+
+	res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
+	if (res != sizeof(ctx))
+		return 0;
+
+	return (memcmp(ctx.master_key_descriptor, policy->master_key_descriptor,
+			FS_KEY_DESCRIPTOR_SIZE) == 0 &&
+			(ctx.flags == policy->flags) &&
+			(ctx.contents_encryption_mode ==
+			 policy->contents_encryption_mode) &&
+			(ctx.filenames_encryption_mode ==
+			 policy->filenames_encryption_mode));
+}
+
+static int create_encryption_context_from_policy(struct inode *inode,
+				const struct fscrypt_policy *policy)
+{
+	struct fscrypt_context ctx;
+	int res;
+
+	if (!inode->i_sb->s_cop->set_context)
+		return -EOPNOTSUPP;
+
+	if (inode->i_sb->s_cop->prepare_context) {
+		res = inode->i_sb->s_cop->prepare_context(inode);
+		if (res)
+			return res;
+	}
+
+	ctx.format = FS_ENCRYPTION_CONTEXT_FORMAT_V1;
+	memcpy(ctx.master_key_descriptor, policy->master_key_descriptor,
+					FS_KEY_DESCRIPTOR_SIZE);
+
+	if (!fscrypt_valid_contents_enc_mode(
+				policy->contents_encryption_mode)) {
+		printk(KERN_WARNING
+		       "%s: Invalid contents encryption mode %d\n", __func__,
+			policy->contents_encryption_mode);
+		return -EINVAL;
+	}
+
+	if (!fscrypt_valid_filenames_enc_mode(
+				policy->filenames_encryption_mode)) {
+		printk(KERN_WARNING
+			"%s: Invalid filenames encryption mode %d\n", __func__,
+			policy->filenames_encryption_mode);
+		return -EINVAL;
+	}
+
+	if (policy->flags & ~FS_POLICY_FLAGS_VALID)
+		return -EINVAL;
+
+	ctx.contents_encryption_mode = policy->contents_encryption_mode;
+	ctx.filenames_encryption_mode = policy->filenames_encryption_mode;
+	ctx.flags = policy->flags;
+	BUILD_BUG_ON(sizeof(ctx.nonce) != FS_KEY_DERIVATION_NONCE_SIZE);
+	get_random_bytes(ctx.nonce, FS_KEY_DERIVATION_NONCE_SIZE);
+
+	return inode->i_sb->s_cop->set_context(inode, &ctx, sizeof(ctx), NULL);
+}
+
+int fscrypt_process_policy(struct inode *inode,
+				const struct fscrypt_policy *policy)
+{
+	if (policy->version != 0)
+		return -EINVAL;
+
+	if (!inode_has_encryption_context(inode)) {
+		if (!inode->i_sb->s_cop->empty_dir)
+			return -EOPNOTSUPP;
+		if (!inode->i_sb->s_cop->empty_dir(inode))
+			return -ENOTEMPTY;
+		return create_encryption_context_from_policy(inode, policy);
+	}
+
+	if (is_encryption_context_consistent_with_policy(inode, policy))
+		return 0;
+
+	printk(KERN_WARNING "%s: Policy inconsistent with encryption context\n",
+	       __func__);
+	return -EINVAL;
+}
+EXPORT_SYMBOL(fscrypt_process_policy);
+
+int fscrypt_get_policy(struct inode *inode, struct fscrypt_policy *policy)
+{
+	struct fscrypt_context ctx;
+	int res;
+
+	if (!inode->i_sb->s_cop->get_context ||
+			!inode->i_sb->s_cop->is_encrypted(inode))
+		return -ENODATA;
+
+	res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
+	if (res != sizeof(ctx))
+		return -ENODATA;
+	if (ctx.format != FS_ENCRYPTION_CONTEXT_FORMAT_V1)
+		return -EINVAL;
+
+	policy->version = 0;
+	policy->contents_encryption_mode = ctx.contents_encryption_mode;
+	policy->filenames_encryption_mode = ctx.filenames_encryption_mode;
+	policy->flags = ctx.flags;
+	memcpy(&policy->master_key_descriptor, ctx.master_key_descriptor,
+				FS_KEY_DESCRIPTOR_SIZE);
+	return 0;
+}
+EXPORT_SYMBOL(fscrypt_get_policy);
+
+int fscrypt_has_permitted_context(struct inode *parent, struct inode *child)
+{
+	struct fscrypt_info *parent_ci, *child_ci;
+	int res;
+
+	if ((parent == NULL) || (child == NULL)) {
+		printk(KERN_ERR	"parent %p child %p\n", parent, child);
+		BUG_ON(1);
+	}
+
+	/* no restrictions if the parent directory is not encrypted */
+	if (!parent->i_sb->s_cop->is_encrypted(parent))
+		return 1;
+	/* if the child directory is not encrypted, this is always a problem */
+	if (!parent->i_sb->s_cop->is_encrypted(child))
+		return 0;
+	res = fscrypt_get_encryption_info(parent);
+	if (res)
+		return 0;
+	res = fscrypt_get_encryption_info(child);
+	if (res)
+		return 0;
+	parent_ci = parent->i_crypt_info;
+	child_ci = child->i_crypt_info;
+	if (!parent_ci && !child_ci)
+		return 1;
+	if (!parent_ci || !child_ci)
+		return 0;
+
+	return (memcmp(parent_ci->ci_master_key,
+			child_ci->ci_master_key,
+			FS_KEY_DESCRIPTOR_SIZE) == 0 &&
+		(parent_ci->ci_data_mode == child_ci->ci_data_mode) &&
+		(parent_ci->ci_filename_mode == child_ci->ci_filename_mode) &&
+		(parent_ci->ci_flags == child_ci->ci_flags));
+}
+EXPORT_SYMBOL(fscrypt_has_permitted_context);
+
+/**
+ * fscrypt_inherit_context() - Sets a child context from its parent
+ * @parent: Parent inode from which the context is inherited.
+ * @child:  Child inode that inherits the context from @parent.
+ * @fs_data:  private data given by FS.
+ * @preload:  preload child i_crypt_info
+ *
+ * Return: Zero on success, non-zero otherwise
+ */
+int fscrypt_inherit_context(struct inode *parent, struct inode *child,
+						void *fs_data, bool preload)
+{
+	struct fscrypt_context ctx;
+	struct fscrypt_info *ci;
+	int res;
+
+	if (!parent->i_sb->s_cop->set_context)
+		return -EOPNOTSUPP;
+
+	res = fscrypt_get_encryption_info(parent);
+	if (res < 0)
+		return res;
+
+	ci = parent->i_crypt_info;
+	if (ci == NULL)
+		return -ENOKEY;
+
+	ctx.format = FS_ENCRYPTION_CONTEXT_FORMAT_V1;
+	if (fscrypt_dummy_context_enabled(parent)) {
+		ctx.contents_encryption_mode = FS_ENCRYPTION_MODE_AES_256_XTS;
+		ctx.filenames_encryption_mode = FS_ENCRYPTION_MODE_AES_256_CTS;
+		ctx.flags = 0;
+		memset(ctx.master_key_descriptor, 0x42, FS_KEY_DESCRIPTOR_SIZE);
+		res = 0;
+	} else {
+		ctx.contents_encryption_mode = ci->ci_data_mode;
+		ctx.filenames_encryption_mode = ci->ci_filename_mode;
+		ctx.flags = ci->ci_flags;
+		memcpy(ctx.master_key_descriptor, ci->ci_master_key,
+				FS_KEY_DESCRIPTOR_SIZE);
+	}
+	get_random_bytes(ctx.nonce, FS_KEY_DERIVATION_NONCE_SIZE);
+	res = parent->i_sb->s_cop->set_context(child, &ctx,
+						sizeof(ctx), fs_data);
+	if (res)
+		return res;
+	return preload ? fscrypt_get_encryption_info(child): 0;
+}
+EXPORT_SYMBOL(fscrypt_inherit_context);