| /* Freescale Enhanced Local Bus Controller NAND driver |
| * |
| * Copyright (c) 2006-2007 Freescale Semiconductor |
| * |
| * Authors: Nick Spence <nick.spence@freescale.com>, |
| * Scott Wood <scottwood@freescale.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/ioport.h> |
| #include <linux/of_platform.h> |
| #include <linux/slab.h> |
| #include <linux/interrupt.h> |
| |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/nand.h> |
| #include <linux/mtd/nand_ecc.h> |
| #include <linux/mtd/partitions.h> |
| |
| #include <asm/io.h> |
| #include <asm/fsl_lbc.h> |
| |
| #define MAX_BANKS 8 |
| #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */ |
| #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */ |
| |
| struct fsl_elbc_ctrl; |
| |
| /* mtd information per set */ |
| |
| struct fsl_elbc_mtd { |
| struct mtd_info mtd; |
| struct nand_chip chip; |
| struct fsl_elbc_ctrl *ctrl; |
| |
| struct device *dev; |
| int bank; /* Chip select bank number */ |
| u8 __iomem *vbase; /* Chip select base virtual address */ |
| int page_size; /* NAND page size (0=512, 1=2048) */ |
| unsigned int fmr; /* FCM Flash Mode Register value */ |
| }; |
| |
| /* overview of the fsl elbc controller */ |
| |
| struct fsl_elbc_ctrl { |
| struct nand_hw_control controller; |
| struct fsl_elbc_mtd *chips[MAX_BANKS]; |
| |
| /* device info */ |
| struct device *dev; |
| struct fsl_lbc_regs __iomem *regs; |
| int irq; |
| wait_queue_head_t irq_wait; |
| unsigned int irq_status; /* status read from LTESR by irq handler */ |
| u8 __iomem *addr; /* Address of assigned FCM buffer */ |
| unsigned int page; /* Last page written to / read from */ |
| unsigned int read_bytes; /* Number of bytes read during command */ |
| unsigned int column; /* Saved column from SEQIN */ |
| unsigned int index; /* Pointer to next byte to 'read' */ |
| unsigned int status; /* status read from LTESR after last op */ |
| unsigned int mdr; /* UPM/FCM Data Register value */ |
| unsigned int use_mdr; /* Non zero if the MDR is to be set */ |
| unsigned int oob; /* Non zero if operating on OOB data */ |
| char *oob_poi; /* Place to write ECC after read back */ |
| }; |
| |
| /* These map to the positions used by the FCM hardware ECC generator */ |
| |
| /* Small Page FLASH with FMR[ECCM] = 0 */ |
| static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = { |
| .eccbytes = 3, |
| .eccpos = {6, 7, 8}, |
| .oobfree = { {0, 5}, {9, 7} }, |
| }; |
| |
| /* Small Page FLASH with FMR[ECCM] = 1 */ |
| static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = { |
| .eccbytes = 3, |
| .eccpos = {8, 9, 10}, |
| .oobfree = { {0, 5}, {6, 2}, {11, 5} }, |
| }; |
| |
| /* Large Page FLASH with FMR[ECCM] = 0 */ |
| static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = { |
| .eccbytes = 12, |
| .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56}, |
| .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} }, |
| }; |
| |
| /* Large Page FLASH with FMR[ECCM] = 1 */ |
| static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = { |
| .eccbytes = 12, |
| .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58}, |
| .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} }, |
| }; |
| |
| /* |
| * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset |
| * 1, so we have to adjust bad block pattern. This pattern should be used for |
| * x8 chips only. So far hardware does not support x16 chips anyway. |
| */ |
| static u8 scan_ff_pattern[] = { 0xff, }; |
| |
| static struct nand_bbt_descr largepage_memorybased = { |
| .options = 0, |
| .offs = 0, |
| .len = 1, |
| .pattern = scan_ff_pattern, |
| }; |
| |
| /* |
| * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt, |
| * interfere with ECC positions, that's why we implement our own descriptors. |
| * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0. |
| */ |
| static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; |
| static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; |
| |
| static struct nand_bbt_descr bbt_main_descr = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | |
| NAND_BBT_2BIT | NAND_BBT_VERSION, |
| .offs = 11, |
| .len = 4, |
| .veroffs = 15, |
| .maxblocks = 4, |
| .pattern = bbt_pattern, |
| }; |
| |
| static struct nand_bbt_descr bbt_mirror_descr = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | |
| NAND_BBT_2BIT | NAND_BBT_VERSION, |
| .offs = 11, |
| .len = 4, |
| .veroffs = 15, |
| .maxblocks = 4, |
| .pattern = mirror_pattern, |
| }; |
| |
| /*=================================*/ |
| |
| /* |
| * Set up the FCM hardware block and page address fields, and the fcm |
| * structure addr field to point to the correct FCM buffer in memory |
| */ |
| static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct fsl_elbc_mtd *priv = chip->priv; |
| struct fsl_elbc_ctrl *ctrl = priv->ctrl; |
| struct fsl_lbc_regs __iomem *lbc = ctrl->regs; |
| int buf_num; |
| |
| ctrl->page = page_addr; |
| |
| out_be32(&lbc->fbar, |
| page_addr >> (chip->phys_erase_shift - chip->page_shift)); |
| |
| if (priv->page_size) { |
| out_be32(&lbc->fpar, |
| ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) | |
| (oob ? FPAR_LP_MS : 0) | column); |
| buf_num = (page_addr & 1) << 2; |
| } else { |
| out_be32(&lbc->fpar, |
| ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) | |
| (oob ? FPAR_SP_MS : 0) | column); |
| buf_num = page_addr & 7; |
| } |
| |
| ctrl->addr = priv->vbase + buf_num * 1024; |
| ctrl->index = column; |
| |
| /* for OOB data point to the second half of the buffer */ |
| if (oob) |
| ctrl->index += priv->page_size ? 2048 : 512; |
| |
| dev_vdbg(ctrl->dev, "set_addr: bank=%d, ctrl->addr=0x%p (0x%p), " |
| "index %x, pes %d ps %d\n", |
| buf_num, ctrl->addr, priv->vbase, ctrl->index, |
| chip->phys_erase_shift, chip->page_shift); |
| } |
| |
| /* |
| * execute FCM command and wait for it to complete |
| */ |
| static int fsl_elbc_run_command(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct fsl_elbc_mtd *priv = chip->priv; |
| struct fsl_elbc_ctrl *ctrl = priv->ctrl; |
| struct fsl_lbc_regs __iomem *lbc = ctrl->regs; |
| |
| /* Setup the FMR[OP] to execute without write protection */ |
| out_be32(&lbc->fmr, priv->fmr | 3); |
| if (ctrl->use_mdr) |
| out_be32(&lbc->mdr, ctrl->mdr); |
| |
| dev_vdbg(ctrl->dev, |
| "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n", |
| in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr)); |
| dev_vdbg(ctrl->dev, |
| "fsl_elbc_run_command: fbar=%08x fpar=%08x " |
| "fbcr=%08x bank=%d\n", |
| in_be32(&lbc->fbar), in_be32(&lbc->fpar), |
| in_be32(&lbc->fbcr), priv->bank); |
| |
| ctrl->irq_status = 0; |
| /* execute special operation */ |
| out_be32(&lbc->lsor, priv->bank); |
| |
| /* wait for FCM complete flag or timeout */ |
| wait_event_timeout(ctrl->irq_wait, ctrl->irq_status, |
| FCM_TIMEOUT_MSECS * HZ/1000); |
| ctrl->status = ctrl->irq_status; |
| |
| /* store mdr value in case it was needed */ |
| if (ctrl->use_mdr) |
| ctrl->mdr = in_be32(&lbc->mdr); |
| |
| ctrl->use_mdr = 0; |
| |
| dev_vdbg(ctrl->dev, |
| "fsl_elbc_run_command: stat=%08x mdr=%08x fmr=%08x\n", |
| ctrl->status, ctrl->mdr, in_be32(&lbc->fmr)); |
| |
| /* returns 0 on success otherwise non-zero) */ |
| return ctrl->status == LTESR_CC ? 0 : -EIO; |
| } |
| |
| static void fsl_elbc_do_read(struct nand_chip *chip, int oob) |
| { |
| struct fsl_elbc_mtd *priv = chip->priv; |
| struct fsl_elbc_ctrl *ctrl = priv->ctrl; |
| struct fsl_lbc_regs __iomem *lbc = ctrl->regs; |
| |
| if (priv->page_size) { |
| out_be32(&lbc->fir, |
| (FIR_OP_CW0 << FIR_OP0_SHIFT) | |
| (FIR_OP_CA << FIR_OP1_SHIFT) | |
| (FIR_OP_PA << FIR_OP2_SHIFT) | |
| (FIR_OP_CW1 << FIR_OP3_SHIFT) | |
| (FIR_OP_RBW << FIR_OP4_SHIFT)); |
| |
| out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) | |
| (NAND_CMD_READSTART << FCR_CMD1_SHIFT)); |
| } else { |
| out_be32(&lbc->fir, |
| (FIR_OP_CW0 << FIR_OP0_SHIFT) | |
| (FIR_OP_CA << FIR_OP1_SHIFT) | |
| (FIR_OP_PA << FIR_OP2_SHIFT) | |
| (FIR_OP_RBW << FIR_OP3_SHIFT)); |
| |
| if (oob) |
| out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT); |
| else |
| out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT); |
| } |
| } |
| |
| /* cmdfunc send commands to the FCM */ |
| static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command, |
| int column, int page_addr) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct fsl_elbc_mtd *priv = chip->priv; |
| struct fsl_elbc_ctrl *ctrl = priv->ctrl; |
| struct fsl_lbc_regs __iomem *lbc = ctrl->regs; |
| |
| ctrl->use_mdr = 0; |
| |
| /* clear the read buffer */ |
| ctrl->read_bytes = 0; |
| if (command != NAND_CMD_PAGEPROG) |
| ctrl->index = 0; |
| |
| switch (command) { |
| /* READ0 and READ1 read the entire buffer to use hardware ECC. */ |
| case NAND_CMD_READ1: |
| column += 256; |
| |
| /* fall-through */ |
| case NAND_CMD_READ0: |
| dev_dbg(ctrl->dev, |
| "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:" |
| " 0x%x, column: 0x%x.\n", page_addr, column); |
| |
| |
| out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */ |
| set_addr(mtd, 0, page_addr, 0); |
| |
| ctrl->read_bytes = mtd->writesize + mtd->oobsize; |
| ctrl->index += column; |
| |
| fsl_elbc_do_read(chip, 0); |
| fsl_elbc_run_command(mtd); |
| return; |
| |
| /* READOOB reads only the OOB because no ECC is performed. */ |
| case NAND_CMD_READOOB: |
| dev_vdbg(ctrl->dev, |
| "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:" |
| " 0x%x, column: 0x%x.\n", page_addr, column); |
| |
| out_be32(&lbc->fbcr, mtd->oobsize - column); |
| set_addr(mtd, column, page_addr, 1); |
| |
| ctrl->read_bytes = mtd->writesize + mtd->oobsize; |
| |
| fsl_elbc_do_read(chip, 1); |
| fsl_elbc_run_command(mtd); |
| return; |
| |
| /* READID must read all 5 possible bytes while CEB is active */ |
| case NAND_CMD_READID: |
| dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n"); |
| |
| out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) | |
| (FIR_OP_UA << FIR_OP1_SHIFT) | |
| (FIR_OP_RBW << FIR_OP2_SHIFT)); |
| out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT); |
| /* 5 bytes for manuf, device and exts */ |
| out_be32(&lbc->fbcr, 5); |
| ctrl->read_bytes = 5; |
| ctrl->use_mdr = 1; |
| ctrl->mdr = 0; |
| |
| set_addr(mtd, 0, 0, 0); |
| fsl_elbc_run_command(mtd); |
| return; |
| |
| /* ERASE1 stores the block and page address */ |
| case NAND_CMD_ERASE1: |
| dev_vdbg(ctrl->dev, |
| "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, " |
| "page_addr: 0x%x.\n", page_addr); |
| set_addr(mtd, 0, page_addr, 0); |
| return; |
| |
| /* ERASE2 uses the block and page address from ERASE1 */ |
| case NAND_CMD_ERASE2: |
| dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n"); |
| |
| out_be32(&lbc->fir, |
| (FIR_OP_CW0 << FIR_OP0_SHIFT) | |
| (FIR_OP_PA << FIR_OP1_SHIFT) | |
| (FIR_OP_CM1 << FIR_OP2_SHIFT)); |
| |
| out_be32(&lbc->fcr, |
| (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) | |
| (NAND_CMD_ERASE2 << FCR_CMD1_SHIFT)); |
| |
| out_be32(&lbc->fbcr, 0); |
| ctrl->read_bytes = 0; |
| |
| fsl_elbc_run_command(mtd); |
| return; |
| |
| /* SEQIN sets up the addr buffer and all registers except the length */ |
| case NAND_CMD_SEQIN: { |
| __be32 fcr; |
| dev_vdbg(ctrl->dev, |
| "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, " |
| "page_addr: 0x%x, column: 0x%x.\n", |
| page_addr, column); |
| |
| ctrl->column = column; |
| ctrl->oob = 0; |
| |
| if (priv->page_size) { |
| fcr = (NAND_CMD_SEQIN << FCR_CMD0_SHIFT) | |
| (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT); |
| |
| out_be32(&lbc->fir, |
| (FIR_OP_CW0 << FIR_OP0_SHIFT) | |
| (FIR_OP_CA << FIR_OP1_SHIFT) | |
| (FIR_OP_PA << FIR_OP2_SHIFT) | |
| (FIR_OP_WB << FIR_OP3_SHIFT) | |
| (FIR_OP_CW1 << FIR_OP4_SHIFT)); |
| } else { |
| fcr = (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT) | |
| (NAND_CMD_SEQIN << FCR_CMD2_SHIFT); |
| |
| out_be32(&lbc->fir, |
| (FIR_OP_CW0 << FIR_OP0_SHIFT) | |
| (FIR_OP_CM2 << FIR_OP1_SHIFT) | |
| (FIR_OP_CA << FIR_OP2_SHIFT) | |
| (FIR_OP_PA << FIR_OP3_SHIFT) | |
| (FIR_OP_WB << FIR_OP4_SHIFT) | |
| (FIR_OP_CW1 << FIR_OP5_SHIFT)); |
| |
| if (column >= mtd->writesize) { |
| /* OOB area --> READOOB */ |
| column -= mtd->writesize; |
| fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT; |
| ctrl->oob = 1; |
| } else if (column < 256) { |
| /* First 256 bytes --> READ0 */ |
| fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT; |
| } else { |
| /* Second 256 bytes --> READ1 */ |
| fcr |= NAND_CMD_READ1 << FCR_CMD0_SHIFT; |
| } |
| } |
| |
| out_be32(&lbc->fcr, fcr); |
| set_addr(mtd, column, page_addr, ctrl->oob); |
| return; |
| } |
| |
| /* PAGEPROG reuses all of the setup from SEQIN and adds the length */ |
| case NAND_CMD_PAGEPROG: { |
| int full_page; |
| dev_vdbg(ctrl->dev, |
| "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG " |
| "writing %d bytes.\n", ctrl->index); |
| |
| /* if the write did not start at 0 or is not a full page |
| * then set the exact length, otherwise use a full page |
| * write so the HW generates the ECC. |
| */ |
| if (ctrl->oob || ctrl->column != 0 || |
| ctrl->index != mtd->writesize + mtd->oobsize) { |
| out_be32(&lbc->fbcr, ctrl->index); |
| full_page = 0; |
| } else { |
| out_be32(&lbc->fbcr, 0); |
| full_page = 1; |
| } |
| |
| fsl_elbc_run_command(mtd); |
| |
| /* Read back the page in order to fill in the ECC for the |
| * caller. Is this really needed? |
| */ |
| if (full_page && ctrl->oob_poi) { |
| out_be32(&lbc->fbcr, 3); |
| set_addr(mtd, 6, page_addr, 1); |
| |
| ctrl->read_bytes = mtd->writesize + 9; |
| |
| fsl_elbc_do_read(chip, 1); |
| fsl_elbc_run_command(mtd); |
| |
| memcpy_fromio(ctrl->oob_poi + 6, |
| &ctrl->addr[ctrl->index], 3); |
| ctrl->index += 3; |
| } |
| |
| ctrl->oob_poi = NULL; |
| return; |
| } |
| |
| /* CMD_STATUS must read the status byte while CEB is active */ |
| /* Note - it does not wait for the ready line */ |
| case NAND_CMD_STATUS: |
| out_be32(&lbc->fir, |
| (FIR_OP_CM0 << FIR_OP0_SHIFT) | |
| (FIR_OP_RBW << FIR_OP1_SHIFT)); |
| out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT); |
| out_be32(&lbc->fbcr, 1); |
| set_addr(mtd, 0, 0, 0); |
| ctrl->read_bytes = 1; |
| |
| fsl_elbc_run_command(mtd); |
| |
| /* The chip always seems to report that it is |
| * write-protected, even when it is not. |
| */ |
| setbits8(ctrl->addr, NAND_STATUS_WP); |
| return; |
| |
| /* RESET without waiting for the ready line */ |
| case NAND_CMD_RESET: |
| dev_dbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n"); |
| out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT); |
| out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT); |
| fsl_elbc_run_command(mtd); |
| return; |
| |
| default: |
| dev_err(ctrl->dev, |
| "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n", |
| command); |
| } |
| } |
| |
| static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip) |
| { |
| /* The hardware does not seem to support multiple |
| * chips per bank. |
| */ |
| } |
| |
| /* |
| * Write buf to the FCM Controller Data Buffer |
| */ |
| static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct fsl_elbc_mtd *priv = chip->priv; |
| struct fsl_elbc_ctrl *ctrl = priv->ctrl; |
| unsigned int bufsize = mtd->writesize + mtd->oobsize; |
| |
| if (len <= 0) { |
| dev_err(ctrl->dev, "write_buf of %d bytes", len); |
| ctrl->status = 0; |
| return; |
| } |
| |
| if ((unsigned int)len > bufsize - ctrl->index) { |
| dev_err(ctrl->dev, |
| "write_buf beyond end of buffer " |
| "(%d requested, %u available)\n", |
| len, bufsize - ctrl->index); |
| len = bufsize - ctrl->index; |
| } |
| |
| memcpy_toio(&ctrl->addr[ctrl->index], buf, len); |
| /* |
| * This is workaround for the weird elbc hangs during nand write, |
| * Scott Wood says: "...perhaps difference in how long it takes a |
| * write to make it through the localbus compared to a write to IMMR |
| * is causing problems, and sync isn't helping for some reason." |
| * Reading back the last byte helps though. |
| */ |
| in_8(&ctrl->addr[ctrl->index] + len - 1); |
| |
| ctrl->index += len; |
| } |
| |
| /* |
| * read a byte from either the FCM hardware buffer if it has any data left |
| * otherwise issue a command to read a single byte. |
| */ |
| static u8 fsl_elbc_read_byte(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct fsl_elbc_mtd *priv = chip->priv; |
| struct fsl_elbc_ctrl *ctrl = priv->ctrl; |
| |
| /* If there are still bytes in the FCM, then use the next byte. */ |
| if (ctrl->index < ctrl->read_bytes) |
| return in_8(&ctrl->addr[ctrl->index++]); |
| |
| dev_err(ctrl->dev, "read_byte beyond end of buffer\n"); |
| return ERR_BYTE; |
| } |
| |
| /* |
| * Read from the FCM Controller Data Buffer |
| */ |
| static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct fsl_elbc_mtd *priv = chip->priv; |
| struct fsl_elbc_ctrl *ctrl = priv->ctrl; |
| int avail; |
| |
| if (len < 0) |
| return; |
| |
| avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index); |
| memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail); |
| ctrl->index += avail; |
| |
| if (len > avail) |
| dev_err(ctrl->dev, |
| "read_buf beyond end of buffer " |
| "(%d requested, %d available)\n", |
| len, avail); |
| } |
| |
| /* |
| * Verify buffer against the FCM Controller Data Buffer |
| */ |
| static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct fsl_elbc_mtd *priv = chip->priv; |
| struct fsl_elbc_ctrl *ctrl = priv->ctrl; |
| int i; |
| |
| if (len < 0) { |
| dev_err(ctrl->dev, "write_buf of %d bytes", len); |
| return -EINVAL; |
| } |
| |
| if ((unsigned int)len > ctrl->read_bytes - ctrl->index) { |
| dev_err(ctrl->dev, |
| "verify_buf beyond end of buffer " |
| "(%d requested, %u available)\n", |
| len, ctrl->read_bytes - ctrl->index); |
| |
| ctrl->index = ctrl->read_bytes; |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < len; i++) |
| if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i]) |
| break; |
| |
| ctrl->index += len; |
| return i == len && ctrl->status == LTESR_CC ? 0 : -EIO; |
| } |
| |
| /* This function is called after Program and Erase Operations to |
| * check for success or failure. |
| */ |
| static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip) |
| { |
| struct fsl_elbc_mtd *priv = chip->priv; |
| struct fsl_elbc_ctrl *ctrl = priv->ctrl; |
| struct fsl_lbc_regs __iomem *lbc = ctrl->regs; |
| |
| if (ctrl->status != LTESR_CC) |
| return NAND_STATUS_FAIL; |
| |
| /* Use READ_STATUS command, but wait for the device to be ready */ |
| ctrl->use_mdr = 0; |
| out_be32(&lbc->fir, |
| (FIR_OP_CW0 << FIR_OP0_SHIFT) | |
| (FIR_OP_RBW << FIR_OP1_SHIFT)); |
| out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT); |
| out_be32(&lbc->fbcr, 1); |
| set_addr(mtd, 0, 0, 0); |
| ctrl->read_bytes = 1; |
| |
| fsl_elbc_run_command(mtd); |
| |
| if (ctrl->status != LTESR_CC) |
| return NAND_STATUS_FAIL; |
| |
| /* The chip always seems to report that it is |
| * write-protected, even when it is not. |
| */ |
| setbits8(ctrl->addr, NAND_STATUS_WP); |
| return fsl_elbc_read_byte(mtd); |
| } |
| |
| static int fsl_elbc_chip_init_tail(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct fsl_elbc_mtd *priv = chip->priv; |
| struct fsl_elbc_ctrl *ctrl = priv->ctrl; |
| struct fsl_lbc_regs __iomem *lbc = ctrl->regs; |
| unsigned int al; |
| |
| /* calculate FMR Address Length field */ |
| al = 0; |
| if (chip->pagemask & 0xffff0000) |
| al++; |
| if (chip->pagemask & 0xff000000) |
| al++; |
| |
| /* add to ECCM mode set in fsl_elbc_init */ |
| priv->fmr |= (12 << FMR_CWTO_SHIFT) | /* Timeout > 12 ms */ |
| (al << FMR_AL_SHIFT); |
| |
| dev_dbg(ctrl->dev, "fsl_elbc_init: nand->numchips = %d\n", |
| chip->numchips); |
| dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chipsize = %ld\n", |
| chip->chipsize); |
| dev_dbg(ctrl->dev, "fsl_elbc_init: nand->pagemask = %8x\n", |
| chip->pagemask); |
| dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_delay = %d\n", |
| chip->chip_delay); |
| dev_dbg(ctrl->dev, "fsl_elbc_init: nand->badblockpos = %d\n", |
| chip->badblockpos); |
| dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_shift = %d\n", |
| chip->chip_shift); |
| dev_dbg(ctrl->dev, "fsl_elbc_init: nand->page_shift = %d\n", |
| chip->page_shift); |
| dev_dbg(ctrl->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n", |
| chip->phys_erase_shift); |
| dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecclayout = %p\n", |
| chip->ecclayout); |
| dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.mode = %d\n", |
| chip->ecc.mode); |
| dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.steps = %d\n", |
| chip->ecc.steps); |
| dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n", |
| chip->ecc.bytes); |
| dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.total = %d\n", |
| chip->ecc.total); |
| dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.layout = %p\n", |
| chip->ecc.layout); |
| dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags); |
| dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->size = %d\n", mtd->size); |
| dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->erasesize = %d\n", |
| mtd->erasesize); |
| dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->writesize = %d\n", |
| mtd->writesize); |
| dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->oobsize = %d\n", |
| mtd->oobsize); |
| |
| /* adjust Option Register and ECC to match Flash page size */ |
| if (mtd->writesize == 512) { |
| priv->page_size = 0; |
| clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS); |
| } else if (mtd->writesize == 2048) { |
| priv->page_size = 1; |
| setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS); |
| /* adjust ecc setup if needed */ |
| if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) == |
| BR_DECC_CHK_GEN) { |
| chip->ecc.size = 512; |
| chip->ecc.layout = (priv->fmr & FMR_ECCM) ? |
| &fsl_elbc_oob_lp_eccm1 : |
| &fsl_elbc_oob_lp_eccm0; |
| chip->badblock_pattern = &largepage_memorybased; |
| } |
| } else { |
| dev_err(ctrl->dev, |
| "fsl_elbc_init: page size %d is not supported\n", |
| mtd->writesize); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int fsl_elbc_read_page(struct mtd_info *mtd, |
| struct nand_chip *chip, |
| uint8_t *buf) |
| { |
| fsl_elbc_read_buf(mtd, buf, mtd->writesize); |
| fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize); |
| |
| if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL) |
| mtd->ecc_stats.failed++; |
| |
| return 0; |
| } |
| |
| /* ECC will be calculated automatically, and errors will be detected in |
| * waitfunc. |
| */ |
| static void fsl_elbc_write_page(struct mtd_info *mtd, |
| struct nand_chip *chip, |
| const uint8_t *buf) |
| { |
| struct fsl_elbc_mtd *priv = chip->priv; |
| struct fsl_elbc_ctrl *ctrl = priv->ctrl; |
| |
| fsl_elbc_write_buf(mtd, buf, mtd->writesize); |
| fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize); |
| |
| ctrl->oob_poi = chip->oob_poi; |
| } |
| |
| static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv) |
| { |
| struct fsl_elbc_ctrl *ctrl = priv->ctrl; |
| struct fsl_lbc_regs __iomem *lbc = ctrl->regs; |
| struct nand_chip *chip = &priv->chip; |
| |
| dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank); |
| |
| /* Fill in fsl_elbc_mtd structure */ |
| priv->mtd.priv = chip; |
| priv->mtd.owner = THIS_MODULE; |
| |
| /* Set the ECCM according to the settings in bootloader.*/ |
| priv->fmr = in_be32(&lbc->fmr) & FMR_ECCM; |
| |
| /* fill in nand_chip structure */ |
| /* set up function call table */ |
| chip->read_byte = fsl_elbc_read_byte; |
| chip->write_buf = fsl_elbc_write_buf; |
| chip->read_buf = fsl_elbc_read_buf; |
| chip->verify_buf = fsl_elbc_verify_buf; |
| chip->select_chip = fsl_elbc_select_chip; |
| chip->cmdfunc = fsl_elbc_cmdfunc; |
| chip->waitfunc = fsl_elbc_wait; |
| |
| chip->bbt_td = &bbt_main_descr; |
| chip->bbt_md = &bbt_mirror_descr; |
| |
| /* set up nand options */ |
| chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR | |
| NAND_USE_FLASH_BBT; |
| |
| chip->controller = &ctrl->controller; |
| chip->priv = priv; |
| |
| chip->ecc.read_page = fsl_elbc_read_page; |
| chip->ecc.write_page = fsl_elbc_write_page; |
| |
| /* If CS Base Register selects full hardware ECC then use it */ |
| if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) == |
| BR_DECC_CHK_GEN) { |
| chip->ecc.mode = NAND_ECC_HW; |
| /* put in small page settings and adjust later if needed */ |
| chip->ecc.layout = (priv->fmr & FMR_ECCM) ? |
| &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0; |
| chip->ecc.size = 512; |
| chip->ecc.bytes = 3; |
| } else { |
| /* otherwise fall back to default software ECC */ |
| chip->ecc.mode = NAND_ECC_SOFT; |
| } |
| |
| return 0; |
| } |
| |
| static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv) |
| { |
| struct fsl_elbc_ctrl *ctrl = priv->ctrl; |
| |
| nand_release(&priv->mtd); |
| |
| kfree(priv->mtd.name); |
| |
| if (priv->vbase) |
| iounmap(priv->vbase); |
| |
| ctrl->chips[priv->bank] = NULL; |
| kfree(priv); |
| |
| return 0; |
| } |
| |
| static int __devinit fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl, |
| struct device_node *node) |
| { |
| struct fsl_lbc_regs __iomem *lbc = ctrl->regs; |
| struct fsl_elbc_mtd *priv; |
| struct resource res; |
| #ifdef CONFIG_MTD_PARTITIONS |
| static const char *part_probe_types[] |
| = { "cmdlinepart", "RedBoot", NULL }; |
| struct mtd_partition *parts; |
| #endif |
| int ret; |
| int bank; |
| |
| /* get, allocate and map the memory resource */ |
| ret = of_address_to_resource(node, 0, &res); |
| if (ret) { |
| dev_err(ctrl->dev, "failed to get resource\n"); |
| return ret; |
| } |
| |
| /* find which chip select it is connected to */ |
| for (bank = 0; bank < MAX_BANKS; bank++) |
| if ((in_be32(&lbc->bank[bank].br) & BR_V) && |
| (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM && |
| (in_be32(&lbc->bank[bank].br) & |
| in_be32(&lbc->bank[bank].or) & BR_BA) |
| == res.start) |
| break; |
| |
| if (bank >= MAX_BANKS) { |
| dev_err(ctrl->dev, "address did not match any chip selects\n"); |
| return -ENODEV; |
| } |
| |
| priv = kzalloc(sizeof(*priv), GFP_KERNEL); |
| if (!priv) |
| return -ENOMEM; |
| |
| ctrl->chips[bank] = priv; |
| priv->bank = bank; |
| priv->ctrl = ctrl; |
| priv->dev = ctrl->dev; |
| |
| priv->vbase = ioremap(res.start, res.end - res.start + 1); |
| if (!priv->vbase) { |
| dev_err(ctrl->dev, "failed to map chip region\n"); |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start); |
| if (!priv->mtd.name) { |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| ret = fsl_elbc_chip_init(priv); |
| if (ret) |
| goto err; |
| |
| ret = nand_scan_ident(&priv->mtd, 1); |
| if (ret) |
| goto err; |
| |
| ret = fsl_elbc_chip_init_tail(&priv->mtd); |
| if (ret) |
| goto err; |
| |
| ret = nand_scan_tail(&priv->mtd); |
| if (ret) |
| goto err; |
| |
| #ifdef CONFIG_MTD_PARTITIONS |
| /* First look for RedBoot table or partitions on the command |
| * line, these take precedence over device tree information */ |
| ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0); |
| if (ret < 0) |
| goto err; |
| |
| #ifdef CONFIG_MTD_OF_PARTS |
| if (ret == 0) { |
| ret = of_mtd_parse_partitions(priv->dev, node, &parts); |
| if (ret < 0) |
| goto err; |
| } |
| #endif |
| |
| if (ret > 0) |
| add_mtd_partitions(&priv->mtd, parts, ret); |
| else |
| #endif |
| add_mtd_device(&priv->mtd); |
| |
| printk(KERN_INFO "eLBC NAND device at 0x%zx, bank %d\n", |
| res.start, priv->bank); |
| return 0; |
| |
| err: |
| fsl_elbc_chip_remove(priv); |
| return ret; |
| } |
| |
| static int __devinit fsl_elbc_ctrl_init(struct fsl_elbc_ctrl *ctrl) |
| { |
| struct fsl_lbc_regs __iomem *lbc = ctrl->regs; |
| |
| /* clear event registers */ |
| setbits32(&lbc->ltesr, LTESR_NAND_MASK); |
| out_be32(&lbc->lteatr, 0); |
| |
| /* Enable interrupts for any detected events */ |
| out_be32(&lbc->lteir, LTESR_NAND_MASK); |
| |
| ctrl->read_bytes = 0; |
| ctrl->index = 0; |
| ctrl->addr = NULL; |
| |
| return 0; |
| } |
| |
| static int fsl_elbc_ctrl_remove(struct of_device *ofdev) |
| { |
| struct fsl_elbc_ctrl *ctrl = dev_get_drvdata(&ofdev->dev); |
| int i; |
| |
| for (i = 0; i < MAX_BANKS; i++) |
| if (ctrl->chips[i]) |
| fsl_elbc_chip_remove(ctrl->chips[i]); |
| |
| if (ctrl->irq) |
| free_irq(ctrl->irq, ctrl); |
| |
| if (ctrl->regs) |
| iounmap(ctrl->regs); |
| |
| dev_set_drvdata(&ofdev->dev, NULL); |
| kfree(ctrl); |
| return 0; |
| } |
| |
| /* NOTE: This interrupt is also used to report other localbus events, |
| * such as transaction errors on other chipselects. If we want to |
| * capture those, we'll need to move the IRQ code into a shared |
| * LBC driver. |
| */ |
| |
| static irqreturn_t fsl_elbc_ctrl_irq(int irqno, void *data) |
| { |
| struct fsl_elbc_ctrl *ctrl = data; |
| struct fsl_lbc_regs __iomem *lbc = ctrl->regs; |
| __be32 status = in_be32(&lbc->ltesr) & LTESR_NAND_MASK; |
| |
| if (status) { |
| out_be32(&lbc->ltesr, status); |
| out_be32(&lbc->lteatr, 0); |
| |
| ctrl->irq_status = status; |
| smp_wmb(); |
| wake_up(&ctrl->irq_wait); |
| |
| return IRQ_HANDLED; |
| } |
| |
| return IRQ_NONE; |
| } |
| |
| /* fsl_elbc_ctrl_probe |
| * |
| * called by device layer when it finds a device matching |
| * one our driver can handled. This code allocates all of |
| * the resources needed for the controller only. The |
| * resources for the NAND banks themselves are allocated |
| * in the chip probe function. |
| */ |
| |
| static int __devinit fsl_elbc_ctrl_probe(struct of_device *ofdev, |
| const struct of_device_id *match) |
| { |
| struct device_node *child; |
| struct fsl_elbc_ctrl *ctrl; |
| int ret; |
| |
| ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); |
| if (!ctrl) |
| return -ENOMEM; |
| |
| dev_set_drvdata(&ofdev->dev, ctrl); |
| |
| spin_lock_init(&ctrl->controller.lock); |
| init_waitqueue_head(&ctrl->controller.wq); |
| init_waitqueue_head(&ctrl->irq_wait); |
| |
| ctrl->regs = of_iomap(ofdev->node, 0); |
| if (!ctrl->regs) { |
| dev_err(&ofdev->dev, "failed to get memory region\n"); |
| ret = -ENODEV; |
| goto err; |
| } |
| |
| ctrl->irq = of_irq_to_resource(ofdev->node, 0, NULL); |
| if (ctrl->irq == NO_IRQ) { |
| dev_err(&ofdev->dev, "failed to get irq resource\n"); |
| ret = -ENODEV; |
| goto err; |
| } |
| |
| ctrl->dev = &ofdev->dev; |
| |
| ret = fsl_elbc_ctrl_init(ctrl); |
| if (ret < 0) |
| goto err; |
| |
| ret = request_irq(ctrl->irq, fsl_elbc_ctrl_irq, 0, "fsl-elbc", ctrl); |
| if (ret != 0) { |
| dev_err(&ofdev->dev, "failed to install irq (%d)\n", |
| ctrl->irq); |
| ret = ctrl->irq; |
| goto err; |
| } |
| |
| for_each_child_of_node(ofdev->node, child) |
| if (of_device_is_compatible(child, "fsl,elbc-fcm-nand")) |
| fsl_elbc_chip_probe(ctrl, child); |
| |
| return 0; |
| |
| err: |
| fsl_elbc_ctrl_remove(ofdev); |
| return ret; |
| } |
| |
| static const struct of_device_id fsl_elbc_match[] = { |
| { |
| .compatible = "fsl,elbc", |
| }, |
| {} |
| }; |
| |
| static struct of_platform_driver fsl_elbc_ctrl_driver = { |
| .driver = { |
| .name = "fsl-elbc", |
| }, |
| .match_table = fsl_elbc_match, |
| .probe = fsl_elbc_ctrl_probe, |
| .remove = fsl_elbc_ctrl_remove, |
| }; |
| |
| static int __init fsl_elbc_init(void) |
| { |
| return of_register_platform_driver(&fsl_elbc_ctrl_driver); |
| } |
| |
| static void __exit fsl_elbc_exit(void) |
| { |
| of_unregister_platform_driver(&fsl_elbc_ctrl_driver); |
| } |
| |
| module_init(fsl_elbc_init); |
| module_exit(fsl_elbc_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Freescale"); |
| MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver"); |