kvm: x86: ignore ioapic polarity

Both QEMU and KVM have already accumulated a significant number of
optimizations based on the hard-coded assumption that ioapic polarity
will always use the ActiveHigh convention, where the logical and
physical states of level-triggered irq lines always match (i.e.,
active(asserted) == high == 1, inactive == low == 0). QEMU guests
are expected to follow directions given via ACPI and configure the
ioapic with polarity 0 (ActiveHigh). However, even when misbehaving
guests (e.g. OS X <= 10.9) set the ioapic polarity to 1 (ActiveLow),
QEMU will still use the ActiveHigh signaling convention when
interfacing with KVM.

This patch modifies KVM to completely ignore ioapic polarity as set by
the guest OS, enabling misbehaving guests to work alongside those which
comply with the ActiveHigh polarity specified by QEMU's ACPI tables.

Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Gabriel L. Somlo <somlo@cmu.edu>
[Move documentation to KVM_IRQ_LINE, add ia64. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
diff --git a/Documentation/virtual/kvm/api.txt b/Documentation/virtual/kvm/api.txt
index 6cd63a9..4714f28 100644
--- a/Documentation/virtual/kvm/api.txt
+++ b/Documentation/virtual/kvm/api.txt
@@ -612,6 +612,20 @@
 been previously created with KVM_CREATE_IRQCHIP.  Note that edge-triggered
 interrupts require the level to be set to 1 and then back to 0.
 
+On real hardware, interrupt pins can be active-low or active-high.  This
+does not matter for the level field of struct kvm_irq_level: 1 always
+means active (asserted), 0 means inactive (deasserted).
+
+x86 allows the operating system to program the interrupt polarity
+(active-low/active-high) for level-triggered interrupts, and KVM used
+to consider the polarity.  However, due to bitrot in the handling of
+active-low interrupts, the above convention is now valid on x86 too.
+This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED.  Userspace
+should not present interrupts to the guest as active-low unless this
+capability is present (or unless it is not using the in-kernel irqchip,
+of course).
+
+
 ARM/arm64 can signal an interrupt either at the CPU level, or at the
 in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to
 use PPIs designated for specific cpus.  The irq field is interpreted
@@ -628,7 +642,7 @@
 
 (The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs)
 
-In both cases, level is used to raise/lower the line.
+In both cases, level is used to assert/deassert the line.
 
 struct kvm_irq_level {
 	union {